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Sparse recovery conditions for Orthogonal

Least Squares
Charles Soussen⋆, Rémi Gribonval, Jérôme Idier, and Cédric Herzet

Abstract

We extend Tropp’s analysis of Orthogonal Matching Pursuit (OMP) using the Exact Recovery

Condition (ERC) [1] to a first exact recovery analysis of Orthogonal Least Squares (OLS). We show that

when ERC is met, OLS is guaranteed to exactly recover the unknown support. Moreover, we provide

a closer look at the analysis of both OMP and OLS when ERC is notfulfilled. We show that there

exist dictionaries for which some subsets are never recovered with OMP. This phenomenon, which also

appears withℓ1 minimization, does not occur for OLS. Finally, numerical experiments based on our

theoretical analysis show that none of the considered algorithms is uniformly better than the other.
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I. INTRODUCTION

Classical greedy subset selection algorithms include, by increasing order of complexity: Matching

Pursuit (MP) [2], Orthogonal Matching Pursuit (OMP) [3] andOrthogonal Least Squares (OLS) [4, 5].

OLS is indeed relatively expensive in comparison with OMP since OMP performs one linear inversion

per iteration whereas OLS performs as many linear inversions as there are non-active atoms. We refer

the reader to the technical report [6] for a comprehensive review on the difference between OMP and

OLS.

OLS is referred to using many other names in the literature. It is known as forward selection in

statistical regression [7] and as the greedy algorithm [5],Order Recursive Matching Pursuit (ORMP) [8]

and Optimized Orthogonal Matching Pursuit (OOMP) [9] in thesignal processing literature, all these

algorithms being actually the same. It is worth noticing that the above-mentioned algorithms were

introduced by following either an optimization [4, 7] or an orthogonal projection methodology [5], or

both [8, 9]. In the optimization viewpoint, the atom yielding the largest decrease of the approximation

error is selected. This leads to a greedy sub-optimal algorithm dedicated to the minimization of the

approximation error. In the orthogonal projection viewpoint, the atom selection rule is defined as an

extension of the OMP rule: the data vector and the dictionaryatoms are being projected onto the subspace
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that is orthogonal to the span of the active atoms, and thenormalizedprojected atom having the largest

inner product with the data residual is selected. As the number of active atoms increases by one at any

iteration, the projections are done on a subspace whose dimension is decreasing.

A. Main objective of the paper

Our primary goal is to address the OLS exact recovery analysis from noise-free data and to investigate

the connection between the OMP and OLS exact recovery conditions. In the literature, much attention

was paid to the exact recovery analysis of sparse algorithmsthat are faster than OLS,e.g.,thresholding

algorithms and simpler greedy algorithms like OMP [10]. Butto the best of our knowledge, no exact

recovery result is available for OLS. In their recent paper [11], Davies and Eldar mention this issue and

state that the relation between OMP and OLS remains unclear.

B. Existing results for OMP

Our starting point is the existing analysis of OMP whose structure is somewhat close to OLS. Exact

recovery studies rely on alternate methodologies.

Tropp’s Exact Recovery Condition (ERC) [1] is a necessary and sufficient condition of exact recovery

in a worst case analysis. On the one hand, if a subset ofk atoms satisfies the ERC, then it can be

recovered from any linear combination of thek atoms in at mostk steps. On the other hand, when the

ERC is not satisfied, one can generate a counterexample (i.e., a specific combination of thek atoms)

for which OMP fails,i.e., OMP selects a wrong atom during its firstk iterations. Specifically, the atom

selected in thefirst iteration is a wrong one.

Davenport and Wakin [12] used another analysis to show that OMP yields exact support recovery

under certain Restricted Isometry Property (RIP) assumptions. Actually, the ERC necessarily holds when

Davenport and Wakin’s condition is fulfilled since ERC is a necessary and sufficient condition of exact

recovery.

C. Generalization of Tropp’s condition

We propose to extend Tropp’s condition to OLS. We remark thatthe very first iteration of OLS is

identical to that of OMP: the first selected atom is the one whose inner product with the input vector is

maximal. Therefore, when ERC does not hold, the counterexample for which the first iteration of OMP

fails also yields a failure of the first iteration of OLS. Hence one cannot expect to derive an exact recovery
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condition for OLS which is weaker than ERC at the first iteration. We show that the ERC indeed ensures

the success of OLS.

We further address the case where ERC does not hold,i.e., the first iteration of OMP/OLS1 is

not guaranteed to succeed but nevertheless succeeds “by chance”. We derive weaker conditions which

guarantee that an exact support recovery occurs in the subsequent iterations. These extended recovery

conditions coincide with ERC at the first iteration but differ from it from the second iteration.

In summary, our main results state that:

• Tropp’s ERC is a sufficient condition of exact recovery for OLS (Theorem 2).

• When the early iterations of Oxx have all succeeded, we derive two sufficient conditions, named

ERC-OMP and ERC-OLS, for the recovery of the remaining true atoms (Theorem 3).

• Moreover, we show that our conditions are, in some sense, necessary (Theorems 4 and 5).

D. Organization of the paper

In Section II, we recall the principle of OMP and OLS and theirinterpretation in terms of orthogonal

projections. Then, we properly define the notions of successful support recovery and support recovery

failure. Section III is dedicated to the analysis of OMP and OLS at any iteration where the most technical

developments and proofs are omitted for readability reasons. These important elements can be found

in the appendix section A. In Section IV, we show using Monte Carlo simulations that there is no

systematic implication between the ERC-OMP and ERC-OLS conditions but we exhibit some elements

of discrimination between OMP and OLS.

II. N OTATIONS AND PREREQUISITES

The following notations will be used in this paper.〈 . , . 〉 refers to the inner product between vectors,

and ‖ . ‖ and ‖ . ‖1 stand for the Euclidean norm and theℓ1 norm, respectively..† denotes the pseudo-

inverse of a matrix. For a full rank and undercomplete matrix, we haveX† = (XtX)−1Xt where .t

stands for the matrix transposition. WhenX is overcomplete,spark(X) denotes the minimum number

of columns fromX that are linearly dependent [13]. The letterQ denotes some subset of the column

indices, andXQ is the submatrix ofX gathering the columns indexed byQ. Finally, PQ = XQX
†
Q

and P⊥
Q = I − PQ denote the orthogonal projection operators onspan(XQ) and span(XQ)⊥, where

span(X) stands for the column span ofX, span(X)⊥ is the orthogonal complement ofspan(X) and

I is the identity matrix whose dimension is equal to the numberof rows in X.

1In the rest of the paper, we will use the notation Oxx when referring to properties that apply to both OMP and OLS.
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A. Subset selection

Let A = [a1, . . . ,an] denote the dictionary gathering unitary atomsai ∈ Rm. A is a matrix of size

m×n. Assuming that the atoms are unitary is actually not necessary for OLS as the behavior of OLS is

unchanged whether the atoms are normalized or not [6]. On thecontrary, OMP is highly sensitive to the

normalization of atoms since its selection rule involves the inner products between the current residual

and the non-selected atoms.

We consider a subsetQ⋆ of {1, . . . , n} of cardinality k , Card [Q⋆] < min(m,n) and study the

behavior of OMP and OLSfor all inputs y ∈ span(AQ⋆), i.e., for any combinationy = AQ⋆t where

the submatrixAQ⋆ is of sizem× k and the weight vectort ∈ Rk. The k atoms{ai, i ∈ Q⋆} indexed

by Q⋆ will be referred to as the “true” atoms while for the remaining (“wrong”) atoms{ai, i /∈ Q⋆},
we will use the generic notationabad. The forward greedy algorithms considered in this paper start from

the empty support and select a new atom per iteration. At intermediate iterationsj ∈ {0, . . . , k− 1}, we

denote byQ the current support (withCard [Q] = j).

Throughout the paper, we make the general assumption thatAQ⋆ is full rank. It is important to

mention that this assumption does not guarantee that the representationy = AQ⋆t is unique,i.e., there

may be anotherk-term representationy = AQ′t′ whereAQ′ includes some wrong atomsabad. The

stronger assumptionspark(A) > 2k is a necessary and sufficient condition for uniqueness of anyk-

term representation [13]. Therefore, whenspark(A) > 2k, the selection of a wrong atom by a greedy

algorithm disables ak-term representation ofy in k steps [1]. We make the weak assumption thatAQ⋆

is full rank because it is sufficient to elaborate our exact recovery conditions under which no wrong atom

is selected in the firstk iterations.

B. OMP and OLS algorithms

The common feature between OMP and OLS is that they both perform an orthogonal projection

whenever the supportQ is updated: the data approximation readsPQy and the residual error is defined

by

rQ , y − PQy = P⊥
Qy.

Let us now recall how the selection rule of OLS differs from that of OMP.

At each iteration of OLS, the atomaℓ yielding the minimum least-square error‖rQ∪{ℓ}‖2 is selected:

ℓOLS ∈ arg min
i/∈Q

‖rQ∪{i}‖2

October 28, 2011 DRAFT
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andn−Card [Q] least-square problems are being solved to compute‖rQ∪{i}‖2 for all i /∈ Q (2) [4]. On

the contrary, OMP adopts the simpler rule

ℓOMP ∈ arg max
i/∈Q

|〈rQ,ai〉|

to select the new atomaℓ and then solves only one least-square problem to compute‖rQ∪{ℓ}‖2 [6].

Depending on the application, the OMP and OLS stopping rulescan involve a maximum number of

atoms and/or a residual threshold. Note that when the data are noise-free (they read asy = AQ⋆t) and

no wrong atom is selected, the squared error‖rQ‖2 is equal to 0 after at mostk iterations. Therefore,

we will consider no more thank iterations in the following.

C. Geometric interpretation

A geometric interpretation in terms of orthogonal projections will be useful for deriving recovery

conditions. It is essentially inspired by the technical report of Blumensath and Davies [6] and by Davenport

and Wakin’s analysis of OMP under the RIP assumption [12].

We introduce the notatioñai = P⊥
Qai for the projected atoms ontospan(AQ)⊥ where for simplicity,

the dependence uponQ is omitted. When there is a risk of confusion, we will useãQ
i instead ofãi.

Notice thatãi = 0 if and only if ai ∈ span(AQ). In particular,ãi = 0 for i ∈ Q. Finally, we define the

normalized vectors

b̃i =







ãi/‖ãi‖ if ãi 6= 0,

0 otherwise.

Again, we will useb̃Qi when there is a risk of confusion.

We now emphasize that the projected atomsãi (or b̃i) play a central role in the analysis of both

OMP and OLS. Because the residualrQ = P⊥
Qy lays in span(AQ)⊥, 〈rQ,ai〉 = 〈rQ, ãi〉 and the OMP

selection rule rereads:

ℓOMP ∈ arg max
i/∈Q

|〈rQ, ãi〉| (1)

whereas for OLS, minimizing‖rQ∪{i}‖2 with respect toi /∈ Q is equivalent to maximizing‖rQ‖2 −
‖rQ∪{i}‖2 = 〈rQ, b̃i〉2 (seee.g.,[9] for a complete calculation):

ℓOLS ∈ arg max
i/∈Q

|〈rQ, b̃i〉|. (2)

2Our purpose is not to focus on the OLS implementation. However, let us just mention that in the typical implementation,

the least-square problems are solved recursively using theGram Schmidt orthonormalization procedure [4].
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We notice that (1) and (2) only rely on the vectorsrQ and ãi belonging to the subspacespan(AQ)⊥.

OMP maximizes the inner product|〈rQ, ãi〉| whereas OLS minimizes the angle betweenrQ and ãi

(this difference was already stressed and graphically illustrated in [6]). When the dictionary is close to

orthogonal,e.g., for dictionaries satisfying the RIP assumption, this does not make a strong difference

since‖ãi‖ is close to 1 for all atoms [12]. But in the general case,‖ãi‖ may have wider variations

between 0 and 1 leading to substantial differences between the behavior of OMP and OLS.

D. Definition of successful recovery and failure

Throughout the paper, we will use the unifying notation

c̃i ,







ãi for OMP,

b̃i for OLS

for statements that are common to OMP and OLS.

We first stress that in special cases where the Oxx selection rule yields multiple solutions including a

wrong atom,i.e., when

max
i∈Q⋆\Q

|〈rQ, c̃i〉| = max
i/∈Q⋆

|〈rQ, c̃i〉|, (3)

we consider that Oxx automatically makes the wrong decision. Tropp used this convention for OMP and

showed that in the limit case where the upper bound on his ERC condition (see Section III-A) is reached,

the limit situation (3) occurs, hence a wrong atom is selected at the first iteration [1].

Let us now properly define the notions of successful support recovery and support recovery failure.

Definition 1 [Successful recovery]Assume thatAQ⋆ is full rank. Oxx withy ∈ span(AQ⋆) as input

succeeds if and only if there existsj 6 Card [Q⋆] such that all firstj iterations of Oxx select atoms in

Q⋆ and the residualrQ is equal to0 after thej-th iteration.

In other words, when a successful recovery occurs, the subset yielded by Oxx satisfiesQy ⊆ Q ⊆ Q⋆

whereQy is the “sparsest subset”,i.e., the subset ofQ⋆ corresponding to the nonzero weightsti’s in the

decompositiony = AQ⋆t. When all ti’s are nonzero,Qy identifies withQ⋆ and a successful recovery

coincides with the exact recovery ofQ⋆ in k iterations.

The word “failure” refers to the exact contrary of successful recovery.

Definition 2 [Failure] Assume thatAQ⋆ is full rank. Oxx withy ∈ span(AQ⋆) as input fails when at

least one wrong atom is selected during the firstk iterations. In particular, Oxx fails when(3) occurs

with rQ 6= 0.
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III. OVERVIEW OF OUR RECOVERY ANALYSIS OFOMP AND OLS

In this section, we present our main concepts and results regarding the sparse recovery guarantees with

OLS, their connection with the existing OMP results and the new results regarding OMP. For clarity

reasons, we place the technical analysis including most of the proofs in the main appendix section A.

Let us first recall Tropp’s ERC condition for OMP which is our starting point.

A. Tropp’s ERC condition for OMP

Theorem 1 [ERC is a sufficient recovery condition for OMP and a necessary condition at the first

iteration [1, Theorems 3.1 and 3.10]]If AQ⋆ is full rank and

FQ⋆(abad) , max
abad

∥

∥A
†
Q⋆abad

∥

∥

1
< 1, ERC(A,Q⋆)

then OMP succeeds for any inputy ∈ span(AQ⋆). Furthermore, when ERC(A,Q⋆) does not hold, there

existsy ∈ span(AQ⋆) for which someabad is selected at the first iteration of OMP. Whenspark(A) > 2k,

this implies that OMP cannot recover the (unique)k-term representation ofy.

Note that ERC(A,Q⋆) only involves the dictionary atoms since it results from a worst case analysis: if

ERC(A,Q⋆) holds, then a successful recovery occurs withy = AQ⋆t whatevert ∈ Rk.

B. Main theorem

A theorem similar to Theorem 1 applies to OLS. This is our maincontribution.

Theorem 2 [ERC is a sufficient recovery condition for OLS and a necessary condition at the first

iteration] If AQ⋆ is full rank and ERC(A,Q⋆) holds, then OLS succeeds for any inputy ∈ span(AQ⋆).

Furthermore, when ERC(A,Q⋆) does not hold, there existsy ∈ span(AQ⋆) for which someabad is

selected at the first iteration of OLS. Whenspark(A) > 2k, this implies that OLS cannot recover the

(unique)k-term representation ofy.

The necessary condition result is obvious since the very first iteration of OLS coincides with that of

OMP and ERC is a necessary condition for OMP. The core of our contribution is the proof that ERC is

a sufficient condition for the exact recovery with OLS. We nowintroduce the main concepts on which

our OLS analysis relies. They also lead to a more precise analysis of OMP from the second iteration.
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C. Main concepts

Let us keep in mind that ERC is a worst case necessary condition at the first iteration. But what

happens when the ERC is not met but nevertheless, the firstj iterations of Oxx selectj true atoms

(j < k)? Can we characterize the exact recovery conditions at the(j + 1)-th iteration? We will answer

to these questions and provide:

1) an extension of the ERC condition to thej-th iteration of OMP;

2) a new necessary and sufficient condition dedicated to thej-th iteration of OLS.

This will allow us to prove Theorem 2 as a special case of the latter condition whenj = 0.

In the following two paragraphs, we introduce useful notations for a single wrong atomabad and then

define our new exact recovery conditions by considering all the wrong atoms together.Q plays the role

of the subset found by Oxx after the firstj iterations.

1) Notations related to a single wrong atom:ForQ ( Q⋆, we define:

FOMP
Q⋆,Q (abad) ,

∑

i∈Q⋆\Q

∣

∣

(

A
†
Q⋆abad

)

(i)
∣

∣ (4)

FOLS
Q⋆,Q(abad) ,

∑

i∈Q⋆\Q

‖ãi‖
‖ãbad‖

∣

∣

(

A
†
Q⋆abad

)

(i)
∣

∣ (5)

when ãbad 6= 0 andFOxx
Q⋆,Q(abad) = 0 when ãbad = 0 (we recall thatãi = P⊥

Qai and ãbad = P⊥
Q abad

depend onQ). Up to some manipulations on orthogonal projections, (4) and (5) can be rewritten as

follows.

Lemma 1 Assume thatAQ⋆ is full rank. ForQ ( Q⋆, FOMP
Q⋆,Q (abad) and FOLS

Q⋆,Q(abad) also read

FOMP
Q⋆,Q (abad) = ‖Ã†

Q⋆\Qãbad‖1 (6)

FOLS
Q⋆,Q(abad) = ‖B̃†

Q⋆\Qb̃bad‖1 (7)

where the matrices̃AQ⋆\Q = {ãi, i ∈ Q⋆\Q} and B̃Q⋆\Q = {ãi, i ∈ Q⋆\Q} of sizem× (k − j) are

full rank.

Lemma 1 is proved in Appendix B.
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2) ERC-Oxx conditions for the whole dictionary:We define four binary conditions by considering all

the wrong atoms together:

max
abad

FOMP
Q⋆,Q (abad) < 1 ERC-OMP(A,Q⋆,Q)

max
abad

FOLS
Q⋆,Q(abad) < 1 ERC-OLS(A,Q⋆,Q)

max
Q(Q⋆

Card[Q]=j

max
abad

FOMP
Q⋆,Q (abad) < 1 ERC-OMP(A,Q⋆, j)

max
Q(Q⋆

Card[Q]=j

max
abad

FOLS
Q⋆,Q(abad) < 1 ERC-OLS(A,Q⋆, j)

We will use the common notationsFOxx
Q⋆,Q(abad), ERC-Oxx(A,Q⋆,Q) and ERC-Oxx(A,Q⋆, j) for state-

ments that are common to both OMP and OLS.

Remark 1 FOMP
Q⋆,∅ (abad) and FOLS

Q⋆,∅(abad) both rereadFQ⋆(abad) =
∥

∥A
†
Q⋆abad

∥

∥

1
sinceã∅

i reduces to

ai which is unitary. Thus, ERC-Oxx(A,Q⋆, ∅) and ERC-Oxx(A,Q⋆, 0) all identify with ERC(A,Q⋆).

D. Sufficient conditions of exact recovery at any iteration

The sufficient conditions of Theorems 1 and 2 reread as the special case of the following theorem

whereQ = ∅.

Theorem 3 [Sufficient recovery condition for Oxx afterj successfuliterations] Assume thatAQ⋆ is

full rank. If Oxx withy ∈ span(AQ⋆) as input selectsQ ( Q⋆ and ERC-Oxx(A,Q⋆,Q) holds, then Oxx

succeeds in the sense of Definition 1.

The following corollary is a straightforward adaptation ofTheorem 3 to ERC-Oxx(A,Q⋆, j).

Corollary 1 Assume thatAQ⋆ is full rank. If Oxx withy ∈ span(AQ⋆) as input selects true atoms

during the firstj > 0 iterations and ERC-Oxx(A,Q⋆, j) holds, then Oxx succeeds.

The key element which enables us to establish Theorem 3 is a recursive relation linkingFOxx
Q⋆,Q(abad)

with FOxx
Q⋆,Q′(abad) whenQ is increased by one element ofQ⋆\Q, resulting in subsetQ′. This leads

to the main technical novelty of the paper, stated in Lemma 7 (see Appendix A-A). From the thorough

analysis of this recursive relation, we elaborate the following lemma which guarantees the monotonic

decrease ofFOxx
Q⋆,Q(abad) whenQ ( Q⋆ is growing.
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Lemma 2 Assume thatAQ⋆ is full rank. LetQ ( Q′ ( Q⋆. For anyabad,

FOMP
Q⋆,Q′(abad) 6 FOMP

Q⋆,Q (abad) (8)

FOLS
Q⋆,Q(abad) < 1⇒ FOLS

Q⋆,Q′(abad) 6 FOLS
Q⋆,Q(abad) (9)

We refer the reader to Appendix A-A for the proof of Lemmas 7 and 2, and then Theorem 3.

E. Necessary conditions of exact recovery at any iteration

We recall that ERC is a worst case necessary condition guaranteed for the selection of a true atom

by OMP and OLS in their very first iteration. We provide extended results stating that ERC-Oxx are

worst case necessary conditions when the first iterations ofOxx have succeeded, up to a “reachability

assumption” defined hereafter, for OMP.

Definition 3 [Reachability] Assume thatAQ is full rank.Q is reachable if and only if there exists an

input y = AQt whereti 6= 0 for all i, for which Oxx recoversQ in Card [Q] iterations. Specifically, the

selection rule(1)-(2) always yields a unique maximum.

We start with the OLS condition which is simpler.

1) OLS necessary condition:

Theorem 4 [Necessary condition for OLS afterj iterations] LetQ ( Q⋆ be a subset of cardinalityj.

Assume thatAQ⋆ is full rank andspark(A) > (j + 2). If ERC-OLS(A,Q⋆,Q) does not hold, then there

existsy ∈ span(AQ⋆) for which OLS selectsQ in the firstj iterations and then a wrong atomabad in

the (j + 1)-th iteration.

Theorem 4 is proved in Appendix A-B. An obvious corollary canbe obtained by replacingQ with j

akin to the derivation of Corollary 1 from Theorem 3. From nowon, such obvious corollaries will not

be explicitly stated.

2) Reachability issues:The reader may have noticed that Theorem 4 implies thatQ can be reached

by OLS at least for some inputy ∈ span(AQ⋆). In Appendix A-B, we establish a stronger result:

Lemma 3 (Reachability by OLS) Any subsetQ with Card [Q] 6 spark(A) − 2 can be reached by

OLS with some inputy ∈ span(AQ).
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The assumptionCard [Q] 6 spark(A)−2 enables us to guarantee that the OLS selection rule (2) always

yields a unique maximum (see Appendix A-B).

Perhaps surprisingly, the result of Lemma 3 does not remain valid for OMP although it holds under

certain RIP assumptions [12, Theorem 4.1]. As shown in Example 1 hereafter, there are counterexamples

whereQ cannot be reached by OMP not only fory ∈ span(AQ) but also for anyy ∈ Rm. The same

somewhat surprising phenomenon of non-reachability also occurs with ℓ1 minimization, associated to

certaink-faces of theℓ1 ball in Rn whose projection throughA yields interior faces. This result is a

direct consequence of the Null Space Property [14].

Example 1 Consider the simple dictionary

A =











cos θ1 cos θ1 0 0

− sin θ1 sin θ1 cos θ2 cos θ2

0 0 sin θ2 − sin θ2











with Q = {1, 2}. Setθ2 to an arbitrary value in(0, π/2). Whenθ1 6= 0 is close enough to 0, OMP can

never reachQ in two iterations (specifically, wheny ∈ R3 is proportional to neithera1 nor a2, a3 or

a4 is selected in the first two iterations).

This result is proved in Section A-B3. Although in Example 1,a subset of cardinality 2 can never be

reached, we remark that for undercomplete dictionaries, any subset of cardinality 2 can be reached for

somey ∈ Rm.

3) OMP necessary conditions including reachability assumptions: Our necessary condition for OMP

is somewhat tricky because we must assume thatQ is reachable by OMP using some input inspan(AQ).

Theorem 5 [Necessary condition for OMP afterj iterations] Assume thatAQ⋆ is full rank andQ ( Q⋆

is reachable. If ERC-OMP(A,Q⋆,Q) does not hold, then there existsy ∈ span(AQ⋆) for which OMP

selectsQ in the firstj iterations and then a wrong atomabad in the (j + 1)-th iteration.

Theorem 5 is proved together with Theorem 4 in Appendix A-B. Setting aside the reachability issues,

the principle of the proof is common to OMP and OLS. We proceedthe proof of the sufficient condition

(Theorem 3) backwards, as was done in [1, Theorem 3.10] in thecaseQ = ∅.
In the special case wherej = 1, Theorem 5 simplifies to a corollary similar to the OLS necessary

condition (Theorem 4) because any subsetQ of cardinality 1 is obviously reachable using the atom

indexed byQ as input vector.
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Corollary 2 [Necessary condition for OMP in the second iteration]Assume thatAQ⋆ is full rank and

let i ∈ Q⋆. If ERC-OMP(A,Q⋆, {i}) does not hold, then there existsy ∈ span(AQ⋆) for which OMP

selectsai and then a wrong atomabad in the first two iterations.

4) Discrimination between OMP and OLS at thek-th iteration: We provide an element of discrimi-

nation between OMP and OLS when their firstk − 1 iterations have selected true atoms, so that there

is one remaining true atom which has not been chosen. Let us first observe that in Example 1, OMP is

not guaranteed to select the second true atom whena1 or a2 has already been chosen. This is actually

a major difference with OLS.

Theorem 6 [Guaranteed success of thek-th iteration of OLS] If [AQ⋆ ,abad] is full rank for anyabad,

then ERC-OLS(A,Q⋆, k− 1) is true. Thus, if the firstk− 1 iterations of OLS select true atoms, the last

true atom is necessarily selected in thek-th iteration.

This result is straightforward from the definition of OLS in the optimization viewpoint: “OLS selects

the new atom yielding the least possible residual” and the remark that in thek-th iteration, the last true

atom yields a zero valued residual. Another (analytical) proof of Theorem 6, given below, is based on the

definition of ERC-OLS(A,Q⋆, k − 1). It will enable us to understand why the statement of Theorem 6

is not valid for OMP.

Proof: Assume that OLS yields a subsetQ ( Q⋆ after k − 1 iterations. Letalast denote the last

true atom so thatAQ⋆ = [AQ,alast] up to some permutation of columns. SincẽBQ⋆\Q reduces tõbQlast

and becausẽbQlast is unitary, the pseudo-inversẽB†
Q⋆\Q takes the form

[

b̃Qlast
]t

. Finally, (7) simplifies to:

FOLS
Q⋆,Q(abad) = |〈b̃Qlast, b̃Qbad〉| 6 1 (10)

since both vectors in the inner product are either unitary orequal to0. Apply Lemma 8 in Appendix B:

since[AQ⋆,abad] is full rank,
[

b̃Qlast, b̃
Q
bad

]

is full rank, thus (10) is a strict inequality.

Similar to the calculation in the proof above, we rewriteFOMP
Q⋆,Q (abad) defined in (6):

FOMP
Q⋆,Q (abad) =

|〈ãQ
last, ã

Q
bad〉|

‖ãQ
last‖2

. (11)

However, we cannot ensure thatFOMP
Q⋆,Q (abad) 6 1 sinceãQ

i are not unitary vectors.

To further distinguish OMP and OLS, we elaborate a “bad recovery condition” under which OMP is

guaranteed to fail in the sense thatQ⋆ is not reachable.
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Theorem 7 [Sufficient condition for bad recovery with OMP]Assume thatAQ⋆ is full rank. If

min
Q(Q⋆

Card[Q]=k−1

[

max
abad

FOMP
Q⋆,Q (abad)

]

> 1, BRC-OMP(A,Q⋆)

thenQ⋆ cannot be reached by OMP using any input inspan(AQ⋆).

Specifically, BRC-OMP(A,Q⋆) guarantees that a wrong selection occurs at thek-th iteration when the

previous iterations have succeeded.

Proof: Assume that for somey ∈ span(AQ⋆), the firstk − 1 iterations of OMP succeed,i.e., they

selectQ ( Q⋆ of cardinalityk − 1. Let alast denote the last true atom (AQ⋆ = [AQ,alast] up to some

permutation of columns). The residualrQ yielded by OMP afterk−1 iterations is obviously proportional

to ãQ
last.

BRC-OMP(A,Q⋆) implies that ERC-OMP(A,Q⋆,Q) is false, thus there existsabad /∈ span(AQ) such

that FOMP
Q⋆,Q (abad) > 1. According to (11),|〈ãQ

last, ã
Q
bad〉| > ‖ãQ

last‖2 thus |〈rQ, ãQ
bad〉| > |〈rQ, ãQ

last〉|.
We conclude thatalast cannot be chosen in thek-th iteration of OMP.

Although BRC-OMP(A,Q⋆) may appear restrictive (as a minimum is involved in the left-hand side),

we will see in Section IV that it may frequently be met, even when the atoms ofA are not strongly

correlated.

IV. EMPIRICAL COMPARISON OF THEOMP AND OLS EXACT RECOVERY CONDITIONS

The purpose of this section is to test whether there is some systematic implication between the

conditions ERC-OMP(A,Q⋆,Q) and ERC-OLS(A,Q⋆,Q), and between ERC-OMP(A,Q⋆, j) and ERC-

OLS(A,Q⋆, j). We setj = Card [Q] = 1. Additionally, we will emphasize the distinction between OMP

and OLS by evaluating the bad recovery condition for OMP. These empirical comparisons involve Matlab

simulations with random dictionaries.

A. Comparison of the ERC-Oxx conditions

We compare ERC-OMP(A,Q⋆,Q) and ERC-OLS(A,Q⋆,Q) for a common dictionary and a given

pair of subsets whereQ ( Q⋆ is of cardinality 1. As the recovery conditions take the form“for all

abad, FOxx
Q⋆,Q(abad) < 1”, it is sufficient to just consider the case where there is onewrong atomabad.

Therefore, we consider dictionariesA with k + 1 atoms, withk = Card [Q⋆]. Evaluating ERC(A,Q⋆),

ERC-OMP(A,Q⋆,Q) and ERC-OLS(A,Q⋆,Q) amounts to computingFQ⋆(abad), FOMP
Q⋆,Q (abad) and

FOLS
Q⋆,Q(abad) and to testing whether they are lower than 1.
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Fig. 1. Comparison of the OMP and OLS exact recovery conditions. We draw 10.000 Gaussian dictionaries of size100×11 and

setk = 10 so that there is only one wrong atomabad. Q is always set to the first atom (Card [Q] = 1). Plot of (a)FQ⋆ (abad)

vs FOMP

Q⋆,Q(abad); (b) FQ⋆(abad) vs FOLS

Q⋆,Q(abad); (c) FOMP

Q⋆,Q(abad) vs FOLS

Q⋆,Q(abad). For the last subfigure, we keep the trials

for which FQ⋆(abad) > 1.

Fig. 1 is a scatter plot of the three criteria for 10.000 Gaussian dictionariesA of size100×11, where the

elements ofA are drawn according to an i.i.d. Gaussian distribution. ThesubsetQ = {1} is systematically

chosen as the first atom ofA. Figs. 1(a,b) are in good agreement with Lemma 2: we verify that

FOMP
Q⋆,Q (abad) 6 FQ⋆(abad) whether ERC holds or not, and thatFOLS

Q⋆,Q(abad) 6 FQ⋆(abad) systematically

occurs only whenFQ⋆(abad) < 1. On Fig. 1(c) displayingFOMP
Q⋆,Q (abad) versusFOLS

Q⋆,Q(abad), we only

keep the trials for whichFQ⋆(abad) > 1, i.e., ERC(A,Q⋆) does not hold. Since both south-east and

north-west quarter planes are populated, we conclude that neither OMP nor OLS is uniformly better. To
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Fig. 2. Computation of the bad recovery condition BRC-OMP(A,Q⋆) for Gaussian dictionaries of various sizes(m, n). 1,000

trials are performed for each size, andQ⋆ is always set to the first two atoms (k = 2). The grey levels in the image correspond

to the rate of guaranteed failure,i.e., the proportion of trials where BRC-OMP(A,Q⋆) holds.

be more specific, when ERC-OMP(A,Q⋆,Q) holds but ERC-OLS(A,Q⋆,Q) does not, there exists an

input y ∈ span(AQ⋆) for which OLS selectsQ = {1} and then a wrong atom in the first two iterations

(Theorem 4). On the contrary, OMP is guaranteed perform an exact recovery with this input according

to Theorem 3. The same situation can occur when inverting theroles of OMP and OLS according to

Corollary 2 and Theorem 3.

We have compared ERC-OMP(A,Q⋆, 1) and ERC-OLS(A,Q⋆, 1) which take into account all the

possible subsets ofQ⋆ of cardinality1. Again, we found that when ERC(A,Q⋆) is not met, it can occur

that ERC-OMP(A,Q⋆, 1) holds while ERC-OLS(A,Q⋆, 1) does not andvice versa.

Note that this analysis becomes more complex whenCard [Q] > 2 since ERC-OMP(A,Q⋆,Q) alone

is not a necessary condition for OMP anymore (Theorem 5 also involves the assumption thatQ is

reachable).

B. Discrimination at the second iteration

Because the above simulation cannot discriminate OMP and OLS, we consider the bad recovery

condition BRC-OMP(A,Q⋆) under which OMP is guaranteed to fail whenk iterations are performed.

Meanwhile, OLS recoversQ⋆ at least for some input inspan(AQ⋆). Moreover, thek-th iteration of OLS

is guaranteed to succeed provided that the firstk− 1 iterations have succeeded according to Theorem 6.

We compute BRC-OMP(A,Q⋆) in the casek = 2 for various dictionary sizes (see Fig. 2). We

October 28, 2011 DRAFT



SOUSSEN, GRIBONVAL, IDIER, HERZET: TECHNICAL REPORT 18

perform 1,000 trials per size(m,n) in which the elements ofA are drawn according to an i.i.d. Gaussian

distribution andQ⋆ is always set to the first two atoms. We notice that BRC-OMP(A,Q⋆) may frequently

be met for overcomplete dictionaries, especially whenm is low and n ≫ m. Becausek = 2, OLS

performs at least as good as OMP: when the first iteration (common to both algorithms) has succeeded,

OLS cannot fail according to Theorem 6 while OMP is guaranteed to fail in cases where the BRC holds.

This simulation can naturally be extended to the casek > 2 but the conclusions differ. OLS is not

guaranteed to outperform OMP for anyy ∈ span(AQ⋆), but when BRC-OMP(A,Q⋆) is not met, OLS

recoversQ⋆ for some inputs while OMP cannot for any input.

V. CONCLUSIONS

Our first contribution is an original analysis of OLS based onthe extension of Tropp’s ERC condition.

We showed that when ERC holds, OLS is guaranteed to yield an exact support recovery. Although OLS

has been acknowledged in several communities for two decades, such a theoretical analysis was lacking.

Our second contribution is a parallel study of OMP and OLS when a number of iterations have been

performed and true atoms have been selected. We found that neither OMP nor OLS is uniformly better.

In particular, we showed using simulated dictionaries thatwhen the ERC is not met but the first iteration

(which is common to OMP and OLS) selects a true atom, there arecounter-examples for which OMP is

guaranteed to yield an exact support recovery while OLS doesnot, andvice versa.

Finally, a few elements of analysis suggest that OLS behavesbetter than OMP. First, any subsetQ can

be reached by OLS using some input inspan(AQ) while for some dictionaries, it may occur that some

subsets are never reached by OMP for anyy ∈ Rm. In other words, OLS has a stronger capability of

exploration. Secondly, when all true atoms except one have been found by OLS and no wrong selection

occurred, OLS is guaranteed to find the last true atom in the following iteration while OMP may fail.

For realistic problems where the data are noisy and the dictionary is far from orthogonal, empirical

studies report that OLS usually outperforms OMP for a largernumerical cost [9, 11]. In our experience,

OLS yields a residual error which may be by far lower than thatof OMP after the same number of

iterations [15]. Moreover, it performs better support recoveries in terms of ratio between the number of

good detections and of false alarms [16]. We believe that thereason why our exact recovery analysis

does not corroborate this trend is that it is essentially based on a worst case analysis. An interesting

perspective will consist of a theoretical study in the average case in order to evaluate more thoroughly

the difference between OMP and OLS.
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APPENDIX A

NECESSARY AND SUFFICIENT CONDITIONS OF EXACT RECOVERY FOROMP AND OLS

This appendix includes the complete analysis of our OMP and OLS recovery conditions.

A. Sufficient conditions

We show that when Oxx happens to select true atoms during its early iterations, it is guaranteed to

recover the whole unknown support in the subsequent iterations when the ERC-Oxx(A,Q⋆,Q) condition

is fulfilled. We establish Theorem 3 whose direct consequence is Theorem 2 stating that when ERC(A,Q⋆)

holds, OLS is guaranteed to succeed.

1) ERC-Oxx are sufficient recovery conditions at a given iteration: We follow the analysis of [1,

Theorem 3.1] to extend Tropp’s exact recovery condition to asufficient condition dedicated to the(j+1)-

th iteration of Oxx.

Lemma 4 Assume thatAQ⋆ is full rank. If Oxx withy ∈ span(AQ⋆) as input selectsj true atoms

Q ( Q⋆ and ERC-Oxx(A,Q⋆,Q) holds, then the(j + 1)-th iteration of Oxx selects a true atom.

Proof: According to the selection rule (1)-(2), Oxx selects a true atom at iteration(j + 1) if and

only if

φ(rQ) ,
maxi/∈Q⋆ |〈rQ, c̃i〉|

maxi∈Q⋆\Q |〈rQ, c̃i〉|
< 1. (12)

Let us gather the vectors̃ci indexed byi /∈ Q⋆ and i ∈ Q⋆\Q in two matricesC̃bad and C̃Q⋆\Q of

dimensionsm× (n− k) andm× (k − j), respectively. The condition (12) rereads:

φ(rQ) =
‖C̃t

badrQ‖∞
‖C̃t

Q⋆\QrQ‖∞
< 1.

Following Tropp’s analysis, we re-arrange the vectorrQ occurring in the numerator. SincerQ = P⊥
Qy

andy ∈ span(AQ⋆), rQ ∈ span(ÃQ⋆\Q) = span(C̃Q⋆\Q). We rewriterQ as P̃Q⋆\QrQ whereP̃Q⋆\Q

stands for the orthogonal projection onspan(C̃Q⋆\Q): P̃Q⋆\Q = P̃ t
Q⋆\Q =

(

C̃Q⋆\QC̃
†
Q⋆\Q

)t
. φ(rQ)

rereads

φ(rQ) =
‖
(

C̃
†
Q⋆\QC̃bad

)t
C̃t

Q⋆\QrQ‖∞
‖C̃t

Q⋆\QrQ‖∞
.

This expression can obviously be majorized using the matrixnorm:

φ(rQ) 6 ‖
(

C̃
†
Q⋆\QC̃bad

)t‖∞,∞. (13)
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Since theℓ∞ norm of a matrix is equal to theℓ1 norm of its transpose and‖ . ‖1,1 equals the maximum

column sum of the absolute value of its argument [1, Theorem 3.1], the upper bound of (13) rereads

‖C̃†
Q⋆\Q

C̃bad‖1,1 = max
c̃bad

‖C̃†
Q⋆\Q

c̃bad‖1 = max
abad

FOxx
Q⋆,Q(abad)

according to Lemma 1.

By definition of ERC-Oxx(A,Q⋆,Q), this upper bound is lower than 1 thusφ(rQ) < 1. According

to (12), Oxx selects a true atom.

2) Recursive expression of the ERC-Oxx formulas:We elaborate recursive expressions ofFOxx
Q⋆,Q(abad)

whenQ is increased by one element resulting in the new subsetQ′ ( Q⋆ (here, we do not consider the

case whereQ′ = Q⋆ sinceFOxx
Q⋆,Q⋆(abad) is not properly defined, (4) and (5) being empty sums). We will

use the notationsQ′ = Q ∪ {inew} whereinew ∈ Q⋆\Q andanew , ainew
. To avoid any confusion,̃ai

will be systematically replaced bỹaQ
i and ãQ′

i to express the dependence uponQ andQ′, respectively.

In the same way,̃bi will be replaced bỹbQi or b̃Q
′

i but for simplicity, we will keep the matrix notations

B̃Q⋆\Q andB̃Q⋆\Q′ without superscript,̃referring toQ andQ′, respectively.

Let us first link b̃Qi to b̃Q
′

i when ãQ′

i 6= 0.

Lemma 5 Assume thatAQ′ is full rank andQ′ = Q ∪ {inew}. Then,span(AQ)⊥ is the orthogonal

direct sum of the subspacesspan(AQ′)⊥ and span(ãQ
new), and the normalized projection of any atom

ai /∈ span(AQ′) takes the form:

b̃Qi = ηQ,Q′

i b̃Q
′

i + χQ,Q′

i b̃Qnew (14)

where

ηQ,Q′

i =

∥

∥ãQ′

i

∥

∥

∥

∥ãQ
i

∥

∥

∈ (0, 1], (15)

χQ,Q′

i = 〈b̃Qi , b̃Qnew〉, (16)

(

ηQ,Q′

i

)2
+

(

χQ,Q′

i

)2
= 1. (17)

Proof: SinceQ ( Q′, we havespan(AQ′)⊥ ⊆ span(AQ)⊥. BecauseAQ′ is full rank, span(AQ′)⊥

and span(AQ)⊥ are of consecutive dimensions. Moreover,ãQ
new = anew − PQanew ∈ span(AQ′) ∩

span(AQ)⊥, and ãQ
new 6= 0 sinceAQ′ is full rank. As a vector ofspan(AQ′), ãQ

new is orthogonal to

span(AQ′)⊥. It follows that span(ãQ
new) is the orthogonal complement ofspan(AQ′)⊥ in span(AQ)⊥.

The orthogonal decomposition of̃ai = P⊥
Qai reads:

ãQ
i = ãQ′

i + 〈ãQ
i , b̃Qnew〉b̃Qnew
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since b̃Qnew is unitary. Replacing̃aQ
i = ‖ãQ

i ‖ b̃Qi and ãQ′

i = ‖ãQ′

i ‖ b̃Q
′

i yields (14)-(16). Pythagoras’

theorem yields (17). The assumptionai /∈ span(AQ′) implies thatãQ′

i 6= 0, thenηQ,Q′

i > 0.

Lemma 6 Assume thatAQ⋆ is full rank. LetQ ( Q′ ( Q⋆ with Q′ = Q∪{inew}. Then,span(B̃Q⋆\Q)

is the orthogonal direct sum ofspan(B̃Q⋆\Q′) and span(b̃Qnew).

Proof: According to Corollary 8 in Appendix B,̃BQ⋆\Q andB̃Q⋆\Q′ are full rank matrices, thus their

column spans are of consecutive cardinalities. Lemma 5 states thatb̃Qnew is orthogonal tospan(AQ′)⊥,

thus it is orthogonal tõbQ
′

i ∈ span(AQ′)⊥ for all i ∈ Q⋆\Q′.

In the following lemma, we establish a link betweenFOxx
Q⋆,Q(abad) and FOxx

Q⋆,Q′(abad). It is a simple

recursive relation in the case of OMP. For OLS, we cannot directly relate the two quantities but we

expressFOLS
Q⋆,Q(abad) =

∥

∥B̃
†
Q⋆\Qb̃Qbad

∥

∥

1
with respect toB̃†

Q⋆\Q′
b̃Q

′

bad.

Lemma 7 Assume thatAQ⋆ is full rank. LetQ ( Q′ ( Q⋆ with Q′ = Q ∪ {inew}. Whenabad /∈
span(AQ′),

FOMP
Q⋆,Q (abad) = FOMP

Q⋆,Q′(abad) +
∣

∣

(

A
†
Q⋆abad

)

(inew)
∣

∣ (18)

FOLS
Q⋆,Q(abad) =

∣

∣

∣

∣

∣

χQ,Q′

bad − ηQ,Q′

bad

∑

i∈Q⋆\Q′

β
Q⋆\Q′

bad (i)χQ,Q′

i

ηQ,Q′

i

∣

∣

∣

∣

∣

+ ηQ,Q′

bad

∑

i∈Q⋆\Q′

∣

∣β
Q⋆\Q′

bad (i)
∣

∣

ηQ,Q′

i

(19)

whereηQ,Q′

i and χQ,Q′

i are defined in(15)-(16) and β
Q⋆\Q′

bad , B̃
†
Q⋆\Q′

b̃Q
′

bad.

Proof: (18) straightforwardly follows from the definition (4) ofFOMP
Q⋆,Q (abad).

Let us now establish (19). We denote byP̃Q⋆\Q andP̃Q⋆\Q′ the orthogonal projectors onspan(B̃Q⋆\Q)

andspan(B̃Q⋆\Q′). Becausespan(B̃Q⋆\Q) is the orthogonal direct sum ofspan(B̃Q⋆\Q′) andspan(b̃Qnew)

(Lemma 6), we have the orthogonal decomposition:

P̃Q⋆\Qb̃Qbad = P̃Q⋆\Q′ b̃Qbad + χQ,Q′

bad b̃Qnew.

(14) yields

P̃Q⋆\Qb̃Qbad = ηQ,Q′

bad P̃Q⋆\Q′ b̃Q
′

bad + χQ,Q′

bad b̃Qnew

(P̃Q⋆\Q′ b̃Qnew = 0 according to Lemma 6) and then

P̃Q⋆\Qb̃Qbad = ηQ,Q′

bad

∑

i∈Q⋆\Q′

β
Q⋆\Q′

bad (i)b̃Q
′

i + χQ,Q′

bad b̃Qnew
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by definition ofβQ⋆\Q′

bad . In the latter equation, we re-expressb̃Q
′

i with respect tõbQi using (14):

P̃Q⋆\Qb̃Qbad = ηQ,Q′

bad

∑

i∈Q⋆\Q′

β
Q⋆\Q′

bad (i)

ηQ,Q′

i

b̃Qi +

{

χQ,Q′

bad − ηQ,Q′

bad

∑

i∈Q⋆\Q′

β
Q⋆\Q′

bad (i)χQ,Q′

i

ηQ,Q′

i

}

b̃Qnew.

We conclude thatFOLS
Q⋆,Q(abad) =

∥

∥B̃
†
Q⋆\Qb̃Qbad

∥

∥

1
reads (19).

3) ERC is a sufficient recovery condition for OLS:The key result of Lemma 2 (see Section III-D)

states thatFOLS
Q⋆,Q(abad) is decreasing whenQ ( Q⋆ is growing provided thatFOLS

Q⋆,Q(abad) < 1, and that

FOMP
Q⋆,Q (abad) is always decreasing.

Proof of Lemma 2: It is sufficient to prove the result whenCard [Q′] = Card [Q] + 1. The case

Card [Q′] > Card [Q] + 1 obviously deduces from the former case by recursion.

Let Q ( Q′ ( Q⋆ with Card [Q′] = Card [Q] + 1. The result is obvious whenabad ∈ span(AQ′):

ãbad = 0 thenFOxx
Q⋆,Q′(abad) = 0. Whenabad /∈ span(AQ′), (8) obviously deduces from (18). The proof

of (9) relies on the study of functionϕ(η) = |
√

1− η2 −Cη|+ Dη which is fully defined in (25), (26)

and (27) in Appendix C. Because this study is rather technical, we place it in Appendix C.

We notice thatFOLS
Q⋆,Q(abad) given in (19) takes the formϕ

(

ηQ,Q′

bad

)

where the variables occurring

in C and D (see (26) and (27)) are set toN ← Card [Q⋆\Q′], ηi ← ηQ,Q′

i , χi ← χQ,Q′

i , and β ←
sgn

(

χQ,Q′

bad

)

β
Q⋆\Q′

bad . Now, we invoke Lemma 14 in Appendix C: asFOLS
Q⋆,Q′(abad) =

∥

∥β
Q⋆\Q′

bad

∥

∥

1
plays

the role of‖β‖1, FOLS
Q⋆,Q(abad) < 1 implies thatFOLS

Q⋆,Q′(abad) 6 FOLS
Q⋆,Q(abad).

We deduce from Lemmas 2 and 4 that ERC-Oxx(A,Q⋆,Q) are sufficient recovery conditions when

Q ( Q⋆ has been reached (Theorem 3).

Proof of Theorem 3:Apply Lemma 4 at each iterationj, . . . , k − 1 until the increased subsetQ′

matchesQ⋆. The ERC-Oxx(A,Q⋆, . ) assumption of Lemma 4 is always fulfilled according to Lemma2.

Finally, we prove that ERC(A,Q⋆) is a necessary and sufficient condition of successful recovery for

OLS (Theorem 2).

Proof of Theorem 2:The sufficient condition is a special case of Theorem 3 forQ = ∅. The necessary

condition identifies with that of Theorem 1 since ERC-OLS(A,Q⋆, ∅) simplifies to ERC(A,Q⋆).

B. Necessary conditions

We provide the technical analysis to prove that ERC-Oxx(A,Q⋆,Q) is not only a sufficient condition

of exact recovery in the worst case whenQ ( Q⋆ has been reached, but also a necessary condition. We

will prove Theorems 4 and 5 (see Section III) generalizing Tropp’s necessary condition [1, Theorem 3.10]

to any iteration of OMP and OLS.
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We proceed in two stages. In the first stage, we assume that Oxxexactly recoversQ ( Q⋆ in j =

Card [Q] iterations with some input vector inspan(AQ). This reachability assumption allows us to carry

out a parallel analysis of OMP and OLS (subsection A-B1) leading to the following proposition.

Proposition 1 [Necessary condition for Oxx afterj iterations] Assume thatAQ⋆ is full rank and

Q ( Q⋆ is reachable from an input inspan(AQ) by Oxx. If ERC-Oxx(A,Q⋆,Q) does not hold, then

there existsy ∈ span(AQ⋆) for which Oxx selectsQ in the first j iterations and then a wrong atom

abad in the (j + 1)-th iteration.

This proposition coincides with Theorem 5 in the case of OMP whereas for OLS, Theorem 4 does not

require the assumption thatQ is reachable.

The second stage investigates whether the reachability assumption is automatically fulfilled or not (see

subsections A-B2 and A-B3 for OLS and OMP, respectively).

1) Parallel analysis of OMP and OLS: Proof of Proposition 1:We proceed the proof of Lemma 4

backwards. By assumption, the right hand-side of inequality (13) is equal to

‖
(

C̃
†
Q⋆\QC̃bad

)t‖∞,∞ = max
abad

FOxx
Q⋆,Q(abad) > 1.

By definition of induced norms, there exists a vectorv ∈ Rk−j satisfyingv 6= 0 and

‖
(

C̃
†
Q⋆\QC̃bad

)t
v‖∞

‖v‖∞
= ‖

(

C̃
†
Q⋆\QC̃bad

)t‖∞,∞ > 1. (20)

Define

ŷ = AQ⋆\Q(C̃t
Q⋆\QÃQ⋆\Q)−1v. (21)

The matrix inversion in (21) is well defined sincẽAQ⋆\Q is full rank (Corollary 3 in Appendix B) and

C̃Q⋆\Q = ÃQ⋆\Q or B̃Q⋆\Q reads as the right product of̃AQ⋆\Q with a nondegenerate diagonal matrix.

By taking into account that̃AQ⋆\Q = P⊥
Q AQ⋆\Q, we obtain that

v = C̃t
Q⋆\QP⊥

Q ŷ. (22)

Since the left hand-side of (20) identifies withφ(P⊥
Q ŷ) whereφ is defined in (12), (20) yields:

max
i/∈Q⋆

|〈P⊥
Q ŷ, c̃i〉| > max

i∈Q⋆\Q
|〈P⊥

Q ŷ, c̃i〉|. (23)

Moreover, we haveP⊥
Q ŷ 6= 0 according to (22) andv 6= 0.

Now, let z ∈ span(AQ) denote the input for which Oxx recoversQ. According to Lemma 15 in

Appendix D, the firstj iterations of Oxx with the modified inputy = z + εŷ also selectQ whenε > 0
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is sufficiently small. BecauseP⊥
Qy = εP⊥

Q ŷ and (23) holds, the(j + 1)-th iteration of Oxx necessarily

selects a wrong atom.

At this point, we have proved Theorem 5 which is relative to OMP.

2) OLS ability to reach any subset:In order to prove Theorem 4, we establish that any subsetQ can

be reached using OLS with some inputy ∈ span(AQ) (Lemma 3). To generatey, we assign decreasing

weight coefficients to the atoms{ai, i ∈ Q} with a rate of decrease which is high enough.

Proof of Lemma 3:Without loss of generality, we assume that the elements ofQ correspond to the

first j atoms.

Firstly, we define the vectors{v1, . . . ,vj} resulting from the orthogonalization of{a1, . . . ,aj}: for

all i 6 j, we havespan(a1, . . . ,ai) = span(v1, . . . ,vi) wherev1 , a1 and for i > 1, vi is set to the

orthogonal projection ofai onto span(a1, . . . ,ai−1)
⊥.

Secondly, for arbitrary values ofε2, . . . , εj > 0, we define the following recursive construction:

• y1 = v1,

• yi = yi−1 + εivi for i ∈ {2, . . . , j}.

(yi implicitly depends onε2, . . . , εi) and sety , yj. We show by recursion that there existε2, . . . , εi > 0

such that OLS withyi as input successively selectsa1, . . . ,ai during the firsti iterations (in particular,

the selection rule (2) always yields a unique maximum).

The statement is obviously true fory1 = a1. Assume that it is true foryi−1 with someε2, . . . , εi−1 > 0

(these parameters will remain fixed in the following). According to Lemma 15 in Appendix D, there exists

εi > 0 such that OLS withyi = yi−1 + εivi as input selects the same atoms as withyi−1 during the

first i− 1 iterations,i.e., a1, . . . ,ai−1 are successively chosen. At iterationi, the current active set thus

readsQ′ = {1, . . . , i− 1} and the OLS residual corresponding toyi takes the form

rQ′ = P⊥
Q′yi−1 + εiP

⊥
Q′vi = εivi

sinceyi−1 ∈ span(AQ′) andvi ∈ span(AQ′)⊥. By construction,vi is equal toãQ′

i = P⊥
Q′ai, thusrQ′

is proportional toãQ′

i and then tõbQ
′

i . Finally, the OLS criterion (2) is maximum for the atomai and

the maximum value is equal to|〈rQ′ , b̃Q
′

i 〉| = ‖rQ′‖ sinceb̃Q
′

i is of unit norm.

Finally, we show that no other atom yields this maximum value. Apply Lemma 8 in Appendix B: the

full rankness ofAQ′∪{i,l} (as a family of less thanspark(A) atoms) implies that
[

b̃Q
′

i , b̃Q
′

l

]

is full rank,

thus b̃Q
′

i and b̃Q
′

l cannot be colinear.

Using Lemma 3, Proposition 1 simplifies to Theorem 4 in which the assumption thatQ is reachable

by OLS is omitted.
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ã3

ã3 + ã2

ã3 − ã2

ã4

ã2

0

Fig. 3. Example 1: drawing of the planespan(a1)
⊥. The tilde notation refers to the subsetQ = {1}. Whenθ1 is close to 0,

ã2 is of very small norm sincea2 is almost equal toa1, while a3 anda4, which are almost orthogonal toa1, yield projections

ã3 and ã4 that are almost of unit norm. The angles(ã2, ã3) and (ã2, ã4) tend toθ2 and−θ2 when θ1 → 0. The bullet and

square points correspond to positionsr satisfying|〈r, ã2〉| > |〈r, ã3〉| and |〈r, ã2〉| > |〈r, ã4〉|, respectively. These two cones

only intersect atr = 0, therefore OMP cannot successively selecta1 anda2 in the first two iterations.

3) OMP inability to reach some subsets:Contrary to OLS, OMP may not reach some subsets as stated

in Example 1 in Section III. We now prove this result.

Proof of Example 1: Assume that OMP selects a true atom in the first iteration. Because there is

a symmetry betweena1 anda2, we can assume without loss of generality thata1 is selected. We show

that a3 or a4 is necessarily selected in the second iteration.

As the atom dimension ism = 3, the residualr{1} lies in span(a1)
⊥ which is of dimension 2. The

simple projection calculatioñai = ai−〈ai,a1〉a1 (the tilde notation implicitly refers toQ = {1}) leads

to:

ã2 = sin(2θ1)











sin θ1

cos θ1

0











, ã3 =











sin θ1 cos θ1 cos θ2

cos2 θ1 cos θ2

sin θ2











and ã4 =











sin θ1 cos θ1 cos θ2

cos2 θ1 cos θ2

− sin θ2











.

It is noticeable that whenθ1 is close to 0,‖ã2‖ = | sin(2θ1)| is small while ã3 and ã4 are almost of

unit norm, and the angles(ã2, ã3) and (ã2, ã4) tend toθ2 and−θ2 whenθ1 → 0 (see Fig. 3 for a 2D

display in the planespan(a1)
⊥).

It is easy to check that the set of pointsr ∈ R2 satisfying|〈r, ã2〉| > |〈r, ã3〉| is a 2D cone centered
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around the direction that is orthogonal tõa3 (dashed line in the south-east and north-west directions

in Fig. 3). Specifically, both plain lines delimiting this cone are orthogonal tõa3 + ã2 and ã3 − ã2.

Similarly, the set of pointsr ∈ R2 satisfying |〈r, ã2〉| > |〈r, ã4〉| is another 2D cone centered around

the direction that is orthogonal tõa4. When θ1 is close to 0, both 2D cones only intersect atr = 0

(since their inner angle tends towards 0), thus

∀r ∈ R2\{0}, |〈r, ã2〉| < max(|〈r, ã3〉|, |〈r, ã4〉|).

We conclude thata2 cannot be selected in the second iteration according to the OMP rule (1).

APPENDIX B

RE-EXPRESSION OF THEERC-OXX FORMULAS

In this appendix, we prove Lemma 1 by successively re-expressing Ã
†
Q⋆\Qãbad andB̃

†
Q⋆\Qb̃bad. Let

us first show that whenAQ⋆ is full rank, the matricesÃQ⋆\Q and B̃Q⋆\Q are full rank. This result is

stated below as a corollary of Lemma 8.

Lemma 8 If Q∩Q′ = ∅ and AQ∪Q′ is full rank, thenÃQ
Q′ and B̃Q

Q′ are full rank.

Proof: To prove thatÃQ
Q′ is full rank, we assume that

∑

j∈Q′ αjã
Q
j = 0 with αj ∈ R. By definition

of ãQ
j = P⊥

Qaj = aj − PQaj, it follows that
∑

j∈Q′ αjaj ∈ span(AQ). SinceAQ∪Q′ is full rank, we

conclude that allαj ’s are 0.

The full rankness ofB̃Q
Q′ directly follows from that ofÃQ

Q′ since for alli ∈ Q′, b̃Qi = ãQ
i /‖ãQ

i ‖ is

colinear toãQ
i .

The direct application of Lemma 8 to our context withQ′ = Q⋆\Q leads to the following corollary.

Corollary 3 Assume thatAQ⋆ is full rank. ForQ ( Q⋆, ÃQ⋆\Q and B̃Q⋆\Q are full rank.

Lemma 9 Assume thatAQ⋆ is full rank. ForQ ( Q⋆, Ã
†
Q⋆\Qãbad =

(

A
†
Q⋆abad

)

|(Q⋆\Q)
where| denotes

the restriction of a vector to a subset of its coefficients.

Proof: The orthogonal decomposition ofabad on span(AQ⋆) takes the form:

abad = AQ⋆

(

A
†
Q⋆abad

)

+ P⊥
Q⋆abad.

Projecting ontospan(AQ)⊥, we obtain

ãbad = ÃQ⋆\Q

(

A
†
Q⋆abad

)

|(Q⋆\Q)
+ P⊥

Q⋆abad (24)
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(P⊥
Q P⊥

Q⋆ = P⊥
Q⋆ becausespan(AQ⋆)⊥ ⊆ span(AQ)⊥). For i ∈ Q⋆\Q, ãi = ai − PQai ∈ span(AQ⋆).

Thus, we havespan(ÃQ⋆\Q) ⊆ span(AQ⋆), andP⊥
Q⋆abad is orthogonal tospan(ÃQ⋆\Q). According to

Corollary 3,ÃQ⋆\Q is full rank. It follows from (24) thatÃ†
Q⋆\Q

ãbad =
(

A
†
Q⋆abad

)

|(Q⋆\Q)
.

Lemma 10 Assume thatAQ⋆ is full rank. ForQ ( Q⋆,

‖ãbad‖ B̃†
Q⋆\Qb̃bad = ∆‖ãi‖

(

A
†
Q⋆abad

)

|(Q⋆\Q)

where∆‖ãi‖ stands for the diagonal matrix whose diagonal elements are{‖ãi‖, i ∈ Q⋆\Q}.

Proof: The result directly follows from̃abad = ‖ãbad‖ b̃bad, b̃i = ãi/‖ãi‖ for i ∈ Q⋆\Q, and from

Lemma 9.

Proof of Lemma 1:The result is obvious wheñabad = 0. It follows from Lemmas 9 and 10 when

ãbad 6= 0.

APPENDIX C

TECHNICAL RESULTS NEEDED FOR THE PROOF OFLEMMA 2

With simplified notations, the expression (19) ofFOLS
Q⋆,Q(abad) reads

ϕ(η) , |
√

1− η2 − Cη|+ Dη (25)

whereη ∈ (0, 1] andC andD take the form

C =
N

∑

i=1

βiχi

ηi
(26)

D =
N

∑

i=1

|βi|
ηi

(27)

with N > 1, β = [β1, . . . , βN ] ∈ RN , and for all i, ηi ∈ (0, 1] and χi ∈ [−1, 1] satisfy η2
i + χ2

i = 1.

Note that we can freely assume from (19) thatχQ,Q′

bad = ±
√

1−
(

ηQ,Q′

bad

)2
> 0. WhenχQ,Q′

bad < 0, one

just needs to replaceabad by −abad, leading to the replacement ofβ by −β in (26) and (27).

The succession of small lemmas hereafter aims at minorizingϕ(η) for arbitrary values ofη, ηi, χi

andβ. They lead to the main minoration result of Lemma 14.

Lemma 11 Let β ∈ RN .

If C 6 0, ∀η ∈ [0, 1], ϕ(η) > 1 + (‖β‖1 − 1)η. (28)

If C > 0, min
η∈[0,1]

ϕ(η) = min
(

1,D/
√

1 + C2
)

. (29)
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Proof: We first study the functionf(η) ,
√

1− η2 − Cη. We havef(0) = 1, f(1) = −C, andf

is concave on[0, 1]. To minorizeϕ(η) = |f(η)| + Dη, we distinguish two cases depending on the sign

of C.

When C 6 0, f(η) > 0 for all η. Since|f | = f is concave, it can be minorized by the secant line

joining f(0) andf(1), therefore,|f(η)| > 1− (C + 1)η > 1− η. (28) follows fromϕ(η) = |f(η)|+ Dη

andD > ‖β‖1 (becauseηi are all in (0, 1]).

WhenC > 0, f(η) > 0 for η ∈ [0, z] and< 0 in (z, 1], with z , 1/
√

1 + C2. D > 0 andf(z) = 0

imply that for η > z, ϕ(η) > ϕ(z), thus the minimum ofϕ is reached forη ∈ [0, z]. On [0, z],

ϕ(η) = f(η) + Dη is concave, therefore the minimum value is eitherϕ(0) = 1 or ϕ(z) = Dz.

The following two lemmas are simple inequalities linkingC, D, and‖β‖1.

Lemma 12 ∀β ∈ RN , D2 − C2 > ‖β‖21.

Proof: By developingC2 andD2 from (26) and (27), we get

C2 =
∑

i

β2
i χ2

i

η2
i

+
∑

i6=j

βiβjχiχj

ηiηj

D2 =
∑

i

β2
i

η2
i

+
∑

i6=j

|βiβj |
ηiηj

Since∀i, η2
i + χ2

i = 1, we have:

D2 − C2 =
∑

i

β2
i +

∑

i6=j

|βiβj |
ηiηj

(1− σiσjχiχj)

=

[

∑

i

|βi|
]2

+
∑

i6=j

|βiβj |
[

1− σiσjχiχj

ηiηj
− 1

]

(30)

with σi = sgn(βi) = ±1 if βi 6= 0, andσi = 1 otherwise. Becauseηi andχi satisfyη2
i + χ2

i = 1, they

rereadηi = cos θi and χi = sin θi, so ηiηj + σiσjχiχj = cos(θi ± θj) 6 1 which proves that the last

bracketed expression in (30) is non-negative. Finally, (30) yields D2 − C2 > ‖β‖21.

Lemma 13 ∀β ∈ RN , ‖β‖1 6 1 implies that‖β‖1 6 D/
√

1 + C2.

Proof: (1 + C2)‖β‖21 6 ‖β‖21 + C2 6 D2 according to Lemma 12.

We can now establish the main lemma that will enable us to conclude that if FOLS
Q⋆,Q(abad) < 1,

FOLS
Q⋆,Q′(abad) is monotonically nonincreasing whenQ′ ) Q is growing.

Lemma 14 ∀β ∈ RN , ∀η ∈ [0, 1], ϕ(η) < 1 implies that‖β‖1 6 ϕ(η).
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Proof: Apply Lemma 11.

WhenC 6 0, (28) andϕ(η) < 1 imply that (‖β‖1 − 1) < 0. Sinceη 6 1, the lower bound of (28) is

larger than1 + (‖β‖1 − 1) = ‖β‖1.

When C > 0, (29) andϕ(η) < 1 imply that the minimum value ofϕ on [0, 1] is D/
√

1 + C2 < 1,

thenD2 − C2 < 1. Lemmas 12 and 13 imply that‖β‖1 6 1 and then‖β‖1 6 D/
√

1 + C2 6 ϕ(η).

APPENDIX D

BEHAVIOR OF OXX WHEN THE INPUT VECTOR IS SLIGHTLY MODIFIED

Lemma 15 Let y1 andy2 ∈ Rm. Assume that the selection rule(1)-(2) of Oxx withy1 as input is strict

in the firstj > 0 iterations (the maximizer is unique). Then, whenε > 0 is sufficiently small, Oxx selects

the same atoms withy(ε) = y1 + εy2 as withy1 in the firstj iterations.

Proof: We show by recursion that there existsεl > 0 such that the firstl iterations of Oxx (l =

1, . . . , j) with y(ε) andy1 as inputs yield the same atoms wheneverε < εl.

Let l > 1. We denote byQ the subset of cardinalityl − 1 delivered by Oxx withy1 as input after

l− 1 iterations. By assumption,Q is also yielded withy(ε) whenε < εl−1. Sincey(ε) = y1 + εy2, the

Oxx residual takes the formrQ = r1 + εr2 whererQ, r1 andr2 are obtained by projectingy(ε), y1,

andy2, respectively ontospan(AQ)⊥. Hence, fori /∈ Q,

〈rQ, c̃i〉 = 〈r1, c̃i〉+ ε〈r2, c̃i〉. (31)

Let anew denote the new atom selected by Oxx in thel-th iteration withy1 as input and letinew refer

to the corresponding index in the dictionary. By assumption, the atom selection is strict,i.e.,

|〈r1, c̃new〉| > max
i6=inew

|〈r1, c̃i〉|. (32)

Taking the limit of (31) whenε → 0, we obtain that for anyi, |〈rQ, c̃i〉| tends toward|〈r1, c̃i〉|. (32)

implies that whenε < εl−1 is sufficiently small,

|〈rQ, c̃new〉| > max
i6=inew

|〈rQ, c̃i〉|

by continuity of |〈rQ, c̃i〉| (i 6= inew) and |〈rQ, c̃new〉| with respect toε. Thus, Oxx withy(ε) as input

selectsanew in the l-th iteration.
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