
HAL Id: hal-00636996
https://hal.science/hal-00636996v1

Submitted on 2 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boosting a Chatterbot Understanding with a Weighted
Filtered-Popping Network Parser

Javier M. Sastre Martinez, Jorge Sastre, Javier Garcia-Puga

To cite this version:
Javier M. Sastre Martinez, Jorge Sastre, Javier Garcia-Puga (Dir.). Boosting a Chatterbot Under-
standing with a Weighted Filtered-Popping Network Parser. 4th Language & Technology Conference
(LTC’09), Wydawnictwo Poznańskie Sp. z o.o., pp.74-78, 2009. �hal-00636996�

https://hal.science/hal-00636996v1
https://hal.archives-ouvertes.fr

Boosting a Chatterbot Understanding with a Weighted Filtered-Popping
Network Parser

Javier M. Sastre-Mart ı́nez1,2,3, Jorge Sastre3, Javier Garcı́a-Puga4

1 Institut Gaspard-Monge, Université Paris-Est,
F-77454 Marne-la-Vallée Cedex 2, France

2 Grup Transducens, Departament de Llenguatges i Sistemes Informàtics, Universitat d’Alacant,
E-03071 Alacant, Spain

3 Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universitat Politècnica de València,
E-46022 València, Spain

4 Telefónica I+D,
Calle Emilio Vargas 6, E-28043 Madrid, Spain

Abstract
We describe here an application of the filtered-popping network (FPN) parser in (Sastre, 2009a) for boosting the recognition capabilities
of an AIML (Wallace, 2004) chatterbot: the MovistarBot. This conversational agent was developed by Telefónica R&D as an attractive
medium for the request of mobile services, such as sending SMSs or downloading games, accessible via short text messagesin Spanish
through MSN Messenger. AIML being too cumbersome for the finedescription of complex sentences, the original chatterbotrequired
services to be requested following a strict command syntax;natural language (NL) requests were answered with the description of the
corresponding command syntax, assumed by the presence of keywords. We have manually constructed a recursive transition network
(RTN) with output recognizing and tagging a significant variety of requests in Spanish, implemented an automatic RTN weighting
procedure for ambiguity resolution and adapted the FPN parser for the automatic translation of the RTN sentences into command requests.

Keywords: AIML, chatterbot, local grammar, recursive transition network, filtered-popping network, parser

1. Introduction

Chatterbots are computer programs designed to simu-
late intelligent human conversation. Artificial intelligence
markup language (AIML) (Wallace, 2004), is an XML-
compliant language for the description of a chatterbot’s set
of conversational rules, where rules are basically pairs in-
put pattern/output answer. Chatterbots are progressively
been adopted as virtual assistants for commercial appli-
cations. In particular, Telefónica R&D has developed an
AIML chatterbot called MovistarBot which can launch a
set of mobile services requested through MSN Messen-
ger via short text messages in Spanish. While it is not
always necessary to understand what is being said in or-
der to give a human-like answer (e.g.: “tell me more
about that”), request sentences need a fine analysis in or-
der to correctly determine the service the user is willing
to pay for as well as to correctly extract the specified ar-
guments (e.g.: “Envı́a el mensaje hola al móvil 555-555-
555”, which means ‘Send the message hello to the mo-
bile 555-555-555’, corresponds to the SMS service with ar-
gumentsmessage=“hello” and phone =“555555555”).
AIML is not so appropriate for the exact description of
these sentence classes due to their variability, complex-
ity and ambiguity. Rather than that, AIML rules recog-
nizing command-like sentences were defined for launching
the services (e.g.: “sms phonenumber messagecontent”),
and keyword-based rules were defined for detecting re-
quests in Spanish and showing the right command syntax.

In contrast with AIML, the purpose of local gram-
mars (Gross, 1997) is the exact description of NL sen-
tences; local grammars are recursive transition networks
(RTNs) (Woods, 1970) with output combined with pow-
erful linguistic predicates on words (sections 2 & 3), in-
cluding predicates based on electronic dictionaries (sec-
tion 4). Local grammars can be reused in the definition
of other ones by means of call transitions, allowing for a
better grammar structuring. AIML can also reuse other
rules by means of the<srai> tag (Wallace, 2004); how-
ever, there is no clear rule structuring since this tag re-
launches the evaluation of the whole set of rules for an
input reformulation. AIML does neither provide predi-
cates on tokens, hence rules for each inflected form of each
synonym of each word to be recognized must be defined.
Several NL processing (NLP) systems have been devel-
oped for the construction and application of local gram-
mars, namely Intex (Silberztein, 1993), Unitex (Paumier,
2006) and Outilex (Blanc and Constant, 2006). They rep-
resent local grammars as graphs (section 5), visual objects
equivalent to RTNs with output but even more intuitive.
However, these systems are single-user oriented, Intex is
not open-source and Unitex and Outilex use grammar ap-
plication algorithms that are exponential in the worst case:
Unitex a top-down parser and Outilex an Earley-like parser
equivalent to that in (Sastre and Forcada, 2009b). While a
grammar developer may abort a long lasting parsing pro-
cess, this is not an option for an application that should
transparently analyze several user sentences concurrently.

Using the Unitex grammar editor, we have built a RTN
with output that tags Spanish sentences requesting for mo-
bile services in order to determine the requested service
and the values of the specified arguments (e.g.: “Envı́a
el mensaje<sms/> <message> hola</message> al
<phone> 555-555-555</phone> ”). We have developed
a procedure for automatically assigning weights to gram-
mar transitions, obtaining a weighted RTN (WRTN) that
ranks the different interpretations of ambiguous sentences
(section 6). We have adapted a preceding implementation
of the filtered-popping network (FPN) parser presented
in (Sastre, 2009a), an Earley-like parser with output gen-
eration but with a polynomial worst-case cost, and reused
some of the Unitex source code in order to build a multi-
user oriented NLP engine (section 7). As the other sys-
tems, the engine features powerful linguistic operators on
words (sections 2 & 3), some of them based on electronic
dictionaries (section 4), and blank sensitive/insensitive ε-
moves (section 8). We have build a corpus of possible user
sentences for testing the system (section 9). We give rel-
evant implementation details of the system in section 10,
and performance measures in section 11. Concluding re-
marks close the paper.

2. Tokens
Considering the alphabet of Unicode characters com-

posing a NL text and its disjoint subsets of letters, symbols
and blanks, we define a word as a consecutive sequence
of letters and a token as either a word or a single symbol.
Blanks do not constitute tokens: they are word separators.
Symbols do not require to be separated from other tokens
since they constitute tokens alone.

3. Lexical Masks
As stated in (van Noord and Gerdemann, 2001), finite-

state machines defined on alphabets of predicates on the
tokens of a NL (e.g.: any determiner) are more natural than
those defined on the NL character alphabet. Calls to sub-
grammars recognizing sets of tokens could be used instead
of predicates; however, defining predicates for commonly
used sets of tokens is a better structured approach and more
practical than defining the equivalent automata—if they
exist—in many cases (e.g. any verb). We have imple-
mented most of the predicates used in the Intex and Unitex
systems in order to reuse their grammars, namely:

• universal mask:<TOKEN>represents any token,

• literal masks: match the specified word, respecting
the case and diacritic marks if the word is quoted (e.g.:
"UN" holds for “UN” but not for “un”) and ignor-
ing them if not (e.g.:FIANCÉE holds both for “FI-
ANCÉE” and “fiancee”),1

• character class masks:<NB> represents any digit,
<PNC>any punctuation symbol,<MOT>any word,
<MAJ> any uppercase word,<MIN> any lowercase
word and<PRE>any word whose letters are all low-
ercase except the first one,

1Intex and Unitex ignore the case but not the diacritic marks.

• dictionary-based masks: described in section 4.

Negated versions of the two latter categories have also been
implemented as for the Intex and Unitex systems.

4. Dictionary Masks and Tools
Dictionary masks match subsets of words of a DE-

LAF dictionary. DELAF dictionaries (Silberztein, 1993)
are text files containing an entry per meaning of each in-
flected form of each word. Each entry (e.g.:env ı́a,en-
viar.V+Trans msg:3Ps:2Ys) contains the inflected
form (env ı́a =send) and its properties, namely the canon-
ical form (enviar =to send), semantic class identifiers
(at least one for the part-of-speech:V=verb & Trans-
msg=synonyms of “to send” in the context of sending an

SMS) and inflection codes (3Ps=3rd person, present, sin-
gular & 2Ys=second person, imperative, singular). The
canonical form—for instance the infinitive form in the
case of verbs—identifies the set of inflected forms of the
word. Semantic classes can be defined in order to ease
the grammar construction (e.g.:Trans msg). Inflection
codes depend on the part-of-speech and identify the par-
ticular inflected form, for instance by specifying the tense,
mood, gender and number for the case of verbs; entries
contain several lists of inflected codes when represent-
ing several inflected forms (e.g.:3Ps:2Ys for env ı́-
a). Words spelled alike but having different meanings
are described in separate entries with a different canon-
ical form and/or semantic codes (e.g.:enviado =sent
as verb andenviado =correspondent as noun). Dictio-
nary masks have been useful for representing numerous
words by means of short codes, for instance<V+Trans-
msg:Y2:Y3> represents 40 words that can be used for

asking the chatterbot to send an SMS (e.g.: envı́a, envı́e,
enviad, envı́en, manda, mande, mandad, manden, etc).2

We have used the Spanish DELAF dictionary provided
with the Unitex system (Blanco, 2000) under the LGPLLR
license,3 which contains more than 600.000 entries. We
firstly implemented a trie (Fredkin, 1960) data structure
for representing the dictionary. We implemented efficient
methods for adding, reading, modifying and removing dic-
tionary entries. We implemented a tool which extracts
dictionary subsets of entries matching at least one dictio-
nary mask of a set. This tool allows for testing the dic-
tionary coverage on specific subsets of the lexicon, such
as the set of determiners, as well as for examining the
content of semantic classes or simply validating dictionary
masks. We implemented another tool for the automatic ad-
dition/removal of dictionary entries from sets of semantic
classes by also specifying a set of dictionary masks; creat-
ing a semantic class in the Spanish DELAF such as the
synonyms of verb “to send” requires to add a semantic
code to 587 entries, which can be done with this tool in
a few seconds by specifying a new semantic code and the
set of canonical forms of each synonym:+Trans msg
<V.enviar>+<V.mandar>+ etc.

2In Spanish, we address somebody using the third person in-
stead of the second in order to show respect, courtesy or distance.

3The terms of the LGPLLR license can be found athttp:
//igm.univ-mlv.fr/ ˜ unitex/lgpllr.html

Due to the dictionary size, loading it in memory as a trie
requires several seconds. This becomes time-consuming
when having to load it many consecutive times during the
system development. We have used the dictionary com-
pression tool included in Unitex, which is based on the par-
tial minimization of finite-state automata (FSA) presented
in (Revuz, 1992), and added support for this compressed
dictionary representation. The resulting dictionary takes
only two megabytes, which are loaded in an imperceptible
amount of time. In contrast with the trie format, the com-
pressed format can be read but not modified. However,
Unitex does only provide compressed dictionaries but no
decompression tool: dictionary source files are to be re-
quested to the Unitex author. We have implemented such
a decompression tool and used it for verifying the correct-
ness of our compressed dictionary implementation.

Diacritic-mark and case insensitivity is a must when
processing user input. We have developed a tool for the
character normalization of every inflected and canonical
form inside a dictionary by means of a Unicode char-
acter look-up table. The tool also joins together groups
of newly ambiguous entries due to the loss of informa-
tion (e.g.: env ı́o,enviar,V+Trans msg:1Ps and
envi ó,enviar.V+Trans msg:3Js becomeenvi-
o,enviar:V+Trans msg:1Ps:1Js , J=preterite).

5. Weighted Graphs
Graphs (see Fig. 1) are an equivalent representation of

RTNs with output where RTN transitions are replaced by
boxes containing transition input labels and RTN states by
unlabeled and undirected edges linking the boxes. Boxes
with multiple entries correspond to multiple transitions be-
tween the same source and target states. A box may define
an output for every input they contain, in which case ap-
pears beneath the box. A triangle attached to one side of
each box indicates the box direction. Empty boxes (only
having the triangle) or box entries with the code<E> rep-
resentε-moves (transitions without consumption). Greyed
box entries represent call transitions. The edge connected
to a single box represents the initial state, and every edge
connected to the circle with a square inside represents an
acceptor state. This representation was firstly introduced
by the Intex system. As done in the Outilex project, we
have extended the source code of the Unitex graph edi-
tor in order to define multi-line box outputs, the first line
for output XML tags and the second for the box weight.
Before applying a graph, we transform it with the Uni-
tex system into a FSA-like determinized WRTN with out-
put: since machines with output might not be determiniz-
able, triplets input/output/weight and subgraph calls arere-
garded as FSA input symbols.

6. Automatic Weight Assignment
We have developed a procedure for the automatic as-

signment of weights to grammar transitions depending on
the specificity of their lexical masks: universal mask tran-
sitions are given a null weight, dictionary mask transi-
tions an average weight and literal mask transitions a high
weight. Upon ambiguity, the most descriptive interpreta-
tion is chosen. In our use case, some of the input segments

<phone>

phone_number

</phone>

<E>

\+

()phone_number

10

Fig. 1: Weighted graph which matches a phone num-
ber with an optional country code (e.g.: (34) 555-555-
555), delimits it with XML tags<phone> and adds
10 points to the current interpretation; called subgraph
phone number recognizes any digit sequence with or
without digit separators.

to be extracted have an unknown content (e.g.: the text of
the SMS to be sent). These segments are matched by a
repeated application of the universal mask, and therefore
they don’t increase the interpretation score. Ambiguous
cases arise when left and/or right contexts of these seg-
ments contain optional parts (e.g.: in “Envı́a el mensaje
hola al móvil 555-555-555”, “el mensaje” and “al móvil
555555555” may or may not be a part of the text to be
sent). We describe these optional contexts with more spe-
cific masks so that not recognizing them as a part of the
unknown content segment produces higher scores. Since
manually defined weights are not overwritten, it is still pos-
sible to define transition preferences, though the automatic
assignment has given excellent results so far.

7. Engine Workflow
We have developed a NLP engine which either trans-

lates user sentences into commands or simplifies them for
easing the construction of AIML rules. We describe below
each one of its execution steps.

7.1. Initialization

The WRTN and the dictionary are loaded once and then
shared by every parsing thread. The trie-string optimiza-
tion presented in (Sastre and Forcada, 2009b) is applied to
XML output tags for fast tag copy and comparison. Un-
quoted literal masks are normalized as for dictionaries.

7.2. Input Tokenization

Given an input character sequenceσ1 . . . σl, a sequence
of input token objects is built, each object composed by a
pair of input indexes(i, j) for tokenσi+1 . . . σj and an in-
teger identifying the token type (e.g.: lowercase word) for
the evaluation of character-class masks. The parser skips
blanks by iterating over the token sequence but the original
blanks are kept when extracting input segments.

7.3. Grammar Application

The WRTN with output is applied to the token se-
quence following the algorithm described in (Sastre,
2009a), which results in a weighted FPN (WFPN) recog-
nizing every input translation. Even in cases in which the
number of outputs increases exponentially w.r.t. the input
length, the algorithm has a polynomial asymptotic cost and
linear in many cases thanks to the compressed representa-
tion of the set of translations as a WFPN. This WFPN is a

WRTN with a mapκ of states to token indexes so that given
r andr′, the start and end states of a pathp, p recognizes a
translation of token segmentκ(r)+1 . . . κ(r′), token1 be-
ing the first token. WFPN pops are filtered: a WFPN pop-
ping transition (return from a call) from an acceptor stater

to a return stater′ can be taken iffκ(r) = κ(r′), forbidding
translation paths of disconnected input segments.

7.4. WFPN Pruning

Since not every exploration of the WRTN may lead to
the recognition of the whole input, the WFPN may contain
paths that are not a part of some complete input translation.
These paths are removed by pruning the WFPN. In order
to efficiently perform this operation, WFPN pop transitions
must be explicitly represented as well as the reverse of each
transition. Basically, the procedure is as follows:

• if the “global” acceptor state of the WFPN has no in-
coming pop transitions, remove every state and tran-
sition,4

• unmark every WFPN state,

• mark the “global” acceptor state an enqueue it,

• while the queue is not empty,

– dequeue next stater,

– for each stater′ with an outgoing transition to
r, pop transitions included but not pushing ones
(call initializers), if r′ is unmarked then mark it
and enqueue it,

• for each WFPN unmarked stater, remove every tran-
sition coming to or going fromr and then remover.

Since the WFPN size is at most polynomial w.r.t. the input
length, this operation has a polynomial worst-case cost.
Unrecognized inputs result in empty WFPNs, in which
case the engine proceeds as described in section 7.7.

7.5. WFPN Decompression

The remaining WFPN paths are explored in order to
compute the set of weighted translations, which is equiv-
alent to compute the translations of the empty string con-
sidering every WFPN transition as anε-move having its
original label as output instead of input. We apply the
breadth-first algorithm in (Sastre and Forcada, 2009b) with
the following particularities:

• partial outputs of execution states (ESs) are weighted
maps of XML tag names to input intervals,

• the initial ES has a zero-weighted empty map,

• popping from an acceptor stater to a return stater′ is
possible iffκ(r) = κ(r′),

• when computing the set of derived ESs from an ES
x, derived ESs are modified copies ofx except for the
last derived ES which keeps the originalx data object,

4By construction, every WFPN path representing a complete
input translation ends by popping this “global” acceptor state.

• when deriving an ESx′ from an ESx due to a transi-
tion t from a stater,

– if t has an associated weight, incrementx′ map
weight accordingly,

– if t generates an XML tag with namen,

∗ if it is an opening tag, add the mappingn to
(i, j) with i equal to the left bound of token
κ(r) + 1 (or l, the right input bound, if the
number of tokens is less thanκ(r) + 1) and
j equal to the input end,

∗ if it is a closing tag andn is already mapped,
redefinej as the right bound of tokenκ(r)
(or 0, the left input bound, ifκ(r) = 0),

∗ if it is a closing tag andn is not mapped,
add the mapping withi equal to the left in-
put bound andj as for the precedent case.

Decompressing a WFPN has an exponential worst-case
cost due to sentences having an exponential number of in-
terpretations w.r.t. their length; however, this cost can be
dramatically reduced by limiting the number of sentence
interpretations represented in the grammar, even if many
local ambiguities are represented. Note that for WFPNs
representing a single translation, a unique ES data object
is created and its partial output incremented as weights and
XML tags are found.

7.6. Command Generation
A command is generated for the map with the highest

weight that corresponds to a known service, which is deter-
mined by the presence of a mapped service tag name (e.g.:
sms). Expected service argument maps are searched and
their corresponding input intervals copied and reformatted,
if necessary (e.g.: phone numbers are copied without digit
separators). Arguments are optional: the most complete
command sentence is generated so that the chatterbot can
ask for the missing arguments instead of obligating the user
to retype the whole request (e.g. “Quiero enviar un men-
saje al 555-555-555” yieldssms phone 555555555).
The processing of recognized sentences ends here.

7.7. Infinitive Form Translation
Unrecognized sentences are returned preceded by com-

mandunknown and with every word that might be a verb
replaced by its infinitive form, retrieved from the dictio-
nary. AIML rules can then consider infinitive forms only.

8. Sensitivity to Blanks
The presence of blanks between tokens is restricted

in some cases, for instance command arguments usually
cannot contain blanks but argument lists must be blank-
separated. Since blanks are not tokens, consuming a to-
ken implicitly consumes the blanks that precede it. Anal-
ogously to Intex and Unitex, we have implemented blank-
forbidden and mandatoryε-moves: the former can be taken
iff the precedent and next token input intervals are con-
nected, and the latter iff they are not. For instance, we
connect two grammar structures recognizing two consecu-
tive command arguments with a blank-mandatoryε-move
in order to avoid the arguments from being attached.

9. Testing Corpus
We have built a corpus of 334 possible sentences, most

of them service requests but also other sentences in order
to control over-recognition. Service requests are formed
by a few compounds that may permute (e.g. “Envı́a el
mensaje hola al móvil 555-555-555”, “Envı́a al móvil 555-
555-555 el mensaje hola”), each compound having a finite
variability (e.g. “al móvil 555-555-555”, “al 555555555”,
etc). The corpus considers every possible permutation,
using different compound variants in each one instead of
considering every possible combination, thus the corpus
is representative in spite of its size. We have aligned the
corpus with the answers the system should return and im-
plemented a tool for verifying the answer returned by the
system for every sentence in the corpus.

10. Implementation Details
The NLP engine and tools have been programmed in

C++ using the standard template library (STL). We have
implemented a multi-platform compilation script which
generates executable files for local use and testing of the
engine as well as a shared library for its online use: mes-
sages sent to the chatterbot are first sent to a Tomcat servlet
as a UTF-8 stream through the Internet, then the servlet
uses the library through the Java Native Interface in order
to process the message and finally the answer is sent to
the chatterbot. This architecture allows for independence
and easy integration of the NLP engine and the chatterbot
since the engine is completely transparent to the chatterbot
and they can be run in separate machines. The engine has
successfully been tested in both Windows and GNU/Linux
platforms and both big- and little-endian architectures.

11. System Performance
At a first stage the engine did not support weighted

grammars and the grammar was developed trying to con-
sider a unique interpretation of each sentence: the one a hu-
man would choose in the context of providing mobile ser-
vices. Local ambiguities could still be present since they
would be solved at some point of the analysis, resulting in a
linear FPN and therefore avoiding the potentially exponen-
tial cost of FPN decompression. In case of global ambigu-
ity, the first interpretation found would be returned. With
a grammar supporting the SMS service (around 500 states
and 1300 transitions), the engine was able to preprocess
around 2000 sentences per second on a GNU/Linux De-
bian platform with a 2.0 GHz Pentium IV Centrino proces-
sor and a 2 GB RAM. However, extending the grammar for
more complex services was not feasible due to the increas-
ing ambiguity. We added weighted grammar support for
interpretation discrimination and extended the grammar in
order to support queries on a catalog of games, songs and
images as well as download requests, queries on a notifi-
cation system and notification subscriptions (e.g.: notifi-
cations on soccer events), and other queries on other top-
ics such as available offers, prepay cards, video calls, etc.
Thanks to the reuse of formerly defined grammar struc-
tures, the number of states and transitions was only tripled
but the number of preprocessed sentences per second de-
creased by one-tenth. Though 200 sentences per second is

still acceptable, we expect that for a considerable amount
of services the system will be too slow. We expect to re-
gain the efficiency by means of an algorithm able to extract
the highest ranked interpretation from the WFPN without
having to decompress the entire WFPN.

12. Conclusion
We have proved the viability of the FPN parser pre-

sented in (Sastre, 2009a) in order to serve as a significant
refinement of an AIML chatterbot, enabling the chatter-
bot to extract key data from complex and ambiguous sen-
tences for launching a set of commercial services. We have
adapted a former implementation of this parser, developed
a grammar recognizing a set of sentences requesting for
mobile services and automatically assigned weights to the
grammar transitions for ambiguity resolution. The whole
system has been used as a message preprocessor in order
to boost the recognition capabilities of the MovistarBot, an
AIML chatterbot developed by Telefónica R&D, as well as
to simplify the construction of its AIML rules.

Acknowledgements: We thank the reviewers and Profs.
E. Laporte and M. L. Forcada for their useful comments.

13. References
Blanc, O. and Constant, M. (2006).Outilex, a linguistic

platform for Text Processing. In Interactive Presenta-
tion Session of Coling-ACL06. Morristown, NJ, USA:
Association for Computational Linguistics.

Blanco, X. (2000). Les dictionnaires électroniques de
l’espagnol (DELASs et DELACs).Lingvisticæ Investi-
gationes, 23(2):201–218.

Fredkin, E. (1960). Trie memory.Communications of the
ACM, 3(9):490–499.

Gross, M. (1997). The construction of local grammars.
In Emmanuel Roche and Yves Shabes (eds.),Finite-
State Language Processing. Cambridge, MA, USA:
MIT Press, pages 329–352.

Paumier, S. (2006).Unitex 1.2 User Manual. Uni-
versité de Marne-la-Vallée. http://www-igm.
univ-mlv.fr/ ˜ unitex/UnitexManual.pdf .

Revuz, D. (1992). Minimisation of acyclic deterministic
automata in linear time.Theoretical Computer Science,
92(1):181–189.

Sastre, J. M. (2009a). Efficient parsing using filtered-
popping recursive transition networks.Lecture Notes in
Computer Science, 5642:241–244.

Sastre, J. M. and Forcada, M. L. (2009b). Efficient parsing
using recursive transition networks with output.Lecture
Notes in Artificial Intelligence, 5603:192–204.

Silberztein, M. D. (1993). Dictionnaires électroniques
et analyse automatique de textes. Le système INTEX.
Paris: Masson.

van Noord, G. and Gerdemann, D. (2001). Finite-state
transducers with predicates and identities.Grammars,
4(3):263–286.

Wallace, R. (2004).The elements of AIML style. ALICE
AI Foundation.http://www.alicebot.org .

Woods, W. A. (1970). Transition network grammars for
natural language analysis.Communications of the ACM,
13(10):591–606.

