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Joint k-step analysis of Orthogonal Matching
Pursuit and Orthogonal Least Squares

Charles Soussén Rémi Gribonval, Jérdome Idier, and Cédric Herzet

Abstract—Tropp’s analysis of Orthogonal Matching Pur- reader to the technical report [6] for a comprehensive
suit (OMP) using the Exact Recovery Condition (ERC) [1] review on the difference between OMP and OLS.
is extended to a first exact recovery analysis of Orthogonal QLS s referred to using many other names in the
Least Squares (OLS). We show that when the ERC is jitaratyre. It is known as forward selection in statistical
met, OLS is guaranteed to exactly recover the unknown regression [7] and as the greedy algorithm [5], Order

support in at most k iterations. Moreover, we provide a . . . L
closer look at the analysis of both OMP and OLS when Recursive Matching Pursuit (ORMP) [8] and Optimized

the ERC is not fulfilled. The existence of dictionaries for Orthogonal Matching Pursuit (OOMP) [9] in the signal
which some subsets are never recovered by OMP is proved.Processing literature, all these algorithms being agtuall
This phenomenon also appears with basis pursuit where the same. It is worth noticing that the above-mentioned
support recovery depends on the sign patterns, but it does algorithms were introduced by following either an op-
not occur for OLS. Finally, numerical experiments show timization [4,7] or an orthogonal projection methodol-
that none of the considered algorithms is uniformly better gy [5], or both [8, 9]. In the optimization viewpoint, the
than the other but for correlated dictionaries, guaranteed atom yielding the largest decrease of the approximation
exact recovery may be obtained after fewer iterations for error is selected. This leads to a greedy sub-optimal algo-
OLS than for OMP. . . : s . .
rithm dedicated to the minimization of the approximation
Index Terms—ERC exact recovery condition; Orthog- error. In the orthogonal projection viewpoint, the atom
onal Matching Pursuit; Orthogonal Least Squares; Or- selection rule is defined as an extension of the OMP
der Recursive Matching Pursuit; Optimized Orthogonal je: the data vector and the dictionary atoms are being
Matching Pursuit; forward selection. projected onto the subspace that is orthogonal to the span
of the active atoms, and theormalizedprojected atom
having the largest inner product with the data residual is
selected. As the number of active atoms increases by one

LASSICAL greedy subset selection algorithms indt any iteration, the projections are done on a subspace
clude, by increasing order of complexity: Matchwhose dimension is decreasing.

ing Pursuit (MP) [2], Orthogonal Matching Pursuit

(OMP) [3] and Orthogonal Least Squares (OLS) [4A. Main objective of the paper

5]. OLS is indeed relatively expensive in comparison o primary goal is to address the OLS exact recovery
with OMP since OMP performs one linear inversion,ysis from noise-free data and to investigate the
per iteration whereas OLS performs as many lineégpnnection between the OMP and OLS exact recovery
inversions as there are non-active atoms. We refer g, itions. In the literature, much attention was paid

o _to the exact recovery analysis of sparse algorithms that
C. Soussen is with the Centre de Recherche en Automatique de

Nancy (CRAN, UMR 7039, Université de Lorraine, CNRS). Cais\p a_re faster than OL$e.g., threShOId'ng algorlthms and
Sciences, B.P. 70239, F-54506 Vandceuvre-les-Nancyc€i@amail:  Simpler greedy algorithms like OMP [10]. But to the best
Charles.Soussen@cran.uhp-nancy.fr) This work wasechwout in  of our knowledge, no exact recovery result is available

part while C. Soussen was visiting IRCCyN during the academ; : ;
year 2010-2011 with the financial Stpport of CNRS, Mor OLS. In their recent paper [11], Davies and Eldar

R. Gribonval and C. Herzet are with INRIA Rennes - BretagnB'€ntion this issue and state that the relation between
Atlantique, Campus de Beaulieu, F-35042 Rennes Cedexc&rée OMP and OLS remains unclear.
mail: Remi.Gribonval@inria.fr; Cedric.Herzet@inrig.fR. Gribon-
val acknowledges the partial support of the European Ugi&iP7- L.
FET program, SMALL project, under grant agreemefit225913.  B. EXisting results for OMP

J. lIdier is with the Institut de Recherche en Communications : it ot ;
et Cybernétique de Nantes (IRCCyN, UMR CNRS 6597), BP Our starting point is the existing-step analysis of

92101, 1 rue de la No&, 44321 Nantes Cedex 3, France (e-mQMP whose structurg is somewhat Close_to QLS- The
Jerome.ldier@irccyn.ec-nantes.fr). notion of k-step solution property was defined in [12]:

. INTRODUCTION
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“any vector with at most& nonzeros can be recoveredhe ERC which guarantee that an exact support recovery

from the related noise-free observation in at mést will occur in the subsequent iterations. These extended

iterations.” Thek-step property will also be referred torecovery conditions coincide with the ERC at the first

as the “exact support recovery” in the following. Exadteration but differ from it afterwards.

recovery studies of OMP rely on alternate methodolo- Our main results state that:

gies. « The ERC is a sufficient condition of exact recovery
Tropp’s Exact Recovery Condition (ERC) [1] isanec-  for OLS in at mostk steps (Theorem 2).

essary and sufficient condition of exact support recoverys When the early iterations of OMP/OLS have all suc-

in a worst case analysis. On the one hand, if a subset of ceeded, we derive two sufficient conditions, named

k atoms satisfies the ERC, then it can be recovered from ERC-OMP and ERC-OLS, for the recovery of the

any linear combination of the atoms in at most steps. remaining true atoms (Theorem 3). This result is a
On the other hand, when the ERC is not satisfied, one can (i — q)-step property, where stands for the number
generate a counterexamplee(, a specific combination of iterations which have been already performed.
of the k atoms) for which OMP failsi.e., OMP selects « Moreover, we show that our conditions are, in some
a wrong atom during its first iterations. Specifically, sense, necessary (Theorems 4 and 5).

the atom selected in thierst iteration is a wrong one.  The criteria we provide might not necessarily be directly
Davenport and Wakin [13] used another analysis {@seful for practitioners working in the field. In fact, just
show that OMP yields exact support recovery under c&s many other theoretical success guarantees, they are
tain Restricted Isometry Property (RIP) assumptions, apgther “motivational”: by proving that the considered
several improvements of their condition were proposegyorithms are guaranteed to perform well in a restricted
more recently [14,15]. Actually, the ERC necessariljegime, they strengthen our confidence that the heuristics
holds when the latter conditions are fulfilled since thseh”]d the a|gorithms are reasonab|y grounded. Prac-
ERC is a sufficient and worst case necessary conditi§fjoners know that the algorithms indeed work much
of exact recovery. beyond the considered restricted regime, but proving
this fact would typically require probabilistic arguments
based on models of random dictionary or random input
N signals [17, 18]. Despite their potential interest, the the
We propose to extend Tropp's condition to OLS. Wgyetical results that can be foreseen in this spirit would

remark that the very first iteration of OLS is identical t¢,q highly dependent on the adequacy of such models to
that of OMP: the first selected atom is the one whogge actual distribution of data from the real world.

inner product with the input vector is maximal. There-
fore, when the ERC does not hold, the counterexam%e
for which the first iteration of OMP fails also yields a™
failure of the first iteration of OLS. Hence one cannot IN Section II, we recall the principle of OMP and
expect to derive an exact recovery condition for OLS th&LS and their interpretation in terms of orthogonal
would be weaker than the ERC at the first iteration. Werojections. Then, we properly define the notions of
show that the ERC indeed ensures the success of O1Sgccessful support recovery and support recovery failure.
We further address the case where the ERC doagction lllis dedicated to the analysis of OMP and OLS
not hold, i.e., the first iteration of OMP/OLS is not at any iteration where the most technical developments

guaranteed to always succeed but nevertheless succé§sProofs are omitted for readability reasons. These im-
for a given vector. In practice, even for non ranc|o|{40rtant.elements can be fognd in the appendl_x section A.
dictionaries, this phenomenon is likely to occur sinc® Section IV, we show using Monte Carlo simulations
the ERC is a worst case necessary condition. TiRat there is no systematic implication between the ERC-
purpose of a large part of the paper is specifically @MP and ERC-OLS conditions but we exhibit some
analyze what is going on in the remaining iteration@leéments of discrimination in favor of OLS.

for these vectors. Witlf; minimization, the situation is

clearer because support recovery depends on the sign Il. NOTATIONS AND PREREQUISITES

patterns [16, Theorem 2] and one can predict whetherThe following notations will be used in this paper.
a specific vector will be recovered independently of the, .) refers to the inner product between vectors, and
support amplitudes. For greedy algorithms, things ajie|| and||.||; stand for the Euclidean norm and thge
more tricky and it is one of the purpose of the paperorm, respectively.” denotes the pseudo-inverse of a
to analyze this. We introduce weaker conditions thanatrix. For a full rank and undercomplete matrix, we

C. Generalization of Tropp’s condition

Organization of the paper
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have XT = (X!X)~!X" where.! stands for the ma- supportQ is updated: the data approximation redejsy
trix transposition. WhenX is overcompletespark(X) and the residual error is defined by

denotes the minimum number of columns fro¥n that N N

are linearly dependent [19]. The lett€ denotes some rg =y — Poy = Pgy.

subset of the column indices, aXig is the submatrix
of X gathering the columns indexed b. Finally,
Py = XQXTQ andPQl = I — Py denote the orthogonal
projection operators ompan(Xg) and span(Xg)*,
where span(X) stands for the column span aoX,
span(X)* is the orthogonal complement gpan(X) (OLS
and! is the identity matrix whose dimension is equal to

the number of rows inX.

Let us now recall how the selection rule of OLS differs
from that of OMP.

At each iteration of OLS, the atom, yielding the
minimum least-square errdirg (¢ ||* is selected:

€ argmin [|rgy iy ||
@0

andn — Card [Q] least-square problems are being solved

A Subset selection to compute|jrguy[|* for all i ¢ Q (*) [4]. On the

Let A = [ay,...,a,] denote the dictionary gatheringcomrary’ OMP adopts the simpler rule

normalized atoms,; € R™. A is a matrix of sizen xn. (OMP ¢ arg max |(ro, a;)|
Assuming that the atoms are normalized is actually not i¢Q

necessary for OLS as the behavior of OLS is unchangl%d
whether the atoms are normalized or not [6]. On tt]

contrary, OMP is highly sensitive to the normalization o n the application, the OMP and OLS stopping rules can

atoms since its selection rule involves the inner produgfs .« 2 maximum number of atoms and/or a residual

between the current residual and the non-selected atofSashold. Note that when the data are noise-free (they
We consider a subs@* of {1,...,n} of cardinality ., asy = Ao-t) and no wrong atom is selected

k £ Card [Q*] < min(m,n) and study the behavior of e squared errofiro|? is equal to O after at most '

OMP and OLSfor all inputsy € span(Aog-.), i.e., for o iigne Therefore, we will consider no more thian
any combinatiory = Ao-t where the submatrid o- is iterations in the following

of sizem x k and the weight vectar € R*. Thek atoms
{a;, 1 € Q*} indexed byQ* will be referred to as the
“true” atoms while for the remaining (“wrong”) atomsC. Geometric interpretation
{a;, 7 ¢ 9Q*}, we will use the subscript notatiop.
The forward greedy algorithms considered in this pap
start from the empty support and select a new atom

select the new atona, and then solves only one
ast-square problem to updatg ., [6]. Depending

A geometric interpretation in terms of orthogonal
Fojections will be useful for deriving recovery condi-
) . ) ) . . fdns. It is essentially inspired by the technical report
iteration. At intermediate iterationg € {0,...,k — 1}, of Blumensath and Davies [6] and by Davenport and

we denote by the current support (witard [Q] = ¢). iy analysis of OMP under the RIP assumption [13].
Throughout the paper, we make the general assUMPy . introduce the notatiod; — Pé‘ai for the pro-

tion that Ao- is full rank. Note that the representation d A-)L where for simolicity. th

y = Aot is not guaranteed to be unique under th%ecte atoms °”t9p‘?‘“< 9) where for simplictly, the
assumption: there may be anotheterm representation ependence upo@ 'S o[ngltt_ed. When tNhere 'S & risk of
y — Aot where Ao, includes some wrong atoms. gonfusm_rf], wz WI|I| u_?eai msteadAofai.I Notlcg tlhat
The sionger assumptionorA) - 21 1  necessary & ~ 0 LS00 [ © i) 1 parieur
and sufficient condition for uniqueness of akyterm VéC'[OI’S ' ’

representation [19]. Therefore, whepark(A) > 2k,

the selection of a wrong atom by a greedy algorithm B — { a;/l|la;|| if a; #0,

disables &-term representation aj in k steps [1]. We L 0 otherwise

make the weak assumption thdb- is full rank because _ _ - _ _ _

it is sufficient to elaborate our exact recovery conditiorfsgain, we will useb;> when there is a risk of confusion.

under which no wrong atom is selected in the fikst We now emphasize that the projected ataimsor b;)
iterations. play a central role in the analysis of both OMP and OLS.

B. OMP and OLS algorithms 1Our purpose is not to focus on the OLS implementation. Howeve

. let us just mention that in the typical implementation, tleasi-
The common feature between OMP and OLS is thgyare problems are solved recursively using the Gram thmi

they both perform an orthogonal projection whenever tl&honormalization procedure [4].
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Because the residualy = PQly lays in span(Ag)*, The word “failure” refers to the exact contrary of
(ro,a;) = (ro,a;) and the OMP selection rule rereadssuccessful recovery.

(OMP ¢ argmax |(rg, a;)| (1)

i¢Q Definition 2 Oxx withy € span(Ag-) as input fails

whereas for OLS, minimizingrgu{i}H2 with respect to when at least one wrong atom is selected during the first
i ¢ Qis equivalent to maximizingjrol|? — HTQu{z‘}H2 — Kk iterations. In particular, Oxx fails whe(8) occurs with
(ro,b;)? (seee.g.,[9] for a complete calculation): ro # 0.

oLs 7 . , .

€77 € argmax [(rg, b;)|. (2)  The notion of successful recovery may be defined in a

7

] weaker sense: Plumbley [16, Corollary 4] pointed out
We notice that (1) and (2) only rely on the vectors ¢ there exist problems for which the ERC fails but
and a; belonging to the subspao?)an(AQ)l. OMP  nevertheless, a “delayed recovery” occurs after more than
maximizes the inner produdiro, a;)| whereas OLS . giens in that a larger support includigy is found, but
minimizes the angle between, anda; (this difference ) a10ms which do not belong ©* are weighted by 0 in
was already stressed and graphically illustrated in [6}}¢ solution vector. Recently, a delayed recovery analysis
When the dictionary is close to orthogona.g., for ot oMmP using RIP assumptions was proposed in [20],
dictionaries satlsf_ylng the RI'P assumptlon, this does Nt 4 then extended to the weak OMP algorithm [21]. In
make a strong difference sindg;|| is close to 1 for e present paper, no more tharsteps are performed,

all atoms [13]. But in the general cas@|| may have s gelayed recovery is considered as a recovery failure.
wider variations between 0 and 1 leading to substantial

differences between the behavior of OMP and OLS.

[Il. OVERVIEW OF OUR RECOVERY ANALYSIS OF
D. Definition of successful recovery and failure OMP AND OLS

Throughout the paper, we will use the common

acronym Oxx in statements that apply to both OMP andIn this sectl_on, We present our main concepts anq
OLS. Moreover, we define the unifying notation: results regarding the sparse recovery guarantees with

) OLS, their connection with the existing OMP results and
N { a; for OMP, the new results regarding OMP. For clarity reasons, we
b; for OLS. place the technical analysis including most of the proofs

C; =
We first stress that in special cases where the Olkthe main appendix section A. Let us first recall Tropp’s
selection rule yields multiple solutions including a wron§RC condition for OMP which is our starting point.
atom,i.e., when
icono (ro, €l = idon {ra, &), (3) A. Tropp's ERC condition for OMP
we consider that Oxx automatically makes the wrong d&heorem 1 [ERC is a sufficient recovery condition for
cision. Tropp used this convention for OMP and showedMP and a necessary condition at the first iteration [1,
that when the upper bound on his ERC condition (s@&eorems 3.1 and 3.10]if Ao- is full rank and
Section 1lI-A) is reached, the limit situation (3) occurs,
hence a wrong atom is selected at the first iteration [1]. max{Fg.(a;) £ HAT *ajHl} <1, ERCA, Q")
Let us now properly define thé-step property for JEQ

successful support recovery. then OMP succeeds for any inpyte span(Ag-). Fur-

n .
Definition 1 Oxx withy € span(Ao.) as input suc- thermore, when ERC{, Q*) does not hold, there exists

ceeds if and only if no wrong atom is selected and tie€ SPan(Ag-) for which some wrong atom is selected

residualrg is equal to0 after at mostk iterations. at the first iteration of OMP. Whespark(A) > 2k, this
implies that OMP cannot recover the (uniquiterm

When a successful recovery occurs, the subsgielded representation ofy.

by Oxx satisfiesQ,, € Q C O* whereQ,, is the subset

indexed by the nonzero weightss in the decomposition Note that ERCA, ©*) involves the dictionary atoms but

y = Ao-t. When allt;’s are nonzerog),, identifies with not their weights as it results from a worst case analysis:

Q* and a successful recovery cannot occur in less thilcRC(A, @*) holds, then a successful recovery occurs

k iterations. with y = Ag-t whatevert € RF.
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B. Main theorem Lemma 1 Assume thatdo- is full rank. For @ C O*
A theorem similar to Theorem 1 applies to OLS. andj ¢ Q% F§5(a;) and FGH (a;) also read
OMP/( _ \ _ | AT 5.
Theorem 2 [ERC is a sufficient recovery condition for Fo-olas) = ”AQ*\Qaﬂ”l (6)

oLS _and a necessary condition at the first iteratiot] FO*ESQ(aj) - HBTQ*\QBJ»HI 7)
Ao is full rank and ERCA, Q*) holds, then OLS suc- -

ceeds for any inpugy € span(Ag.). Furthermore, when Where the matricesdg.\o = {a;, 7 € Q*\Q} and
ERC(A, Q*) does not hold, there exisis€ span(Ag-) Bong = {bi, i € Q*\Q} of sizem x (k — q) are
for which some wrong atom is selected at the firéll rank.

iteration of OLS. Whenrpark(A) > 2k, this implies that
OLS cannot recover the (uniqué}term representation
of y.

Lemma 1 is proved in Appendix B.

2) ERC-Oxx conditions for the whole dictionary:
We define four binary conditions by considering all the
The necessary condition result is obvious since the vemjong atoms together:
first iteration of OLS coincides with that of OMP and OMP *
the ERC is a worst case necessary condition for OMP. ]I{é%x Fo-ola;) <1 ERC-OMPA, &7, Q)
The core of our contribution is the sufficient condition max FS*LSQ(CL]‘) <1 ERC-OLS@, O, Q)
result for OLS. We now introduce the main concepts j¢r ’
on which our analysis relies. They also lead to a more max max F'y(a;) <1 ERC-OMP@A, Q*, )

precise analysis of OMP from the second iteration. Ca%%g}*:qﬁ@*
max max Fry(a;) <1 ERC-OLSA, Q%)
C. Main concepts 20 it ey

Let us keep in mind that the ERC is a worst cas\;ev il h tationE O ERC
necessary conditioat the first iteration But what hap- *'° VX u*se N goénéngg nota '0* Q*fQ(aJ)’ )
pens when the ERC is not met but nevertheless, tﬁé();( , Q% Q) ant b tr; OXI\);I(L;’QéqC))LOSr statements
first ¢ iterations of Oxx select; true atoms < k)? at are common fo bo an :

Can we ch'aracFerlze the gxact recovery conditions gt ﬁggmark 1 F(Q)%p(aj) and Fg}%(aj) both reread
(¢ + 1)-th iteration? We will answer to these questions g _ i _
and provide: For(a;) = || Ag.ayll since, e
. " is of unit norm. Thus - an -
1) an extension of the ERC condition to theth N . P i
iteration of OMP: Oxx(A, Q*,0) all identify with ERCA, Q*).

2) anew necessary and sufficient condition dedicated o - ]
to the ¢-th iteration of OLS. D. Sufficient conditions of exact recovery at any itera-

This will allow us to prove Theorem 2 as a special caé'@n

of the latter condition wheg = 0. The sufficient conditions of Theorems 1 and 2 reread
In the following two paragraphs, we introduce usefi@s special cases of the following theorem where- (.

notations for a single wrong atomy and then define our o -

new exact recovery conditions by considering all wrong'€0rem 3 [Sufficient recovery condition for Oxx af-

atoms togetherQ plays the role of the subset found by€" ¢ successful iterationsAssume tha# o- is full rank.

Oxx after the first; iterations. If Oxx with y € span(Ag-) as input select) C Q_*
1) Notations related to a single wrong atorfior @ ¢~ @nd ERC-Oxxt, 9%, Q) holds, then Oxx succeeds in at
O* andj ¢ O*, we define: mostk steps.
FOMP(g.) 2 Al a (i) (4) The following corollary is a straightforward adaptation
QN Z.EQZ*\QH e ]) ‘ of Theorem 3 to ERC-Ox¥4, Q*, q).
FO*L:SQ(G’]') N Z ’\’\;z:H |(ATQ*aj)(i)\ (5) Corollary 1 Assume thatd o- is full rank. If Oxx 'with
icono 177 y € span(Ag-) as input selects true atoms during the

first ¢ < k iterations and ERC-Ox¥, 9%, ¢) holds, then

= Oxx N P
whena; # 0 and F575(a;) = 0 whena; = 0 (We 5 "¢\ -coads in at mostiterations.

recall thata; = Pga; anda; = PZa; depend onQ).
Up to some manipulations on orthogonal projections, (4) The key element which enables us to establish The-
and (5) can be rewritten as follows. orem 3 is a recursive relation Iinkingofixg(aj) with
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ng?‘g,(aj) when @Q is increased by one element of 2) Reachability issuesThe reader may have noticed

O*\Q, resulting in subsel’. This leads to the main that Theorem 4 implies tha® can be reached by OLS at

technical novelty of the paper, stated in Lemma 7 (sésast for some inpuy € span(Ag-). In Appendix A-B,

Appendix A-A). From the thorough analysis of thisve establish a stronger result:

recursive relation, we elaborate the following lemma

which guarantees the monotonic decreaségf,(a;) Lemma 3 (Reachability by OLS) Any subsetQ with

when Q C Q* is growing. Card [Q] < spark(A) — 2 can be reached by OLS with
some inputy € span(Ag).

L(-imma 2 Agsumf thatdo. is full rank. LetQ ¢ @' ¢ Perhaps surprisingly, this result does not remain valid
Q*. Foranyj ¢ Q% for OMP although it holds under certain RIP assump-
FOMP (a;) FOMP(a') (8) tions [13, Theorem 4.1]. We refer the reader to subsec-
LS o*ﬁg J o*ﬁg J tion IV-C for a simple counterexample whe@ cannot
Fgoolaj) <1 = Fgoo(aj) < Fgglaj)  (9)  be reached by OMP not only fay € span(Ao) but also
for anyy € R™.

The same somewhat surprising phenomenon of non-
5eeachability may also occur witll; minimization, as-
sociated to certairk-faces of thef; ball in R" whose
projection throughA vyields interior faces [22]. Specif-
ically, for a givenx supported byQ, Fuchs’ necessary
E. Necessary conditions of exact recovery at any iterand sufficient condition for exact support recovery from
tion y = Ax [16,23] involves the signs of the nonzero

. é . . q
We recall that the ERC is a worst case necess%&npmu‘jes (d(_enoted by ,bgn@? 6.{ 1, 1}9) but not
" ) eir values. Either Fuchs’ condition is nfet anyvector
condition guaranteed for the selection of a true atom . : .
. . . . . aving supporQ and signs, thus all these vectors will
by OMP and OLS in their very first iteration. We .
. . b? correctly recovered, or no vecterhaving suppor@
provide extended results stating that ERC-Oxx are wors . ;
" - . ar}d signse can be recovered. It follows th& is non-
case necessary conditions when the first iterations 0 . S ; "
u . . reachable with?; minimization when Fuchs’ condition
Oxx have succeeded, up to a “reachability assumption™ . . .
defined hereafter. for OMP is simultaneously false for all possible signswWe refer
’ ' the reader to Appendix E for further details.
o » , ) 3) OMP necessary condition including reachability
Definition 3 [Reachability] Q is reachable if and only 555,mptionsOur necessary condition for OMP is some-

if there exists an inpuy = Agt wheret; # 0 for \nat tricky because we must assume tsis reachable
all 4, for which Oxx recover® in Card [Q] iterations. by OMP using some input ispan(Ao).

Specifically, the selection rul€l)-(2) always vyields a

unique maximum. Theorem 5 [Necessary condition for OMP afterq
iterations] Assume that o- is full rank andQ C O* is
reachable. If ERC-OMP4, Q*, Q) does not hold, then
there existsy € span(Ag-) for which OMP select

in the firstq iterations and then a wrong atom¢ O*
Theorem 4 [Necessary condition for OLS aftey it-  at iteration (¢ + 1).

erations] Let Q@ C Q* be a subset of cardinality;.
Assume thatdo- is full rank andspark(A) > (¢ + 2). Theorem 5 is proved together with Theorem 4 in Ap-
If ERC-OLSA, O*, Q) does not hold, then there existPendix A-B. Setting aside the reachability issues, the
y € span(Ag.) for which OLS select® in the firstq principle of the proof is common to OMP and OLS. We
iterations and then a wrong ator ¢ Q* at iteration proceed the proof of the sufficient condition (Theorem 3)
(q+1). back\évards, as was done in [1, Theorem 3.10] in the case
Q=0
Theorem 4 is proved in Appendix A-B. An obvious In the special case whete= 1, Theorem 5 simplifies
corollary can be obtained by replacin@ with ¢ akin to a corollary similar to the OLS necessary condition
to the derivation of Corollary 1 from Theorem 3. FronfTheorem 4) because any subggtof cardinality 1 is
now on, such obvious corollaries will not be explicitlyobviously reachable using the atom indexed @yas
stated. input vector.

<
<

We refer the reader to Appendix A-A for the proofs o
Lemmas 7 and 2, and then Theorem 3.

We start with the OLS condition which is simpler.
1) OLS necessary condition:
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Corollary 2 [Necessary condition for OMP in the Theorem 7 [Sufficient condition for bad recovery with
second iteration]Assume thatdo- is full rank and let OMP] Assume thatdo- is full rank. If

i € Q*. If ERC-OMP@A, Q*, {i}) does not hold, then ] OMP

there existsy € span(Ag-) for which OMP selects, Tl [max FQ*,Q(“J)] z 1,

and then a wrong atom in the first two iterations. Card[Q]=k—1
BRC-OMP(A, Q%)

4) Discrimination between OMP and OLS at the then Q* cannot be reached by OMP using any input in
th iteration: We provide an element of discriminatiorspan(Ag-).

between OMP and OLS when their fifst- 1 iterations

. ) .
have selected true atoms, so that there is one remainﬁ%;ec'f_'ca"y’ BRC-OMP4, Q ) ggarantees that a w_rong
true atom which has not been chosen. selection occurs at the-th iteration when the previous

iterations have succeeded.

Theorem 6 [Guaranteed success of thé-th iteration ~ Proof: Assume that for somg & span(Aqg-), the
of OLS] If [Ag.,a;] is full rank for any;j ¢ Q*, then first £ — 1 iterations of OMP succeedg., they select
ERC-OLSA, O*, k — 1) is true. Thus, if the first —1 < & <" of cardinality k — 1. Let a),5; denote the last

iterations of OLS select true atoms, the last true atom /€ atom Ao. = [Ag, aj.s] Up to some permutation of
necessarily selected in theth iteration. columns). The residualg yielded by OMP after: — 1

iterations is obviously proportional @2,
This result is straightforward from the definition of OLS BRC-OMP(A, Q*) implies that ERC-OMPA, Q*, Q)
in the optimization viewpoint: “OLS selects the news false, thus there exisfis¢ Q* such thatFO}Vg(aj) >
atom yielding the least possible residual” and becauge according to (11) @2, ad)| > Hde’tHz thus
. . . . ' ast’ J = as
in the k-th _|terat|on, the last true_ atom yields a Zer?(rg,dj@ﬂ > K”de%stﬂ- We conclude thaty,, cannot
valued residual. Another (analytical) proof of Theog, ‘hosen in the-th iteration of OMP. m
rem 6, given below, is based on the definition of ERC- Although BRC-OMP@, O*) may appear restrictive
OLS(A, @, k —1). It will enable us to understand Why a5 3 minimum is involved in the left-hand side), we
the statement of Theorem 6 is not valid for OMP. will see in Section IV that it may be frequently met,

Proof: Assume that OLS yields a subs@tC Q" gshecially when the atoms of are strongly correlated.
after £k — 1 iterations. Leta,s; denote the last true

atom so thatAo. = [Ag, @last] UP E% some column |y EypiriCAL EVALUATION OF THE OMP AND OLS
permutation. SinceBg.\o reduces tob;Z, which is of RECOVERY CONDITIONS

unit norm, the pseudo-inverséT takes the form

‘o 1t o o o\Q The purpose of this section is twofold. In subsec-
(b2, - Finally, (7) simplifies to: tion IV-B, we evaluate and compare the ERC-OMP and
FOESQ(aj) _ \<B§Stv’3]'g>\ <1 (10) ERC-OLS conditions for several kinds of dictionaries.

In particular, we study the dependence ng‘f‘g £
since both vectors in the inner product are either of unjlax; ;5. £S5 (a;) with respect to the dimensions, n
norm or equal to0. Apply Lemma 8 in Appendix B: of the dictionary and the subset cardinalitiés =

since forj ¢ Q*, [Ag.,ay] is full rank, [b2,,b5] is  Card[Q*] andq = Card [Q]. This allows us to analyze,

full rank, thus (10) is a strict inequality. B for random and deterministic dictionaries, from which
Similar to the calculation in the proof above, wgteration ¢ the ERC-Oxx@, Q*, Q) condition may be
rewrite FMS (a;) defined in (6): met, i.e., FS¥%5 < 1. In subsection IV-C, we emphasize

a2, a9)| the distinction between OMP and OLS by showing that
% (11) the bad recovery condition for OMP may be frequently
|l met, especially when some dictionary atoms are strongly

However, we cannot ensure thﬂg}\g(aj) < 1 since correlated.

a? andag,, are not unit norm vectors. We refer the o

reader to subsection IV-C for a simple example with- Dictionaries under consideration

four atoms and two true atoms in which OMP is not Our recovery conditions will be evaluated for three

guaranteed to select the second true atom when the fikisids of dictionaries.

has already been chosen. We consider first randomly Gaussian dictionaries
To further distinguish OMP and OLS, we elaborate whose entries obey the standard Gaussian distribution.

“bad recovery condition” under which OMP is guaran©nce the dictionary elements are drawn, we normalize

teed to fail in the sense th&* is not reachable. each atom in such a way that;|| = 1.

OMP
Fgog(aj) =
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“Hybrid” dictionaries are also studied, whose atomOLS(A, Q*,¢). Then, we perform more complete nu-
result from an additive mixture of a deterministic (conmerical simulations to assess the dependencﬁgjf‘g
stant) and a random component. Specifically, we seith respect to the siz¢m,n) of the dictionary and
a; = «;(g; + t;1) whereg; is drawn according to the the subset cardinalities and ¢ for the three kinds of
standard Gaussian distributiom, is the (deterministic) dictionaries. We will build “phase transition diagrams”
vector whose entries are all equal to 1, and the scalar a sense to be defined below) to compare the OMP
t; obeys the uniform distribution of®, 7', with 77> 0. and OLS recovery conditions. The general principle of
Onceg; andt; are drawn; is set in such a way thatour simulations is 1) to draw the dictiona® and the
lla;|| = 1. In this simulation, the mutual coherence isubsetQ*; and 2) to gradually increas@ C Q* by one
increased in comparison to the case= 0 (i.e., for element until ERC-Oxx4, 9*, Q) is met.
randomly Gaussian dictionaries). The random vegtor 1) There is no logical implication between the ERC-
plays the role of a noise process added to the determ®MP and ERC-OLS conditionsWe first investigate
istic signalt;1. WhenT is large, the atom normalizationwhat is going on after the first iteration & 1). We com-
makes the noise level very low in comparison witpare ERC-OMPA, O*, Q) and ERC-OLSA, 9O*, Q) for
the deterministic component, thus the atoms are almastommon dictionary and given subs&@sC O* with
deterministic, and look alike each other. g = 1. As the recovery conditions take the form “for

Finally, we consider a sparse spike train deconvoluti@il j ¢ O, F‘Q)j"g(aj) < 17, it is sufficient to just
problem of the formy = h * x, whereh is a Gaussian consider the case where there is one wrong atom
impulse response of variancg® (for simplicity, the to study the logical implication between the ERC-OMP
smallest values ith are thresholded so thathas a finite and ERC-OLS conditions. Therefore, in this paragraph,
support of width[60]). This is a typical inverse problemwe consider undercomplete dictionarigs with & + 1
in which the dictionary coherence is large. This probleatoms. Testing ERCY{, Q*), ERC-OMP@A, O*, Q) and
is known to be a challenging one since both OMERC-OLSA, Q*, Q) amounts to evaluating’o-(a;),
and OLS are likely to yield false support recovery ifgrg (a;) and F9M (a;) and comparing them to 1.
practice [24—-26]. This is also true for basis pursuit [27]. Fig. 1 is a scatter plot of the three criteria for 10.000
The problem can be reformulated gs= Ax where randomly Gaussian dictionarie$ of size100 x 11. The
the dictionaryA gathers shifted versions of the impulssubsetQ = {1} is systematically chosen as the first
responseh. To be more specific, we first consider @tom of A. Figs. 1(a,b) are in good agreement with
convolution operator with the same sampling rate for themma 2: we verify thaf: QM5 (a;) < Fo-(a;) whether
input and output signals andy, and we set boundarythe ERC holds or not, and thd?fo}sé(aj) < Fo.(aj)
conditions so that the convoluted sigrtak x resulting systematically occurs only WheFQ*(aJ) < 1. On
from z can be fully observed without truncation. ThusFig. 1(c) displayingFgM5 (a;) versusFgH (a;), we
A is a slightly undercompleten{ > n with m ~ n) only keep the trials for whichFg.(a;) > 1, ie,
Toeplitz matrix. Alternately, we perform simulations irERC(A, @*) does not hold. Since both south-east and
which the sampling rate of the input signalis higher north-west quarter planes are populated, we conclude
than that ofy (i.e., y results from a down-sampling ofthat neither OMP nor OLS is uniformly better. To be
h * x), leading to an overcomplete dictiona”y which more specific, when ERC-OMHA( Q*, Q) holds but
does not have a Toeplitz structure anymore. ERC-OLSA, Q*, Q) does not, there exists an input

Regarding the last two problems, we found that thg € span(Ag-) for which OLS selectQ = {1} and
ERC factor Fg. = Fof’g) which is the left hand-side then a wrong atom in the second iteration (Theorem 4).
in the ERC@A, Q*) condition can become huge wh&h On the contrary, OMP is guaranteed to exactly recover
(respectively,s) is increased. For instance, whéhis this input according to Theorem 3. The same situation
equal to 10, 100 and 1000, the average valug¢'ef is can occur when inverting the roles of OMP and OLS
equal to 7, 54 and 322, respectively, for a dictionary efccording to Corollary 2 and Theorem 3 (note that this
size 100 x 1000 and fork = 10. analysis becomes more complex wh€ard [Q] > 2
since ERC-OMPA, Q*, Q) alone is not a necessary
condition for OMP anymore; Theorem 5 also involves
the assumption tha® is reachable).

We first show that for randomly Gaussian dictio- We have compared ERC-OMR(Q*,1) and ERC-
naries, there is no systematic implication between ti.S(A, Q*, 1), which take into account all the possible
ERC-OMP@A, Q*, Q) and ERC-OLSA, Q*, Q) con- subsets ofQ* of cardinality 1. Again, we found that
ditions, nor between ERC-OMH( Q*,¢q) and ERC- when ERCA, Q*) is not met, it can occur that ERC-

B. Evaluation of the ERC-Oxx conditions
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(b) Hybrid dictionaries T = 10)

Fig. 2. Phase transition curves: for eaghk< k, we count the rate
of trials where ERC-Oxx, Q*, Q) is true, withCard [Q] = ¢. The
dictionaries are of siz€00 x 600, k is set to 40 and 1,000 Monte
Carlo trials are performed. (a) Randomly Gaussian dictiesa
(b) Hybrid dictionaries withl" = 10.

@)

OMP
Q*Q

(€)

F

L the ERC-Oxx@A, Q*, Q) conditions take the form “for
P RIS S . Oxx . ”
S 12 14 16 all j ¢ Q% F5X5(a;) < 17, they are more often met

Foro@) when the dictionary is undercomplete (or wherns n)
Fig. 1. Comparison of the OMP and OLS exact recovery conuktio than m_ the overcomplete C_ase_: when the submaiigx
We draw 10.000 Gaussian dictionaries of sipe x 11 and set; = gathering the true atoms is givemax;¢o- F(Q)f(,xg(aj)
10 so that there is only one wrong atomy. Q is always set to is obviously increasing when additional wrong atomys
tge ;fSt atOfT/f;gL[sQ] = 1)CP1|70(t) of (@ F?I;(;]) vs F, OM;(Er ;r)]e are incorporated,e., whenn is increasing. Additionally,
I(agt s%b(ﬂ(;]u)re we kee(p t%e(tr)|als for (vf/lﬁi)%*(ag.;)’ 2( 1.) we notice that for giverA and Q*, FOMQP always de-
creases whe® is growing by definition ofFO}V[P This
might not be the case dfg’%, for specific settlngs but
OMP(A, Q*,1) holds while ERC-OLSA, Q*,1) does it happens to be true in average for random dictionaries.
not andvice versa
2) Phase transition analysis for overcomplete random In the following experimentsQ C Q* is gradually
dictionaries: We now address the case of overcompleircreased for fixedd and Q*, and we search for the first
dictionaries. Moreover, we study the dependence of thardinalityq = Card [Q] for which ERC-Oxx@A, Q*, Q)
ERC-Oxx conditions with respect to the cardinalities is met. This allows us to define a “phase transition
andgq for k > g > 2 and we compare them for commorcurve” [17, 28] which separates thevalues for which
problems A, Q*, Q). ERC-Oxx@A, Q*, Q) is never met, and is always met.
Let us start with simple preliminary remarks. Becaudexamples of phase transition curves are given on Fig. 2

04 06 08 1
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100f ‘ 7 100r ‘ 7 100f ‘ 7 100~ : 7 1
90+ 1 90 1 90+ 1 90
80r ] 80r ] 80r ] 80r 1 0.8
707 1 707 1 70 1 70
60 1 60 1 60 1 601 1 0.6
=~ 50r 1 =< 501 1 =< 50 1 =< b50r
40+ ] 40r ] 401 ] 40+ ] 0.4
30¢ ] 30¢ ] 30r ] 301
20 20 207 ] 20 ] 0.2
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5 10 5 10 —5_10 5 10 0
n/m n/m n/m n/m
(8 OMP, T =0 (b) OLS, T =0 (c) OMP, T =10 (d) OLS, T =10

Fig. 3. Phase transition diagrams for the ERC-OkxQ*, Q) condition. The gray levels represent the rdgt™> (m,n, k)/k € [0, 1].
Averaging is done over 200 draws of dictionafy and subseQ*. (a,b) Randomly Gaussian dictionaries of s x n with n < 2000;
(c,d) Hybrid dictionaries of same size, wiffi = 10.

for random " = 0) and hybrid dictionariesT{ = 10). A general comment regarding the results of Fig. 3 is
Fig. 2(a) shows that fofl’ = 0, the phase transitionthat the ERC-Oxx conditions are satisfied early (for low
regime occurs in the same interval € {30,...,34} values ofq/k) when the unknown signal is highly sparse

for both OMP and OLS and that the OMP and OL& is low) or whenn/m is low, i.e., when the dictionary
curves are superimposed. On the contrary, for hybiigl not highly overcomplete. The ratig]°(m, n, k)/k
dictionaries (Fig. 2(b)), the mutual coherence increasgsadually grows withk andn /m. Regarding the OMRs
and the OLS curve is significantly above the OMP curv@LS comparison, the phase diagrams obtained for OMP
Thus, the guaranteed success for OLS occurs (in averaged OLS look very much alike for Gaussian dictionaries
for an earlier iteration than for OMP. For larger value€l’ = 0). On the contrary, we observe drastic differences
of T (e.g.,for T = 100), the ERC-OMP condition is in favor of OLS for hybrid dictionaries (Fig. 3(c,d)):
never met beforg = k — 1, and even foy = k — 1, it FG{ is significantly lower thanFgMg.

is met for only4 % of trials. We have performed similar tests for randomly uniform

Th . t of Fig. 2 i ted f Eictionaries (and hybrid dictionaries based on a randomly
€ experiment ot FIg. < 1S repeated 1or many vag,ic,m process) and we draw conclusions similar to the

;ﬁz g:k I:[ndo)g(lzztlona% ZZr?ostel Thgllowés?lzzru? OfGaussiam case. We have not encountered any situation
) q m7n7 OMP ; H i 1fi
. . where F5.5 is (in average) significantly lower than
¢ = Card [Q] for which ERC-Oxx@d, 0%, Q) is true. For here £og 18 ge) sig y

random and hybrid dictionaries, we perform 200 Monte<"-<

Carlo simulations in which random matriced and 3) ERC-Oxx evaluation for sparse spike train decon-
subsetq Q*, Q) are drawn and we compute the averagelution dictionaries: We reproduced the above experi-
values of¢®**, denoted by[q]**(m,n, k). This yields ments for the convolutive dictionary introduced in sub-
a phase transition diagram [12,29] with the dictionarsection IV-A. Since the dictionary is deterministic, only
size €.9.,n/m) and the sparsity levdl in z- andy-axes, one trial is performed per cardinalityn( n, k). In each of
respectively. In this image, the gray levels represent thiee simulations hereafter, we s8tand Q* to contiguous
ratio [¢]9**(m, n, k)/k (see Fig. 3). Note that our phasatoms. This is the worst situation because contiguous
transition diagrams are related to worst case recovextpms are the most highly correlated and exact support
conditions, so better performance may be achieved kBcovery may be more easily achieved if we impose
actually running Oxx for some simulated déta A) and a minimum distance between true atoms [24,30]. The
testing whether the suppa@* is found, wherey = Ax* curves of Fig. 4 represer}fOXXQ with respect tog for

and the unknown nonzero amplitudesadn are drawn some given A, Q*). It is noticeable that the OLS curve
according to a specific distribution. decreases much faster than the OMP curve, and that
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10 ‘ ‘ ‘ to [24,27,30] in which no minimal distance constraint
is imposed.

C. Examples where the bad recovery condition of OMP
ot is met
@@ W Wi L L . . ]
e exhibit several situations in which the BRC
OMP(A, Q%) condition may be fulfilled. This allows us
to distinguish OMP from OLS as we know that under
—+-OmP regular conditions, any subs&* is reachable using
OLS at least for some input ispan(Ag-) (Lemma 3).
The first situation is a simple dictionary with four
atoms, some of which being strongly correlated. For
this example, we show a stronger result than the BRC:
there exists a subs&* which is not reachable for any
y € span(Ag-), but not even for any € R"™. The other
examples involve the random, hybrid and deterministic
dictionaries introduced in subsection IV-A.

Nel NN

(b) 1) Example with four atoms:
Example 1 Consider the simple dictionary
cosy cos0 0 0
0 1 2 3 4 A= | —sinf; sinf; cosby cos 0y
d 0 0 sinfy —sinfy
Fig. 4. Curve representing5:”, as a function ofy = Card [Q)] with O* = {1,2}. Set#, to an arbitrary value in

for the Gaussian deconvolution proble@” is fixed andQ C O* .
is gradually growing.Q* and Q are formed of the firsk = 5 and (0,7/2). When#; # 0 is close enough to 0, BRC-
the firstq atoms, respectively with < k. (a) The Gaussian impulse OMP(A, Q*) is met. Moreover, OMP cannot reach*
response is of widthr = 50 and the dictionary is of siz&000x2710. in two iterations for anyy € R3 (specifically, when
(b) o is set to 10, and the dictionary is of siz800 x 4940. 3 - . . ’

y € R° is proportional to neithera; nor as, a3 or ay

is selected in the first two iterations).
FQME remains huge even after a number of iterations. ~ Proof of Example 1: We first prove that the BRC
For all our trials where the true atoms strongly overlagondition is met by calculating the factofs)"), (a;)
the ERC-OMPA, Q*, Q) condition is not met while and FS}V[{F;}(aj) for j € {3,4}. Let us start with
ERC-OLSA, O*, Q) may be fulfilled after a numberFSM{Fi}([zj)_
of iterations which is,_ however, close ﬂéanlyloreov_er, The simple projection calculatic®; = a;—(a;,a1)a,
we found that wher is large enoughF5." g remains (the tilde notation implicitly refers t@ = {1}) leads to:
larger than 1 even fo§ = k£ — 1, whereas the ERC-OLS

condition is always met fog = k — 1. : ' sinfy| s 91;05 01 cos 0
Empirical evaluations of the ERC condition for sparse™? ~ sin(201) |cosb1|, @g= | cos”0ycosty

spike train deconvolution was already done in [27]. 0 sin 0

In [24,27,30], a stronger sufficient condition than the sin 61 cos 01 cos O

ERC is evaluated for convolutive dictionaries. It is a and a4 = | cos®6; cos by

sufficient (but not necessary) exact recovery condition —sinfy

that is easier to compute than the ERC because it dg@&ording to (11), the OMP recovery factor reads for
not require any matrix inversion, and only relies on ¢ {3,4}:

inner products between the dictionary atoms (see [31,

Lemma 3] for further details). In [27, 30], it was pointed FSM{F{}(aj) _ !(ag,agﬂ _ |COS'91 cos 0| (12)
out that the ERC condition is usually not fulfilled for ’ a2 | sin(2601)]

convolutive dictionaries, but when the true atoms aggven that ||as|| = |[sin(201)] and |{(az,as)| =
enough spaced, successful recovery is guaranteed|(t,as)| = ||az|||cos b cosbs|. Fg}”g}(aj) can be

occur. Our study can be seen as an alternative analydigained symmetrically by replacirg by —6, in (12).
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BRC-OMP(A,Q%)

4 6 8 10 12 14
m

(a) Gaussian dictionaries
BRC-OMP(A,Q*)

Fig. 5. Example 1: drawing of the plangan(a:)*. The tilde
notation refers to the subs& = {1}. When#; is close to O,a- is

of very small norm since is almost equal ta, while as anda.,
which are almost orthogonal ;, yield projectionsas anda4 that
are almost of unit norm. The anglég., as) and(az, a4) tend tof-
and —6> whené; — 0. The bullet and square points correspond to
positionsr satisfying|(r, az)| > |(r, as)| and|(r,a2)| = |(r, a4)|,
respectively. The central directions of these two cone®gh®gonal

to as andaq, respectively (dashed lines). Both cones only intersect
at r = 0, therefore OMP cannot successively selegtand az in
the first two iterations.

4 6 8 10 12 14
m

Thus, we haveFQME, (a;) = FQM (ay). It follows
that the left hand S|de of the BRC (}DMR(Q*) condi- (b) Hybrid dictionaries " = 10)

tion reads (12) and tends towardsxo when 6 tends Fig. 6. Evaluation of the bad recovery condition BRC-OMPQ*)

towards 0. Therefore, BRC-OMA( Q*) is met when for randomly Gaussian (a) and hybrid (b) dictionaries ofoas sizes
‘91| is small enough. (m,n). 1,000 trials are performed per dictionary size, a@d is

g 3 always set to the first two atoms & 2). The gray levels correspond
To show thatQ* is not reachable for any < R”, to the rate of guaranteed failuree., the proportion of trials where

let us assume that OMP selects a true atom in the fiBsRC-OMP(@, ©*) holds.

iteration. Because there is a symmetry betwegrand

ay, We can assume without loss of generality thatis

selected. Then, the data residuadfter the first iteration tern (—e,, —e3) yields the remaining part of the same

lies in span(a;)* which is of dimension 2. We show2D cone. Consequently, the four possible sign patterns

using geometrical arguments, that cannot be selected(¢2,e3) € {—1,1}* yield both cones delimited by the

in the second iteration for any € span(a;)*\{0}. We orthogonal directions ta3 anda. + as, and toa; and

refer the reader to Fig. 5 for a 2D display of the projectedaz+as, respectively. Because these cones are adjacent,

atoms in the planepan(a;)™. their unionC is the cone delimited by the orthogonal
Let C denote the set of points € R? satisfying directions toas+a, andas—a- (plain lines in the south-

|(r,as2)| > |(r,a3)|. » € C if and only if there exist east and north-west directions in Fig. 5). Similarly, the

(e2,e3) € {—1,1}? such thaty(r, as) > e3(r,as) > 0, condition|(r,az)| > |(r,a4)| yields another 2D cone

ie., whose central direction is orthogonal &@. When#, is
R R 3 close to 0, both cones only intersectrat= 0 (since their
(r,e2as —e3a3) 2 0 and (r,e3az) > 0. (13) inner angle tends towards 0), thus

For each Sign patterrﬁsg,gg), (13) ylelds a 2D half Vr € R2\{0}, |<’I",(~12>| < max(\(r,d3>|,\<r,d4>|).
cone defined as the intersection of two half-planes

delimited by the directions which are orthogonal t¥Ve conclude thaw, cannot be selected in the second
as andesas — e3a3. Moreover, the opposite sign pat-teration according to the OMP rule (1). [ |
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2) Numerical simulation of the BRC conditione are thus a complement to those of [24].
test the BRC-OMP condition for various dictionary sizes
(m, n) for the random, hybrid and convolutive dictionar- V. CONCLUSIONS
ies introduced in subsection IV-A. The average results

related to the random and hybrid dictionaries are gatkf;-our first contnbut!on Is an original ar.]alyS'S of OLS
- . ~“pased on the extension of the ERC condition. We showed
ered in Fig. 6 in the cask = 2. For randomly Gaussian

dictionaries, we observe that the BRC-OMP conditiotrh1at when the ERC holds, OLS is guaranteed to yield

- . an exact support recovery. Although OLS has been
may be met for strongly overcomplete dictionaries,, : "
. . acknowledged in several communities for two decades,
whenn > m (Fig. 6 (a)). In the special case = 2,

h a theoretical analysis was lacking. Our n
it is noticeable that OLS performs at least as well agch @ theoretical analysis was lacking. Our second

OMP whether the BRC condition if fulfilled or not: contrioution is a paralle] study of OMP and OLS when

L . . number of iterations hav n perform nd tr
when the first iteration (common to both algorlthmsz umber of iterations have been performed and true

has succeeded, OLS cannot fail according to Theorem tgms have been selected. We found that neither OMP

hle OMP i guaranted 0l ncases e the BRGET 0L [ WO Betr i pariculr we shovet
holds. For the hybrid dictionaries, the BRC condition is g y

A~ . S not met but the first iteration (which is common to
more frequently met when the dictionary is moderate
) . MP and OLS) selects a true atom, there are counter-
overcompletej.e., for large values ofn/n. This result

is in coherence with our evaluations of the ERC_OX()e(xampIes for which OMP is guaranteed to yield an exact

o : : Support recovery while OLS does not, anide versa
condition (seee.g.,Fig. 3(c)) which are more rarely met Finally, several elements of analysis suggest that OLS
for hybrid dictionary than for random dictionaries. Y y 99

- ; behaves better than OMP. First, any sub@etan be
We performed similar tests for the sparse spike trajn : : . .
deconvolution problem with a Gaussian impulse rrgached by OLS using some input span(Ag) while

. . ? r some dictionaries, it may occur that some subsets are
sponse (.)f widtho, and with k= 2 (the true atoms ever reached by OMP for anye R™. In other words
are contiguous, thus they are strongly correlated). S has a stronger capability of exploration. Secondly,

repeated the 3|m_ulat|on_ of Fig. 6 for various SI2&hen all true atoms except one have been found by OLS
m ~ n and various widthso, and we found that

whatever(m, n), the BRC condition is always met forand no wrong selection occurred, OLS is guaranteed to

o > 1.5 and never met when < 1.4. The images of find the last true atom in the following iteration while

. . . . OMP may falil.
Fig. 6 thus become uniformly white and uniformly black, For problems in which the dictionary is far from

respectively. To be more specific, the value of the Ie(f)trtho onal and some dictionary atoms are strongly corre-
hand-side of the BRC-OMB, Q*) condition gradually g y gy

increases withr, e.g.,this value reaches 10, 35 and 4éatedz yve fognd In our experiments th_at thg OLS re'covery
. . . ondition might be met after some iterations while the
for 0 = 10, 20 and 50, respectively for dictionaries o

sizem ~ n, with m = 3000. This result is in coherence MP recovery condition is rarely met. We did not

with that of Fig. 4 which already indicated that theencounterthe opposite situation where the OMP recovery

OMP . condition is frequently met after fewer iterations than the
Fg.o factor becomes huge for convolutive problem " .

2", LS condition. Moreover, guaranteed failure of OMP
with strongly correlated atoms.

. . . may occur more often when the dictionary coherence
Note that whenQ* does not involve contiguous. . . -
. B . ig large. These results are in coherence with empirical
atoms but “spaced atoms” which are less correlateq, . )
. studies reporting that OLS usually outperforms OMP
the bad recovery condition are met for larger values 0 . .
_ : . . at the price of a larger numerical cost [9,11]. In our
o. denoting byA the minimum distance between two . : : .
. . experience, OLS vyields a residual error which may be
true atoms, the lowesA value for which the BRC is
, : : : by far lower than that of OMP after the same number
met turns out to be an increasing affine functionoof . . .
. o . . f iterations [25]. Moreover, it performs better support
Similar empirical studies were done in [27] for the exac C .
" . recoveries in terms of ratio between the number of good
recovery condition for spaced atoms, and in [24, 27] fo :
" etections and of false alarms [26].
the weak exact recovery condition of [31, Lemma 3J.
In particular, the numerical simulations in [24] for the
Gaussian deconvolution problem demonstrate that the APPENDIXA
latter condition is met for larges’s when the minimum NECESSARY AND SUFFICIENT CONDITIONS OF EXACT
distance between true atoms is increased and the limit RECOVERY FOROMP AND OLS

A value corresponding to the phase transition is also anThis appendix includes the complete analysis of our
affine function ofo. Our bad recovery condition resultSOMP and OLS recovery conditions.
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F3Y8(a;) = FQM5 (a)) + |(AL.a;)(0)] (20)
Q*\Ql . Q,Q/ Q*\Ql .
OLS 00 0 B ) (o)) B, ()]
F§iola;) = |x7% =% Y “—5g 7 Y 0.0 (21)
i€Q\Qr i icon\o
A. Sufficient conditions Since thel,, norm of a matrix is equal to the;

We show that when Oxx happens to select true atofi@'m of its transpose anfd. |11 equals the maximum
during its early iterations, it is guaranteed to recov&éflumn sum of the absolute value of its argument [1,
the whole unknown support in the subsequent iteratioh§eorem 3.1], the upper bound of (15) rereads
when the ERC-Oxx4, Q*, Q) condition is fulfilled. max HC’T oG]l = max FS*XXQ(CL]‘)

We establish Theorem 3 whose direct consequence is jegr ! 2\Q jgor =0
Theorem 2 stating that when ER&(Q*) holds, OLS is according to Lemma 1. By definition of ERC-
guaranteed to succeed. Oxx(A, Q*, Q), this upper bound is lower than 1 thus

1) ERC-Oxx are sufficient recovery conditions at a(rg) < 1. ]
given iteration: We follow the analysis of [1, Theo- 2) Recursive expression of the ERC-Oxx formulas:
rem 3.1] to extend Tropp’s exact recovery condition to\We elaborate recursive expressionngﬁ"Q(aj) when
sufficient condition dedicated to the + 1)-th iteration Q is increased by one element resulting in the new subset
of Oxx. Q' C Q* (here, we do not consider the case whéfe=

_ _ Q* sinceF3¥%,. (a;) is not properly defined, (4) and (5)
Lemma 4 Assgme thatl o- is full rank. If Oxx withy & being empty7 sums). We will use the notatigh = Q U
span(Ag-) as input selecty true atomsQ ¢ Q* and 1\ wheres € Q*\Q. To avoid any confusiona; will
ERC-Oxx@, Q*, Q) holds, then theg + 1)-th iteration e systematically replaced @ anda?’ to express the
of Oxx selects a true atom. dependence upo@ and Q’, respectively. In the same

Proof: According to the selection rule (1)-(2), OxxWay, b; will be replaced byb? or b2 but for simplicity,

selects a true atom at iteratign + 1) if and only if ~ We Wwill keep the matrix notation8¢.\o and Bg.\or
(ro,&)| without superscriptreferring toQ and Q’, respectively.
p(rg) 2 2% <1, (14)  Letus first linkb2 to b2 whena2 # 0.
max;eg-\o [{ro; &)

Let us gather the vecto indexed byi ¢ Q* andi € Lemma 5 Assume that o is full rank andQ’ = QU
Q*\Q in two matricesCy, o- andCo.\ o of dimensions {¢} & Q*. Then,span(Ag)" is the orthogonal direct
m x (n — k) andm x (k — q), respectively where the sum of the subspacepan(Ag )+ and span(ag), and

maXZ'¢ o

notation e stands for all indices € {1,...,n}. The the normalized projection of any atoa} ¢ span(Ag)
condition (14) rereads: takes the form:
~ 7 Q,9'70' Q,9'1
blrg) = H?ﬁ\g*rQHoo ' b?=m bz'Q +X; sz (16)
HCtQ*\QT'QHOO where ,
Following Tropp’s analysis, we re-arrange the vector 09 _ HdZQ| € (0, 1] (17)
ro occurring in the numerator. Sinee, = PQiy and e = HszH Y
y € span(Ag:), ro € span(Ag-\g) = span(Cg-\0). N <5976?>’ (18)
We rewrite ro as P.Q*\Q’I“Q where Pg.\o stands for ( 0.0 )2 o Q,Q/)Q . 19)
the orthogonal projector ospan(Cg:\g): Pg\g = i i -
Ph.\g = (CQ*\QCTQ*\Q)t- ¢(rg) rereads Proof: Since @ C @', we havespan(Ag)t C
A . span(Ag)*. BecauseAg is full rank, span(Ag )+
_ H(CQ*\QC°\Q*) CQ*\QTQHOO andspan(Ag)* are of consecutive dimensions. More-
¢(ro) = = : 0 1
||CtQ*\QTQHoo over,a;s = ay — Poay € span(Ag/) Nspan(Ag)—,

, , . . : and a;” # 0 since Ao is full rank. As a vector
This expression can obviously be majorized using thef* 0 - N

. ) of span(Ag/), a7 is orthogonal tospan(Ag/)—. It
matrix norm: N
follows thatspan(a,) is the orthogonal complement of

P(ro) < H(éTQ*\Qé.\Q*)tHoo,oo- (15) span(Ag/)* in span(Ag)™ .



SOUSSEN, GRIBONVAL, IDIER, HERZET: TECHNICAL REPORT, AUGT 29, 2012 15

The orthogonal decomposition af = Pé-ai reads: by definition of,BQ Y In the latter equation, we re-
expressh’ with respect tob2 using (16):

9 o + (a2, B¢ o 2
- - PQ*\Qb'Q = 77'Q7Q Z 0.0 bz'Q+
sinceby is of unit norm. Replacing.? = ||a?|| b2 and T Ghe
al =|a2 | be yields (16)-(18). Pythagoras’ theorem B\Q (1,29
yields (19) The assgmptioni ¢ span(Ag) implies {XJQ = 77]9 Q' Z %}EQ'
thata # 0, thenn > 0. | i€Qn\Q/ M;
Thus, FQM% (a;) = HB *\Q 7 2||, reads (21). ]

Lemma 6 Assume thatd - is full rank. LetQ C Q' C 3) The ERC is a sufficient recovery condition for OLS:
Q* with @ = Q U {¢}. Then, span(B. \Q) is the The key result of Lemma 2 (see Section IlI-D) states
orthogonal direct sum ofpan(B. \o’) and span(bé ). that whenj ¢ O*, FOLS o(a;) is decreasing whe@ C
Q* is growing prowded tha‘rFOLS 5(aj) < 1, and that
Proof: According to Corollary 3 in Appendix B, FOMP(aJ) is always decreasmg

Bg.\o and Bg.\o are full rank matrices, thus their ~ "Proof of Lemma 2t is sufficient to prove the result
column spans are of consecutive cardinalities. Lemmashen Card [Q'] = Card [Q] + 1. The caseCard [Q'] >
states thabZQ is orthogonal tospan(Ag/)*, thus it is Card [Q]+1 obviously deduces from the former case by
orthogonal tob2" € span(Ag/)* for all i € Q*\Q'. ® recursion.

We finally establish a link betweer3(a;) and  LetQ ¢ Q' ¢ O* with Card [Q] = Card [Q]+1. The
FQ%%, (ay). It is a simple recursive relation in the caséESU|t is obvious whem; € span(Aq): @; — 0 then
of OMP. For OLS, we cannot dlrectly relate the twdoy (a;) = 0. Whena; ¢ span(Ag), (8) obviously

quantities but we expres§OLS (aj) = HB bs H deduces from (20). The proof of (9) relies on the study
! o ff [ = 2-C Dn which is full
with respect toB! b7 of function o (n) = [v/1 — n* — Cn|+ Dn which is fully
Qe defined in (27), (28) and (29) in Appendix C. Because

this study is rather technical, we place it in Appendix C.
Lemma 7 Assume thatAg. is full rank. Let Q ¢ We notice thatFgg (a;) given in (21) takes the form
Q' ¢ Q" with @ = QU {¢} and letj ¢ Q. If p(n>?) where the variables occurring i@ and D
a; ¢ span(Ag), then FQX%, (a;) takes the formg20) (see (28) and (29)) are set 16 « Card [0*\Q'], i —
and (21) WherenQ < andXQ <" are defined if(17)-(18) 129, xi = x29, andB — sen (x; Q.Q ),BQ*\Q Now,

and ,@Q Qs B, \Q,bg we invoke Lemma 14 in Appendlx C: a@gLSQ/ a;)
Proof: (20 htforwardly follows from the def- I3, %, plays the role ofllh, F§!3(e;) < 1
) rof (f F)ofxgaalg tforwardly follows from the def- i jies that FS™S, (a;) < QLS (a,). m
inition (4) o (a;). We deduce from Lemmas 2 and 4 that ERC-

Let us now establlsh (21). We denote B&Q ~o and Oxx(A, Q*, Q) are sufficient recovery conditions when
Py. ¢’ the orthogonal projectors apan(Bg. o) and Q C Q* has been reached (Theorem 3).
span(Bg. \Q/) Becausepan(BQ \Q) is the orthogonal Proof of Theorem 3:Apply Lemma 4 at each iter-
direct sum Ofbpan(BQ \o") andbpan(bg) (Lemma 6), ationg,...,k—1 until the increased subs&’ matches

we have the orthogonal decomposition: Q*. The ERC-Oxx@, Q*, .) assumption of Lemma 4 is
always fulfilled according to Lemma 2. [ |

PQ \Qb _ PQ \Q,bQ +XQ ,Q' bQ Finally, ‘we prove that ERCA, Q) is a necessary
and sufficient condition of successful recovery for OLS
(Theorem 2).

Proof of Theorem 2: The sufficient condition is a
special case of Theorem 3 f&@ = (. The necessary
condition identifies with that of Theorem 1 since ERC-
OLS(A, 9*, () simplifies to ERCA, Q). [

(16) yields
> T 0,9 B 1o’ 0,91
PQ*\ijQ = nj PQ*\Q/ij + Xj bZQ

(Po-\o/bf = 0 according to Lemma 6) and then
B. Necessary conditions

5 P9 _ o \Q’ pQ’ Q,9'70 . . .
Pg.gb? =n2% Y 5 )b + X7 by We provide the technical analysis to prove that ERC-
€Q\Q Oxx(A, Q*, Q) is not only a sufficient condition of exact
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recovery whenQ C O* has been reached, but also a Now, let z € span(Ag) denote the input for which
necessary condition in the worst case. We will prow®@xx recovers Q. According to Lemma 15 in Ap-
Theorems 4 and 5 (see Section Ill) generalizing Tropg¥ndix D, the firsyy iterations of Oxx with the modified
necessary condition [1, Theorem 3.10] to any iteratianputy = z+cy also selec whene > 0 is sufficiently

of OMP and OLS. small. BecausePgy = ¢Pgy and (25) holds, the
We will first assume that Oxx exactly recove@sC (¢ + 1)-th iteration of Oxx necessarily selects a wrong
Q* in ¢ = Card[Q)] iterations with some input vectoratom. [ |

in span(Ag). This reachability assumption allows us to At this point, we have proved Theorem 5 which is
carry out a parallel analysis of OMP and OLS (subserelative to OMP.
tion A-B1) leading to the following proposition. 2) OLS ability to reach any subseln order to prove
Theorem 4, we establish that any subs2tcan be
Proposition 1 [Necessary condition for Oxx afterg reached using OLS with some inpyt € span(Ag)
iterations] Assume thatdo. is full rank andQ C Q* (Lemma 3). To generatg, we assign decreasing weight
is reachable from an input ipan(Ag) by Oxx. If coefficients to the atomga,, i € Q} with a rate of
ERC-Oxx@, Q*, Q) does not hold, then there existgjecrease which is high enough.

y € span(Ag-) for which Oxx select® in the first Proof of Lemma 3: Without loss of generality, we
g iterations and then a wrong atom at iteratidn+1).  assume that the elements @fcorrespond to the firsg
atoms. For arbitrary values @b, ... e, > 0, we define

This proposition coincides with Theorem 5 in the casg
of OMP whereas for OLS, Theorem 4 does not require
the assumption tha® is reachable (subsection A-B2). * Y1 = ai,

e following recursive constructlon:

1) Parallel analysis of OMP and OLS: Proof * Y» = Yp-1+&pap forpe{2,....q}.
of Proposition 1: We proceed the proof of Lemma 4(y, implicitly depends om, ..., ¢,) and sety £ y,. We
backwards. By assumption, the right hand-side of ishow by recursion that there exist,...,e, > 0 such
equality (15) is equal to that OLS withy,, as input successively seleets, . .., a,
during the firstp iterations (in particular, the selection
I(CL 2:\Q Caro- ) lloo,00 = T dor F§¥%(a)) > 1. rule (2) always yields a unique maximum).
The statement is obviously true fgf = a;. Assume

By definition of induced norms, there exists a vect

Qhat it is true fory, ; with somees.....c, 1 > 0
v € RF¢ satisfyingv # 0 and Yp-1 PR

(these parameters will remain fixed in the following).
According to Lemma 15 in Appendix D, there exists

Y * 'U .
H( 21\Q \Q) o >1. ¢, > 0 such that OLS withy, = y,—1 + ¢pa, as

= H( o\ Q °\Q ) lloo,00

vl 29 input selects the same atoms as with ; during the
(22) first p — 1 iterations,i.e., ay,...,a,_1 are successively
Define chosen. At iteratiorp, the current active set thus reads
- - ={1,...,p—1} and the OLS residual corresponding
Y= AQ*\Q(CI‘Q*\QAQ*\Q)A”- (23) 1o y, takes the form
The matrix inversion in (23) is well defined sineinQ Vo) ro = Piyp 1+ eiPda, = £,a2

is full rank (Corollary 3 in Appendix B) an«DQ ng =
Ag.\o Or Bg.\g reads as the right product ofg.\o  sincey,_; € span(Ag/). Thus,ro is proportional to
with a nondegenerate dlagonal matrix. By taking mt@Q and then ton Finally, the OLS criterion (2) is

account thatd g.\ o = P3 Ag.\ o, We obtain that maximum for the atomuz,, and the maximum value is
L equal to|(ro, bS')| = [|ro || sinceb$” is of unit norm.
v= CQ*\QP : (24) Finally, we show that no other atoms; yields this

Since the left hand-side of (22) identifies witHma@ximum value. Apply Lemma 8 in Appendix B: the full
¢(P49) whereo is defined in (14), (22) yields: rankness ofd o/ (, ;; (as a family of less thaspark(A)
atoms) implies thafb$’, b2 | is full rank, thusbg’ and
max [(Pgg.¢))| > max, (Pgg,é).  (25) b2 cannot be collinear. m

Using Lemma 3, Proposition 1 simplifies to Theo-
Moreover, we havePng) # 0 according to (24) and rem 4 in which the assumption th& is reachable by
v # 0. OLS is omitted.
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APPENDIX B Proof: The result directly follows froma; =
RE-EXPRESSION OF THEERC-OXX FORMULAS @, bj, b; = a;/||la;| for i € Q*\Q, and from
ma 9. [ ]

Proof of Lemma 1: The result is obvious when
a; = 0. It follows from Lemmas 9 and 10 whem; # 0.

In this appendix, we prove Lemma 1 by successiveltfm
re-expressingaﬂg*\gdj andBTQ*\ij. Let us first show
that whenAg. is full rank, the matricesdg. o and

N u
Bg.\ g are full rank. This result is stated below as a
corollary of Lemma 8.
y APPENDIXC
Lemma 8 If 9N Q' = 0 and Ao is full rank, then TECHNICAL RESULTLSEl;\I/IEMEAI\DEZD FOR THE PROOF OF

Ag, and Bg, are full rank.
~ With simplified notations, the expression (21) of
Proof: To prove thatAg/ is full rank, we assume FS}SQ(aj) reads
that 3,co i@ = 0 with o; € R. By definition of ’
a? = P3a; = a;— Poa;, it follows that}", o, a;a; € p(n) = [V1—=n*=Cnl+ Dy (27)
span(Ag). Since Aoy is full rank, we conclude that

wheren € (0, 1] andC and D take the form
all o;'s are 0.

The full rankness ofBE, follows from that of AS, N B
: 0 2o 0 . 8 c=> — (28)
since for alli € Q', b* = a;/||a;| is collinear toa,~. —
| “
N
The application of Lemma 8 t@' = 9*\ Q leads to the D= Z |3i (29)
following corollary. = i

i — N
Corollary 3 Assume thatlo. is full rank. ForQ ¢ Q*, with N > 1, 8 = [f1,....0n] € R ; and2for all
Ag.\o and Bg.\ o are full rank. i, mi € (0,1] and x; € [=1,1] satisfy n; + x; = L
Note that we can freely assume from (21) tb}% =
Lemma 9 Assu[?e thatd - is f;JII rank. ForQ € 9* 4+./1— (anvQ/)Q > 0. WheanQ,Q’ < 0, one just needs
and j ¢ Q, Ag. 0@ = (AG.aj)| g\ o) Where | to replaceB by —@3 in (28) and (29).
denotes the restriction of a vector to a subset of itS The succession of small lemmas hereafter aims at

coefficients. minorizing ¢(n) for arbitrary values ofy, n;, x; and 3.

. They lead to the main minoration result of Lemma 14.
Proof: The orthogonal decomposition af; on y

span(Ag-) takes the form: Lemma 11 Let 8 € R,
- T L.
a; = Ag:(Ag.a;) + Pg.a;. It C < 0,%n € [0,1], ¢(m) = 1+ (|8l — . (30)
Projecting ontaspan(Ag)*, we obtain If C >0, r%nl] o(n) = min(l,D/w/l + C2>, (31)
776 )

aj = Agno(AL.a;) om0 + Poaj (26
K 2104094 @g T Poras  (29) Proof: We first study the functionf(n) =2
(P53 P3. = Pg. becausapan(Ag:)* C span(Ag)*). V1-— > —Cn. We havef_(O) =1 f(1) = -C, and
Fori € OO, é: — a, — Poa; € span(Ag.). Thus, f is concave orj0, 1. To minorizew(n) = |f(n)| + D,

we havegpan(ﬁig*\g) C span(Ao-), and pé*aj is Wwe distinguish two cases depending on the sigid'of
orthogonal tospan(Ag.\ o). According to Corollary 3, WhenC < 0, f(n) > 0 for all 5. Since[f| = [ is
Ao o is full rank. It follows from (26) thatd’. _g.— concave, it can be minorized by the secant line joining
A% \e Q\Q™ ™ #(0) and f(1), therefore)f(n)| = 1—(C+1)n > 1—1.

( Q*aj)\(g*\g)' " (30) follows from o) =1|f(n)|+ DnandD > |81

_ (because); are all in (0, 1]).
Lemma 10 Assume thatd - is full rank. For @ C O* WhenC > 0, f() > 0 for 5 € [0,2] and < 0 in

andj ¢ Q*, (2,1], with 2 1/V1 + C2. D > 0 and f(z) = 0 imply
ai| BL. b= Apay (Al.ai), - that forn > z, ¢(n) = ¢(z), thus the minimum ofp is
a1l Bo-ob; jal (4o-a5)ono) reached fom € [0,z]. On[0,z], ¢(n) = f(n) + Dn is

where A5, stands for the diagonal matrix whoseconcave, therefore the minimum value is eith€0) = 1
diagonal elements aré||a;||, i € Q*\Q}. or ¢(z) = Dz. [
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The following two lemmas are simple inequalities linkThen, where > 0 is sufficiently small, Oxx selects the

ing C, D, and||3]|;.

Lemma 12 V3 € RN, D2 - C?% > || 8|3

Proof: By developing C? and D? from (28)
and (29), we get

o=y Py A
PR it M5
2 3.
LD SO0
s it in;

SinceVi, n? + x? = 1, we have:

BiB;
DQ—CQZZ@QJFZ‘ ; ?’ (1 —0iojxix;)
Z. = i

2
= [Z |ﬂi|] +) 1885
( i#j
with o; = sgn(3;) = £11if 8; # 0, ando; = 1 otherwise.
Because); andy; satisfyn? + x? = 1, they reread);, =
cos0; and x; = sin6;, SOn;n; + 0;0;xix; = cos(#; £

[1 — 0305 XiX;

- 1} (32)
1in5

same atoms witly(¢) = y;1 + ey as withy; in the first
q iterations.

Proof: We show by recursion that there exists
ep > 0 such that the firsp iterations of Oxx p =
1,...,q) with y(¢) andy; as inputs yield the same atoms
whenever < g,,.

Let p > 1. We denote byQ the subset of cardinality
p — 1 delivered by Oxx withy; as input afterp — 1
iterations. By assumptior@ is also yielded withy(e)
whene < g,_;. Sincey(e) = y1 +<y2, the Oxx residual
takes the formrg = 71 + ery whererg, 1 and ry
are obtained by projecting(¢), y1, andys,, respectively
ontospan(Ag)*. Hence, fori ¢ Q,
(33)

<TQvéi> = <Tlvéi> + €<T2,éz‘>.

Let a; denote the new atom selected by Oxx in fie
th iteration withy; as input. By assumption, the atom
selection is strictj.e.,

(1, @) > max| (r1, &) (34)

;) < 1 which proves that the last bracketed expressi%king the limit of (33) where — 0, we obtain that for

in (32) is non-negative. (32) yieldd? — C% > ||B3. =

Lemma 13 V3 € RY, ||8||; < 1 implies that||3|; <
D/V1+C2.

Proof: (1+C?)|8|? < |82+ C? < D? according
to Lemma 12. ]

We can now establish the main lemma that will enabl&

us to conclude that iFg"(a;) < 1, FSYY (ay) is

monotonically nonincreasing whe®’ 2 Q is growing.

Lemma 14 V3 € RY, vy € [0,1], ¢(n) < 1 implies
that |31 < »(n).

Proof: Apply Lemma 11.
WhenC < 0, (30) andp(n) < 1 imply that (||8||1 —

anyi, [(ro, &)| tends toward(ry, &;)|. (34) implies that
whene < ¢,_; is sufficiently small,

|(rg, €r)| > max|(rg, &)|
1£L

by continuity of |(rg, ¢&;)| (¢ # £) and |(rg, &/)| with
spect tee. Thus, Oxx withy(e) as input selectay, in
the p-th iteration. [ |

APPENDIX E
BAD RECOVERY CONDITION FOR BASIS PURSUIT

Contrary to the OMP analysis, the bad recovery anal-
ysis of basis pursuit is closely connected to the exact re-
covery analysis: iry [lI-E2, we argued that both analyses

1) < 0. Sincen < 1, the lower bound of (30) is largerdepend on the sign of the nonzero amplitudes, but not on

thanl+ (|8 — 1) = [IB]}x.
When C > 0, (31) andg(n) < 1 imply that the

minimum value ofy on [0,1] is D/v/1+ C? < 1, then
D? — C? < 1. Lemmas 12 and 13 imply thd3||; < 1
and then||3||; < D/V1+ C? < p(n). [

APPENDIXD
BEHAVIOR OF OXX WHEN THE INPUT VECTOR IS
SLIGHTLY MODIFIED

the amplitude values [16, 23]. Here, we provide a more
formal characterization of bad recovery for basis pursuit
which is based on the Null Space Property (NSP) given
in [32, Lemma 1]. The NSP is a sufficient and worst
case necessary condition of exact recovery dedicated to
all vectors whose support is equal &":

Vo € N(A\{0}, Y |zl < Y =] NSP@, Q)

i€Q* i¢0*

Lemma 15 Let y; and yo € R™. Assume that the where N (A) = {z : Az = 0} is the null space ofA.

selection rule(1)-(2) of Oxx withy; as input is strict

Adapting the analysis of [32, Lemma 1], we introduce

in the firstq > 0 iterations (the maximizer is unique).the following bad recovery condition.
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Proposition 2

Ve € {—1,1}F, 3z € N(A), Z £iT; > Z | ;]

We performed empirical tests for specific dictionaries
of dimension fn = 3,n = 5) where N(A) is of
dimension 2 and can be fully characterized. We checked

i€Q* i¢Q*
BRC-BP(A, 0*)
is a necessary and sufficient condition of bad recovery
by basis pursuit for any* supported byQ*.

This bad recovery condition reads as the intersection of
as many conditions as possibilities for the sign vector”
e € {—1,1}*. We will see in the proof below that
plays the role of the sign of the nonzero amplituded?]
denoted bysgn(z*) € {-1,1}*. Therefore, the bad
recovery condition is defined independently on each,']
orthant related to some sign patterre {—1, 1}*.

Proof: We first prove that BRC-BP is a sufficient
condition for bad recovery for any* supported byo*.
For such a vectox*, let y = Ax*. Apply the BRC-BP [4]
condition fore* £ sgn(z*): there existse € V' (A) such
that > ,co. €72 > > 00. [2:]. Because this inequality
still holds whenz is replaced bynx (with « # 0), we
can freely re-scalec (i.e., choosea small enough) so
that for all i € Q*, sgn(z} — x;) = sgn(z}). Then, we
have|z}| = efa} = ef (¢ — ;) +efa; = |o] — x| +efay
and

Izt = D o =il + ) efa

(5]

(6]

(7]

1€Q* €Q* [8]
> ) laf =zl + Y lail = |2t — 2l
icQ i¢Q*

Thus,z* cannot be a minimurd; norm solution toy = [l
Ax.

Now, let us prove that BRC-BP is also a necessap]
condition for bad recovery. Assume that is supported
by ©* and basis pursuit with inpuy = Ax* yields
output x*. Because basis pursuit yields a minimuin [11]
norm solution toy = Ax, we have for allz € N'(A),

% =[]y > [Ja*]|, i.e.,

va e N(A), Y fail = Y lail = 3 Jat - il

igQ* i€Q* i€Q*
(35)

Lete* = sgn(z*) andp = min;co- |27|. When||z || <
p, r7 — x; andx} are both of signe; wheni ¢ O*.
Then, (35) yields:

Vo e N(A), |z <p = Y |l = ) efas
i¢ O i€Q*
This condition also holds whefiz| . > p because it
applies topz/(2||x||-) Whosel,, norm is lower than
p. We have shown the contrapositive of BRC-BRQ*),
i.e., that BRC-BPA, Q*) does not hold. [ |

[12]

[13]

[14]

[15]

[16]

[17]

that the BRC-BP property may indeed be fulfilled for
Card [Q*] = 2.
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