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Joint k-step analysis of Orthogonal Matching
Pursuit and Orthogonal Least Squares

Charles Soussen⋆, Rémi Gribonval, Jérôme Idier, and Cédric Herzet

Abstract—Tropp’s analysis of Orthogonal Matching Pur-
suit (OMP) using the Exact Recovery Condition (ERC) [1]
is extended to a first exact recovery analysis of Orthogonal
Least Squares (OLS). We show that when the ERC is
met, OLS is guaranteed to exactly recover the unknown
support in at most k iterations. Moreover, we provide a
closer look at the analysis of both OMP and OLS when
the ERC is not fulfilled. The existence of dictionaries for
which some subsets are never recovered by OMP is proved.
This phenomenon also appears with basis pursuit where
support recovery depends on the sign patterns, but it does
not occur for OLS. Finally, numerical experiments show
that none of the considered algorithms is uniformly better
than the other but for correlated dictionaries, guaranteed
exact recovery may be obtained after fewer iterations for
OLS than for OMP.

Index Terms—ERC exact recovery condition; Orthog-
onal Matching Pursuit; Orthogonal Least Squares; Or-
der Recursive Matching Pursuit; Optimized Orthogonal
Matching Pursuit; forward selection.

I. INTRODUCTION

CLASSICAL greedy subset selection algorithms in-
clude, by increasing order of complexity: Match-

ing Pursuit (MP) [2], Orthogonal Matching Pursuit
(OMP) [3] and Orthogonal Least Squares (OLS) [4,
5]. OLS is indeed relatively expensive in comparison
with OMP since OMP performs one linear inversion
per iteration whereas OLS performs as many linear
inversions as there are non-active atoms. We refer the
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reader to the technical report [6] for a comprehensive
review on the difference between OMP and OLS.

OLS is referred to using many other names in the
literature. It is known as forward selection in statistical
regression [7] and as the greedy algorithm [5], Order
Recursive Matching Pursuit (ORMP) [8] and Optimized
Orthogonal Matching Pursuit (OOMP) [9] in the signal
processing literature, all these algorithms being actually
the same. It is worth noticing that the above-mentioned
algorithms were introduced by following either an op-
timization [4, 7] or an orthogonal projection methodol-
ogy [5], or both [8, 9]. In the optimization viewpoint, the
atom yielding the largest decrease of the approximation
error is selected. This leads to a greedy sub-optimal algo-
rithm dedicated to the minimization of the approximation
error. In the orthogonal projection viewpoint, the atom
selection rule is defined as an extension of the OMP
rule: the data vector and the dictionary atoms are being
projected onto the subspace that is orthogonal to the span
of the active atoms, and thenormalizedprojected atom
having the largest inner product with the data residual is
selected. As the number of active atoms increases by one
at any iteration, the projections are done on a subspace
whose dimension is decreasing.

A. Main objective of the paper

Our primary goal is to address the OLS exact recovery
analysis from noise-free data and to investigate the
connection between the OMP and OLS exact recovery
conditions. In the literature, much attention was paid
to the exact recovery analysis of sparse algorithms that
are faster than OLS,e.g., thresholding algorithms and
simpler greedy algorithms like OMP [10]. But to the best
of our knowledge, no exact recovery result is available
for OLS. In their recent paper [11], Davies and Eldar
mention this issue and state that the relation between
OMP and OLS remains unclear.

B. Existing results for OMP

Our starting point is the existingk-step analysis of
OMP whose structure is somewhat close to OLS. The
notion of k-step solution property was defined in [12]:
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“any vector with at mostk nonzeros can be recovered
from the related noise-free observation in at mostk
iterations.” Thek-step property will also be referred to
as the “exact support recovery” in the following. Exact
recovery studies of OMP rely on alternate methodolo-
gies.

Tropp’s Exact Recovery Condition (ERC) [1] is a nec-
essary and sufficient condition of exact support recovery
in a worst case analysis. On the one hand, if a subset of
k atoms satisfies the ERC, then it can be recovered from
any linear combination of thek atoms in at mostk steps.
On the other hand, when the ERC is not satisfied, one can
generate a counterexample (i.e., a specific combination
of the k atoms) for which OMP fails,i.e., OMP selects
a wrong atom during its firstk iterations. Specifically,
the atom selected in thefirst iteration is a wrong one.

Davenport and Wakin [13] used another analysis to
show that OMP yields exact support recovery under cer-
tain Restricted Isometry Property (RIP) assumptions, and
several improvements of their condition were proposed
more recently [14, 15]. Actually, the ERC necessarily
holds when the latter conditions are fulfilled since the
ERC is a sufficient and worst case necessary condition
of exact recovery.

C. Generalization of Tropp’s condition

We propose to extend Tropp’s condition to OLS. We
remark that the very first iteration of OLS is identical to
that of OMP: the first selected atom is the one whose
inner product with the input vector is maximal. There-
fore, when the ERC does not hold, the counterexample
for which the first iteration of OMP fails also yields a
failure of the first iteration of OLS. Hence one cannot
expect to derive an exact recovery condition for OLS that
would be weaker than the ERC at the first iteration. We
show that the ERC indeed ensures the success of OLS.

We further address the case where the ERC does
not hold, i.e., the first iteration of OMP/OLS is not
guaranteed to always succeed but nevertheless succeeds
for a given vector. In practice, even for non random
dictionaries, this phenomenon is likely to occur since
the ERC is a worst case necessary condition. The
purpose of a large part of the paper is specifically to
analyze what is going on in the remaining iterations
for these vectors. Withℓ1 minimization, the situation is
clearer because support recovery depends on the sign
patterns [16, Theorem 2] and one can predict whether
a specific vector will be recovered independently of the
support amplitudes. For greedy algorithms, things are
more tricky and it is one of the purpose of the paper
to analyze this. We introduce weaker conditions than

the ERC which guarantee that an exact support recovery
will occur in the subsequent iterations. These extended
recovery conditions coincide with the ERC at the first
iteration but differ from it afterwards.

Our main results state that:
• The ERC is a sufficient condition of exact recovery

for OLS in at mostk steps (Theorem 2).
• When the early iterations of OMP/OLS have all suc-

ceeded, we derive two sufficient conditions, named
ERC-OMP and ERC-OLS, for the recovery of the
remaining true atoms (Theorem 3). This result is a
(k−q)-step property, whereq stands for the number
of iterations which have been already performed.

• Moreover, we show that our conditions are, in some
sense, necessary (Theorems 4 and 5).

The criteria we provide might not necessarily be directly
useful for practitioners working in the field. In fact, just
as many other theoretical success guarantees, they are
rather “motivational”: by proving that the considered
algorithms are guaranteed to perform well in a restricted
regime, they strengthen our confidence that the heuristics
behind the algorithms are reasonably grounded. Prac-
titioners know that the algorithms indeed work much
beyond the considered restricted regime, but proving
this fact would typically require probabilistic arguments,
based on models of random dictionary or random input
signals [17, 18]. Despite their potential interest, the the-
oretical results that can be foreseen in this spirit would
be highly dependent on the adequacy of such models to
the actual distribution of data from the real world.

D. Organization of the paper

In Section II, we recall the principle of OMP and
OLS and their interpretation in terms of orthogonal
projections. Then, we properly define the notions of
successful support recovery and support recovery failure.
Section III is dedicated to the analysis of OMP and OLS
at any iteration where the most technical developments
and proofs are omitted for readability reasons. These im-
portant elements can be found in the appendix section A.
In Section IV, we show using Monte Carlo simulations
that there is no systematic implication between the ERC-
OMP and ERC-OLS conditions but we exhibit some
elements of discrimination in favor of OLS.

II. N OTATIONS AND PREREQUISITES

The following notations will be used in this paper.
〈 . , . 〉 refers to the inner product between vectors, and
‖ . ‖ and‖ . ‖1 stand for the Euclidean norm and theℓ1

norm, respectively..† denotes the pseudo-inverse of a
matrix. For a full rank and undercomplete matrix, we
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haveX† = (XtX)−1Xt where .t stands for the ma-
trix transposition. WhenX is overcomplete,spark(X)
denotes the minimum number of columns fromX that
are linearly dependent [19]. The letterQ denotes some
subset of the column indices, andXQ is the submatrix
of X gathering the columns indexed byQ. Finally,
PQ = XQX

†
Q andP⊥

Q = I−PQ denote the orthogonal
projection operators onspan(XQ) and span(XQ)⊥,
where span(X) stands for the column span ofX,
span(X)⊥ is the orthogonal complement ofspan(X)
andI is the identity matrix whose dimension is equal to
the number of rows inX.

A. Subset selection

Let A = [a1, . . . ,an] denote the dictionary gathering
normalized atomsai ∈ Rm. A is a matrix of sizem×n.
Assuming that the atoms are normalized is actually not
necessary for OLS as the behavior of OLS is unchanged
whether the atoms are normalized or not [6]. On the
contrary, OMP is highly sensitive to the normalization of
atoms since its selection rule involves the inner products
between the current residual and the non-selected atoms.

We consider a subsetQ⋆ of {1, . . . , n} of cardinality
k , Card [Q⋆] < min(m,n) and study the behavior of
OMP and OLSfor all inputs y ∈ span(AQ⋆), i.e., for
any combinationy = AQ⋆t where the submatrixAQ⋆ is
of sizem×k and the weight vectort ∈ Rk. Thek atoms
{ai, i ∈ Q⋆} indexed byQ⋆ will be referred to as the
“true” atoms while for the remaining (“wrong”) atoms
{aj , j /∈ Q⋆}, we will use the subscript notationj.
The forward greedy algorithms considered in this paper
start from the empty support and select a new atom per
iteration. At intermediate iterationsq ∈ {0, . . . , k − 1},
we denote byQ the current support (withCard [Q] = q).

Throughout the paper, we make the general assump-
tion that AQ⋆ is full rank. Note that the representation
y = AQ⋆t is not guaranteed to be unique under this
assumption: there may be anotherk-term representation
y = AQ′t′ whereAQ′ includes some wrong atomsaj.
The stronger assumptionspark(A) > 2k is a necessary
and sufficient condition for uniqueness of anyk-term
representation [19]. Therefore, whenspark(A) > 2k,
the selection of a wrong atom by a greedy algorithm
disables ak-term representation ofy in k steps [1]. We
make the weak assumption thatAQ⋆ is full rank because
it is sufficient to elaborate our exact recovery conditions
under which no wrong atom is selected in the firstk
iterations.

B. OMP and OLS algorithms

The common feature between OMP and OLS is that
they both perform an orthogonal projection whenever the

supportQ is updated: the data approximation readsPQy

and the residual error is defined by

rQ , y − PQy = P⊥
Qy.

Let us now recall how the selection rule of OLS differs
from that of OMP.

At each iteration of OLS, the atomaℓ yielding the
minimum least-square error‖rQ∪{ℓ}‖2 is selected:

ℓOLS ∈ arg min
i/∈Q

‖rQ∪{i}‖2

andn−Card [Q] least-square problems are being solved
to compute‖rQ∪{i}‖2 for all i /∈ Q (1) [4]. On the
contrary, OMP adopts the simpler rule

ℓOMP ∈ arg max
i/∈Q

|〈rQ,ai〉|

to select the new atomaℓ and then solves only one
least-square problem to updaterQ∪{ℓ} [6]. Depending
on the application, the OMP and OLS stopping rules can
involve a maximum number of atoms and/or a residual
threshold. Note that when the data are noise-free (they
read asy = AQ⋆t) and no wrong atom is selected,
the squared error‖rQ‖2 is equal to 0 after at mostk
iterations. Therefore, we will consider no more thank
iterations in the following.

C. Geometric interpretation

A geometric interpretation in terms of orthogonal
projections will be useful for deriving recovery condi-
tions. It is essentially inspired by the technical report
of Blumensath and Davies [6] and by Davenport and
Wakin’s analysis of OMP under the RIP assumption [13].

We introduce the notatioñai = P⊥
Qai for the pro-

jected atoms ontospan(AQ)⊥ where for simplicity, the
dependence uponQ is omitted. When there is a risk of
confusion, we will useãQ

i instead ofãi. Notice that
ãi = 0 if and only if ai ∈ span(AQ). In particular,
ãi = 0 for i ∈ Q. Finally, we define the normalized
vectors

b̃i =

{

ãi/‖ãi‖ if ãi 6= 0,
0 otherwise.

Again, we will useb̃Qi when there is a risk of confusion.
We now emphasize that the projected atomsãi (or b̃i)

play a central role in the analysis of both OMP and OLS.

1Our purpose is not to focus on the OLS implementation. However,
let us just mention that in the typical implementation, the least-
square problems are solved recursively using the Gram Schmidt
orthonormalization procedure [4].
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Because the residualrQ = P⊥
Qy lays in span(AQ)⊥,

〈rQ,ai〉 = 〈rQ, ãi〉 and the OMP selection rule rereads:

ℓOMP ∈ arg max
i/∈Q

|〈rQ, ãi〉| (1)

whereas for OLS, minimizing‖rQ∪{i}‖2 with respect to
i /∈ Q is equivalent to maximizing‖rQ‖2−‖rQ∪{i}‖2 =

〈rQ, b̃i〉2 (seee.g.,[9] for a complete calculation):

ℓOLS ∈ arg max
i/∈Q

|〈rQ, b̃i〉|. (2)

We notice that (1) and (2) only rely on the vectorsrQ
and ãi belonging to the subspacespan(AQ)⊥. OMP
maximizes the inner product|〈rQ, ãi〉| whereas OLS
minimizes the angle betweenrQ and ãi (this difference
was already stressed and graphically illustrated in [6]).
When the dictionary is close to orthogonal,e.g., for
dictionaries satisfying the RIP assumption, this does not
make a strong difference since‖ãi‖ is close to 1 for
all atoms [13]. But in the general case,‖ãi‖ may have
wider variations between 0 and 1 leading to substantial
differences between the behavior of OMP and OLS.

D. Definition of successful recovery and failure

Throughout the paper, we will use the common
acronym Oxx in statements that apply to both OMP and
OLS. Moreover, we define the unifying notation:

c̃i ,

{

ãi for OMP,

b̃i for OLS.

We first stress that in special cases where the Oxx
selection rule yields multiple solutions including a wrong
atom, i.e., when

max
i∈Q⋆\Q

|〈rQ, c̃i〉| = max
j /∈Q⋆

|〈rQ, c̃j〉|, (3)

we consider that Oxx automatically makes the wrong de-
cision. Tropp used this convention for OMP and showed
that when the upper bound on his ERC condition (see
Section III-A) is reached, the limit situation (3) occurs,
hence a wrong atom is selected at the first iteration [1].
Let us now properly define thek-step property for
successful support recovery.

Definition 1 Oxx with y ∈ span(AQ⋆) as input suc-
ceeds if and only if no wrong atom is selected and the
residualrQ is equal to0 after at mostk iterations.

When a successful recovery occurs, the subsetQ yielded
by Oxx satisfiesQy ⊆ Q ⊆ Q⋆ whereQy is the subset
indexed by the nonzero weightsti’s in the decomposition
y = AQ⋆t. When allti’s are nonzero,Qy identifies with
Q⋆ and a successful recovery cannot occur in less than
k iterations.

The word “failure” refers to the exact contrary of
successful recovery.

Definition 2 Oxx with y ∈ span(AQ⋆) as input fails
when at least one wrong atom is selected during the first
k iterations. In particular, Oxx fails when(3) occurs with
rQ 6= 0.

The notion of successful recovery may be defined in a
weaker sense: Plumbley [16, Corollary 4] pointed out
that there exist problems for which the ERC fails but
nevertheless, a “delayed recovery” occurs after more than
k steps, in that a larger support includingQ⋆ is found, but
all atoms which do not belong toQ⋆ are weighted by 0 in
the solution vector. Recently, a delayed recovery analysis
of OMP using RIP assumptions was proposed in [20],
and then extended to the weak OMP algorithm [21]. In
the present paper, no more thank steps are performed,
thus delayed recovery is considered as a recovery failure.

III. OVERVIEW OF OUR RECOVERY ANALYSIS OF

OMP AND OLS

In this section, we present our main concepts and
results regarding the sparse recovery guarantees with
OLS, their connection with the existing OMP results and
the new results regarding OMP. For clarity reasons, we
place the technical analysis including most of the proofs
in the main appendix section A. Let us first recall Tropp’s
ERC condition for OMP which is our starting point.

A. Tropp’s ERC condition for OMP

Theorem 1 [ERC is a sufficient recovery condition for
OMP and a necessary condition at the first iteration [1,
Theorems 3.1 and 3.10]]If AQ⋆ is full rank and

max
j /∈Q⋆

{FQ⋆(aj) ,
∥

∥A
†
Q⋆aj

∥

∥

1
} < 1, ERC(A,Q⋆)

then OMP succeeds for any inputy ∈ span(AQ⋆). Fur-
thermore, when ERC(A,Q⋆) does not hold, there exists
y ∈ span(AQ⋆) for which some wrong atom is selected
at the first iteration of OMP. Whenspark(A) > 2k, this
implies that OMP cannot recover the (unique)k-term
representation ofy.

Note that ERC(A,Q⋆) involves the dictionary atoms but
not their weights as it results from a worst case analysis:
if ERC(A,Q⋆) holds, then a successful recovery occurs
with y = AQ⋆t whatevert ∈ Rk.
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B. Main theorem

A theorem similar to Theorem 1 applies to OLS.

Theorem 2 [ERC is a sufficient recovery condition for
OLS and a necessary condition at the first iteration]If
AQ⋆ is full rank and ERC(A,Q⋆) holds, then OLS suc-
ceeds for any inputy ∈ span(AQ⋆). Furthermore, when
ERC(A,Q⋆) does not hold, there existsy ∈ span(AQ⋆)
for which some wrong atom is selected at the first
iteration of OLS. Whenspark(A) > 2k, this implies that
OLS cannot recover the (unique)k-term representation
of y.

The necessary condition result is obvious since the very
first iteration of OLS coincides with that of OMP and
the ERC is a worst case necessary condition for OMP.
The core of our contribution is the sufficient condition
result for OLS. We now introduce the main concepts
on which our analysis relies. They also lead to a more
precise analysis of OMP from the second iteration.

C. Main concepts

Let us keep in mind that the ERC is a worst case
necessary conditionat the first iteration. But what hap-
pens when the ERC is not met but nevertheless, the
first q iterations of Oxx selectq true atoms (q < k)?
Can we characterize the exact recovery conditions at the
(q + 1)-th iteration? We will answer to these questions
and provide:

1) an extension of the ERC condition to theq-th
iteration of OMP;

2) a new necessary and sufficient condition dedicated
to theq-th iteration of OLS.

This will allow us to prove Theorem 2 as a special case
of the latter condition whenq = 0.

In the following two paragraphs, we introduce useful
notations for a single wrong atomaj and then define our
new exact recovery conditions by considering all wrong
atoms together.Q plays the role of the subset found by
Oxx after the firstq iterations.

1) Notations related to a single wrong atom:ForQ (

Q⋆ andj /∈ Q⋆, we define:

FOMP
Q⋆,Q (aj) ,

∑

i∈Q⋆\Q

∣

∣

(

A
†
Q⋆aj

)

(i)
∣

∣ (4)

FOLS
Q⋆,Q(aj) ,

∑

i∈Q⋆\Q

‖ãi‖
‖ãj‖

∣

∣

(

A
†
Q⋆aj

)

(i)
∣

∣ (5)

when ãj 6= 0 and FOxx
Q⋆,Q(aj) = 0 when ãj = 0 (we

recall thatãi = P⊥
Qai and ãj = P⊥

Q aj depend onQ).
Up to some manipulations on orthogonal projections, (4)
and (5) can be rewritten as follows.

Lemma 1 Assume thatAQ⋆ is full rank. For Q ( Q⋆

and j /∈ Q⋆, FOMP
Q⋆,Q (aj) and FOLS

Q⋆,Q(aj) also read

FOMP
Q⋆,Q (aj) = ‖Ã†

Q⋆\Qãj‖1 (6)

FOLS
Q⋆,Q(aj) = ‖B̃†

Q⋆\Qb̃j‖1 (7)

where the matricesÃQ⋆\Q = {ãi, i ∈ Q⋆\Q} and
B̃Q⋆\Q = {b̃i, i ∈ Q⋆\Q} of size m × (k − q) are
full rank.

Lemma 1 is proved in Appendix B.
2) ERC-Oxx conditions for the whole dictionary:

We define four binary conditions by considering all the
wrong atoms together:

max
j /∈Q⋆

FOMP
Q⋆,Q (aj) < 1 ERC-OMP(A,Q⋆,Q)

max
j /∈Q⋆

FOLS
Q⋆,Q(aj) < 1 ERC-OLS(A,Q⋆,Q)

max
Q(Q⋆

Card[Q]=q

max
j /∈Q⋆

FOMP
Q⋆,Q (aj) < 1 ERC-OMP(A,Q⋆, q)

max
Q(Q⋆

Card[Q]=q

max
j /∈Q⋆

FOLS
Q⋆,Q(aj) < 1 ERC-OLS(A,Q⋆, q)

We will use the common notationsFOxx
Q⋆,Q(aj), ERC-

Oxx(A,Q⋆,Q) and ERC-Oxx(A,Q⋆, q) for statements
that are common to both OMP and OLS.

Remark 1 FOMP
Q⋆,∅ (aj) and FOLS

Q⋆,∅(aj) both reread

FQ⋆(aj) =
∥

∥A
†
Q⋆aj

∥

∥

1
since ã∅

i reduces toai which
is of unit norm. Thus, ERC-Oxx(A,Q⋆, ∅) and ERC-
Oxx(A,Q⋆, 0) all identify with ERC(A,Q⋆).

D. Sufficient conditions of exact recovery at any itera-
tion

The sufficient conditions of Theorems 1 and 2 reread
as special cases of the following theorem whereQ = ∅.

Theorem 3 [Sufficient recovery condition for Oxx af-
ter q successful iterations]Assume thatAQ⋆ is full rank.
If Oxx with y ∈ span(AQ⋆) as input selectsQ ( Q⋆

and ERC-Oxx(A,Q⋆,Q) holds, then Oxx succeeds in at
mostk steps.

The following corollary is a straightforward adaptation
of Theorem 3 to ERC-Oxx(A,Q⋆, q).

Corollary 1 Assume thatAQ⋆ is full rank. If Oxx with
y ∈ span(AQ⋆) as input selects true atoms during the
first q < k iterations and ERC-Oxx(A,Q⋆, q) holds, then
Oxx succeeds in at mostk iterations.

The key element which enables us to establish The-
orem 3 is a recursive relation linkingFOxx

Q⋆,Q(aj) with
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FOxx
Q⋆,Q′(aj) when Q is increased by one element of
Q⋆\Q, resulting in subsetQ′. This leads to the main
technical novelty of the paper, stated in Lemma 7 (see
Appendix A-A). From the thorough analysis of this
recursive relation, we elaborate the following lemma
which guarantees the monotonic decrease ofFOxx

Q⋆,Q(aj)
whenQ ( Q⋆ is growing.

Lemma 2 Assume thatAQ⋆ is full rank. LetQ ( Q′ (

Q⋆. For any j /∈ Q⋆,

FOMP
Q⋆,Q′(aj) 6 FOMP

Q⋆,Q (aj) (8)

FOLS
Q⋆,Q(aj) < 1⇒ FOLS

Q⋆,Q′(aj) 6 FOLS
Q⋆,Q(aj) (9)

We refer the reader to Appendix A-A for the proofs of
Lemmas 7 and 2, and then Theorem 3.

E. Necessary conditions of exact recovery at any itera-
tion

We recall that the ERC is a worst case necessary
condition guaranteed for the selection of a true atom
by OMP and OLS in their very first iteration. We
provide extended results stating that ERC-Oxx are worst
case necessary conditions when the first iterations of
Oxx have succeeded, up to a “reachability assumption”
defined hereafter, for OMP.

Definition 3 [Reachability]Q is reachable if and only
if there exists an inputy = AQt where ti 6= 0 for
all i, for which Oxx recoversQ in Card [Q] iterations.
Specifically, the selection rule(1)-(2) always yields a
unique maximum.

We start with the OLS condition which is simpler.
1) OLS necessary condition:

Theorem 4 [Necessary condition for OLS afterq it-
erations] Let Q ( Q⋆ be a subset of cardinalityq.
Assume thatAQ⋆ is full rank andspark(A) > (q + 2).
If ERC-OLS(A,Q⋆,Q) does not hold, then there exists
y ∈ span(AQ⋆) for which OLS selectsQ in the first q
iterations and then a wrong atomj /∈ Q⋆ at iteration
(q + 1).

Theorem 4 is proved in Appendix A-B. An obvious
corollary can be obtained by replacingQ with q akin
to the derivation of Corollary 1 from Theorem 3. From
now on, such obvious corollaries will not be explicitly
stated.

2) Reachability issues:The reader may have noticed
that Theorem 4 implies thatQ can be reached by OLS at
least for some inputy ∈ span(AQ⋆). In Appendix A-B,
we establish a stronger result:

Lemma 3 (Reachability by OLS) Any subsetQ with
Card [Q] 6 spark(A)− 2 can be reached by OLS with
some inputy ∈ span(AQ).

Perhaps surprisingly, this result does not remain valid
for OMP although it holds under certain RIP assump-
tions [13, Theorem 4.1]. We refer the reader to subsec-
tion IV-C for a simple counterexample whereQ cannot
be reached by OMP not only fory ∈ span(AQ) but also
for any y ∈ Rm.

The same somewhat surprising phenomenon of non-
reachability may also occur withℓ1 minimization, as-
sociated to certaink-faces of theℓ1 ball in Rn whose
projection throughA yields interior faces [22]. Specif-
ically, for a givenx supported byQ, Fuchs’ necessary
and sufficient condition for exact support recovery from
y = Ax [16, 23] involves the signs of the nonzero
amplitudes (denoted byε , sgn(x) ∈ {−1, 1}q) but not
their values. Either Fuchs’ condition is metfor anyvector
having supportQ and signsε, thus all these vectors will
be correctly recovered, or no vectorx having supportQ
and signsε can be recovered. It follows thatQ is non-
reachable withℓ1 minimization when Fuchs’ condition
is simultaneously false for all possible signsε. We refer
the reader to Appendix E for further details.

3) OMP necessary condition including reachability
assumptions:Our necessary condition for OMP is some-
what tricky because we must assume thatQ is reachable
by OMP using some input inspan(AQ).

Theorem 5 [Necessary condition for OMP afterq
iterations] Assume thatAQ⋆ is full rank andQ ( Q⋆ is
reachable. If ERC-OMP(A,Q⋆,Q) does not hold, then
there existsy ∈ span(AQ⋆) for which OMP selectsQ
in the first q iterations and then a wrong atomj /∈ Q⋆

at iteration (q + 1).

Theorem 5 is proved together with Theorem 4 in Ap-
pendix A-B. Setting aside the reachability issues, the
principle of the proof is common to OMP and OLS. We
proceed the proof of the sufficient condition (Theorem 3)
backwards, as was done in [1, Theorem 3.10] in the case
Q = ∅.

In the special case whereq = 1, Theorem 5 simplifies
to a corollary similar to the OLS necessary condition
(Theorem 4) because any subsetQ of cardinality 1 is
obviously reachable using the atom indexed byQ as
input vector.
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Corollary 2 [Necessary condition for OMP in the
second iteration]Assume thatAQ⋆ is full rank and let
i ∈ Q⋆. If ERC-OMP(A,Q⋆, {i}) does not hold, then
there existsy ∈ span(AQ⋆) for which OMP selectsai

and then a wrong atom in the first two iterations.

4) Discrimination between OMP and OLS at thek-
th iteration: We provide an element of discrimination
between OMP and OLS when their firstk− 1 iterations
have selected true atoms, so that there is one remaining
true atom which has not been chosen.

Theorem 6 [Guaranteed success of thek-th iteration
of OLS] If [AQ⋆ ,aj] is full rank for anyj /∈ Q⋆, then
ERC-OLS(A,Q⋆, k − 1) is true. Thus, if the firstk − 1
iterations of OLS select true atoms, the last true atom is
necessarily selected in thek-th iteration.

This result is straightforward from the definition of OLS
in the optimization viewpoint: “OLS selects the new
atom yielding the least possible residual” and because
in the k-th iteration, the last true atom yields a zero
valued residual. Another (analytical) proof of Theo-
rem 6, given below, is based on the definition of ERC-
OLS(A,Q⋆, k− 1). It will enable us to understand why
the statement of Theorem 6 is not valid for OMP.

Proof: Assume that OLS yields a subsetQ ( Q⋆

after k − 1 iterations. Letalast denote the last true
atom so thatAQ⋆ = [AQ,alast] up to some column
permutation. SinceB̃Q⋆\Q reduces tõbQlast which is of
unit norm, the pseudo-inversẽB†

Q⋆\Q takes the form
[

b̃Qlast
]t

. Finally, (7) simplifies to:

FOLS
Q⋆,Q(aj) = |〈b̃Qlast, b̃Qj 〉| 6 1 (10)

since both vectors in the inner product are either of unit
norm or equal to0. Apply Lemma 8 in Appendix B:
since for j /∈ Q⋆, [AQ⋆ ,aj] is full rank,

[

b̃Qlast, b̃
Q
j

]

is
full rank, thus (10) is a strict inequality.

Similar to the calculation in the proof above, we
rewrite FOMP

Q⋆,Q (aj) defined in (6):

FOMP
Q⋆,Q (aj) =

|〈ãQ
last, ã

Q
j 〉|

‖ãQ
last‖2

. (11)

However, we cannot ensure thatFOMP
Q⋆,Q (aj) 6 1 since

ãQ
j and ãQ

last are not unit norm vectors. We refer the
reader to subsection IV-C for a simple example with
four atoms and two true atoms in which OMP is not
guaranteed to select the second true atom when the first
has already been chosen.

To further distinguish OMP and OLS, we elaborate a
“bad recovery condition” under which OMP is guaran-
teed to fail in the sense thatQ⋆ is not reachable.

Theorem 7 [Sufficient condition for bad recovery with
OMP] Assume thatAQ⋆ is full rank. If

min
Q(Q⋆

Card[Q]=k−1

[

max
j /∈Q⋆

FOMP
Q⋆,Q (aj)

]

> 1,

BRC-OMP(A,Q⋆)
thenQ⋆ cannot be reached by OMP using any input in
span(AQ⋆).

Specifically, BRC-OMP(A,Q⋆) guarantees that a wrong
selection occurs at thek-th iteration when the previous
iterations have succeeded.

Proof: Assume that for somey ∈ span(AQ⋆), the
first k − 1 iterations of OMP succeed,i.e., they select
Q ( Q⋆ of cardinality k − 1. Let alast denote the last
true atom (AQ⋆ = [AQ,alast] up to some permutation of
columns). The residualrQ yielded by OMP afterk − 1
iterations is obviously proportional tõaQ

last.
BRC-OMP(A,Q⋆) implies that ERC-OMP(A,Q⋆,Q)

is false, thus there existsj /∈ Q⋆ such thatFOMP
Q⋆,Q (aj) >

1. According to (11), |〈ãQ
last, ã

Q
j 〉| > ‖ãQ

last‖2 thus
|〈rQ, ãQ

j 〉| > |〈rQ, ãQ
last〉|. We conclude thatalast cannot

be chosen in thek-th iteration of OMP.
Although BRC-OMP(A,Q⋆) may appear restrictive

(as a minimum is involved in the left-hand side), we
will see in Section IV that it may be frequently met,
especially when the atoms ofA are strongly correlated.

IV. EMPIRICAL EVALUATION OF THE OMP AND OLS
RECOVERY CONDITIONS

The purpose of this section is twofold. In subsec-
tion IV-B, we evaluate and compare the ERC-OMP and
ERC-OLS conditions for several kinds of dictionaries.
In particular, we study the dependence ofFOxx

Q⋆,Q ,

maxj /∈Q⋆ FOxx
Q⋆,Q(aj) with respect to the dimensionsm,n

of the dictionary and the subset cardinalitiesk =
Card [Q⋆] andq = Card [Q]. This allows us to analyze,
for random and deterministic dictionaries, from which
iteration q the ERC-Oxx(A,Q⋆,Q) condition may be
met, i.e., FOxx

Q⋆,Q < 1. In subsection IV-C, we emphasize
the distinction between OMP and OLS by showing that
the bad recovery condition for OMP may be frequently
met, especially when some dictionary atoms are strongly
correlated.

A. Dictionaries under consideration

Our recovery conditions will be evaluated for three
kinds of dictionaries.

We consider first randomly Gaussian dictionaries
whose entries obey the standard Gaussian distribution.
Once the dictionary elements are drawn, we normalize
each atom in such a way that‖ai‖ = 1.
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“Hybrid” dictionaries are also studied, whose atoms
result from an additive mixture of a deterministic (con-
stant) and a random component. Specifically, we set
ai = αi(gi + ti1) wheregi is drawn according to the
standard Gaussian distribution,1 is the (deterministic)
vector whose entries are all equal to 1, and the scalar
ti obeys the uniform distribution on[0, T ], with T > 0.
Oncegi and ti are drawn,αi is set in such a way that
‖ai‖ = 1. In this simulation, the mutual coherence is
increased in comparison to the caseT = 0 (i.e., for
randomly Gaussian dictionaries). The random vectorgi

plays the role of a noise process added to the determin-
istic signalti1. WhenT is large, the atom normalization
makes the noise level very low in comparison with
the deterministic component, thus the atoms are almost
deterministic, and look alike each other.

Finally, we consider a sparse spike train deconvolution
problem of the formy = h ∗ x, whereh is a Gaussian
impulse response of varianceσ2 (for simplicity, the
smallest values inh are thresholded so thath has a finite
support of width⌈6σ⌉). This is a typical inverse problem
in which the dictionary coherence is large. This problem
is known to be a challenging one since both OMP
and OLS are likely to yield false support recovery in
practice [24–26]. This is also true for basis pursuit [27].
The problem can be reformulated asy = Ax where
the dictionaryA gathers shifted versions of the impulse
responseh. To be more specific, we first consider a
convolution operator with the same sampling rate for the
input and output signalsx andy, and we set boundary
conditions so that the convoluted signalh ∗ x resulting
from x can be fully observed without truncation. Thus,
A is a slightly undercomplete (m > n with m ≈ n)
Toeplitz matrix. Alternately, we perform simulations in
which the sampling rate of the input signalx is higher
than that ofy (i.e., y results from a down-sampling of
h ∗ x), leading to an overcomplete dictionaryA which
does not have a Toeplitz structure anymore.

Regarding the last two problems, we found that the
ERC factorFQ⋆ , FOxx

Q⋆,∅ which is the left hand-side
in the ERC(A,Q⋆) condition can become huge whenT
(respectively,σ) is increased. For instance, whenT is
equal to 10, 100 and 1000, the average value ofFQ⋆ is
equal to 7, 54 and 322, respectively, for a dictionary of
size100 × 1000 and fork = 10.

B. Evaluation of the ERC-Oxx conditions

We first show that for randomly Gaussian dictio-
naries, there is no systematic implication between the
ERC-OMP(A,Q⋆,Q) and ERC-OLS(A,Q⋆,Q) con-
ditions, nor between ERC-OMP(A,Q⋆, q) and ERC-

OLS(A,Q⋆, q). Then, we perform more complete nu-
merical simulations to assess the dependence ofFOxx

Q⋆,Q
with respect to the size(m,n) of the dictionary and
the subset cardinalitiesk and q for the three kinds of
dictionaries. We will build “phase transition diagrams”
(in a sense to be defined below) to compare the OMP
and OLS recovery conditions. The general principle of
our simulations is 1) to draw the dictionaryA and the
subsetQ⋆; and 2) to gradually increaseQ ( Q⋆ by one
element until ERC-Oxx(A,Q⋆,Q) is met.

1) There is no logical implication between the ERC-
OMP and ERC-OLS conditions:We first investigate
what is going on after the first iteration (q = 1). We com-
pare ERC-OMP(A,Q⋆,Q) and ERC-OLS(A,Q⋆,Q) for
a common dictionary and given subsetsQ ( Q⋆ with
q = 1. As the recovery conditions take the form “for
all j /∈ Q⋆, FOxx

Q⋆,Q(aj) < 1”, it is sufficient to just
consider the case where there is one wrong atomaj

to study the logical implication between the ERC-OMP
and ERC-OLS conditions. Therefore, in this paragraph,
we consider undercomplete dictionariesA with k + 1
atoms. Testing ERC(A,Q⋆), ERC-OMP(A,Q⋆,Q) and
ERC-OLS(A,Q⋆,Q) amounts to evaluatingFQ⋆(aj),
FOMP
Q⋆,Q (aj) andFOLS

Q⋆,Q(aj) and comparing them to 1.
Fig. 1 is a scatter plot of the three criteria for 10.000

randomly Gaussian dictionariesA of size100×11. The
subsetQ = {1} is systematically chosen as the first
atom of A. Figs. 1(a,b) are in good agreement with
Lemma 2: we verify thatFOMP

Q⋆,Q (aj) 6 FQ⋆(aj) whether
the ERC holds or not, and thatFOLS

Q⋆,Q(aj) 6 FQ⋆(aj)
systematically occurs only whenFQ⋆(aj) < 1. On
Fig. 1(c) displayingFOMP

Q⋆,Q (aj) versusFOLS
Q⋆,Q(aj), we

only keep the trials for whichFQ⋆(aj) > 1, i.e.,
ERC(A,Q⋆) does not hold. Since both south-east and
north-west quarter planes are populated, we conclude
that neither OMP nor OLS is uniformly better. To be
more specific, when ERC-OMP(A,Q⋆,Q) holds but
ERC-OLS(A,Q⋆,Q) does not, there exists an input
y ∈ span(AQ⋆) for which OLS selectsQ = {1} and
then a wrong atom in the second iteration (Theorem 4).
On the contrary, OMP is guaranteed to exactly recover
this input according to Theorem 3. The same situation
can occur when inverting the roles of OMP and OLS
according to Corollary 2 and Theorem 3 (note that this
analysis becomes more complex whenCard [Q] > 2
since ERC-OMP(A,Q⋆,Q) alone is not a necessary
condition for OMP anymore; Theorem 5 also involves
the assumption thatQ is reachable).

We have compared ERC-OMP(A,Q⋆, 1) and ERC-
OLS(A,Q⋆, 1), which take into account all the possible
subsets ofQ⋆ of cardinality 1. Again, we found that
when ERC(A,Q⋆) is not met, it can occur that ERC-
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Fig. 1. Comparison of the OMP and OLS exact recovery conditions.
We draw 10.000 Gaussian dictionaries of size100× 11 and setk =
10 so that there is only one wrong atomaj . Q is always set to
the first atom (Card [Q] = 1). Plot of (a)FQ⋆(aj) vs FOMP

Q⋆,Q(aj);
(b) FQ⋆(aj) vs FOLS

Q⋆,Q(aj); (c) FOMP

Q⋆,Q(aj) vs FOLS

Q⋆,Q(aj). For the
last subfigure, we keep the trials for whichFQ⋆(aj) > 1.

OMP(A,Q⋆, 1) holds while ERC-OLS(A,Q⋆, 1) does
not andvice versa.

2) Phase transition analysis for overcomplete random
dictionaries: We now address the case of overcomplete
dictionaries. Moreover, we study the dependence of the
ERC-Oxx conditions with respect to the cardinalitiesk
andq for k > q > 2 and we compare them for common
problems (A,Q⋆,Q).

Let us start with simple preliminary remarks. Because
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(a) Random dictionaries (T = 0)
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(b) Hybrid dictionaries (T = 10)

Fig. 2. Phase transition curves: for eachq < k, we count the rate
of trials where ERC-Oxx(A,Q⋆,Q) is true, withCard [Q] = q. The
dictionaries are of size200 × 600, k is set to 40 and 1,000 Monte
Carlo trials are performed. (a) Randomly Gaussian dictionaries;
(b) Hybrid dictionaries withT = 10.

the ERC-Oxx(A,Q⋆,Q) conditions take the form “for
all j /∈ Q⋆, FOxx

Q⋆,Q(aj) < 1”, they are more often met
when the dictionary is undercomplete (or whenm ≈ n)
than in the overcomplete case: when the submatrixAQ⋆

gathering the true atoms is given,maxj /∈Q⋆ FOxx
Q⋆,Q(aj)

is obviously increasing when additional wrong atomsaj

are incorporated,i.e.,whenn is increasing. Additionally,
we notice that for givenA andQ⋆, FOMP

Q⋆,Q always de-
creases whenQ is growing by definition ofFOMP

Q⋆,Q . This
might not be the case ofFOLS

Q⋆,Q for specific settings but
it happens to be true in average for random dictionaries.

In the following experiments,Q ( Q⋆ is gradually
increased for fixedA andQ⋆, and we search for the first
cardinalityq = Card [Q] for which ERC-Oxx(A,Q⋆,Q)
is met. This allows us to define a “phase transition
curve” [17, 28] which separates theq-values for which
ERC-Oxx(A,Q⋆,Q) is never met, and is always met.
Examples of phase transition curves are given on Fig. 2
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Fig. 3. Phase transition diagrams for the ERC-Oxx(A,Q⋆,Q) condition. The gray levels represent the ratio[q]Oxx(m,n, k)/k ∈ [0, 1].
Averaging is done over 200 draws of dictionaryA and subsetQ⋆. (a,b) Randomly Gaussian dictionaries of size200 × n with n 6 2000;
(c,d) Hybrid dictionaries of same size, withT = 10.

for random (T = 0) and hybrid dictionaries (T = 10).
Fig. 2(a) shows that forT = 0, the phase transition
regime occurs in the same intervalq ∈ {30, . . . , 34}
for both OMP and OLS and that the OMP and OLS
curves are superimposed. On the contrary, for hybrid
dictionaries (Fig. 2(b)), the mutual coherence increases
and the OLS curve is significantly above the OMP curve.
Thus, the guaranteed success for OLS occurs (in average)
for an earlier iteration than for OMP. For larger values
of T (e.g., for T = 100), the ERC-OMP condition is
never met beforeq = k − 1, and even forq = k − 1, it
is met for only4 % of trials.

The experiment of Fig. 2 is repeated for many val-
ues of k and dictionary sizesm × n. For given A

and Q⋆, let qOxx(m,n, k) denote the lowest value of
q = Card [Q] for which ERC-Oxx(A,Q⋆,Q) is true. For
random and hybrid dictionaries, we perform 200 Monte
Carlo simulations in which random matricesA and
subsets(Q⋆,Q) are drawn and we compute the average
values ofqOxx, denoted by[q]Oxx(m,n, k). This yields
a phase transition diagram [12, 29] with the dictionary
size (e.g.,n/m) and the sparsity levelk in x- andy-axes,
respectively. In this image, the gray levels represent the
ratio [q]Oxx(m,n, k)/k (see Fig. 3). Note that our phase
transition diagrams are related to worst case recovery
conditions, so better performance may be achieved by
actually running Oxx for some simulated data(y,A) and
testing whether the supportQ⋆ is found, wherey = Ax⋆

and the unknown nonzero amplitudes inx⋆ are drawn
according to a specific distribution.

A general comment regarding the results of Fig. 3 is
that the ERC-Oxx conditions are satisfied early (for low
values ofq/k) when the unknown signal is highly sparse
(k is low) or whenn/m is low, i.e., when the dictionary
is not highly overcomplete. The ratio[q]Oxx(m,n, k)/k
gradually grows withk andn/m. Regarding the OMPvs
OLS comparison, the phase diagrams obtained for OMP
and OLS look very much alike for Gaussian dictionaries
(T = 0). On the contrary, we observe drastic differences
in favor of OLS for hybrid dictionaries (Fig. 3(c,d)):
FOLS
Q⋆,Q is significantly lower thanFOMP

Q⋆,Q .

We have performed similar tests for randomly uniform
dictionaries (and hybrid dictionaries based on a randomly
uniform process) and we draw conclusions similar to the
Gaussian case. We have not encountered any situation
where FOMP

Q⋆,Q is (in average) significantly lower than
FOLS
Q⋆,Q.

3) ERC-Oxx evaluation for sparse spike train decon-
volution dictionaries:We reproduced the above experi-
ments for the convolutive dictionary introduced in sub-
section IV-A. Since the dictionary is deterministic, only
one trial is performed per cardinality (m,n, k). In each of
the simulations hereafter, we setQ andQ⋆ to contiguous
atoms. This is the worst situation because contiguous
atoms are the most highly correlated and exact support
recovery may be more easily achieved if we impose
a minimum distance between true atoms [24, 30]. The
curves of Fig. 4 representFOxx

Q⋆,Q with respect toq for
some given(A,Q⋆). It is noticeable that the OLS curve
decreases much faster than the OMP curve, and that
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Fig. 4. Curve representingFOxx

Q⋆,Q as a function ofq = Card [Q]
for the Gaussian deconvolution problem.Q⋆ is fixed andQ ( Q⋆

is gradually growing.Q⋆ andQ are formed of the firstk = 5 and
the firstq atoms, respectively withq < k. (a) The Gaussian impulse
response is of widthσ = 50 and the dictionary is of size3000×2710.
(b) σ is set to 10, and the dictionary is of size1000 × 4940.

FOMP
Q⋆,Q remains huge even after a number of iterations.

For all our trials where the true atoms strongly overlap,
the ERC-OMP(A,Q⋆,Q) condition is not met while
ERC-OLS(A,Q⋆,Q) may be fulfilled after a number
of iterations which is, however, close tok. Moreover,
we found that whenσ is large enough,FOMP

Q⋆,Q remains
larger than 1 even forq = k− 1, whereas the ERC-OLS
condition is always met forq = k − 1.

Empirical evaluations of the ERC condition for sparse
spike train deconvolution was already done in [27].
In [24, 27, 30], a stronger sufficient condition than the
ERC is evaluated for convolutive dictionaries. It is a
sufficient (but not necessary) exact recovery condition
that is easier to compute than the ERC because it does
not require any matrix inversion, and only relies on
inner products between the dictionary atoms (see [31,
Lemma 3] for further details). In [27, 30], it was pointed
out that the ERC condition is usually not fulfilled for
convolutive dictionaries, but when the true atoms are
enough spaced, successful recovery is guaranteed to
occur. Our study can be seen as an alternative analysis

to [24, 27, 30] in which no minimal distance constraint
is imposed.

C. Examples where the bad recovery condition of OMP
is met

We exhibit several situations in which the BRC-
OMP(A,Q⋆) condition may be fulfilled. This allows us
to distinguish OMP from OLS as we know that under
regular conditions, any subsetQ⋆ is reachable using
OLS at least for some input inspan(AQ⋆) (Lemma 3).
The first situation is a simple dictionary with four
atoms, some of which being strongly correlated. For
this example, we show a stronger result than the BRC:
there exists a subsetQ⋆ which is not reachable for any
y ∈ span(AQ⋆), but not even for anyy ∈ Rm. The other
examples involve the random, hybrid and deterministic
dictionaries introduced in subsection IV-A.

1) Example with four atoms:

Example 1 Consider the simple dictionary

A =





cos θ1 cos θ1 0 0
− sin θ1 sin θ1 cos θ2 cos θ2

0 0 sin θ2 − sin θ2





with Q⋆ = {1, 2}. Set θ2 to an arbitrary value in
(0, π/2). When θ1 6= 0 is close enough to 0, BRC-
OMP(A,Q⋆) is met. Moreover, OMP cannot reachQ⋆

in two iterations for anyy ∈ R3 (specifically, when
y ∈ R3 is proportional to neithera1 nor a2, a3 or a4

is selected in the first two iterations).

Proof of Example 1: We first prove that the BRC
condition is met by calculating the factorsFOMP

Q⋆,{1}(aj)

and FOMP
Q⋆,{2}(aj) for j ∈ {3, 4}. Let us start with

FOMP
Q⋆,{1}(aj).
The simple projection calculatioñai = ai−〈ai,a1〉a1

(the tilde notation implicitly refers toQ = {1}) leads to:

ã2 = sin(2θ1)





sin θ1

cos θ1

0



 , ã3 =





sin θ1 cos θ1 cos θ2

cos2 θ1 cos θ2

sin θ2





and ã4 =





sin θ1 cos θ1 cos θ2

cos2 θ1 cos θ2

− sin θ2



 .

According to (11), the OMP recovery factor reads for
j ∈ {3, 4}:

FOMP
Q⋆,{1}(aj) =

|〈ã2, ãj〉|
‖ã2‖2

=
| cos θ1 cos θ2|
| sin(2θ1)|

(12)

given that ‖ã2‖ = | sin(2θ1)| and |〈ã2, ã3〉| =
|〈ã2, ã4〉| = ‖ã2‖ | cos θ1 cos θ2|. FOMP

Q⋆,{2}(aj) can be
obtained symmetrically by replacingθ1 by −θ1 in (12).
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ã3 + ã2
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ã4

ã2

0

Fig. 5. Example 1: drawing of the planespan(a1)
⊥. The tilde

notation refers to the subsetQ = {1}. Whenθ1 is close to 0,̃a2 is
of very small norm sincea2 is almost equal toa1, while a3 anda4,
which are almost orthogonal toa1, yield projectionsã3 and ã4 that
are almost of unit norm. The angles(ã2, ã3) and(ã2, ã4) tend toθ2

and−θ2 when θ1 → 0. The bullet and square points correspond to
positionsr satisfying|〈r, ã2〉| > |〈r, ã3〉| and|〈r, ã2〉| > |〈r, ã4〉|,
respectively. The central directions of these two cones areorthogonal
to ã3 and ã4, respectively (dashed lines). Both cones only intersect
at r = 0, therefore OMP cannot successively selecta1 and a2 in
the first two iterations.

Thus, we haveFOMP
Q⋆,{2}(aj) = FOMP

Q⋆,{1}(aj). It follows
that the left hand-side of the BRC-OMP(A,Q⋆) condi-
tion reads (12) and tends towards+∞ when θ1 tends
towards 0. Therefore, BRC-OMP(A,Q⋆) is met when
|θ1| is small enough.

To show thatQ⋆ is not reachable for anyy ∈ R3,
let us assume that OMP selects a true atom in the first
iteration. Because there is a symmetry betweena1 and
a2, we can assume without loss of generality thata1 is
selected. Then, the data residualr after the first iteration
lies in span(a1)

⊥ which is of dimension 2. We show
using geometrical arguments, thata2 cannot be selected
in the second iteration for anyr ∈ span(a1)

⊥\{0}. We
refer the reader to Fig. 5 for a 2D display of the projected
atoms in the planespan(a1)

⊥.
Let C denote the set of pointsr ∈ R2 satisfying

|〈r, ã2〉| > |〈r, ã3〉|. r ∈ C if and only if there exist
(ε2, ε3) ∈ {−1, 1}2 such thatε2〈r, ã2〉 > ε3〈r, ã3〉 > 0,
i.e.,

〈r, ε2ã2 − ε3ã3〉 > 0 and 〈r, ε3ã3〉 > 0. (13)

For each sign pattern(ε2, ε3), (13) yields a 2D half
cone defined as the intersection of two half-planes
delimited by the directions which are orthogonal to
ã3 and ε2ã2 − ε3ã3. Moreover, the opposite sign pat-
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(b) Hybrid dictionaries (T = 10)

Fig. 6. Evaluation of the bad recovery condition BRC-OMP(A,Q⋆)
for randomly Gaussian (a) and hybrid (b) dictionaries of various sizes
(m,n). 1,000 trials are performed per dictionary size, andQ⋆ is
always set to the first two atoms (k = 2). The gray levels correspond
to the rate of guaranteed failure,i.e., the proportion of trials where
BRC-OMP(A,Q⋆) holds.

tern (−ε2,−ε3) yields the remaining part of the same
2D cone. Consequently, the four possible sign patterns
(ε2, ε3) ∈ {−1, 1}2 yield both cones delimited by the
orthogonal directions tõa3 and ã2 + ã3, and toã3 and
−ã2+ã3, respectively. Because these cones are adjacent,
their union C is the cone delimited by the orthogonal
directions toã3+ã2 andã3−ã2 (plain lines in the south-
east and north-west directions in Fig. 5). Similarly, the
condition |〈r, ã2〉| > |〈r, ã4〉| yields another 2D cone
whose central direction is orthogonal tõa4. Whenθ1 is
close to 0, both cones only intersect atr = 0 (since their
inner angle tends towards 0), thus

∀r ∈ R2\{0}, |〈r, ã2〉| < max(|〈r, ã3〉|, |〈r, ã4〉|).

We conclude thata2 cannot be selected in the second
iteration according to the OMP rule (1).
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2) Numerical simulation of the BRC condition:We
test the BRC-OMP condition for various dictionary sizes
(m,n) for the random, hybrid and convolutive dictionar-
ies introduced in subsection IV-A. The average results
related to the random and hybrid dictionaries are gath-
ered in Fig. 6 in the casek = 2. For randomly Gaussian
dictionaries, we observe that the BRC-OMP condition
may be met for strongly overcomplete dictionaries,i.e.,
when n ≫ m (Fig. 6 (a)). In the special casek = 2,
it is noticeable that OLS performs at least as well as
OMP whether the BRC condition if fulfilled or not:
when the first iteration (common to both algorithms)
has succeeded, OLS cannot fail according to Theorem 6
while OMP is guaranteed to fail in cases where the BRC
holds. For the hybrid dictionaries, the BRC condition is
more frequently met when the dictionary is moderately
overcomplete,i.e., for large values ofm/n. This result
is in coherence with our evaluations of the ERC-Oxx
condition (see,e.g.,Fig. 3(c)) which are more rarely met
for hybrid dictionary than for random dictionaries.

We performed similar tests for the sparse spike train
deconvolution problem with a Gaussian impulse re-
sponse of widthσ, and with k = 2 (the true atoms
are contiguous, thus they are strongly correlated). We
repeated the simulation of Fig. 6 for various sizes
m ≈ n and various widthsσ, and we found that
whatever(m,n), the BRC condition is always met for
σ > 1.5 and never met whenσ 6 1.4. The images of
Fig. 6 thus become uniformly white and uniformly black,
respectively. To be more specific, the value of the left
hand-side of the BRC-OMP(A,Q⋆) condition gradually
increases withσ, e.g., this value reaches 10, 35 and 48
for σ = 10, 20 and 50, respectively for dictionaries of
sizem ≈ n, with m = 3000. This result is in coherence
with that of Fig. 4 which already indicated that the
FOMP
Q⋆,Q factor becomes huge for convolutive problems

with strongly correlated atoms.
Note that whenQ⋆ does not involve contiguous

atoms but “spaced atoms” which are less correlated,
the bad recovery condition are met for larger values of
σ: denoting by∆ the minimum distance between two
true atoms, the lowest∆ value for which the BRC is
met turns out to be an increasing affine function ofσ.
Similar empirical studies were done in [27] for the exact
recovery condition for spaced atoms, and in [24, 27] for
the weak exact recovery condition of [31, Lemma 3].
In particular, the numerical simulations in [24] for the
Gaussian deconvolution problem demonstrate that the
latter condition is met for largerσ’s when the minimum
distance between true atoms is increased and the limit
∆ value corresponding to the phase transition is also an
affine function ofσ. Our bad recovery condition results

are thus a complement to those of [24].

V. CONCLUSIONS

Our first contribution is an original analysis of OLS
based on the extension of the ERC condition. We showed
that when the ERC holds, OLS is guaranteed to yield
an exact support recovery. Although OLS has been
acknowledged in several communities for two decades,
such a theoretical analysis was lacking. Our second
contribution is a parallel study of OMP and OLS when
a number of iterations have been performed and true
atoms have been selected. We found that neither OMP
nor OLS is uniformly better. In particular, we showed
using randomly Gaussian dictionaries that when the ERC
is not met but the first iteration (which is common to
OMP and OLS) selects a true atom, there are counter-
examples for which OMP is guaranteed to yield an exact
support recovery while OLS does not, andvice versa.

Finally, several elements of analysis suggest that OLS
behaves better than OMP. First, any subsetQ can be
reached by OLS using some input inspan(AQ) while
for some dictionaries, it may occur that some subsets are
never reached by OMP for anyy ∈ Rm. In other words,
OLS has a stronger capability of exploration. Secondly,
when all true atoms except one have been found by OLS
and no wrong selection occurred, OLS is guaranteed to
find the last true atom in the following iteration while
OMP may fail.

For problems in which the dictionary is far from
orthogonal and some dictionary atoms are strongly corre-
lated, we found in our experiments that the OLS recovery
condition might be met after some iterations while the
OMP recovery condition is rarely met. We did not
encounter the opposite situation where the OMP recovery
condition is frequently met after fewer iterations than the
OLS condition. Moreover, guaranteed failure of OMP
may occur more often when the dictionary coherence
is large. These results are in coherence with empirical
studies reporting that OLS usually outperforms OMP
at the price of a larger numerical cost [9, 11]. In our
experience, OLS yields a residual error which may be
by far lower than that of OMP after the same number
of iterations [25]. Moreover, it performs better support
recoveries in terms of ratio between the number of good
detections and of false alarms [26].

APPENDIX A
NECESSARY AND SUFFICIENT CONDITIONS OF EXACT

RECOVERY FOROMP AND OLS

This appendix includes the complete analysis of our
OMP and OLS recovery conditions.
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FOMP
Q⋆,Q (aj) = FOMP

Q⋆,Q′(aj) +
∣

∣

(

A
†
Q⋆aj

)

(ℓ)
∣

∣ (20)

FOLS
Q⋆,Q(aj) =

∣

∣

∣

∣

∣

χQ,Q′

j − ηQ,Q′

j

∑

i∈Q⋆\Q′

β
Q⋆\Q′

j (i)χQ,Q′

i

ηQ,Q′

i

∣

∣

∣

∣

∣

+ ηQ,Q′

j

∑

i∈Q⋆\Q′

∣

∣β
Q⋆\Q′

j (i)
∣

∣

ηQ,Q′

i

(21)

A. Sufficient conditions

We show that when Oxx happens to select true atoms
during its early iterations, it is guaranteed to recover
the whole unknown support in the subsequent iterations
when the ERC-Oxx(A,Q⋆,Q) condition is fulfilled.
We establish Theorem 3 whose direct consequence is
Theorem 2 stating that when ERC(A,Q⋆) holds, OLS is
guaranteed to succeed.

1) ERC-Oxx are sufficient recovery conditions at a
given iteration: We follow the analysis of [1, Theo-
rem 3.1] to extend Tropp’s exact recovery condition to a
sufficient condition dedicated to the(q + 1)-th iteration
of Oxx.

Lemma 4 Assume thatAQ⋆ is full rank. If Oxx withy ∈
span(AQ⋆) as input selectsq true atomsQ ( Q⋆ and
ERC-Oxx(A,Q⋆,Q) holds, then the(q + 1)-th iteration
of Oxx selects a true atom.

Proof: According to the selection rule (1)-(2), Oxx
selects a true atom at iteration(q + 1) if and only if

φ(rQ) ,
maxi/∈Q⋆ |〈rQ, c̃i〉|

maxi∈Q⋆\Q |〈rQ, c̃i〉|
< 1. (14)

Let us gather the vectors̃ci indexed byi /∈ Q⋆ and i ∈
Q⋆\Q in two matricesC̃•\Q⋆ andC̃Q⋆\Q of dimensions
m × (n − k) and m × (k − q), respectively where the
notation • stands for all indicesi ∈ {1, . . . , n}. The
condition (14) rereads:

φ(rQ) =
‖C̃t

•\Q⋆rQ‖∞
‖C̃t

Q⋆\QrQ‖∞
< 1.

Following Tropp’s analysis, we re-arrange the vector
rQ occurring in the numerator. SincerQ = P⊥

Q y and
y ∈ span(AQ⋆), rQ ∈ span(ÃQ⋆\Q) = span(C̃Q⋆\Q).
We rewrite rQ as P̃Q⋆\QrQ where P̃Q⋆\Q stands for
the orthogonal projector onspan(C̃Q⋆\Q): P̃Q⋆\Q =

P̃ t
Q⋆\Q =

(

C̃Q⋆\QC̃
†
Q⋆\Q

)t
. φ(rQ) rereads

φ(rQ) =
‖
(

C̃
†
Q⋆\QC̃•\Q⋆

)t
C̃t

Q⋆\QrQ‖∞
‖C̃t

Q⋆\QrQ‖∞
.

This expression can obviously be majorized using the
matrix norm:

φ(rQ) 6 ‖
(

C̃
†
Q⋆\QC̃•\Q⋆

)t‖∞,∞. (15)

Since the ℓ∞ norm of a matrix is equal to theℓ1

norm of its transpose and‖ . ‖1,1 equals the maximum
column sum of the absolute value of its argument [1,
Theorem 3.1], the upper bound of (15) rereads

max
j /∈Q⋆

‖C̃†
Q⋆\Qc̃j‖1 = max

j /∈Q⋆

FOxx
Q⋆,Q(aj)

according to Lemma 1. By definition of ERC-
Oxx(A,Q⋆,Q), this upper bound is lower than 1 thus
φ(rQ) < 1.

2) Recursive expression of the ERC-Oxx formulas:
We elaborate recursive expressions ofFOxx

Q⋆,Q(aj) when
Q is increased by one element resulting in the new subset
Q′ ( Q⋆ (here, we do not consider the case whereQ′ =
Q⋆ sinceFOxx

Q⋆,Q⋆(aj) is not properly defined, (4) and (5)
being empty sums). We will use the notationQ′ = Q∪
{ℓ} whereℓ ∈ Q⋆\Q. To avoid any confusion,̃ai will
be systematically replaced bỹaQ

i andãQ′

i to express the
dependence uponQ andQ′, respectively. In the same
way, b̃i will be replaced bỹbQi or b̃Q

′

i but for simplicity,
we will keep the matrix notations̃BQ⋆\Q and B̃Q⋆\Q′

without superscript,̃referring toQ andQ′, respectively.
Let us first link b̃Qi to b̃Q

′

i when ãQ′

i 6= 0.

Lemma 5 Assume thatAQ′ is full rank andQ′ = Q∪
{ℓ} ( Q⋆. Then,span(AQ)⊥ is the orthogonal direct
sum of the subspacesspan(AQ′)⊥ and span(ãQ

ℓ ), and
the normalized projection of any atomai /∈ span(AQ′)
takes the form:

b̃Qi = ηQ,Q′

i b̃Q
′

i + χQ,Q′

i b̃Qℓ (16)

where

ηQ,Q′

i =

∥

∥ãQ′

i

∥

∥

∥

∥ãQ
i

∥

∥

∈ (0, 1], (17)

χQ,Q′

i = 〈b̃Qi , b̃Qℓ 〉, (18)
(

ηQ,Q′

i

)2
+

(

χQ,Q′

i

)2
= 1. (19)

Proof: SinceQ ( Q′, we havespan(AQ′)⊥ ⊆
span(AQ)⊥. BecauseAQ′ is full rank, span(AQ′)⊥

and span(AQ)⊥ are of consecutive dimensions. More-
over, ãQ

ℓ = aℓ − PQaℓ ∈ span(AQ′) ∩ span(AQ)⊥,
and ãQ

ℓ 6= 0 since AQ′ is full rank. As a vector
of span(AQ′), ãQ

ℓ is orthogonal tospan(AQ′)⊥. It
follows thatspan(ãQ

ℓ ) is the orthogonal complement of
span(AQ′)⊥ in span(AQ)⊥.
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The orthogonal decomposition of̃ai = P⊥
Qai reads:

ãQ
i = ãQ′

i + 〈ãQ
i , b̃Qℓ 〉b̃Qℓ

sinceb̃Qℓ is of unit norm. Replacing̃aQ
i = ‖ãQ

i ‖ b̃Qi and
ãQ′

i = ‖ãQ′

i ‖ b̃Q
′

i yields (16)-(18). Pythagoras’ theorem
yields (19). The assumptionai /∈ span(AQ′) implies
that ãQ′

i 6= 0, thenηQ,Q′

i > 0.

Lemma 6 Assume thatAQ⋆ is full rank. LetQ ( Q′ (

Q⋆ with Q′ = Q ∪ {ℓ}. Then, span(B̃Q⋆\Q) is the
orthogonal direct sum ofspan(B̃Q⋆\Q′) and span(b̃Qℓ ).

Proof: According to Corollary 3 in Appendix B,
B̃Q⋆\Q and B̃Q⋆\Q′ are full rank matrices, thus their
column spans are of consecutive cardinalities. Lemma 5
states that̃bQℓ is orthogonal tospan(AQ′)⊥, thus it is
orthogonal tõbQ

′

i ∈ span(AQ′)⊥ for all i ∈ Q⋆\Q′.
We finally establish a link betweenFOxx

Q⋆,Q(aj) and
FOxx
Q⋆,Q′(aj). It is a simple recursive relation in the case

of OMP. For OLS, we cannot directly relate the two
quantities but we expressFOLS

Q⋆,Q(aj) =
∥

∥B̃
†
Q⋆\Qb̃Qj

∥

∥

1

with respect toB̃†
Q⋆\Q′

b̃Q
′

j .

Lemma 7 Assume thatAQ⋆ is full rank. Let Q (

Q′ ( Q⋆ with Q′ = Q ∪ {ℓ} and let j /∈ Q⋆. If
aj /∈ span(AQ′), thenFOxx

Q⋆,Q′(aj) takes the forms(20)

and (21) whereηQ,Q′

i andχQ,Q′

i are defined in(17)-(18)
and β

Q⋆\Q′

j , B̃
†
Q⋆\Q′

b̃Q
′

j .

Proof: (20) straightforwardly follows from the def-
inition (4) of FOMP

Q⋆,Q (aj).

Let us now establish (21). We denote bỹPQ⋆\Q and
P̃Q⋆\Q′ the orthogonal projectors onspan(B̃Q⋆\Q) and
span(B̃Q⋆\Q′). Becausespan(B̃Q⋆\Q) is the orthogonal
direct sum ofspan(B̃Q⋆\Q′) andspan(b̃Qℓ ) (Lemma 6),
we have the orthogonal decomposition:

P̃Q⋆\Qb̃Qj = P̃Q⋆\Q′ b̃Qj + χQ,Q′

j b̃Qℓ .

(16) yields

P̃Q⋆\Qb̃Qj = ηQ,Q′

j P̃Q⋆\Q′ b̃Q
′

j + χQ,Q′

j b̃Qℓ

(P̃Q⋆\Q′ b̃Qℓ = 0 according to Lemma 6) and then

P̃Q⋆\Qb̃Qj = ηQ,Q′

j

∑

i∈Q⋆\Q′

β
Q⋆\Q′

j (i)b̃Q
′

i + χQ,Q′

j b̃Qℓ

by definition of β
Q⋆\Q′

j . In the latter equation, we re-
express̃bQ

′

i with respect tõbQi using (16):

P̃Q⋆\Qb̃Qj = ηQ,Q′

j

∑

i∈Q⋆\Q′

β
Q⋆\Q′

j (i)

ηQ,Q′

i

b̃Qi +

{

χQ,Q′

j − ηQ,Q′

j

∑

i∈Q⋆\Q′

β
Q⋆\Q′

j (i)χQ,Q′

i

ηQ,Q′

i

}

b̃Qℓ .

Thus,FOLS
Q⋆,Q(aj) =

∥

∥B̃
†
Q⋆\Qb̃Qj

∥

∥

1
reads (21).

3) The ERC is a sufficient recovery condition for OLS:
The key result of Lemma 2 (see Section III-D) states
that whenj /∈ Q⋆, FOLS

Q⋆,Q(aj) is decreasing whenQ (

Q⋆ is growing provided thatFOLS
Q⋆,Q(aj) < 1, and that

FOMP
Q⋆,Q (aj) is always decreasing.

Proof of Lemma 2:It is sufficient to prove the result
whenCard [Q′] = Card [Q] + 1. The caseCard [Q′] >
Card [Q]+1 obviously deduces from the former case by
recursion.

LetQ ( Q′ ( Q⋆ with Card [Q′] = Card [Q]+1. The
result is obvious whenaj ∈ span(AQ′): ãj = 0 then
FOxx
Q⋆,Q′(aj) = 0. Whenaj /∈ span(AQ′), (8) obviously

deduces from (20). The proof of (9) relies on the study
of functionϕ(η) = |

√

1− η2−Cη|+Dη which is fully
defined in (27), (28) and (29) in Appendix C. Because
this study is rather technical, we place it in Appendix C.

We notice thatFOLS
Q⋆,Q(aj) given in (21) takes the form

ϕ
(

ηQ,Q′

j

)

where the variables occurring inC and D
(see (28) and (29)) are set toN ← Card [Q⋆\Q′], ηi ←
ηQ,Q′

i , χi ← χQ,Q′

i , andβ ← sgn
(

χQ,Q′

j

)

β
Q⋆\Q′

j . Now,
we invoke Lemma 14 in Appendix C: asFOLS

Q⋆,Q′(aj) =
∥

∥β
Q⋆\Q′

j

∥

∥

1
plays the role of‖β‖1, FOLS

Q⋆,Q(aj) < 1

implies thatFOLS
Q⋆,Q′(aj) 6 FOLS

Q⋆,Q(aj).
We deduce from Lemmas 2 and 4 that ERC-

Oxx(A,Q⋆,Q) are sufficient recovery conditions when
Q ( Q⋆ has been reached (Theorem 3).

Proof of Theorem 3:Apply Lemma 4 at each iter-
ation q, . . . , k− 1 until the increased subsetQ′ matches
Q⋆. The ERC-Oxx(A,Q⋆, . ) assumption of Lemma 4 is
always fulfilled according to Lemma 2.

Finally, we prove that ERC(A,Q⋆) is a necessary
and sufficient condition of successful recovery for OLS
(Theorem 2).

Proof of Theorem 2: The sufficient condition is a
special case of Theorem 3 forQ = ∅. The necessary
condition identifies with that of Theorem 1 since ERC-
OLS(A,Q⋆, ∅) simplifies to ERC(A,Q⋆).

B. Necessary conditions

We provide the technical analysis to prove that ERC-
Oxx(A,Q⋆,Q) is not only a sufficient condition of exact
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recovery whenQ ( Q⋆ has been reached, but also a
necessary condition in the worst case. We will prove
Theorems 4 and 5 (see Section III) generalizing Tropp’s
necessary condition [1, Theorem 3.10] to any iteration
of OMP and OLS.

We will first assume that Oxx exactly recoversQ (

Q⋆ in q = Card [Q] iterations with some input vector
in span(AQ). This reachability assumption allows us to
carry out a parallel analysis of OMP and OLS (subsec-
tion A-B1) leading to the following proposition.

Proposition 1 [Necessary condition for Oxx afterq
iterations] Assume thatAQ⋆ is full rank andQ ( Q⋆

is reachable from an input inspan(AQ) by Oxx. If
ERC-Oxx(A,Q⋆,Q) does not hold, then there exists
y ∈ span(AQ⋆) for which Oxx selectsQ in the first
q iterations and then a wrong atom at iteration(q +1).

This proposition coincides with Theorem 5 in the case
of OMP whereas for OLS, Theorem 4 does not require
the assumption thatQ is reachable (subsection A-B2).

1) Parallel analysis of OMP and OLS: Proof
of Proposition 1: We proceed the proof of Lemma 4
backwards. By assumption, the right hand-side of in-
equality (15) is equal to

‖
(

C̃
†
Q⋆\QC̃•\Q⋆

)t‖∞,∞ = max
j /∈Q⋆

FOxx
Q⋆,Q(aj) > 1.

By definition of induced norms, there exists a vector
v ∈ Rk−q satisfyingv 6= 0 and

‖
(

C̃
†
Q⋆\QC̃•\Q⋆

)t
v‖∞

‖v‖∞
= ‖

(

C̃
†
Q⋆\QC̃•\Q⋆

)t‖∞,∞ > 1.

(22)

Define

ŷ = AQ⋆\Q(C̃t
Q⋆\QÃQ⋆\Q)−1v. (23)

The matrix inversion in (23) is well defined sincẽAQ⋆\Q

is full rank (Corollary 3 in Appendix B) and̃CQ⋆\Q =

ÃQ⋆\Q or B̃Q⋆\Q reads as the right product of̃AQ⋆\Q

with a nondegenerate diagonal matrix. By taking into
account thatÃQ⋆\Q = P⊥

QAQ⋆\Q, we obtain that

v = C̃t
Q⋆\QP⊥

Q ŷ. (24)

Since the left hand-side of (22) identifies with
φ(P⊥

Q ŷ) whereφ is defined in (14), (22) yields:

max
j /∈Q⋆

|〈P⊥
Q ŷ, c̃j〉| > max

i∈Q⋆\Q
|〈P⊥

Q ŷ, c̃i〉|. (25)

Moreover, we haveP⊥
Q ŷ 6= 0 according to (24) and

v 6= 0.

Now, let z ∈ span(AQ) denote the input for which
Oxx recoversQ. According to Lemma 15 in Ap-
pendix D, the firstq iterations of Oxx with the modified
inputy = z+εŷ also selectQ whenε > 0 is sufficiently
small. BecauseP⊥

Qy = εP⊥
Q ŷ and (25) holds, the

(q + 1)-th iteration of Oxx necessarily selects a wrong
atom.

At this point, we have proved Theorem 5 which is
relative to OMP.

2) OLS ability to reach any subset:In order to prove
Theorem 4, we establish that any subsetQ can be
reached using OLS with some inputy ∈ span(AQ)
(Lemma 3). To generatey, we assign decreasing weight
coefficients to the atoms{ai, i ∈ Q} with a rate of
decrease which is high enough.

Proof of Lemma 3:Without loss of generality, we
assume that the elements ofQ correspond to the firstq
atoms. For arbitrary values ofε2, . . . , εq > 0, we define
the following recursive construction:

• y1 = a1,
• yp = yp−1 + εpap for p ∈ {2, . . . , q}.

(yp implicitly depends onε2, . . . , εp) and sety , yq. We
show by recursion that there existε2, . . . , εp > 0 such
that OLS withyp as input successively selectsa1, . . . ,ap

during the firstp iterations (in particular, the selection
rule (2) always yields a unique maximum).

The statement is obviously true fory1 = a1. Assume
that it is true for yp−1 with some ε2, . . . , εp−1 > 0
(these parameters will remain fixed in the following).
According to Lemma 15 in Appendix D, there exists
εp > 0 such that OLS withyp = yp−1 + εpap as
input selects the same atoms as withyp−1 during the
first p − 1 iterations,i.e., a1, . . . ,ap−1 are successively
chosen. At iterationp, the current active set thus reads
Q′ = {1, . . . , p−1} and the OLS residual corresponding
to yp takes the form

rQ′ = P⊥
Q′yp−1 + εiP

⊥
Q′ap = εpã

Q′

p

sinceyp−1 ∈ span(AQ′). Thus,rQ′ is proportional to
ãQ′

p and then tob̃Q
′

p . Finally, the OLS criterion (2) is
maximum for the atomap and the maximum value is
equal to|〈rQ′ , b̃Q

′

p 〉| = ‖rQ′‖ sinceb̃Q
′

p is of unit norm.
Finally, we show that no other atomai yields this

maximum value. Apply Lemma 8 in Appendix B: the full
rankness ofAQ′∪{p,i} (as a family of less thanspark(A)

atoms) implies that
[

b̃Q
′

p , b̃Q
′

i

]

is full rank, thusb̃Q
′

p and
b̃Q

′

i cannot be collinear.
Using Lemma 3, Proposition 1 simplifies to Theo-

rem 4 in which the assumption thatQ is reachable by
OLS is omitted.
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APPENDIX B
RE-EXPRESSION OF THEERC-OXX FORMULAS

In this appendix, we prove Lemma 1 by successively
re-expressingÃ†

Q⋆\Qãj andB̃
†
Q⋆\Qb̃j . Let us first show

that whenAQ⋆ is full rank, the matricesÃQ⋆\Q and
B̃Q⋆\Q are full rank. This result is stated below as a
corollary of Lemma 8.

Lemma 8 If Q ∩ Q′ = ∅ and AQ∪Q′ is full rank, then
ÃQ

Q′ and B̃Q
Q′ are full rank.

Proof: To prove thatÃQ
Q′ is full rank, we assume

that
∑

i∈Q′ αiã
Q
i = 0 with αi ∈ R. By definition of

ãQ
i = P⊥

Qai = ai−PQai, it follows that
∑

i∈Q′ αiai ∈
span(AQ). SinceAQ∪Q′ is full rank, we conclude that
all αi’s are 0.

The full rankness ofB̃Q
Q′ follows from that of ÃQ

Q′

since for alli ∈ Q′, b̃Qi = ãQ
i /‖ãQ

i ‖ is collinear toãQ
i .

The application of Lemma 8 toQ′ = Q⋆\Q leads to the
following corollary.

Corollary 3 Assume thatAQ⋆ is full rank. ForQ ( Q⋆,
ÃQ⋆\Q and B̃Q⋆\Q are full rank.

Lemma 9 Assume thatAQ⋆ is full rank. For Q ( Q⋆

and j /∈ Q⋆, Ã
†
Q⋆\Qãj =

(

A
†
Q⋆aj

)

|(Q⋆\Q)
where |

denotes the restriction of a vector to a subset of its
coefficients.

Proof: The orthogonal decomposition ofaj on
span(AQ⋆) takes the form:

aj = AQ⋆

(

A
†
Q⋆aj

)

+ P⊥
Q⋆aj.

Projecting ontospan(AQ)⊥, we obtain

ãj = ÃQ⋆\Q

(

A
†
Q⋆aj

)

|(Q⋆\Q)
+ P⊥

Q⋆aj (26)

(P⊥
Q P⊥

Q⋆ = P⊥
Q⋆ becausespan(AQ⋆)⊥ ⊆ span(AQ)⊥).

For i ∈ Q⋆\Q, ãi = ai − PQai ∈ span(AQ⋆). Thus,
we havespan(ÃQ⋆\Q) ⊆ span(AQ⋆), and P⊥

Q⋆aj is
orthogonal tospan(ÃQ⋆\Q). According to Corollary 3,
ÃQ⋆\Q is full rank. It follows from (26) thatÃ†

Q⋆\Qãj =
(

A
†
Q⋆aj

)

|(Q⋆\Q)
.

Lemma 10 Assume thatAQ⋆ is full rank. ForQ ( Q⋆

and j /∈ Q⋆,

‖ãj‖ B̃†
Q⋆\Qb̃j = ∆‖ãi‖

(

A
†
Q⋆aj

)

|(Q⋆\Q)

where ∆‖ãi‖ stands for the diagonal matrix whose
diagonal elements are{‖ãi‖, i ∈ Q⋆\Q}.

Proof: The result directly follows fromãj =
‖ãj‖ b̃j , b̃i = ãi/‖ãi‖ for i ∈ Q⋆\Q, and from
Lemma 9.

Proof of Lemma 1: The result is obvious when
ãj = 0. It follows from Lemmas 9 and 10 wheñaj 6= 0.

APPENDIX C
TECHNICAL RESULTS NEEDED FOR THE PROOF OF

LEMMA 2

With simplified notations, the expression (21) of
FOLS
Q⋆,Q(aj) reads

ϕ(η) , |
√

1− η2 − Cη|+ Dη (27)

whereη ∈ (0, 1] andC andD take the form

C =

N
∑

i=1

βiχi

ηi
(28)

D =

N
∑

i=1

|βi|
ηi

(29)

with N > 1, β = [β1, . . . , βN ] ∈ RN , and for all
i, ηi ∈ (0, 1] and χi ∈ [−1, 1] satisfy η2

i + χ2
i = 1.

Note that we can freely assume from (21) thatχQ,Q′

j =

±
√

1−
(

ηQ,Q′

j

)2
> 0. WhenχQ,Q′

j < 0, one just needs
to replaceβ by −β in (28) and (29).

The succession of small lemmas hereafter aims at
minorizing ϕ(η) for arbitrary values ofη, ηi, χi andβ.
They lead to the main minoration result of Lemma 14.

Lemma 11 Let β ∈ RN .

If C 6 0, ∀η ∈ [0, 1], ϕ(η) > 1 + (‖β‖1 − 1)η. (30)

If C > 0, min
η∈[0,1]

ϕ(η) = min
(

1,D/
√

1 + C2
)

. (31)

Proof: We first study the functionf(η) ,
√

1− η2 − Cη. We havef(0) = 1, f(1) = −C, and
f is concave on[0, 1]. To minorizeϕ(η) = |f(η)|+Dη,
we distinguish two cases depending on the sign ofC.

When C 6 0, f(η) > 0 for all η. Since |f | = f is
concave, it can be minorized by the secant line joining
f(0) andf(1), therefore,|f(η)| > 1−(C +1)η > 1−η.
(30) follows from ϕ(η) = |f(η)| + Dη andD > ‖β‖1
(becauseηi are all in (0, 1]).

When C > 0, f(η) > 0 for η ∈ [0, z] and < 0 in
(z, 1], with z , 1/

√
1 + C2. D > 0 andf(z) = 0 imply

that for η > z, ϕ(η) > ϕ(z), thus the minimum ofϕ is
reached forη ∈ [0, z]. On [0, z], ϕ(η) = f(η) + Dη is
concave, therefore the minimum value is eitherϕ(0) = 1
or ϕ(z) = Dz.
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The following two lemmas are simple inequalities link-
ing C, D, and‖β‖1.

Lemma 12 ∀β ∈ RN , D2 − C2 > ‖β‖21.

Proof: By developing C2 and D2 from (28)
and (29), we get

C2 =
∑

i

β2
i χ2

i

η2
i

+
∑

i6=j

βiβjχiχj

ηiηj

D2 =
∑

i

β2
i

η2
i

+
∑

i6=j

|βiβj |
ηiηj

Since∀i, η2
i + χ2

i = 1, we have:

D2 − C2 =
∑

i

β2
i +

∑

i6=j

|βiβj |
ηiηj

(1− σiσjχiχj)

=

[

∑

i

|βi|
]2

+
∑

i6=j

|βiβj|
[

1− σiσjχiχj

ηiηj
− 1

]

(32)

with σi = sgn(βi) = ±1 if βi 6= 0, andσi = 1 otherwise.
Becauseηi andχi satisfyη2

i + χ2
i = 1, they rereadηi =

cos θi and χi = sin θi, so ηiηj + σiσjχiχj = cos(θi ±
θj) 6 1 which proves that the last bracketed expression
in (32) is non-negative. (32) yieldsD2−C2 > ‖β‖21.

Lemma 13 ∀β ∈ RN , ‖β‖1 6 1 implies that‖β‖1 6
D/
√

1 + C2.

Proof: (1+C2)‖β‖21 6 ‖β‖21 +C2 6 D2 according
to Lemma 12.
We can now establish the main lemma that will enable
us to conclude that ifFOLS

Q⋆,Q(aj) < 1, FOLS
Q⋆,Q′(aj) is

monotonically nonincreasing whenQ′ ) Q is growing.

Lemma 14 ∀β ∈ RN , ∀η ∈ [0, 1], ϕ(η) < 1 implies
that ‖β‖1 6 ϕ(η).

Proof: Apply Lemma 11.
WhenC 6 0, (30) andϕ(η) < 1 imply that (‖β‖1 −

1) < 0. Sinceη 6 1, the lower bound of (30) is larger
than1 + (‖β‖1 − 1) = ‖β‖1.

When C > 0, (31) andϕ(η) < 1 imply that the
minimum value ofϕ on [0, 1] is D/

√
1 + C2 < 1, then

D2 − C2 < 1. Lemmas 12 and 13 imply that‖β‖1 6 1
and then‖β‖1 6 D/

√
1 + C2 6 ϕ(η).

APPENDIX D
BEHAVIOR OF OXX WHEN THE INPUT VECTOR IS

SLIGHTLY MODIFIED

Lemma 15 Let y1 and y2 ∈ Rm. Assume that the
selection rule(1)-(2) of Oxx withy1 as input is strict
in the first q > 0 iterations (the maximizer is unique).

Then, whenε > 0 is sufficiently small, Oxx selects the
same atoms withy(ε) = y1 + εy2 as withy1 in the first
q iterations.

Proof: We show by recursion that there exists
εp > 0 such that the firstp iterations of Oxx (p =
1, . . . , q) with y(ε) andy1 as inputs yield the same atoms
wheneverε < εp.

Let p > 1. We denote byQ the subset of cardinality
p − 1 delivered by Oxx withy1 as input afterp − 1
iterations. By assumption,Q is also yielded withy(ε)
whenε < εp−1. Sincey(ε) = y1+εy2, the Oxx residual
takes the formrQ = r1 + εr2 where rQ, r1 and r2

are obtained by projectingy(ε), y1, andy2, respectively
onto span(AQ)⊥. Hence, fori /∈ Q,

〈rQ, c̃i〉 = 〈r1, c̃i〉+ ε〈r2, c̃i〉. (33)

Let aℓ denote the new atom selected by Oxx in thep-
th iteration withy1 as input. By assumption, the atom
selection is strict,i.e.,

|〈r1, c̃ℓ〉| > max
i6=ℓ
|〈r1, c̃i〉|. (34)

Taking the limit of (33) whenε→ 0, we obtain that for
any i, |〈rQ, c̃i〉| tends toward|〈r1, c̃i〉|. (34) implies that
whenε < εp−1 is sufficiently small,

|〈rQ, c̃ℓ〉| > max
i6=ℓ
|〈rQ, c̃i〉|

by continuity of |〈rQ, c̃i〉| (i 6= ℓ) and |〈rQ, c̃ℓ〉| with
respect toε. Thus, Oxx withy(ε) as input selectsaℓ in
the p-th iteration.

APPENDIX E
BAD RECOVERY CONDITION FOR BASIS PURSUIT

Contrary to the OMP analysis, the bad recovery anal-
ysis of basis pursuit is closely connected to the exact re-
covery analysis: in§ III-E2, we argued that both analyses
depend on the sign of the nonzero amplitudes, but not on
the amplitude values [16, 23]. Here, we provide a more
formal characterization of bad recovery for basis pursuit
which is based on the Null Space Property (NSP) given
in [32, Lemma 1]. The NSP is a sufficient and worst
case necessary condition of exact recovery dedicated to
all vectors whose support is equal toQ⋆:

∀x ∈ N (A)\{0},
∑

i∈Q⋆

|xi| <
∑

i/∈Q⋆

|xi| NSP(A,Q⋆)

whereN (A) = {x : Ax = 0} is the null space ofA.
Adapting the analysis of [32, Lemma 1], we introduce

the following bad recovery condition.
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Proposition 2

∀ε ∈ {−1, 1}k , ∃x ∈ N (A),
∑

i∈Q⋆

εixi >
∑

i/∈Q⋆

|xi|

BRC-BP(A,Q⋆)

is a necessary and sufficient condition of bad recovery
by basis pursuit for anyx⋆ supported byQ⋆.

This bad recovery condition reads as the intersection of
as many conditions as possibilities for the sign vector
ε ∈ {−1, 1}k. We will see in the proof below thatε
plays the role of the sign of the nonzero amplitudes,
denoted bysgn(x⋆) ∈ {−1, 1}k . Therefore, the bad
recovery condition is defined independently on each
orthant related to some sign patternε ∈ {−1, 1}k.

Proof: We first prove that BRC-BP is a sufficient
condition for bad recovery for anyx⋆ supported byQ⋆.
For such a vectorx⋆, let y = Ax⋆. Apply the BRC-BP
condition forε⋆ , sgn(x⋆): there existsx ∈ N (A) such
that

∑

i∈Q⋆ ε⋆
i xi >

∑

i/∈Q⋆ |xi|. Because this inequality
still holds whenx is replaced byαx (with α 6= 0), we
can freely re-scalex (i.e., chooseα small enough) so
that for all i ∈ Q⋆, sgn(x⋆

i − xi) = sgn(x⋆
i ). Then, we

have|x⋆
i | = ε⋆

i x
⋆
i = ε⋆

i (x
⋆
i −xi)+ε⋆

i xi = |x⋆
i −xi|+ε⋆

i xi

and

‖x⋆‖1 =
∑

i∈Q⋆

|x⋆
i − xi|+

∑

i∈Q⋆

ε⋆
i xi

>
∑

i∈Q⋆

|x⋆
i − xi|+

∑

i/∈Q⋆

|xi| = ‖x⋆ − x‖1.

Thus,x⋆ cannot be a minimumℓ1 norm solution toy =
Ax.

Now, let us prove that BRC-BP is also a necessary
condition for bad recovery. Assume thatx⋆ is supported
by Q⋆ and basis pursuit with inputy = Ax⋆ yields
output x⋆. Because basis pursuit yields a minimumℓ1

norm solution toy = Ax, we have for allx ∈ N (A),
‖x⋆ − x‖1 > ‖x⋆‖1, i.e.,

∀x ∈ N (A),
∑

i/∈Q⋆

|xi| >
∑

i∈Q⋆

|x⋆
i | −

∑

i∈Q⋆

|x⋆
i − xi|.

(35)

Let ε⋆ = sgn(x⋆) andρ = mini∈Q⋆ |x⋆
i |. When‖x‖∞ <

ρ, x⋆
i − xi and x⋆

i are both of signε⋆
i when i ∈ Q⋆.

Then, (35) yields:

∀x ∈ N (A), ‖x‖∞ < ρ ⇒
∑

i/∈Q⋆

|xi| >
∑

i∈Q⋆

ε⋆
i xi.

This condition also holds when‖x‖∞ > ρ because it
applies toρx/(2‖x‖∞) whoseℓ∞ norm is lower than
ρ. We have shown the contrapositive of BRC-BP(A,Q⋆),
i.e., that BRC-BP(A,Q⋆) does not hold.

We performed empirical tests for specific dictionaries
of dimension (m = 3, n = 5) where N (A) is of
dimension 2 and can be fully characterized. We checked
that the BRC-BP property may indeed be fulfilled for
Card [Q⋆] = 2.
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