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Sparse recovery conditions for Orthogonal

Least Squares

Charles Soussén Rémi Gribonval, Jérdome ldier, and Cédric Herzet

Abstract

We extend Tropp’s analysis of Orthogonal Matching Purs@M@) using the Exact Recovery
Condition (ERC) [1] to a first exact recovery analysis of @ghnal Least Squares (OLS). We show that
when ERC is met, OLS is guaranteed to exactly recover the amkrsupport. Moreover, we provide
a closer look at the analysis of both OMP and OLS when ERC isfuléitied. We show that there
exist dictionaries for which some subsets are never reedvweith OMP. This phenomenon, which also
appears with/; minimization, does not occur for OLS. Finally, numericaperments based on our

theoretical analysis show that none of the considered ithgos is uniformly better than the other.

Index Terms
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. INTRODUCTION

Classical greedy subset selection algorithms include,noyeasing order of complexity: Matching
Pursuit (MP) [2], Orthogonal Matching Pursuit (OMP) [3] a@dthogonal Least Squares (OLS) [4, 5].
OLS is indeed relatively expensive in comparison with OMiRceiOMP performs one linear inversion
per iteration whereas OLS performs as many linear invessamthere are non-active atoms. We refer
the reader to the technical report [6] for a comprehensiveewe on the difference between OMP and
OLS.

OLS is referred to using many other names in the literatures known as forward selection in
statistical regression [7] and as the greedy algorithm@BHer Recursive Matching Pursuit (ORMP) [8]
and Optimized Orthogonal Matching Pursuit (OOMP) [9] in thignal processing literature, all these
algorithms being actually the same. It is worth noticingtttlze above-mentioned algorithms were
introduced by following either an optimization [4, 7] or anttmgonal projection methodology [5], or
both [8,9]. In the optimization viewpoint, the atom yieldithe largest decrease of the approximation
error is selected. This leads to a greedy sub-optimal dlguridedicated to the minimization of the
approximation error. In the orthogonal projection viewpoithe atom selection rule is defined as an

extension of the OMP rule: the data vector and the dictioaswyns are being projected onto the subspace
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that is orthogonal to the span of the active atoms, anchtivenalizedprojected atom having the largest
inner product with the data residual is selected. As the raunob active atoms increases by one at any

iteration, the projections are done on a subspace whosendioreis decreasing.

A. Main objective of the paper

Our primary goal is to address the OLS exact recovery argafy@in noise-free data and to investigate
the connection between the OMP and OLS exact recovery ¢onslitin the literature, much attention
was paid to the exact recovery analysis of sparse algorithatsare faster than OL®.g.,thresholding
algorithms and simpler greedy algorithms like OMP [10]. Botthe best of our knowledge, no exact
recovery result is available for OLS. In their recent paddr][ Davies and Eldar mention this issue and

state that the relation between OMP and OLS remains unclear.

B. Existing results for OMP

Our starting point is the existing analysis of OMP whosedtrte is somewhat close to OLS. Exact
recovery studies rely on alternate methodologies.

Tropp’s Exact Recovery Condition (ERC) [1] is a necessay surfficient condition of exact recovery
in a worst case analysis. On the one hand, if a subsét afoms satisfies the ERC, then it can be
recovered from any linear combination of theatoms in at mosk steps. On the other hand, when the
ERC is not satisfied, one can generate a counterexameleda specific combination of thé atoms)
for which OMP fails,i.e., OMP selects a wrong atom during its fifstiterations. Specifically, the atom
selected in thdirst iteration is a wrong one.

Davenport and Wakin [12] used another analysis to show thdP Qields exact support recovery
under certain Restricted Isometry Property (RIP) assuwmptiActually, the ERC necessarily holds when
Davenport and Wakin’s condition is fulfilled since ERC is a@ssary and sufficient condition of exact

recovery.

C. Generalization of Tropp’s condition

We propose to extend Tropp’s condition to OLS. We remark thatvery first iteration of OLS is
identical to that of OMP: the first selected atom is the one sehioner product with the input vector is
maximal. Therefore, when ERC does not hold, the counterpiafor which the first iteration of OMP

fails also yields a failure of the first iteration of OLS. Henegne cannot expect to derive an exact recovery
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condition for OLS which is weaker than ERC at the first itevatiWe show that the ERC indeed ensures
the success of OLS.

We further address the case where ERC does not had,the first iteration of OMP/OLS is
not guaranteed to succeed but nevertheless succeeds “hge¢h&Ve derive weaker conditions which
guarantee that an exact support recovery occurs in the guéskiterations. These extended recovery
conditions coincide with ERC at the first iteration but diffeom it from the second iteration.

In summary, our main results state that:

o Tropp’s ERC is a sufficient condition of exact recovery for ®(Theorem 2).

« When the early iterations of Oxx have all succeeded, we ddrio sufficient conditions, named

ERC-OMP and ERC-OLS, for the recovery of the remaining tricena (Theorem 3).

« Moreover, we show that our conditions are, in some sensessacy (Theorems 4 and 5).

D. Organization of the paper

In Section Il, we recall the principle of OMP and OLS and thaterpretation in terms of orthogonal
projections. Then, we properly define the notions of sudoéssipport recovery and support recovery
failure. Section Il is dedicated to the analysis of OMP andS@t any iteration where the most technical
developments and proofs are omitted for readability re;as®hese important elements can be found
in the appendix section A. In Section IV, we show using Mon@&l€ simulations that there is no
systematic implication between the ERC-OMP and ERC-OLSlitimms but we exhibit some elements

of discrimination between OMP and OLS.

[I. NOTATIONS AND PREREQUISITES

The following notations will be used in this papeér., .) refers to the inner product between vectors,
and||.|| and||.||; stand for the Euclidean norm and the norm, respectively.” denotes the pseudo-
inverse of a matrix. For a full rank and undercomplete matiie haveX = (X*X)~!X* where.!
stands for the matrix transposition. Whéh is overcompletespark(X') denotes the minimum number
of columns fromX that are linearly dependent [13]. The lett@r denotes some subset of the column
indices, andX is the submatrix ofX gathering the columns indexed 1&y. Finally, Po = XQXTQ
and PQl = I — Py denote the orthogonal projection operatorsspan(Xo) andspan(Xg)*t, where
span(X) stands for the column span &, span(X)~ is the orthogonal complement span(X) and

I is the identity matrix whose dimension is equal to the nundferows in X.
1In the rest of the paper, we will use the notation Oxx whenrriafg to properties that apply to both OMP and OLS.
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A. Subset selection

Let A = [a4,...,a,]| denote the dictionary gathering unitary atomse R™. A is a matrix of size
m x n. Assuming that the atoms are unitary is actually not necg$sa OLS as the behavior of OLS is
unchanged whether the atoms are normalized or not [6]. Ordh&ary, OMP is highly sensitive to the
normalization of atoms since its selection rule involves tlner products between the current residual
and the non-selected atoms.

We consider a subse®* of {1,...,n} of cardinality ¥ £ Card [Q*] < min(m,n) and study the
behavior of OMP and OLSor all inputsy € span(Ag-), i.e., for any combinationy = Ao.t where
the submatrixAo- is of sizem x k and the weight vectot € R*. The k atoms{a;, i € Q*} indexed
by O* will be referred to as the “true” atoms while for the remamitfwrong”) atoms{a;, i ¢ Q*},
we will use the generic notatiody,.q. The forward greedy algorithms considered in this papet &tam
the empty support and select a new atom per iteration. Atrirediate iterationg € {0,...,k— 1}, we
denote byQ the current support (witiCard [Q] = 7).

Throughout the paper, we make the general assumptionAkat is full rank. It is important to
mention that this assumption does not guarantee that thesemationy = Ag-t is unique,i.e., there
may be anothek-term representatioy = Agt’ where Ao includes some wrong atoms,.q. The
stronger assumptiospark(A) > 2k is a necessary and sufficient condition for uniqueness of kany
term representation [13]. Therefore, whesmrk(A) > 2k, the selection of a wrong atom by a greedy
algorithm disables &-term representation aj in k steps [1]. We make the weak assumption tAaf-
is full rank because it is sufficient to elaborate our exacbvery conditions under which no wrong atom

is selected in the first iterations.

B. OMP and OLS algorithms

The common feature between OMP and OLS is that they both nperé;m orthogonal projection
whenever the suppo is updated: the data approximation red@sy and the residual error is defined
by

ro £y~ Poy = Pgy.
Let us now recall how the selection rule of OLS differs fronattiof OMP.
At each iteration of OLS, the atowa, yielding the minimum least-square EFFWQU{Z}HQ is selected:

(O € argmin |[rgug ||
1¢Q

October 28, 2011 DRAFT
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andn — Card [Q] least-square problems are being solved to comﬁm@{i}H? foralli ¢ Q (%) [4]. On

the contrary, OMP adopts the simpler rule

(OMP ¢ arg max|(rg, a;)|

i¢Q
to select the new atom, and then solves only one least-square problem to comiptie;||* [6].
Depending on the application, the OMP and OLS stopping ro#s involve a maximum number of
atoms and/or a residual threshold. Note that when the detaaise-free (they read as= Ao-t) and
no wrong atom is selected, the squared effiop||? is equal to O after at most iterations. Therefore,

we will consider no more thah iterations in the following.

C. Geometric interpretation

A geometric interpretation in terms of orthogonal project will be useful for deriving recovery
conditions. It is essentially inspired by the technicalmtjpf Blumensath and Davies [6] and by Davenport
and Wakin's analysis of OMP under the RIP assumption [12].

We introduce the notatio; = Péai for the projected atoms ontgan(Ag)+ where for simplicity,
the dependence upo@ is omitted. When there is a risk of confusion, we will u&? instead ofa,;.
Notice thata; = 0 if and only if a; € span(Ag). In particular,a; = 0 for i € Q. Finally, we define the

normalized vectors

a;/|ail if a; #0,

o
|

0 otherwise

Again, we will usei;l.Q when there is a risk of confusion.

We now emphasize that the projected atoins(or b;) play a central role in the analysis of both
OMP and OLS. Because the residwal = P3y lays inspan(Ag)*, (ro,a;) = (ro,a;) and the OMP
selection rule rereads:

(OMP argmax |(ro, a;)| (@H)

i¢Q
whereas for OLS, minimizind|ro.;;[|* with respect toi ¢ Q is equivalent to maximizing/rol|* —

Iroug |2 = (ro,b;)? (seee.g.,[9] for a complete calculation):

(O ¢ argmax |(ro, b;)|. (2)

i¢Q

20ur purpose is not to focus on the OLS implementation. Howeeé us just mention that in the typical implementation,

the least-square problems are solved recursively usingsthen Schmidt orthonormalization procedure [4].
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We notice that (1) and (2) only rely on the vectats anda; belonging to the subspaegan(Ag)™’.
OMP maximizes the inner produ¢tro, a;)| whereas OLS minimizes the angle betweef and a;
(this difference was already stressed and graphicallgtitied in [6]). When the dictionary is close to
orthogonal,e.g., for dictionaries satisfying the RIP assumption, this doesmake a strong difference
since||a;|| is close to 1 for all atoms [12]. But in the general cage;| may have wider variations

between 0 and 1 leading to substantial differences betweeidéhavior of OMP and OLS.

D. Definition of successful recovery and failure
Throughout the paper, we will use the unifying notation

a; for OMP,

b, for OLS

for statements that are common to OMP and OLS.

~ A
C;, =

We first stress that in special cases where the Oxx seleatleryields multiple solutions including a

wrong atom,i.e., when

max |{(ro,¢;)| = max|(rg, ¢;)|, 3
i |irg.&)| = max|(ro. ) ©

we consider that Oxx automatically makes the wrong decisioopp used this convention for OMP and
showed that in the limit case where the upper bound on his E&@ition (see Section Ill-A) is reached,
the limit situation (3) occurs, hence a wrong atom is setkatethe first iteration [1].

Let us now properly define the notions of successful supgatvery and support recovery failure.

Definition 1 [Successful recoveryAssume thatdo- is full rank. Oxx withy € span(Ag-) as input
succeeds if and only if there exists< Card [Q*] such that all firstj iterations of Oxx select atoms in

Q* and the residuakg is equal to0 after thej-th iteration.

In other words, when a successful recovery occurs, the syiided by Oxx satisfie®, € Q C O*
where Q,, is the “sparsest subsef’e., the subset o©* corresponding to the nonzero weiglt's in the
decompositiony = Ag-t. When allt;’s are nonzero@,, identifies with Q* and a successful recovery
coincides with the exact recovery ¢* in k iterations.

The word “failure” refers to the exact contrary of succeksfaovery.

Definition 2 [Failure] Assume thatAo- is full rank. Oxx withy € span(Ag-) as input fails when at
least one wrong atom is selected during the firsterations. In particular, Oxx fails wheii3) occurs

with rg # 0.
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IIl. OVERVIEW OF OUR RECOVERY ANALYSIS OFOMP AND OLS

In this section, we present our main concepts and resulesdegy the sparse recovery guarantees with
OLS, their connection with the existing OMP results and tleg mesults regarding OMP. For clarity
reasons, we place the technical analysis including mogte@ptoofs in the main appendix section A.

Let us first recall Tropp’s ERC condition for OMP which is odarting point.

A. Tropp’s ERC condition for OMP

Theorem 1 [ERC is a sufficient recovery condition for OMP and a necesgarondition at the first

iteration [1, Theorems 3.1 and 3.10]f Ao- is full rank and
Fo:(abaa) £ rgbai(HATQ*abadul <1, ERC(A, Q%)

then OMP succeeds for any inpyte span(Ag-). Furthermore, when ERQY, Q*) does not hold, there
existsy € span(Ag-) for which someny,,q4 is selected at the first iteration of OMP. Wharark(A) > 2k,

this implies that OMP cannot recover the (unigue)erm representation of.

Note that ERCA, 9*) only involves the dictionary atoms since it results from arst case analysis: if

ERC(A, Q*) holds, then a successful recovery occurs wjte: Ag-t whatevert ¢ RF.

B. Main theorem

A theorem similar to Theorem 1 applies to OLS. This is our nm@ntribution.

Theorem 2 [ERC is a sufficient recovery condition for OLS and a necesgarondition at the first
iteration] If Ao- is full rank and ERCA, Q*) holds, then OLS succeeds for any ingu& span(Ag-).
Furthermore, when ERQY{, Q*) does not hold, there existg € span(Ag-) for which someay,q is
selected at the first iteration of OLS. Whepark(A) > 2k, this implies that OLS cannot recover the

(unique) k-term representation of.

The necessary condition result is obvious since the very ifgsation of OLS coincides with that of
OMP and ERC is a necessary condition for OMP. The core of ontribmition is the proof that ERC is
a sufficient condition for the exact recovery with OLS. We niomvoduce the main concepts on which

our OLS analysis relies. They also lead to a more preciseysisadf OMP from the second iteration.
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C. Main concepts

Let us keep in mind that ERC is a worst case necessary comditidhe first iteration But what
happens when the ERC is not met but nevertheless, thejfittstrations of Oxx selecy true atoms
(j < k)? Can we characterize the exact recovery conditions atjthel)-th iteration? We will answer
to these questions and provide:

1) an extension of the ERC condition to thh iteration of OMP;

2) a new necessary and sufficient condition dedicated tg-theiteration of OLS.

This will allow us to prove Theorem 2 as a special case of ttterl@ondition when; = 0.

In the following two paragraphs, we introduce useful notagi for a single wrong atom,,,q and then
define our new exact recovery conditions by consideringhalwrong atoms togethe@ plays the role
of the subset found by Oxx after the firsiterations.

1) Notations related to a single wrong atorfor Q C Q*, we define:

FSMQP(abad) £ Z |(ATQ*abad)(Z)| (4)
1€Q*\Q
a; )
P8 (an) £ Y 1 | (AL ) ) ©)
1€Q*\Q “

whenay,q # 0 and ng"g(abad) = 0 whenay.q = 0 (we recall thata; = Pga; andaya = Pgaiad
depend on@). Up to some manipulations on orthogonal projections, (@ &) can be rewritten as

follows.

Lemma 1 Assume thatd o is full rank. For @ C 9%, F9ME (anaq) and FQM (apaq) also read
Fg*l\,/g(abad) = HATQ*\Q&badul (6)
FS}:SQ(abad) = ||B1é*\g5bad‘|1 (7)

where the matricesdg. o = {a;, i € Q*\Q} and Bg.\g = {a;, i € Q*\Q} of sizem x (k — j) are

full rank.

Lemma 1 is proved in Appendix B.
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2) ERC-Oxx conditions for the whole dictionarWe define four binary conditions by considering all

the wrong atoms together:

o PG 8 o) < ERC-OMPA, 0", )
max PG5 (@) < 1 ERC-OLS@, ©*,0)
e mas PGS (an) < 1 ERC-OMP@, ©*..)
Card[Q]=j
max  max FG5(anea) < 1 ERC-OLS@, Q7. j)
Card[Q]=j

We will use the common notatiorﬁgf‘g(abad), ERC-Oxx@A, Q*, Q) and ERC-OxxA, Q*, j) for state-

ments that are common to both OMP and OLS.

Remark 1 Fgf\flwp(abad) and Fgﬁa(abad) both rereadFg- (apaq) = HATQ*abmH1 sincea’ reduces to

a; which is unitary. Thus, ERC-OxA( Q*, #) and ERC-Oxx4, Q*,0) all identify with ERCA, O*).

D. Sufficient conditions of exact recovery at any iteration

The sufficient conditions of Theorems 1 and 2 reread as theiapease of the following theorem
where Q = ().

Theorem 3 [Sufficient recovery condition for Oxx afterj successfuliterations] Assume thatdo- is
full rank. If Oxx withy € span(Ag-) as input select® C Q* and ERC-Oxx4, Q*, Q) holds, then Oxx

succeeds in the sense of Definition 1.

The following corollary is a straightforward adaptationTdieorem 3 to ERC-Ox4, 9%, ).

Corollary 1 Assume thatdo. is full rank. If Oxx withy € span(Ag.) as input selects true atoms

during the firstj > 0 iterations and ERC-Ox¥, Q*, j) holds, then Oxx succeeds.

The key element which enables us to establish Theorem 3 isuaisiee relation IinkingFoi"Q(abad)
with F‘Q)j"g,(abad) when Q is increased by one element @\ Q, resulting in subse®’. This leads
to the main technical novelty of the paper, stated in Lemmaee @Appendix A-A). From the thorough
analysis of this recursive relation, we elaborate the ¥alig lemma which guarantees the monotonic

decrease of §% (apaa) WhenQ C Q* is growing.
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Lemma 2 Assume thatd - is full rank. LetQ C Q' C Q*. For any ayd,

Fg}\f[g/(abad) < Fg*l\jg)(abad) (8)

FQF8(apad) < 1= FIH (abad) < F“E(@bad) 9)

We refer the reader to Appendix A-A for the proof of Lemmas @ &n and then Theorem 3.

E. Necessary conditions of exact recovery at any iteration

We recall that ERC is a worst case necessary condition giesarior the selection of a true atom
by OMP and OLS in their very first iteration. We provide exteddresults stating that ERC-Oxx are
worst case necessary conditions when the first iteratio®@xxf have succeeded, up to a “reachability

assumption” defined hereafter, for OMP.

Definition 3 [Reachability] Assume thatAo is full rank. Q is reachable if and only if there exists an
inputy = Aot wheret; # 0 for all 4, for which Oxx recover® in Card [Q] iterations. Specifically, the

selection rule(1)-(2) always yields a unique maximum.

We start with the OLS condition which is simpler.

1) OLS necessary condition:

Theorem 4 [Necessary condition for OLS aftey iterations] Let Q C Q* be a subset of cardinality.
Assume thatd o- is full rank andspark(A) > (j +2). If ERC-OLSA, Q*, Q) does not hold, then there
existsy € span(Ag-) for which OLS select® in the first; iterations and then a wrong atomay,q in

the (j + 1)-th iteration.

Theorem 4 is proved in Appendix A-B. An obvious corollary da@ obtained by replacing@ with j
akin to the derivation of Corollary 1 from Theorem 3. From now, such obvious corollaries will not
be explicitly stated.

2) Reachability issuesThe reader may have noticed that Theorem 4 implies ¢hatn be reached

by OLS at least for some inpuf € span(Ag-). In Appendix A-B, we establish a stronger result:

Lemma 3 (Reachability by OLS) Any subsetQ with Card [Q] < spark(A) — 2 can be reached by
OLS with some inpuy € span(Ap).
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The assumptioard [Q] < spark(A) — 2 enables us to guarantee that the OLS selection rule (2) alway
yields a uniqgue maximum (see Appendix A-B).

Perhaps surprisingly, the result of Lemma 3 does not remalid Yor OMP although it holds under
certain RIP assumptions [12, Theorem 4.1]. As shown in Exarhereafter, there are counterexamples
where Q cannot be reached by OMP not only fgre span(Ag) but also for anyy € R™. The same
somewhat surprising phenomenon of non-reachability atsurs with /; minimization, associated to
certain k-faces of the/; ball in R™ whose projection througld yields interior faces. This result is a

direct consequence of the Null Space Property [14].

Example 1 Consider the simple dictionary

costl; cosbq 0 0
A= | —sinf; sinf; cosbs cos 6
0 0 sin 92 —sin 92

with Q@ = {1,2}. Setf, to an arbitrary value in(0,7/2). Whené, # 0 is close enough to 0, OMP can
never reachQ in two iterations (specifically, whep € R? is proportional to neithera; nor as, a3 or

a4 is selected in the first two iterations).

This result is proved in Section A-B3. Although in Examplealsubset of cardinality 2 can never be
reached, we remark that for undercomplete dictionarieg,saibset of cardinality 2 can be reached for
somey € R™.

3) OMP necessary conditions including reachability asstioms: Our necessary condition for OMP

is somewhat tricky because we must assume ¢hat reachable by OMP using some inputipan(Ao).

Theorem 5 [Necessary condition for OMP aftey iterations] Assume that o- is full rank andQ C O*
is reachable. If ERC-OMI4, Q*, Q) does not hold, then there exigisc span(Ag-) for which OMP

selectsQ in the first; iterations and then a wrong atoia,.q in the (5 + 1)-th iteration.

Theorem 5 is proved together with Theorem 4 in Appendix A-BttiSg aside the reachability issues,
the principle of the proof is common to OMP and OLS. We proctedproof of the sufficient condition
(Theorem 3) backwards, as was done in [1, Theorem 3.10] icdkseQ = 0.

In the special case where= 1, Theorem 5 simplifies to a corollary similar to the OLS neeegs
condition (Theorem 4) because any subgebf cardinality 1 is obviously reachable using the atom

indexed byQ as input vector.
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Corollary 2 [Necessary condition for OMP in the second iteratiodjssume thatd o is full rank and
let i € O*. If ERC-OMPA, Q*, {i}) does not hold, then there exisjse span(Ag-) for which OMP

selectsa; and then a wrong atona,,.q in the first two iterations.

4) Discrimination between OMP and OLS at theh iteration: We provide an element of discrimi-
nation between OMP and OLS when their fikst- 1 iterations have selected true atoms, so that there
is one remaining true atom which has not been chosen. Letsisofiserve that in Example 1, OMP is
not guaranteed to select the second true atom wheor a; has already been chosen. This is actually

a major difference with OLS.

Theorem 6 [Guaranteed success of the-th iteration of OLS] If [A g+, apag] is full rank for anyay,.q,
then ERC-OLS, OQ*, k — 1) is true. Thus, if the firsk — 1 iterations of OLS select true atoms, the last

true atom is necessarily selected in theh iteration.

This result is straightforward from the definition of OLS inet optimization viewpoint: “OLS selects
the new atom yielding the least possible residual” and tinear& that in thek-th iteration, the last true
atom yields a zero valued residual. Another (analyticabppof Theorem 6, given below, is based on the
definition of ERC-OLSA, Q*, k — 1). It will enable us to understand why the statement of Theoée
is not valid for OMP.

Proof: Assume that OLS vyields a subs@tC O* after k — 1 iterations. Leta,i; denote the last
true atom so thatdo- = [Ag, aj.st] UP t0O Some permutation of columns. Sin@*\g reduces tci)gst

is unitary, the pseudo-inversg!,. , takes the formb2,,]". Finally, (7) simplifies to:

and becausé? I 2.

last
FM (anaa) = (B2, b2 1) < 1 (10)

since both vectors in the inner product are either unitargapral to0. Apply Lemma 8 in Appendix B:
since[Aog-, anaa) is full rank, [b2. .52 ] is full rank, thus (10) is a strict inequality. [

last”’
Similar to the calculation in the proof above, we rewr]'{”g}\g(abad) defined in (6):
~Q =0
FO*MP(abad) — |<a1ast’ abad>| ) (11)
© a2
last
However, we cannot ensure thﬂg}\g(abad) < 1 sincea? are not unitary vectors.
To further distinguish OMP and OLS, we elaborate a “bad regpeondition” under which OMP is

guaranteed to fail in the sense th@at is not reachable.
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Theorem 7 [Sufficient condition for bad recovery with OMPAssume thatd o- is full rank. If

Qnéiél* IzIzljdX Fggg(abad) > 1, BRC-OMPA, 9%)
Card[é]:k—l

then Q* cannot be reached by OMP using any inputsjfan(Ag-).

Specifically, BRC-OMPA, O*) guarantees that a wrong selection occurs atkttle iteration when the
previous iterations have succeeded.

Proof: Assume that for somg € span(Ag-), the firstk — 1 iterations of OMP succeedg., they
selectQ ¢ Q* of cardinalityk — 1. Let a,5; denote the last true atomAp- = [Ag, ajast] UP tO Some
permutation of columns). The residua) yielded by OMP aftek — 1 iterations is obviously proportional
to a2, .

BRC-OMP(A, Q*) implies that ERC-OMPA, O*, Q) is false, thus there exists,.q ¢ span(Ag) such
that FQME (avaa) > 1. According to (11)(a,, a2l > lal,|I? thus |(re,a)| > |(ro,ag,)|
We conclude thaa,,s; cannot be chosen in theth iteration of OMP. [ |

Although BRC-OMPA, Q*) may appear restrictive (as a minimum is involved in the-hefbd side),
we will see in Section IV that it may frequently be met, evenewhhe atoms ofA are not strongly

correlated.

IV. EMPIRICAL COMPARISON OF THEOMP AND OLS EXACT RECOVERY CONDITIONS

The purpose of this section is to test whether there is sonséemspatic implication between the
conditions ERC-OMPA, 9*, Q) and ERC-OLSA, Q*, Q), and between ERC-OMHE(, Q*, j) and ERC-
OLS(A, 9%, j). We setj = Card [Q] = 1. Additionally, we will emphasize the distinction betweeiVi®
and OLS by evaluating the bad recovery condition for OMP.sEhempirical comparisons involve Matlab

simulations with random dictionaries.

A. Comparison of the ERC-Oxx conditions

We compare ERC-OMK, Q*, Q) and ERC-OLSA, 9*, Q) for a common dictionary and a given
pair of subsets wher@ C Q* is of cardinality 1. As the recovery conditions take the foftfor all
anad, Fgfixg(abad) < 17, it is sufficient to just consider the case where there is wneng atoma,.q.
Therefore, we consider dictionarie$ with £ + 1 atoms, withk = Card [Q*]. Evaluating ERCA, O*),
ERC-OMP@A, Q*, Q) and ERC-OLSA, 9*, Q) amounts to computing’o- (apaq), ngfg’(abad) and

F§H3 (anaq) and to testing whether they are lower than 1.

October 28, 2011 DRAFT



SOUSSEN, GRIBONVAL, IDIER, HERZET: TECHNICAL REPORT

:
N
RIS

ERC(A,Q%)
o o
o o r

N
SN
T

-,
.
.

ERC(A,Q*

0.4%

0.8

1

1.2

ERC-OMP(A,Q*,Q)

14

1.6

1 15
ERC-OLS(A,Q*Q)

16

(a) FQ* (abad) VS F(Q)P/IQP

(abad). (b) FQ* (abad) VS F(Q)*LSQ (abad).

=
oo

=
o

=
N

=
N

[N

ERC-OMP(AQ*Q)
P

o
)

©
N

IRy

05 D 15
ERC-OLS(AQ*Q)

(C) FOMP (abad) VS Fg*L’SQ(abad).

Fig. 1. Comparison of the OMP and OLS exact recovery conuitidVe draw 10.000 Gaussian dictionaries of giz@x 11 and
setk = 10 so that there is only one wrong atam,.q. Q is always set to the first atonCérd [Q] = 1). Plot of (a) Fo+ (abaa)
VS FOMP (abad) (b) FQ* (abad) VS FOLS (abad) (C) FOMP (abad) VS FS*LSQ

for which Fox (abada) > 1.

(avaa). For the last subfigure, we keep the trials

Fig. 1 is a scatter plot of the three criteria for 10.000 GaumsdictionariesA of size100x 11, where the
elements ofA are drawn according to an i.i.d. Gaussian distribution. JutesetQ = {1} is systematically
chosen as the first atom old. Figs. 1(a,b) are in good agreement with Lemma 2: we verifjt th
FOME (abaq) < Fo: (anaa) whether ERC holds or not, and thBE"Y (anad) < Fo: (apaa) Systematically
occurs only whenFo- (apaa) < 1. On Fig. 1(c) displaying"gM (abaa) VersusFH (apaa), we only
keep the trials for whichFg- (ap.qa) = 1, i.e., ERC(A, Q*) does not hold. Since both south-east and

north-west quarter planes are populated, we conclude #ititen OMP nor OLS is uniformly better. To
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BRC-OMP(A,Q%)

Fig. 2. Computation of the bad recovery condition BRC-OMPQ*) for Gaussian dictionaries of various sizgs, n). 1,000
trials are performed for each size, agd is always set to the first two atoms & 2). The grey levels in the image correspond

to the rate of guaranteed failurieg., the proportion of trials where BRC-OMRA(, Q*) holds.

be more specific, when ERC-OMR(Q*, Q) holds but ERC-OLSA, Q*, Q) does not, there exists an
inputy € span(Ag-+) for which OLS select® = {1} and then a wrong atom in the first two iterations
(Theorem 4). On the contrary, OMP is guaranteed perform actexecovery with this input according
to Theorem 3. The same situation can occur when invertingdres of OMP and OLS according to
Corollary 2 and Theorem 3.

We have compared ERC-OMR(Q*,1) and ERC-OLSA4, 9*,1) which take into account all the
possible subsets @@* of cardinality 1. Again, we found that when ER@(, Q*) is not met, it can occur
that ERC-OMPA, 9*, 1) holds while ERC-OLSA, O*, 1) does not andiice versa

Note that this analysis becomes more complex whlernd [Q] > 2 since ERC-OMPA, O*, Q) alone
is not a necessary condition for OMP anymore (Theorem 5 aigohies the assumption tha® is

reachable).

B. Discrimination at the second iteration

Because the above simulation cannot discriminate OMP an8, Qe consider the bad recovery
condition BRC-OMPA, 9*) under which OMP is guaranteed to fail whéniterations are performed.
Meanwhile, OLS recover®* at least for some input ispan(Ag-). Moreover, thek-th iteration of OLS
is guaranteed to succeed provided that the firstl iterations have succeeded according to Theorem 6.

We compute BRC-OMP4, Q*) in the casek = 2 for various dictionary sizes (see Fig. 2). We

October 28, 2011 DRAFT



SOUSSEN, GRIBONVAL, IDIER, HERZET: TECHNICAL REPORT 18

perform 1,000 trials per size@n,n) in which the elements oA are drawn according to an i.i.d. Gaussian
distribution andQ* is always set to the first two atoms. We notice that BRC-OMIRD*) may frequently
be met for overcomplete dictionaries, especially whenis low andn > m. Becausek = 2, OLS
performs at least as good as OMP: when the first iteration fcemto both algorithms) has succeeded,
OLS cannot fail according to Theorem 6 while OMP is guarashteefail in cases where the BRC holds.
This simulation can naturally be extended to the chse 2 but the conclusions differ. OLS is not
guaranteed to outperform OMP for agye span(Ao-), but when BRC-OMPA, Q*) is not met, OLS

recoversQ* for some inputs while OMP cannot for any input.

V. CONCLUSIONS

Our first contribution is an original analysis of OLS basedio& extension of Tropp’s ERC condition.
We showed that when ERC holds, OLS is guaranteed to yield act exipport recovery. Although OLS
has been acknowledged in several communities for two decadeh a theoretical analysis was lacking.
Our second contribution is a parallel study of OMP and OLS nmwhenumber of iterations have been
performed and true atoms have been selected. We found tllaém@®MP nor OLS is uniformly better.
In particular, we showed using simulated dictionaries thiaén the ERC is not met but the first iteration
(which is common to OMP and OLS) selects a true atom, there@uwater-examples for which OMP is
guaranteed to yield an exact support recovery while OLS dogsandvice versa

Finally, a few elements of analysis suggest that OLS behlagtisr than OMP. First, any subs@tcan
be reached by OLS using some inputsian(A o) while for some dictionaries, it may occur that some
subsets are never reached by OMP for gng R™. In other words, OLS has a stronger capability of
exploration. Secondly, when all true atoms except one haea lound by OLS and no wrong selection
occurred, OLS is guaranteed to find the last true atom in thewimg iteration while OMP may fail.

For realistic problems where the data are noisy and theodiaty is far from orthogonal, empirical
studies report that OLS usually outperforms OMP for a lamgenerical cost [9, 11]. In our experience,
OLS vyields a residual error which may be by far lower than tlaOMP after the same number of
iterations [15]. Moreover, it performs better support nggxies in terms of ratio between the number of
good detections and of false alarms [16]. We believe thatrélason why our exact recovery analysis
does not corroborate this trend is that it is essentiallyebasn a worst case analysis. An interesting
perspective will consist of a theoretical study in the ageraase in order to evaluate more thoroughly
the difference between OMP and OLS.
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APPENDIX A

NECESSARY AND SUFFICIENT CONDITIONS OF EXACT RECOVERY FO®MP AND OLS

This appendix includes the complete analysis of our OMP ah8 €covery conditions.

A. Sufficient conditions

We show that when Oxx happens to select true atoms duringaitg gerations, it is guaranteed to
recover the whole unknown support in the subsequent iterativhen the ERC-Ox¥, 9*, Q) condition
is fulfilled. We establish Theorem 3 whose direct consege@theorem 2 stating that when ERL(9*)
holds, OLS is guaranteed to succeed.

1) ERC-Oxx are sufficient recovery conditions at a givenaiien: We follow the analysis of [1,
Theorem 3.1] to extend Tropp’s exact recovery condition sofficient condition dedicated to thg+1)-

th iteration of Oxx.

Lemma 4 Assume thatdo- is full rank. If Oxx withy € span(Ag-) as input selectg true atoms
Q C 9* and ERC-Oxx4, 9*, Q) holds, then thegj + 1)-th iteration of Oxx selects a true atom.

Proof: According to the selection rule (1)-(2), Oxx selects a trtmmaat iteration(j + 1) if and

only if

(rg, &l
max;co\g [{T0; €i)|

maxi¢ o*

¢(ro) = <1 (12)

Let us gather the vector& indexed by: ¢ O* andi € Q*\Q in two matricesClq and CQ*\Q of

dimensionsn x (n — k) andm x (k — j), respectively. The condition (12) rereads:

s(ra) — JChuarol
Ve orale
o:\Q" CQlleo

Following Tropp’s analysis, we re-arrange the veatgr occurring in the numerator. Sineg, = PQLy

andy € span(Aq-), rg € span(Ag.\ o) = span(Cg.\o). We rewriterg as Py.\grg Where Pg.\ o
. . = - ~ = = t

stands for the orthogonal projection epan(Cg.\g): Pg\g = Pé*\g = (CQ*\QCTQ*\Q) . o(ro)

rereads ” ~ b A
3(ro) = H(CQ*\QCbad) CQ*\Q’“QHOO.

HCtQ*\QTQHoo
This expression can obviously be majorized using the maitobm:

(b(TQ) < H(CTQ*\Qébad)tHoo,oo- (13)
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Since the/,, norm of a matrix is equal to thé norm of its transpose ang. ||;; equals the maximum

column sum of the absolute value of its argument [1, Theoreth the upper bound of (13) rereads
||éTQ*\QébadH1,l = max ||éTQ*\Q&bad||l = max F®5 (apaa)

according to Lemma 1.

By definition of ERC-Oxx@, Q*, Q), this upper bound is lower than 1 thdgro) < 1. According
to (12), Oxx selects a true atom. [ |

2) Recursive expression of the ERC-Oxx formuld& elaborate recursive expressionsﬁlg*fxg(abad)
when Q is increased by one element resulting in the new su@s&t Q* (here, we do not consider the
case wher&' = O* sincngﬁz*(abad) is not properly defined, (4) and (5) being empty sums). We will
use the notation®’ = Q U {iyew } Whereiye, € 9*\Q anda,ey = a;,... To avoid any confusiong;
will be systematically replaced bfy? and d?/ to express the dependence up@rand Q’, respectively.
In the same wayb; will be replaced byb2 or b2 but for simplicity, we will keep the matrix notations
Bg.\o and Bg.\ o Without superscript;referring toQ and ', respectively.

Let us first linkb? to b2 whena? # 0.

Lemma 5 Assume thatdo is full rank and Q' = Q U {inew}. Then,span(Ag)* is the orthogonal
direct sum of the subspacegan(Ag )’ andspan(a<.,), and the normalized projection of any atom

a; ¢ span(Ag) takes the form:

b2 =2 bY +x>bL,, (14)
where
~ O
0,9’ Haz |
771‘ ’ = ~ € (0’ ]-]’ (15)
a2
X9 = (b2.b3.,). (16)
m29) + (x>?) =1 (17)

Proof: SinceQ C ', we havespan(Ag )+ C span(Ag)*. Becaused o is full rank, span(Ag )+
and span(Ag)* are of consecutive dimensions. Moreov@f,, = anew — Polnew € span(Ag) N

# 0 since Ao is full rank. As a vector ofpan(Ag/), a<,, is orthogonal to

new

span(Ag)t, andal

new

span(Ag/)*. It follows thatspan(a<,,) is the orthogonal complement epan(Ag )" in span(Ag)= .

new

The orthogonal decomposition af; = Péai reads:

al=a2 +(a2,b2,)b2

7 7 i ) “new/ “new
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since b2, is unitary. Replacinga® = ||a2||b2 anda® = HdQ'HB.Q' yields (14)-(16). Pythagoras’

new

theorem yields (17). The assumptian ¢ span(Ag/) implies thata "4 0, thean 2> 0. [ |

Lemma 6 Assume thatd - is full rank. LetQ C Q' C O* with Q' = QU {inew}- Then,span(BQ*\Q)
is the orthogonal direct sum @ban(BQ*\Q/) and span(b<

new )

Proof: According to Corollary 8 in Appendix BBQ*\Q andBQ*\Q, are full rank matrices, thus their
column spans are of consecutive cardinalities. Lemma &ssthatb , is orthogonal tospan(Ao )+,
thus it is orthogonal td2 € span(Ag/)* for all i € Q*\Q'. n
In the following lemma, we establish a link betweeﬁgXX (apaq) and FQ* o (@paq)- It is a simple
recursive relation in the case of OMP. For OLS, we cannotctliyerelate the two quantities but we

with respect toB! . b2

expressFS-Y (apad) = || BY 0\ %ad-

0\Q badHl

Lemma 7 Assume thatdo- is full rank. LetQ C @' C O* with Q' = Q U {ipew - Whenay,q ¢

span(Ag ),
FSNE (apaa) = FSME (@baa) + |( Q*abad)(inew)‘ (18)
OLS 20 _ ¢ B (TY| . oo Bt ()]
F55(@bad) = |Xpad ~ "bad Z 50 + Mpad Z ag o (19)
ieon\@ ieg\g i
wheren > and x> are defined in(15)-(16) and 8y, % £ Bl,., oby.

Proof: (18) straightforwardly follows from the definition (4) cﬂ’OMP(abad).
Let us now establish (19). We denote%*\g andPQ*\Q, the orthogonal projectors (Bpan(BQ*\Q)
andspan(Bg- \Q')- Becausepan(Bg: \o) is the orthogonal direct sum eban(Bg- \@’) andspan(b b))

(Lemma 6), we have the orthogonal decomposition:

S 19 P 71Q Q,Q'70
Pg\obyy,q = Po\o'bi,g + Xpaq Onew-

(14) yields
> 7 2,9 1 19’ Q,Q’
PQ*\Qbk?ad = Mhad PQ*\Q/bt?ad + Xpad br%w
(Pg-\o b2, = 0 according to Lemma 6) and then

> Q9 _ 99 Qr \Q Q,9'70
Pg\obp,q = Mhad Z Brad 2+ Xoag b
1€Q*\Q’

October 28, 2011 DRAFT



SOUSSEN, GRIBONVAL, IDIER, HERZET: TECHNICAL REPORT 22

by definition of 32", In the latter equation, we re-expres8 with respect tob2 using (14);

. - 00 Q*\Q’(i) B / / Q*\Q'(i)XQ,Q' B
Pg\oby g = Mg Z badQsz‘QJr {Xan{dQ _nb%dg Z badT/Z}t’r%w-
icgno i€Q"\Q' i
We conclude that#3"% (ana) = || BL., obil|, reads (19). ]

3) ERC is a sufficient recovery condition for OL$he key result of Lemma 2 (see Section IlI-D)
states thaF'g!"3 (an.a) is decreasing whe@ C Q* is growing provided thaF' g% (aiaq) < 1, and that
FS}‘%’ (an.q) is always decreasing.

Proof of Lemma 2: It is sufficient to prove the result wheflard [Q'] = Card [Q] + 1. The case
Card [Q'] > Card [Q] + 1 obviously deduces from the former case by recursion.

Let @ C @ C 9* with Card [Q'] = Card[Q] + 1. The result is obvious wheay,q € span(Ag):
apaq = 0 theanf‘,XQ,(abad) = 0. Whenay,,q ¢ span(Ag), (8) obviously deduces from (18). The proof
of (9) relies on the study of functiop(n) = |\/1——2 — Cn| + Dn which is fully defined in (25), (26)
and (27) in Appendix C. Because this study is rather techniea place it in Appendix C.

We notice thatFQ"%, (anaq) given in (19) takes the formp(n2s) where the variables occurring
in C and D (see (26) and (27)) are set f§ — Card [Q*\Q'], i — 2%, xi — x>¢, and3 —
sgn(xt%(?)ﬁ}id\g. Now, we invoke Lemma 14 in Appendix C: &3, (abaa) = Hﬁgd\ng plays
the role of || 8|1, F9"%(anaa) < 1 implies thatFSH, (anaa) < FQIg(anaa)- |

We deduce from Lemmas 2 and 4 that ERC-Q&xQ*, Q) are sufficient recovery conditions when
Q C 9* has been reached (Theorem 3).

Proof of Theorem 3: Apply Lemma 4 at each iteratiofi ...,k — 1 until the increased subs€&
matchesQ*. The ERC-Oxx@A, Q*, .) assumption of Lemma 4 is always fulfilled according to LenZna
[

Finally, we prove that ERC4, Q*) is a necessary and sufficient condition of successful gofor
OLS (Theorem 2).

Proof of Theorem 2:The sulfficient condition is a special case of Theorem 3Jot (). The necessary
condition identifies with that of Theorem 1 since ERC-OUSQ*, () simplifies to ERCA, Q*). [ |

B. Necessary conditions

We provide the technical analysis to prove that ERC-G¥@*, Q) is not only a sufficient condition
of exact recovery in the worst case whenC Q* has been reached, but also a necessary condition. We
will prove Theorems 4 and 5 (see Section Ill) generalizingpp's necessary condition [1, Theorem 3.10]

to any iteration of OMP and OLS.
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We proceed in two stages. In the first stage, we assume thategactly recover C Q* in j =
Card [Q)] iterations with some input vector Bpan(Ag). This reachability assumption allows us to carry

out a parallel analysis of OMP and OLS (subsection A-B1l)ilegdo the following proposition.

Proposition 1 [Necessary condition for Oxx afterj iterations] Assume thatdo. is full rank and
Q C Q* is reachable from an input iBpan(Ag) by Oxx. If ERC-Oxx4, Q*, Q) does not hold, then
there existsy € span(Ag-) for which Oxx select® in the first; iterations and then a wrong atom

apaq N the (5 + 1)-th iteration.

This proposition coincides with Theorem 5 in the case of OM#ereas for OLS, Theorem 4 does not
require the assumption th& is reachable.

The second stage investigates whether the reachabilityrgeton is automatically fulfilled or not (see
subsections A-B2 and A-B3 for OLS and OMP, respectively).

1) Parallel analysis of OMP and OLS: Proof of Proposition We proceed the proof of Lemma 4

backwards. By assumption, the right hand-side of inequéli8) is equal to
1(Ch oChaa) 0 = max FSZ5 (@pad) > 1.
QAbad ’

By definition of induced norms, there exists a vector R¥~7 satisfyingv # 0 and
= = t
H (CTQ*\QCbad) v”oo

[0l

= H(CTQ*\Qébad)tHoo,oo > 1. (20)
Define

The matrix inversion in (21) is well defined sin(zieQ*\Q is full rank (Corollary 3 in Appendix B) and
Co-\o = Ag\g OF Bg.\ g reads as the right product ef4., o with a nondegenerate diagonal matrix.
By taking into account thaﬁg*\g = PQLAQ*\Q, we obtain that
v =Ch.\ o Pay. (22)
Since the left hand-side of (20) identifies WMPQiy) where¢ is defined in (12), (20) yields:
max [(P39,6)| > ma P54, é)l. 23
Mﬁd( 29, Ci)l ieQ*i(QK 29, € (23)
Moreover, we havePng =# 0 according to (22) an@ # 0.
Now, let z € span(Ag) denote the input for which Oxx recoveed. According to Lemma 15 in

Appendix D, the firstj iterations of Oxx with the modified inpw = z + ¢y also selec© whene > 0

October 28, 2011 DRAFT



SOUSSEN, GRIBONVAL, IDIER, HERZET: TECHNICAL REPORT 24

is sufficiently small. BecausE’Qiy = sPQiy and (23) holds, thé; + 1)-th iteration of Oxx necessarily
selects a wrong atom. [ |

At this point, we have proved Theorem 5 which is relative to ®M

2) OLS ability to reach any subseln order to prove Theorem 4, we establish that any su@sean
be reached using OLS with some inppE span(Ag) (Lemma 3). To generatg, we assign decreasing
weight coefficients to the atomisz;, i € Q} with a rate of decrease which is high enough.

Proof of Lemma 3:Without loss of generality, we assume that the elemenig abrrespond to the
first j atoms.

Firstly, we define the vector§vy,...,v;} resulting from the orthogonalization diay,...,a;}: for
all i < j, we havespan(ay,...,a;) = span(vy,...,v;) wherev; = a; and fori > 1, v; is set to the
orthogonal projection of; ontospan(ar, ..., a; 1)*.

Secondly, for arbitrary values af, ...,c; > 0, we define the following recursive construction:

° Y1 = U1,

e Y=y +ev; forie{2,... 5}

(y; implicitly depends o, . .., ;) and sety = y;. We show by recursion that there exist...,e; > 0
such that OLS withy; as input successively seleais, .. ., a; during the firsti iterations (in particular,
the selection rule (2) always yields a unique maximum).

The statement is obviously true fgf = a;. Assume that it is true fog; 1 with somess, ..., g, 1 >0
(these parameters will remain fixed in the following). Aatiog to Lemma 15 in Appendix D, there exists
g; > 0 such that OLS withy; = y,_1 + &;v; as input selects the same atoms as wjth; during the
first i — 1 iterations,i.e., a1,...,a;_1 are successively chosen. At iteratignthe current active set thus

readsQ’ = {1,...,7 — 1} and the OLS residual correspondinggptakes the form
Ty = Pé'/’yi—l + €Z'Pé7’vi = £;v;

sincey;_1 € span(Ag/) andv; € span(Ag )*. By constructionp; is equal toa? = Pga;, thusrg
is proportional toa2 and then tob2'. Finally, the OLS criterion (2) is maximum for the atom and

the maximum value is equal férg, b2)| = |ro || sinceb? is of unit norm.

Finally, we show that no other atom yields this maximum valyeply Lemma 8 in Appendix B: the
full rankness ofA .,y (as a family of less thaspark(A) atoms) implies thafb?', b | is full rank,
thusb? andb? cannot be colinear. |

Using Lemma 3, Proposition 1 simplifies to Theorem 4 in whied assumption tha® is reachable

by OLS is omitted.
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Fig. 3. Example 1: drawing of the plasgan(a:)™". The tilde notation refers to the subsgt= {1}. When; is close to 0,
as is of very small norm since is almost equal ta;, while as anda4, which are almost orthogonal t®;, yield projections
as and a4 that are almost of unit norm. The anglé, as) and (a2, a4) tend tof; and —6; when6; — 0. The bullet and
square points correspond to positiansatisfying|(r, a2)| > |(r,as)| and|(r,az2)| > |{(r, a)|, respectively. These two cones

only intersect at- = 0, therefore OMP cannot successively selectanda. in the first two iterations.

3) OMP inability to reach some subsetSontrary to OLS, OMP may not reach some subsets as stated
in Example 1 in Section Ill. We now prove this result.
Proof of Example 1: Assume that OMP selects a true atom in the first iteration aBse there is
a symmetry between, andas, we can assume without loss of generality thatis selected. We show
thatag or a4 is necessarily selected in the second iteration.
As the atom dimension is: = 3, the residualr(;y lies in span(a;)* which is of dimension 2. The

simple projection calculation; = a; — (a;, a1)a; (the tilde notation implicitly refers t@ = {1}) leads

to:
sin 64 sin 64 cos 01 cos 05 sin 64 cos 0 cos 04
as =sin(201) | cos6, |, as = cos? 61 cos 0 and a4 = cos? 01 cos 0
0 sin 69 —sin 0y
It is noticeable that whe#n; is close to 0,|az|| = |sin(26,)| is small whileas and a, are almost of

unit norm, and the angleis, as) and (az, a4) tend tod, and —6, whend; — 0 (see Fig. 3 for a 2D
display in the planepan(a)*t).

It is easy to check that the set of pointss R? satisfying|(r, as)| > |(r,as)| is a 2D cone centered
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around the direction that is orthogonal & (dashed line in the south-east and north-west directions
in Fig. 3). Specifically, both plain lines delimiting this m® are orthogonal t@s + a> and as — as.
Similarly, the set of points: € R? satisfying|(r, a>)| > |(r,a4)| is another 2D cone centered around
the direction that is orthogonal t@,. When 6, is close to 0, both 2D cones only intersectrat= 0

(since their inner angle tends towards 0), thus
vr € R®\{0}, |(r, @2)| < max(|(r,a3)|,|(r, as)|).

We conclude thati, cannot be selected in the second iteration according to e @le (1). [ |

APPENDIX B

RE-EXPRESSION OF THEERC-OXX FORMULAS

In this appendix, we prove Lemma 1 by successively re-exmgs&g*\gdbad and BTQ*\QBbad. Let
us first show that whem o- is full rank, the matrices&Q*\Q and BQ*\Q are full rank. This result is

stated below as a corollary of Lemma 8.

Lemma 8 If QN Q' =0 and Ago is full rank, thenA§, and B, are full rank.

Proof: To prove thatAg, is full rank, we assume thaf, ,, ;> = 0 with «; € R. By definition
of ELJQ = Pgya; = aj — Poay, it follows that > jeo @ja; € span(Ag). Since Agug is full rank, we
conclude that alk;’s are 0.

The full rankness ofBg, directly follows from that ofA3, since for alli € @', b2 = a2/|a?|| is
colinear toa 2. -

The direct application of Lemma 8 to our context wifh = O*\ Q leads to the following corollary.
Corollary 3 Assume thatd o is full rank. For Q € Q*, Ag.\o and Byg.\ g are full rank.

Lemma 9 Assume that o is full rank. ForQ C Q*, ATQ*\dead = (ATQ*abad) where| denotes

1(Q*\Q)
the restriction of a vector to a subset of its coefficients.

Proof: The orthogonal decomposition @f,,q on span(Ag-) takes the form:
QApaq = Ao- (ATQ* abad) + PQl* Ahad-
Projecting ontaspan(Ag)*, we obtain

apad = Agn\0 (ATQ*abad)‘(Q*\Q) + Pg.abaa (24)
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(PgPg. = Pg. becausepan(Ag:)* C span(Ag)™t). Fori € Q*\Q, a; = a; — Pga,; € span(Ag.).
Thus, we havepan(Ag.\ o) C span(Ag:), and PZ.apa.q is orthogonal taspan(Ag.\ o). According to

Corollary S,AQ*\Q is full rank. It follows from (24) thatATQ*\Q&bad = (ATQ*abad)‘(Q*\Q). [

Lemma 10 Assume thatd . is full rank. For © C 9%,
~ "’T jod o T
1@badll By.\gbbad = Ajay (AQ*abad)\(Q*\Q)
where A5, stands for the diagonal matrix whose diagonal elements{dég ||, i € Q*\Q}.

Proof: The result directly follows frontip.g = ||@pad || boaa, bi = @i/||@;|| for i € Q*\Q, and from
Lemma 9. [ |
Proof of Lemma 1:The result is obvious whed,,,q = 0. It follows from Lemmas 9 and 10 when

Qpad 7 0. u

APPENDIXC

TECHNICAL RESULTS NEEDED FOR THE PROOF OEEMMA 2

With simplified notations, the expression (19) BE"3(an.q) reads

e(n) = |V/1—=n>=Cnl+ Dy (25)

wheren € (0,1] andC and D take the form

Y Bixa
C = s 26
2} o (26)
N
|53
D = — 27
; " (27)

with N > 1, B = [41,...,8n] € RY, and for alli, ; € (0,1] andy; € [-1,1] satisfyn? + x? = 1.
Note that we can freely assume from (19) thatS = +1/1— (n22)? > 0. When 2% < 0, one
just needs to replacey,.q by —ay.q, leading to the replacement ¢f by —3 in (26) and (27).

The succession of small lemmas hereafter aims at minoriging for arbitrary values ofy, n;, x;

and 3. They lead to the main minoration result of Lemma 14.

Lemma 11 Let 8 € RV.

If ¢ < O,V’O € [0’ 1]’ 90("7) > 1+ (H/@Hl - 1)77' (28)
.0 >0, min () = min(l, D/V1+ 02>. (29)
T]E K
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Proof: We first study the functiory(n) £ /1 — 12 — Cn. We havef(0) = 1, f(1) = —C, and f
is concave orf0, 1]. To minorizey(n) = \f(n)\ + Dn, we distinguish two cases depending on the sign
of C.

WhenC < 0, f(n) > 0 for all n. Since|f| = f is concave, it can be minorized by the secant line
joining f(0) and f(1), therefore|f(n)| > 1 — (C+ 1)n = 1 —n. (28) follows fromp(n) = |f(n)| + Dn
andD > ||3||1 (becausey; are all in(0, 1]).

WhenC > 0, f(n) = 0for n € [0,2] and< 0 in (z,1], with = £ 1/v/1+C2. D > 0 and f(z) =
imply that forn > z, p(n) > ¢(z), thus the minimum ofy is reached forp € [0,z]. On [0, z],
v(n) = f(n) + Dn is concave, therefore the minimum value is eith¢d) = 1 or ¢(z) = D=. [ |

The following two lemmas are simple inequalities linking D, and||3||;.

Lemma 12 V3 € RN, D? — C2% > |82

Proof: By developingC? and D? from (26) and (27), we get

o — Z B2 xz Z BiBixiXj

i 771 Py ning
zﬁ £y 1]
;5 U
i#j

SinceVi, n? + x? = 1, we have:

—C? = 262 Z‘@ﬁj — 0305 XiX;j)

i#] il
= [Z !@} +> 186 [ —Ti95%iXG g (30)
i it nin;

with o; = sgn(8;) = £1 if §; # 0, ando; = 1 otherwise. Becausg; andy; satisfyn? + x? = 1, they
rereadn; = cos@; andy; = sinf;, son;n; + oi05xix; = cos(#; = 0;) < 1 which proves that the last

bracketed expression in (30) is non-negative. Finally) 86lds D? — C? > ||8||3. ]

Lemma 13 V3 € R, |81 < 1 implies that||3|; < D/v/1+ C2.

Proof: (1 + C?)||8|1? < ||18]|? + C? < D? according to Lemma 12. |
We can now establish the main lemma that will enable us to ladecthat if FS*L,%(abad) < 1,

FSY8, (anaq) is monotonically nonincreasing whe® 2 Q is growing.

Lemma 14 V3 € RN, Vn € [0,1], ¢(n) < 1 implies that|| 3|1 < ¢(n).
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Proof: Apply Lemma 11.
WhenC < 0, (28) andy(n) < 1 imply that (||3]|1 — 1) < 0. Sincen < 1, the lower bound of (28) is
larger thanl + (||3][1 — 1) = [|8]1-
When C > 0, (29) andy(n) < 1 imply that the minimum value of on [0,1] is D/v1+ C2 < 1,
then D? — C? < 1. Lemmas 12 and 13 imply thg3||; < 1 and then||8||; < D/V1+C2 < ¢(n). m

APPENDIXD

BEHAVIOR OF OXX WHEN THE INPUT VECTOR IS SLIGHTLY MODIFIED

Lemma 15 Lety; andy, € R™. Assume that the selection rul&)-(2) of Oxx withy; as input is strict
in the firstj > 0 iterations (the maximizer is unique). Then, when 0 is sufficiently small, Oxx selects

the same atoms with(e) = y; + cy2 as withy, in the first; iterations.

Proof: We show by recursion that there exisis> 0 such that the first iterations of Oxx { =
1,...,7) with y(¢) andy; as inputs yield the same atoms whenevet ;.
Let [ > 1. We denote byQ the subset of cardinality — 1 delivered by Oxx withy; as input after
[ — 1 iterations. By assumptiorQ is also yielded withy(e) whene < ¢;_. Sincey(e) = y; + yo, the
Oxx residual takes the formg = r + ey Whererg, r; andr, are obtained by projecting(e), yi,

andys, respectively ontepan(Ag)+t. Hence, fori ¢ Q,
<TQvéi> = <T1,éi> +€<T2’éi>_ (31)

Let anow denote the new atom selected by Oxx in thi iteration withy; as input and let, ., refer

to the corresponding index in the dictionary. By assumptitbe atom selection is stricte.,

(71, new)| > max |(ry, &)]. (32)

1Flnew

Taking the limit of (31) where — 0, we obtain that for any, |(rg, ¢;)| tends toward(ri, &;)|. (32)

implies that where < ¢;_; is sufficiently small,

[(rQ, €new)| > max |(rg, &)

Inew

by continuity of |(rg, &)| (i # inew) and|(rg, énew)| With respect tos. Thus, Oxx withy(e) as input

selectsa, ., in the l-th iteration. [ |
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