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The Morse lemma is fundamental in hyperbolic group theory. Using exponential contraction, we establish an upper bound for the Morse lemma that is optimal up to multiplicative constants, which we demonstrate by presenting a concrete example. We also prove an "anti" version of the Morse lemma. We introduce the notion of a geodesically rich space and consider applications of these results to the displacement of points under quasi-isometries that fix the ideal boundary.

δ 1 ≤ 8λ(2H + 4δ 2 + c).

Introduction

Roughly speaking, the Morse lemma states that in a hyperbolic metric space, a λquasigeodesic γ belongs to a λ 2 -neighborhood of every geodesic σ with the same endpoints. Our aim is to prove the optimal upper bound for the Morse lemma.

Theorem 1 (Morse lemma). Let γ be a (λ, c)-quasi-geodesic in a δ-hyperbolic space E and σ be a geodesic segment connecting its endpoints. Then γ belongs to an H-neighborhood of σ, where

H = λ 2 (A 1 c + A 2 δ),
where A 1 and A 2 are universal constants.

We prove this theorem with A 1 = 4 • 78 = 312 and A 2 = 4 78 + 133 ln 2 e 157 ln 2/28 in Section 5.2. This result is optimal up to the value of these constants, i.e., there exists an example of a quasi-geodesic such that H is the distance of the farthest point of γ from σ (see Section 6).

The Morse lemma plays an important role in the geometry of hyperbolic spaces. For example, it is used to prove that hyperbolicity is invariant under quasi-isometries between geodesic spaces [START_REF] Ghys | Sur les groupes hyperboliques d'après Mikhael Gromov[END_REF] (see Chapter 5.2, Theorem 12): let E and F be δ 1 -and δ 2 -hyperbolic geodesic spaces. If there exists a (λ, c)-quasi-isometry between these two spaces, then Hyperbolic metric spaces have recently appeared in discrete mathematics and computer science (see, e.g., [START_REF] Chepoi | Diameters, centers, and approximating trees of delta-hyperbolic geodesic spaces and graphs[END_REF]). The δ-hyperbolicity turns out to be more appropriate than other previously used notions of approximation by trees (e.g., tree width). This motivates our search for optimal bounds for a cornerstone of hyperbolic group theory like the Morse lemma.

Gromov's quasi-isometry classification problem for groups [START_REF] Gromov | Infinite groups as geometric objects[END_REF] provides another motivation. When two groups are shown to be non-quasi-isometric, it would be desirable to give a quantitative measure of this, such as a lower bound on the distortion of maps between balls in these groups (we thank Itai Benjamini for bringing this issue to our attention). We expect our optimal bound in the Morse lemma to be instrumental in proving such lower bounds. As an indication of this, we show that the center of a ball in a tree cannot be moved very far by a self-quasi-isometry. Because δ = 0 for a tree, we have d(f (O), O) ≤ 2A 1 λ 2 c for sufficiently large λ. We prove this proposition in Section 6.

We present an example of a (λ, c)-quasi-isometry of a ball in a d-reqular tree that moves the center a distance λc. We are currently unable to fill the gap between λc and λ 2 c.

We give a second illustration. In certain hyperbolic metric spaces, self-quasi-isometries fixing the ideal boundary move points a bounded distance. Directly applying the Morse lemma yields a bound of H ∼ λ 2 c, while the examples that we know achieve merely λc. For this problem, we can fill the gap partially. Our argument relies on the following theorem, which we call the anti-Morse lemma.

Theorem 2 (anti-Morse lemma). Let γ be a (λ, c)-quasi-geodesic in a δ-hyperbolic metric space and σ be a geodesic connecting the endpoints of γ. Let 4δ ≪ ln λ. Then σ belongs to a A 3 (c+δ) ln λ-neighborhood of γ, where A 3 is some constant.

We prove Theorem 2 in Section 7. In Section 9, we define the class of geodesically rich hyperbolic spaces (it contains all Gromov hyperbolic groups), for which we can prove the following statement. Theorem 3. Let X be a geodesically rich δ-hyperbolic metric space and f be a (λ, c)self-quasi-isometry fixing the boundary ∂X. Then for any point O ∈ X, the displacement d(O, f (O)) ≤ max{r 0 , (A 4 + c)λ ln λ}, where r 0 , A 4 are constants depending on the space X.

We first discuss the geometry of hyperbolic spaces and prove a lemma on the exponential contraction of lengths of curves with projections on geodesics. We then discuss the invariance of the ∆-length of geodesics under quasi-isometries. Using these results, we prove the quantitative version of the Morse and anti-Morse lemmas. We define the class of geodesically rich spaces; for this class, we estimate the displacement of points by self-quasi-isometries that fix the ideal boundary. Finally, we show that this class includes all Gromov hyperbolic groups.

The geometry of δ-hyperbolic spaces

Let E be a metric space with the metric d. We also write |x -y| for the distance d(x, y) between two points x and y of the space E. For a subset A of E and a point x, d(x, A) denotes the distance from x to A.

There are several equivalent definitions of hyperbolic metric spaces. We first present the most general definition, given by Gromov [START_REF] Gromov | Hyperbolic groups, in: Essays in group theory[END_REF], [START_REF] Ghys | Sur les groupes hyperboliques d'après Mikhael Gromov[END_REF], although another definition is more convenient for us. Definition 1. Gromov's product of two points x and y at a point z is

(x, y) p = 1 2 (|x -p| + |y -p| -|x -y|).
Definition 2. A metric space E with a metric d is said to be δ-hyperbolic if for every four points p, x, y, and z, (x, z) p ≥ min{(x, y) p , (y, z) p } -δ.

Definition 3. A geodesic (geodesic segment, geodesic ray) σ in a metric space E is a isometric embedding of a real line (real interval I, real half-line R + ) in E.

We write xy for a geodesic segment between two points x and y (in general, there could exist several geodesic paths between two points; we assume any one of them by this notation). A geodesic triangle xyz is a union of three geodesic segments xy, yz, and xz. A geodesic metric space is a space such that there exists a geodesic segment xy between any two points x and y. It can be easily shown that for a geodesic space, Definition 2 is equivalent to the following definition. Definition 5. A geodesic metric space E is δ-hyperbolic if and only if every geodesic triangle is δ/2-thin (hereafter, we omit the factor 1/2).

According to Bonk and Schramm [START_REF] Bonk | Embeddings of Gromov hyperbolic spaces[END_REF], every δ-hyperbolic metric space embeds isometrically into a geodesic δ-hyperbolic metric space. Without loss of generality, we therefore consider only geodesic δ-hyperbolic spaces in what follows. Definition 6. In a metric space, a perpendicular from a point to a curve (in particular, a geodesic) is a shortest path from this point to the curve.

Of course, a perpendicular is not necessarily unique. Proof. The triangle abc (see Fig. 1) is δ-thin by the definition of a δ-hyperbolic space. Hence, there exists a point t ∈ σ such that d(t, ba) ≤ δ and d(a, bc) ≤ δ. Let t 1 and t 2 be the respective projections of t on ba and bc. By hypothesis, R is the minimum distance from b to the points of σ. Therefore, R = |b -a| ≤ |b -

t 1 | + |t 1 -t| ≤ |b -t 1 | + δ and R ≤ |b -t 2 | + |t 2 -t| ≤ |b -t 2 | + δ. Hence, |a -t 1 | ≤ δ and |c -t 2 | ≤ 2∆ + δ. By the triangle inequality, we obtain |a -c| ≤ |a -t 1 | + |t 1 -t| + |t -t 2 | + |t 2 -c| ≤ 2∆ + 4δ.
Remark 1. In particular, all the orthogonal projections of a point to a geodesic lie in a segment of length 4δ.

Lemma 2. In a δ-hyperbolic space, let two points b and d be such that |b -d| = ∆. Let σ be a geodesic and a and c be the respective orthogonal projections of b and d on σ. Let |a -b| > 3∆ + 6δ, and let d(d, σ) > d(b, σ). Let two points x 1 ∈ ab and x 4 ∈ cd be such that

2∆ + 5δ < d(x 1 , σ) = d(x 4 , σ) < |a -b| -(∆ + 2δ). Then |x 1 -x 4 | ≤ 4δ and |a -c| ≤ 8δ.
Proof. (See Fig. 2.) By the triangle inequality and because cd is a perpendicular to σ,

|c -d| ≤ |a -b| + |b -d|, whence |b -c| ≤ |c -d| + |b -d| ≤ |a -b| + 2|b -d|. By Lemma 1, |a -c| ≤ 2∆ + 4δ. The triangle abc is δ-thin, |a -x 1 | > |a -c| + δ.
Therefore, by the triangle inequality, d(x 1 , ac) > δ, and hence d(x 1 , bc) ≤ δ. Let x 2 denote the point of bc nearest x 1 . Because the triangle bcd is also δ-thin and |b -

x 2 | ≥ |b -x 1 | -|x 1 -x 2 | ≥ ∆ + δ, there exists a point x 3 ∈ cd such that |x 3 -x 3 | ≤ δ. It follows from the triangle cx 1 x 3 that |x 3 -c| ≥ |x 1 -c| -2δ ≥ |x 1 -a| -2δ.
On the other hand, because x 5 c is a perpendicular Proof. By hypothesis, bd minimizes the distance from any its points to ac, and because the triangle bcd is δ-thin, there exists a point e ∈ bd such that d(e, ac) = |e -d| ≤ δ and d(e, bc) ≤ δ. Because ac is a perpendicular to σ, |a-c| ≤ |a-d|+|d-e|+d(e, bc) ≤ |a-d|+2δ. Hence |c -d| ≤ 2δ. Lemma 4. As in the preceding lemma, let σ be a geodesic segment, a be a point not on σ, c be a projection of a on σ, and b be some point on σ. Let d denote a point on ac such that |d -c| = δ and e denote a point on bc such that |e -c| = 3δ. Then Proof. The triangle abc is δ-thin. Therefore, obviously, d(d, ab) ≤ δ (the distance from a point of ac to ab is a continuous function). We take a point x ∈ bc such that d(x, ca) ≤ δ.

Using Lemma 3, we obtain |b-x|+d(x, ca) ≥ |b-c|-2δ, and hence |c-x| ≤ d(x, ca)+2δ ≤ 3δ.

We now let d 1 and e 1 denote the respective projections of d and e on ab. Then by the triangle inequality, we have

• |a -d| -δ ≤ |a -d 1 | ≤ |a -d| + δ, • |b -e| -δ ≤ |b -e 1 | ≤ |b -e| + δ, and • 0 ≤ |d 1 -e 1 | ≤ |d 1 -d| + |d -c| + |c -e| + |e -e 1 | ≤ 6δ.
Combining all these inequalities, we obtain the second point in the lemma. Remark 2. Lemma 5 deals with a geodesic segment. The statement is not true for a complete geodesic passing through a and b, as can be seen from Fig. 3.

Proof. We take a point e ∈ bc such that |c -e| = δ and consider the triangle bcd (see Fig. 4). Because bc is a perpendicular to dc, d(e, bd) ≤ δ. Let e 1 denote a projection of e on bd. Let e 2 and e 3 be the respective projections of e 1 on the geodesic segments dc II. If |e 1 -e 2 | > δ, then the length of the path cee 3 is at most 3δ. We apply the same arguments to ad (we assume that this is possible; otherwise, we could apply the first case to it). We obtain the points g, g 1 , and g 3 and the length of the path cgg 3 is also at most 3δ. If neither of these paths intersects cc 1 , then its length does not exceed 6δ (which follows from consideration of the triangle ce 3 g 3 ).

Lemma 6. Let E be a δ-hyperbolic metric space and abc be a triangle in E. Then the diameter of the set S of points of the side ab such that distance to bc and ac does not exceed 2d is not greater than C(d + δ), where C is a constant.

Proof. Let x be a point of ab such that d(x, bc) ≤ δ and d(x, ac) ≤ δ and y be a point of ab such that d(y, bc) ≤ d and d(y, ac) < d. Without loss of generality, we assume that y ∈ (a, x). Because the triangle abc is δ-thin, one of these two distances does not exceed δ.

We first assume that d(y, ac) ≤ δ. Let x ′ and y ′ be points of ac such that d(x, x ′ ) ≤ δ and d(y, y ′ ) ≤ δ. We let t, t ′ , s, and s ′ denote the respective projections of x, x ′ , y, and y ′ on bc. Because If s is in the segment [b, t ′ ], then by applying the triangle inequality several times, we obtain

x ′ t ′ is a perpendicular to bc, |x ′ -t ′ | ≤ |x ′ -x| + |x -t| ≤ 2δ,
|b -y| ≤ |b -s| + |s -y| ≤ |b -t ′ | + |s -y| ≤ |b -x| + |x -t| + |t -t ′ | + |s -y| ≤ |b -x| + 5δ + d.

And because |b -y|

= |b -x| + |x -y|, we have |x -y| ≤ 5δ + d.
The same arguments we apply if s ∈ [t ′ , c]. We merely note that we can replace y with y ′ and t with t ′ with respective errors less than δ and 19δ:

|c -y ′ | ≤ |c -s ′ | + |s ′ -y ′ | ≤ |c -s ′ | + |s ′ -y ′ | ≤ |c -s| + 19δ + |s -y| + δ ≤ |c -t ′ | + 20δ + d. Now, because |c -t ′ | ≤ |c -x ′ | + |x ′ -t ′ | ≤ |c -x ′ | + 2δ, we have |c -x ′ | + |x ′ -y ′ | = |c -y ′ | ≤ |c -x ′ | + 22δ + d. Finally, |x -y| ≤ |y -y ′ | + |y ′ -x ′ | + |x -x ′ | ≤ 24δ + d.
The case d(y, bc) ≤ δ is treated identically with d and δ interchanged.

3. Quasi-geodesics and ∆-length

Definition 7. A map f : E → F between metric spaces is a (λ, c)-quasi-isometry if 1 λ |x -y| E -c ≤ |f (x) -f (y)| F ≤ λ|x -y| E + c
for any two points x and y of E.

Definition 8. A (λ, c)-quasi-geodesic in F is a (λ, c)-quasi-isometry from a real interval I = [0, l] to F .
Let γ : I → F be a curve. We assume that the interval I = [x 0 , x n ] of length |I| = l gives the parameterization of the quasi-geodesic γ. We take a subdivision T n = (x 0 , x 1 , . . . , x n ) and let

y i , i = 0, 1, . . . , n, denote γ(x i ). The mesh of T n is d(T n ) = min 0<i≤n |y i -y i-1 |. Definition 9 (∆-length). Let γ : I → F be a curve. The value L ∆ (γ) = sup Tn:d(Tn)≥∆ n i=1 |y i -y i-1 |
is called the ∆-length of the quasi-geodesic γ.

We note that the values of the ∆-length and the classical length are the same for a geodesic.

Lemma 7. Let γ : I → F be a (λ, c)-quasi-geodesic. For ∆ ≥ 2c, L ∆ (γ) ≤ 2λl. Proof. By the definition of the ∆-length, ∆ ≤ |y i -y i-1 | ≤ λ|x i -x i-1 | + c. Hence, because ∆ ≥ 2c, we obtain |x i -x i-1 | ≥ (∆ -c)/λ ≥ c/λ.
Now, by the definition of a quasi-geodesic (and a quasi-isometry in particular), we have sup

Tn i |y i -y i-1 | ≤ sup Tn i (λ|x i -x i-1 | + c) ≤ sup Tn i 2λ|x i -x i-1 | = 2λl,
where the last equality follows because the sum of |x i -x i-1 | for every subdivision of the interval I is exactly equal to the length of I.

Lemma 8. Let γ : I → F be a (λ, c)-quasi-geodesic. Let R ≥ c be the distance between the endpoints of γ, and let

∆ ≥ 2c. Then L ∆ (γ) ≤ 4λ 2 R. Proof. By the definition of a quasi-isometry, l/λ -c ≤ R ≤ λl + c. Hence, l ≤ λ(R + c).
And by Lemma 7,

L ∆ (γ) ≤ 2λ 2 (R + c). In particular, L ∆ (γ) ≤ 4λ 2 R for R ≥ c.
The next lemma allows replacing arbitrary quasi-geodesics with continuous ones.

Lemma 9. Let γ be a (λ, c)-quasi-geodesic, and let ∆ ≥ c. Let T = t 0 , t 1 , . . . , t n ⊂ γ be the set of points on γ such that T gives the ∆-length value L ∆ .

1. Then the curve γ consisting of the geodesic segments

[t i , t i+1 ], i = 0, 1, . . . , n -1, is a (λ, 12∆ + 3c)-geodesic with the (classical) length L ∆ . 2.
Let y and y ′ be points of γ such that d(y, y ′ ) ≥ 6∆+c. Let γ0 be the part of γ between y and y ′ . Then the (classical) length of γ0 is not greater than L ∆ (γ 0 ) ≤ 4λ 2 (R+6∆).

Proof. We first note that for every i = 0, 1, . . . , n -1, the length of the interval

|[t i , t i+1 ]| ≤ 3∆. Indeed, if |[t i , t i+1 ]| > 3∆
, then we can add a point t ′ i to the partition T . Such a point exists because the gaps on a quasi-geodesic cannot be greater than c.

We assume that γ is parameterized by an interval I; t -1 i ∈ I are the parameters of t i , i = 0, 1, . . . , n (see Fig. 5). Let [t -1 i , t -1 i+1 ] be the affine parameterization of the geodesic segments [t i , t i+1 ]. Then the conditions for being a (λ, 4c)-geodesic are satisfied automatically for the points of the same segment.

To simplify the notation, we let [x 1 , x 2 ] and [x 3 , x 4 ] denote two different intervals of γ and [z 1 , z 2 ] and [z 3 , z 4 ] denote their parameters. We take two points

y 1 ∈ [x 1 , x 2 ] and y 2 ∈ [x 3 , x 4 ],
where w 1 and w 2 are their parameters. By the triangle inequality and by the definition of a quasi-isometry,

|y 1 -y 2 | ≤ |x 2 -x 3 | + |y 1 -x 2 | + |y 2 -x 3 | ≤ |x 2 -x 3 | + 6∆ ≤ λ|z 2 -z 3 | + c + 6∆.
Similarly, we obtain the lower bound By the definition of a quasi-isometry,

|y 1 -y 2 | ≥ |x 2 -x 3 | -|y 1 -x 2 | -|y 2 -x 3 | ≥ |x 2 -x 3 | -6∆ ≥ 1 λ |z 2 -z 3 | -c -6∆.
|z k -z k+1 | ≤ λ(|x k -x k+1 | + c) ≤ λ(3∆ + c) with k = 1, 3. Hence, |w 1 -w 2 | -2λ(3∆ + c) ≤ |z 2 -z 3 | ≤ |w 1 -w 2 |.
Therefore,

1 λ |w 1 -w 2 | - 2λ(3∆ + c) λ -6∆ -c ≤ |y 1 -y 2 | ≤ λ|w 1 -w 2 | + 6∆ + c.
Consequently, γ is a quasi-geodesic with the constants λ and 12∆ + 3c and statement 1 in the lemma is proved.

To prove statement 2, we need merely note that if

|y 1 -y 2 | ≥ 6∆+c, then c ≤ |x 1 -x 4 | ≤ |y 1 -y 2 | + 6∆
by the triangle inequality. The left-hand inequality allows applying Lemma 8 to the part γ 0 between x 1 and x 4 of the initial quasi-geodesic γ, and we use the right-hand part to obtain the upper bound,

L(γ 0 ) ≤ L ∆ (γ 0 ) ≤ 4λ 2 (R + 6∆).

Exponential contraction

Lemma 10 (Exponential contraction). Let ∆ > 0. In a geodesic δ-hyperbolic space E, let γ be a connected curve at a distance not less than R ≥ ∆ + 58δ from a geodesic σ. Let L ∆ be the ∆-length of γ. Let r = ⌊(R -∆ -58δ)/19δ⌋19δ. Then the length of the projection of γ on σ is not greater than max 4δ ∆ e -Kr/δ (L ∆ + ∆), 8δ .

In other words,

• if R ≤ ∆ + 58δ + (δ/K) ln (L ∆ + ∆)/2∆
, then the length of the projection of γ on σ is not greater than (4δ/∆)e -Kr/δ (L ∆ + ∆); • otherwise, it is not greater than 8δ. Proof. Let y 0 , y 1 , . . . , y n be points on γ such that |y i -y i-1 | = ∆ for i = 1, 2, . . . , n -1, |y n -y n-1 | ≤ ∆, and y 0 and y n are the endpoints of γ. Let y k be the point of this set that is nearest σ. We take a perpendicular from y k to σ and a point x k on it with |y k -x k | = ∆ + 3δ. Now, on the perpendiculars from all other points y i , we take points x i such that d(x i , σ) = d(x k , σ) (see Fig. 6). By Lemma 2,

|x i -x i-1 | ≤ 4δ for i = 1, 2, . . . , n. Therefore, n i=1 |x i -x i-1 | ≤ n4δ ≤ n∆ 4δ ∆ ≤ 4δ ∆ (L ∆ + ∆).
We set x0 = x 0 and xn 1 = x n and select points xi ∈ {x 1 , x 2 , . . . , x n-1 } such that 8δ ≤ |x i -x i-1 | ≤ 16δ. For each i = 0, 1, . . . , n 1 , we choose a perpendicular from xi to σ, move xi along it a distance 16δ + 3δ = 19δ toward σ, and obtain x 1 i . By Lemma 2,

|x 1 i -x 1 i-1 | ≤ and n 1 i=1 |x 1 i -x 1 i-1 | ≤ n 1 4δ ≤ 1 2 n 1 i=1 |x i -xi-1 | ≤ 1 2 n i=1 |x i -x i-1 | ≤ 1 2 4δ ∆ (L ∆ + ∆).
We can continue such a process while the distance from the set of points {x m i , i = 0, 1, . . . , n m } to σ is not less than 19δ and |x m 0 -x m n m | ≥ 8δ. After k steps, we have

n k i=1 |x k i -x k i-1 | ≤ 1 2 k 4δ ∆ (L ∆ + ∆) = 4δ ∆ e -((ln 2)/19δ)(19δk) (L ∆ + ∆).
We set r = 19δk and K = (ln 2)/19. We need 8δ ≤ (4δ/∆)e -Kr/δ (L ∆ + ∆) and hence r ≤ (δ/K) ln (L ∆ + ∆)/2∆ . Now, if the distance between the projections of the endpoints |x m 0 -x m n m | is not less than 8δ at some step m, then we use Lemma 2 to do the last projection on σ, and its length does not exceed 8δ. Otherwise, we must do the last descent to the distance 55δ using Lemma 2 (the estimate for the projection on a geodesic with ∆ = 16δ gives the necessary distance from the set of points to the geodesic to be greater than 3 * 16δ + 6δ = 54δ) and intervals of a length not less than 8δ contract to intervals of a length not more than δ, and we hence have a contraction factor of unity at the last step.

Quantitative version of the Morse lemma

We are now ready to prove our main result. In a δ-hyperbolic space E, any (λ, c)-quasigeodesic γ belongs to an H-neighborhood of a geodesic σ connecting its endpoints, where the constant H depends only on the space E (in particular, on the constant δ) and the quasi-isometry constants λ and c.

5.1.

Attempts. To motivate our method, we describe a sequence of arguments yielding sharper and sharper estimates. We start with the proof in [START_REF] Ghys | Sur les groupes hyperboliques d'après Mikhael Gromov[END_REF], Chapter 5.1, Theorem 6 and Lemma 8, where the upper bound H ≤ λ 8 c 2 δ was obtained (up to universal constants, factors of the order log 2 (λcδ)). The first weak step in this proof is replacing a (λ, c)-quasigeodesic with a discrete (λ ′ , c)-quasi-geodesic γ ′ parameterized by an interval [1, 2, . . . , l] of integers, where λ ′ ∼ λ 2 c. For a suitable R ∼ λ ′2 , we take an arc x u x v of γ ′ and introduce a partition of that arc x u , x u+N , x u+2N , . . . , x v for some well-chosen N ∼ λ ′ . The approximation of a δ-hyperbolic space by a tree (see [START_REF] Ghys | Sur les groupes hyperboliques d'après Mikhael Gromov[END_REF], Chapter 2.2, Theorem 12.ii) is used to obtain an estimate of the form

|y u+iN -y ′ u+(i+1)N | ≤ c ′ ∼ ln λ ′ . By the triangle inequality, |x u -x v | ≤ |x u -y u |+|y u -y u+N |+• • •+|y v -x u | ≤ 2(R+λ ′ )+(N -1 |u-v|+1)c ′ .
On the other hand, λ ′-1 |u -v| ≤ |x u -x v |. Combining these two inequalities, we obtain an estimate for |u -v| and hence for a distance from any point of the arc x u x v to the point x u . The second weak step in this argument is in the estimate of the length of projections, which can be improved significantly.

Another proof was given in [START_REF] Alonso | Notes on word hyperbolic groups[END_REF]. It allows obtaining the estimate λ 2 H am , where H am is the constant of the anti-Morse lemma (see Section 7) and is given by the equation H am ≃ ln λ + ln H am . 1 It is very close to an optimal upper bound but still not sharp. Also we need to notice that the sharp estimate for H am ≃ ln λ. The proof uses the notion of "exponential geodesic divergence." Definition 10. Let F be a metric space. We call e : N → R a divergence function for the space F if for any point x ∈ F and any two geodesic segments γ = (x, y) and γ ′ = (x, z), the length of a path σ from γ(R + r) to γ ′ (R + r) in the closure of the complement of a ball B R+r (x) (i.e., in X \ B R+r (x)) is not greater than e(r) for any R, r ∈ N such that R + r does not exceed the lengths of γ and

γ ′ if d(γ(R), γ ′ (R)) > e(0).
The divergence function is exponential in a hyperbolic space. The next step is to prove the anti-Morse lemma. The authors of [START_REF] Alonso | Notes on word hyperbolic groups[END_REF] take a point p of the geodesic σ that is the distant from the quasi-geodesic γ and construct a path α between two points of γ such that α is in the complement of the ball of radius d(p, γ) with the center p. Finally, they compare two estimates of the length: one estimate follows from the hypothesis that α is a quasi-geodesic, and the other is given by the exponential geodesic divergence. To prove the Morse lemma, they take a (connected) part γ 1 of γ that belongs to the complement of the H am -neighborhood of the geodesic σ, and they show that the length of γ 1 does not exceed 2λ 2 H am by the definition of a quasi-geodesic. In [START_REF] Alonso | Notes on word hyperbolic groups[END_REF], they also use another definition of a quasi-geodesic, which is less general than our definition because, in particular, it assumes that a quasi-geodesic is a continuous curve. Consequently, some technical work is needed to generalize their results.

To improve these bounds, we use Lemma 10 (exponential contraction) instead of exponential geodesic convergence and Lemma 8, which do not require discretization as in [START_REF] Ghys | Sur les groupes hyperboliques d'après Mikhael Gromov[END_REF] and provide a much more precise estimate for a length of a projection. We can then take R = ln λ and obtain H ≤ O(λ 2 ln λ) by a similar triangle inequality.

Below, we prove the Morse and anti-Morse lemmas independently. We only mention that arguments in [START_REF] Alonso | Notes on word hyperbolic groups[END_REF] can be used to deduce the optimal bound for the Morse lemma from the anti-Morse lemma. We can also obtain an optimal upper bound for H from Lemma 11.

We now sketch the proof of a stronger result (but still not optimal): H ≤ O(λ 2 ln * λ), where ln * λ is the minimal number n of logarithms such that ln . . .

ln n λ ≤ 1.
The preceding argument is used as the initial step. It allows assuming that the endpoints x and x ′ of γ satisfy |x -x ′ | ≤ O(ln λ). Then comes an iterative step. We prove that if xx ′ is an arc on γ and |x -x ′ | = d 1 , then there exist two points y and y ′ at distance at most C 2 (c, δ)λ 2 from a geodesic σ 1 connecting x and x ′ such that d 2 := |y -y ′ | ≤ C 3 (c, δ) ln d 1 .

1 Be careful while reading [START_REF] Alonso | Notes on word hyperbolic groups[END_REF] because a slightly different definition of quasi-geodesics is used there with λ1 = λ 2 ; cf. Lemma 8.

Indeed, we choose a point z of the arc xx ′ that is farthest from σ 1 and let σ ′ denote a perpendicular from z to σ 1 . If all points of the arc xx ′ (on either side of z) whose projection on σ ′ is at a distance ≤ λ 2 from σ 1 are at a distance not less than ln d 1 from σ ′ , then Lemma 10 implies that the length of the arc is much greater than λ 2 ln d 1 , contradicting the quasi-geodesic assumption. Hence, there are points y and y ′ that are near σ ′ . We can arrange that their projections on σ ′ are near each other, which yields |y -y ′ | ≤ ln d 1 . We apply this relation several times starting with d 1 = C 1 (c, δ) ln λ until d i ≤ 1 for some i = ln * λ.

In summary, we use two key ideas to improve the upper bound of H: exponential contraction and a consideration of a projection of γ on a different geodesic σ ′ . 5.2. Proof of the Morse lemma. We use the same ideas to prove the quantitative version of the Morse lemma, but we should do it more accurately. Let γ be a (λ, c)-quasi-geodesic in a δ-hyperbolic space E, and let σ be a geodesic segment connecting its endpoints. We prove that γ belongs to an H-neighborhood of σ, where (1) H = 4λ 2 78c + 78 + 133 ln 2 e 157 ln 2/28 δ .

Remark 3. It is easy to give an example where H = λ 2 c 2 (see Section 6.2). Indeed, a path that goes back and forth along a geodesic segment of length λ 2 c in a tree is a (λ, c)-quasi-geodesic (see Section 6 for details). Proof of Theorem 1. Applying Lemma 9 to the quasi-geodesic γ with ∆ = 2c, we obtain a continuous (λ, 27c)-quasi-geodesic γ. By Lemma 8, γ belongs to a 4λ 2 • 6c=24λ 2 cneighborhood of γ. Hereafter, we consider only the (λ, 27c)-quasi-geodesic γ, which for brevity is denoted simply by γ, and we set c = 27c. The classical length of the part of this quasi-geodesic between two points separated by a distance R does not exceed 4λ 2 (R + c).

We introduce the following construction for subdividing the quasi-geodesic γ. We let z denote the point of our quasi-geodesic that is farthest from σ. Let σ 0 = σ be the geodesic connecting the endpoints of γ. Let σ ′ 0 be the geodesic minimizing the distance between z and σ 0 (because σ 0 is a geodesic segment, σ ′ 0 is not necessarily perpendicular to the complete geodesic carrying σ 0 ). Let s 0 denote the point of intersection of σ 0 and σ ′ 0 . Let s ′ 0 be the point of σ ′ 0 such that the length of the segment [s 0 , s ′ 0 ] is equal to δ. We consider the set of points of γ whose projections on σ ′ 0 belong to the segment [s 0 , s ′ 0 ]. The point z separates this set into two subsets γ + 0 and γ - 0 (see Fig. 7). Let d ± 0 denote the minimal distance of points of γ ± 0 to σ ′ 0 . We also introduce the following notation:

• d 0 = d + 0 + d - 0 + δ; • γ 1 is a connected component of γ\(γ + 0 ∪γ - 0
) containing z and is also a quasi-geodesic with the same constants and properties as γ;

• σ 1 is a geodesic connecting the endpoints of the sub-quasi-geodesic γ 1 ;

• L 1 is the length of γ 1 . Applying the same idea to the curve γ 1 , the same point z, and the geodesic σ 1 , we obtain the geodesic σ ′ 1 , the parts γ ± 1 of the quasi-geodesic, and the distances d ± 1 . We have l(σ ′ 0 ) ≤ l(σ ′ 1 ) + δ + 6δ. To show this, we apply Lemma 5 assuming that c = s ′ 0 , d = z, and a and b are the endpoints of γ 1 . Continuing the process, we obtain a subdivision of γ by γ ± i and two families of geodesics σ i and σ ′ i . Finally, for some n, we obtain

d n ≤ c + δ + 77δ = 78δ + c.
The quantity L i is the length of the subcurve γ i-1 , which is also a quasi-geodesic. Hence,

l(σ ′ n ) ≤ L n ≤ 4(d n + c)λ 2 by construction.Therefore, l(σ ′ 0 ) ≤ n i=1 7δ + 4(78δ + 2c)λ 2 .
Our goal is to prove that for sufficiently large λ, d i ≤ Cλ 2 , where C is a constant depending only on c and δ.

Because the value of the classical length of a segment is not less then the value of its ∆ ′ -length, by Lemma 10 (with ∆ ′ = δ) and because

⌊(d ± i+1 -δ -58δ)/19δ⌋19δ ≥ d ± i+1 -78δ, we obtain l(γ + i ∪ γ - i ) ≥ δ δ 4δ max(e K(d + i+1 -78δ)/δ , e K(d - i+1 -78δ)/δ ) ≥ δ 4 e K(d i+1 -δ-156δ)/2δ .
On the other hand, l(γ

+ i ∪ γ - i ) = L i -L i+1 . Hence, setting C 0 = (δ/4)e -157K/2 , we have (2) C 0 e Kd i+1 /2δ ≤ L i -L i+1 .
Let g ± i be a point of γ ± i that minimizes the distance to σ ′ i . The part of the quasi-geodesic γ between g + i and g - i is also a quasi-geodesic with the same constants and properties. By the triangle inequality,

|g - i -g + i | < d + i + d - i + δ.
Therefore, by construction (see the beginning of the proof) and because

d i ≥ 78δ, (3) L i ≤ 4λ 2 (d i + c) ≤ 8λ 2 d i .
The function e -d is decreasing. Therefore, because

d i ≥ 4 λ 2 L i , we obtain K 2δ d i e -Kd i /2δ ≤ K 2δ 4 λ 2 L i e -(4K/2δλ 2 )L i .
We are now ready to estimate n:

n = n i=1 1 = 1 C 0 n i=1 e -Kd i /2δ C 0 e Kd i /2δ ≤ 1 C 0 λ 2 δ 4K n i=1 e -(8K/2δλ 2 )L i 4K λ 2 δ (L i-1 -L i ).
Setting

X i = (4K/λ 2 δ)L i , we have n i=1 i ≤ λ 2 δ 4C 0 K n i=1 e -X i (X i-1 -X i ),
and because the function e -X is decreasing for X ≥ 0, we can use the estimate

n i=1 e -X i (X i-1 -X i ) ≤ ∞ 0 e -X dX = -e -x | ∞ 0 = 1.
Summarizing all the facts, returning to the initial notation, and recalling that K = ln 2/19, we finally obtain the claimed result H = 4λ 2 78c + 78 + 133 ln 2 e 157 ln 2/38 δ .

Examples

6.1. Proof of Proposition 1. Here, we prove Proposition 1 (see the introduction). We call any connected component of a ball with a deleted center O a branch. We call points that are sent to the branch containing the image of the center f (O) green points and all other points of T red points.

Proof of Proposition 1. We show that there exist two red points r 1 and r 2 such that d(O, r 1 r 2 ) ≤ r = c + 1. By Definition 7, a c-neighborhood of every point of the border should contain a point of the image. We must have at least (d-1)d R-c-1 red points near the border (we exclude the green part). The number of points in each connected component of the complement of the ball of radius r is less than d R-r . Therefore, if r ≫ c, then one component contains an insufficient number of points to cover the border of B. Hence, there exists two points r 1 and r 2 in different components of T , which means that the geodesic r 1 r 2 passes at a distance less than r from the center O and the quasi-geodesic f (r 1 r 2 ) passes at a distance λr + c from f (O) and belongs to an H-neighborhood of the geodesic f (r 1 )f (r 2 ). Because every path from f (O) to f (r 1 )f (r 2 ) passes through O, we conclude that d(O, f (0)) < H + c + λr. We need only choose a good value for r. Simply calculating the number of points in a mentioned component gives the estimate 1

+ d + d 2 + • • • + d R-r ≤ (1/ ln d)d R-r+1 . For r = c + 1, we have (1/ ln d)d R-r+1 ≤ (d -1)d R-c-1
, which completes the proof. 6.2. Optimality of Theorem 1. We present an example of a (λ, c)-quasi-geodesic γ in a tree with H = λ 2 c/2. We take a real interval [a, b] of length λ 2 c/2 that is a subtree. We use an interval I = [u, v] of length λc to parameterize γ. We define γ as follows: 

• γ(u) = γ(v) = a, • we 
λ(|u -v| -|u -x| -|v -y|) + c -(|a -γ(y)| -|a -γ(x)|) = λ(|u -v| -|u -x| -|v -y|) + c -λ(|v -y| -|u -x|) = λ 2 c -2λ|v -y| + c ≥ c ≥ 0.
6.3. Achieving the displacement λc. We now describe a self-quasi-isometry f of a ball B in a tree that moves the center O a distance λc/2. We assume that the radius of B is greater than λc. We note that the images of two points inside the ball B 1 of radius λc with a center O can be just the same point. Let the quasi-isometry f fix the boundary of B 1 , and let |O -

f (O)| = λc/2. The segment [O, f (O)] is sent to the only point f (O).
For any point a of ∂B 1 , we let a ′ denote a projection of a on [O, f (O)] and assume that the interval [a, a ′ ] is linearly stretched and sent to the interval [a, f (O)]. Such a map f assigns only one image to any point. It is easy to verify that f is a quasi-isometry because the distances between points can be diminished up to 0 and are not increased more than λ times.

Anti-Morse lemma

We have already proved that any quasi-geodesic γ in a hyperbolic space is at distance not more than λ 2 (A 1 c + A 2 δ) from a geodesic segment σ connecting its endpoints. This estimate cannot be improved. But the curious thing is that this geodesic belongs to a ln λ-neighborhood of the quasi-geodesic! We can therefore say that any quasi-geodesic is ln λ-quasiconvex. This upper bound can be improved in some particular spaces: for example, any quasi-geodesic is c-quasiconvex in a tree.

The proof of Theorem 2 (see the introduction) that we give below is based on using

• Lemma 10 (exponential contraction) to prove that at the distance ln λ from the geodesic σ is at most λ 2 ln λ and • an analogue of Lemma 10 to prove that the length of a circle of radius R is at least e R (up to some constants).

Lemma 11. Let X be a hyperbolic metric space, γ be a (λ, c)-quasi-geodesic, and σ be a geodesic connecting the endpoints of γ. Let (y u , y v ) be an arc of γ such that no point of this arc is at distance less than C 1 ln λ + C 2 from σ and y u and y v are the points of the arc nearest σ. Then the length of the projection of the arc (y u , y v ) on σ does not exceed max(8δ, C 3 ln λ) (with some well-chosen constants C 1 , C 2 , and C 3 depending linearly on c).

Proof. By the definition of a quasi-geodesic, we have

|u -v| λ -c ≤ |y u -y v | ≤ λ|u -v| + c.
On the other hand,

|y u -y v | ≤ |y u -y ′ u | + |y ′ u -y ′ v | + |y ′ v -y v |
, where y ′ u and y ′ v are the projections of y u and y v on σ. We adjust the constants C 1 and C 2 such that

C 1 ln λ + C 2 = 19δ 2 K ln 8δλ 4 ∆ + ∆ + 58δ,
where ∆ = 2c (such a choice allows applying Lemma 8). We apply the lemma on exponential contraction (we assume that the length of the arc is rather large for using the estimate with an exponential factor and not to treat the obvious case where the length of the projection is 8δ). We let l(y u , y v ) denote the ∆-length of the arc (y u , y v ):

|y ′ u -y ′ v | ≤ l(y u , y v )e -K(r-∆-58δ)/δ = 1 2λ 4 l(y u , y v ).
Combining all these inequalities and using Lemma 8, we obtain

|u -v| λ -c ≤ |y u -y v | ≤ 8 K ln 4 √ 2λ + 1 8λ 4 l(y u , y v ) ≤ 8 K ln 4 √ 2λ + 4λ 2 1 8λ 4 |y u -y v | ≤ 8 K ln 4 √ 2λ + 1 2λ 2 (λ|u -v| + c).
We therefore conclude that |y u -y v | ≤ C 3 λ 2 ln λ, hence l(y u , y v ) ≤ C 3 λ 4 ln λ, and, finally, the length of the projection of the arc (y u , y v ) of γ does not exceed max(8δ, C 3 ln λ).

Proof of Theorem 2. The proof follows directly from Lemma 11. Because we have already proved that for every point z ′ ∈ σ, there exists a point z ∈ γ such that the projection of z on σ is at distance not more than several times c + δ from z ′ . For simplicity, we therefore assume that for any point of σ, there exists a point of γ projecting on this point.

If the distance between z and z ′ is less than C 1 ln λ for some constant C 1 = C 1 (c, δ) (the value of C 1 can be found from Lemma 11), then the statement is already proved. If not, then we take an arc (y u , y v ) of γ containing the point z such that the endpoints y u and y v are at the distance C 1 ln λ from σ and these points are the points of this arc that are nearest σ. Hence, by the Lemma 11, the length of the projection (which includes z) of the arc (y u , y v ) does not exceed C 4 ln λ. Therefore, the distance from z to y u (and y v ) is not greater than (C 1 + C 4 ) ln λ.

Geodesically rich spaces

Definition 11. A metric space X is said to be geodesically rich if there exist constants r 0 , r 1 , r 2 , r 3 , and r 4 such that

• for every pair of points p and q with |p -q| ≥ r 0 , there exists a geodesic γ such that d(p, γ) < r 1 and |d(q, γ) -|q -p|| < r 2 and • for any geodesic γ and any point p ∈ X, there exists a geodesic γ ′ passing in a r 3neighborhood of the point p and such that d(p, γ) differs from the distance between γ ′ and γ by not more than r 4 .

Example 1. A line and a ray are not geodesically rich. Both of them satisfy the second condition in the definition, but not the first.

Example 2. Nonelementary hyperbolic groups are geodesically rich. We prove this later.

Any δ-hyperbolic metric space H can be embedded isometrically in a geodesically-rich δ-hyperbolic metric space G (with the same constant of hyperbolicity). We take a 3-regular tree with a root (T, O), assume that G = H × T , and set the metric analogously to a real tree:

• the distance between points in the subspace (H, O) equals the distance between the corresponding points in H; • the distance between other points equals the sum of the three distances from the points to their projections on (H, O) and between their projections on (H, O). It is easy to show that the space G is δ-hyperbolic and geodesically rich. But such a procedure completely changes the ideal boundary of the space. We therefore ask another question: Question 1. Is it possible to embed a δ-hyperbolic metric space H isometrically in a geodesically rich δ-hyperbolic metric space G with an isomorphic boundary? Lemma 12. Let G be a nonelementary hyperbolic group. Then there exist constants c 1 and c 2 such that for any point p ∈ G and any geodesic γ ∈ G such that d(p, γ ≥ c 1 , there exists a geodesic γ ′ with a point q minimizing (up to a constant times δ) the distance to γ and |p -q| ≤ c 2 .

Proof. By symmetry, we can assume that p is the unity of the group G. We supply the ideal boundary G(∞) with a visual distance. Because G is a nonelementary group, its ideal boundary G(∞) has at least three points (hence, infinitely many points).

We first prove by contradiction that there exists a ε such that for every pair of points ξ and η of G(∞), the union of the two balls of radius ε with the centers ξ and η does not cover the whole ideal boundary. On the contrary, we suppose that there exist two sequences of points ξ n and η n such that the union of B(ξ n , 1/n) and B(η n , 1/n) includes G(∞). By compactness, we can assume that ξ n → ξ and η n → η, and we find that G(∞) belongs to the union of B(ξ, 2/n) and B(η, 2/n). Hence, the ideal boundary contains only the two points ξ and η, which contradicts the assumption that G is nonelementary.

Let c 1 be a constant such that if a geodesic γ is at a distance at least c 1 from the point p, then the visual distance between its endpoints (at infinity) is less than ε/2. We now take two points ξ and η of G(∞) outside a ε/4-neighborhood of γ(∞) such that |ξ -η| > ε (the preceding argument established that such a choice is possible). Let γ ′ be a geodesic with the endpoints ξ and η. Hence, d(p, γ ′ ) < c 1 . Applying Lemma 13 completes the proof.

Lemma 13. Let X be a δ-hyperbolic space. Then for every ε > 0, there exist constants c 1 and c 2 such that for every pair of geodesics γ and γ ′ and every point p such that d(p, γ) < c 1 and visual distance between the endpoints γ(∞) and γ ′ (∞) ≥ ε, there exists a point q on γ minimizing the distance to γ ′ up to some constant times δ and such that |p -q| ≤ c 2 .

Proof. By Lemma 15, we can replace the point p with its projection p ′ on the geodesic γ. Let a ′ and b ′ be the projections on γ of the endpoint a = γ ′ (-∞) and the point b of γ ′ that minimizes the distance from γ ′ to γ.

We consider two sequences x n and y n of points respectively on aa ′ and a ′ γ(+∞) such that lim n→∞ x n = a and lim n→∞ y n = γ(+∞). We let a ′ n denote the projections of x n . Obviously, a ′ n → a ′ as n → ∞. By the definition of Gromov's product, (x|y) p ′ = lim n→∞ (x n |y n ) p ′ . Using Lemma 4, we now estimate (x n |y n ) p ′ :

(x n |y n ) p ′ = 1 2 (|p ′ -x n | + |p ′ -y n | -|x n -y n |) ≤ 1 2 (|p ′ -a ′ n | + |a ′ n -x n | + 8δ + |p ′ -y n | -|a ′ n -x n | -|a ′ n -y n | + 2δ).
Now, if p ′ is between a ′ and b ′ , then (x n |y n ) p ′ ≤ 5δ; otherwise (we assume that p ′ is closer to a ′ , i.e., the order of points on γ is p

′ , a ′ , b ′ ), (x n |y n ) p ′ ≤ |p ′ -a ′ | + 5δ.
Therefore, to finish the proof, we must now prove that the point a ′ is not far from ab. We apply Lemma 4 once more to the triangle aa ′ b ′ and obtain d(a ′ , ab ′ ) ≤ 2δ. Hence, because the triangle abb ′ is δ-thin, the distance from a ′ to ab or bb ′ is not greater than 3δ. In the first case, the statement is proved immediately. In the second case, we note that bb ′ is a perpendicular to ab ′ and hence d(a ′ b ′ ) ≤ 2d(a ′ , bb ′ ) ≤ 6δ. Therefore, a ′ in this case is near the projection of the point of ab that is nearest ab ′ , which completes the proof.

Lemma 14. Let G be a nonelementary hyperbolic group. Then there exist constants c 0 , c 1 , and c 2 such that for every two points p and q in the group G with |p -q| > r 0 , there exists a geodesic γ such that d(p, γ) ≤ r 1 and ||p -q| -d(q, γ)| ≤ r 2 .

Proof. We first assume that p is the unity of the group. We argue by contradiction: we suppose that the statement is false, i.e., there exists a sequence of points q n such that |q n -p| → ∞ as n → ∞, and all pairs p and q n do not satisfy the conditions in the lemma. We suppose that ξ is a limit point of this sequence. As in the proof of Lemma 12, we supply the boundary of the group with a visual metric. And the same arguments provide that there exist ε > 0 and points η and η ′ on the ideal boundary G(∞) such that that the pairwise visual distances between ξ, η, and η ′ are greater than ε (see Fig. 8). We show that the geodesic γ with the endpoints η and η ′ satisfies the conditions in the lemma, which leads to the contradiction.

In what follows, we write ξ, η, and η ′ but assume that we consider three sequences of points converging to the corresponding points of the ideal boundary. The triangle pηη ′ is δ-thin. We take a point s of ηη ′ such that d(s, pη) ≤ δ and d(s, pη ′ ) ≤ δ. We let t and t ′ denote projections of s respectively on pη and pη ′ . By the triangle inequality, we have

|η -t| + |η ′ -t ′ | -2δ ≤ |η -η ′ | ≤ |η -t| + |η ′ -t ′ | + 2δ. By hypothesis, visdist p (η, η ′ ) = e -(η|η ′ )p > ε. Hence, |p -η| + |p -η ′ | -|η -η ′ | < 2ε 0 ,
where ε 0 = -ln ε Combining the two inequalities, we obtain |p -t| + |p -t ′ | ≤ 2(ε 0 + δ) and d(p, ηη ′ ) ≤ 2ε 0 + 3δ. The same arguments applied to the triangles pηξ and pη ′ ξ show that the distance from the point p to the geodesics ηξ and η ′ ξ also does not exceed 2ε 0 + 3δ. We let p 1 , p 2 , and p 3 denote the respective projections of p on ηη ′ , ηξ, and η ′ ξ and q denote the projection of ξ on ηη ′ . By the triangle inequality, |p 1 -p 2 | ≤ |p 1 -p| + |p -p 2 | ≤ 2(2ε 0 + 3δ). Applying Lemma 4 to the triangles qξη and qξη ′ , we find that the point q is not farther than 2δ from both ηξ and η ′ ξ. Therefore, both p 1 and q are at bounded distances from ηξ and η ′ ξ, and we can apply Lemma 6, whence it follows that p 1 and q are near each other at a distance of the order ε 0 + δ.

Lemma 15. Let X be a δ-hyperbolic space, ξ and η be two points of the ideal boundary ∂X, and p and p ′ be two points such that d(p, p ′ ) = D. Then the visual distances between ξ and η from the points p and p ′ satisfy the inequality visdist p ′ (ξ, η) ≤ e D visdist p (ξ, η). The last inequality follows from the triangle inequality. Therefore, by the definition of a visual metric, visdist p ′ (ξ, η) = e (ξ|η) p ′ ≤ e (ξ|η)p+|p-p ′ | = e D visdist p (ξ, η).

Quasi-isometries fixing the ideal boundary

We now give some estimates of the displacement of points in geodesically rich spaces under quasi-isometries that fix the ideal boundary. We do not yet know whether these results are optimal.

Remark 4. Let X be a metric space satisfying the first condition in the definition of geodesically rich. Let f : X → X be a (λ, c)-self-quasi-isometry fixing the boundary ∂X. Then for sufficiently large λ and any point O ∈ X, d(f (O), O) ≤ H(λ, c, δ) + r 2 , where the constant C 1 depends only on the space X. We do not know if it is possible to improve this upper bound in the general case. But in the case of a geodesically rich space, we can improve the bound from λ 2 to λ ln λ.

Theorem (see Theorem 3 in the introduction). Let X be a (r 1 , r 2 )-geodesically rich δhyperbolic metric space and f be a (λ, c)-self-quasi-isometry fixing a boundary ∂X. Then for any point O ∈ X, d(O, f (O)) ≤ max(r 0 , λ(r 3 + c + c 1 ln λ) + r 1 + r 2 + r 4 ).

Proof. Because f fixes the boundary of X and by the anti-Morse lemma, a (c 1 ln λ)neighborhood (where c 1 = c + δ) of an image f (σ) of any geodesic σ includes σ: σ ⊂ V c 1 ln λ (f (σ)). All the constants r 0 , r 1 , r 2 , r 3 , and r 4 are the same constants as in the definition of a geodesically rich space. We take an arbitrary point O ∈ X. We assume that d(O, f (O)) ≥ r 0 because otherwise there is nothing to prove. There exists a geodesic γ such that d(γ, O) ≤ r 1 and |d(O, f (O)) -d(f (O), γ)| ≤ r 2 , and there also exists a geodesic γ ′ such that f (O) lies in r 3 -neighborhood of γ ′ and such that f (O) is (up to r 4 ) the point of γ ′ that is nearest γ.

Because γ ′ ⊂ V 

Proposition 1 .

 1 Let O be a center of a ball of radius R in a d-regular metric tree T (d ≥ 3). Let f be (λ, c)-self-quasi-isometry of this ball. Then for any image f (O) of the center O, d(f (O), O) ≤ min{R, H + c + λ(c + 1)}.

Definition 4 .

 4 A geodesic triangle xyz is said to be δ-thin if for any point p ∈ xy, d(p, xz ∪ yz) ≤ δ.

Lemma 1 .

 1 In a geodesic δ-hyperbolic space, let b be a point and σ be a geodesic such that d(b, σ) = R. Let ba be a perpendicular from b to σ, where a ∈ σ. Let c be a point of σ such that |b -c| = R + 2∆. Then |a -c| ≤ 2∆ + 4δ.

Figure 1 .

 1 Figure 1. Illustration for Lemma 1.
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 23 Figure 2. Illustration for Lemma 2.

•

  d(d, ab) ≤ δ, d(e, ab) ≤ δ, d(c, ab) ≤ 2δ, and • the length of ab differs from the sum of the lengths of the two other sides by at most 8δ, |a -c| + |b -c| -2δ ≤ |a -b| ≤ |a -c| + |b -c| + 8δ.

Lemma 5 .

 5 Let σ be a geodesic and a and b be two points not on σ. Further, let a and b have a common projection c on σ. Let d be a point of σ and c 1 be the projection of d on ab. Then |d -c| ≤ |d -c 1 | + 6δ.
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 3 Figure 3. Illustration for Remark 2.

1 and bc 1 .

 1 Because the triangle dbc 1 is δ-thin, either |e 1 -e 2 | ≤ δ or |e 1 -e 3 | ≤ δ.

Figure 4 .

 4 Figure 4. Illustration for Lemma 5.I. If |e 1 -e 2 | ≤ δ, then |d -c| ≤ |c -e| + |e -e 1 | + |e 1 -e 2 | + |e 2 -d| ≤ |d -c 1 | + 3δ. II. If |e 1 -e 2 | >δ, then the length of the path cee 3 is at most 3δ. We apply the same arguments to ad (we assume that this is possible; otherwise, we could apply the first case to it). We obtain the points g, g 1 , and g 3 and the length of the path cgg 3 is also at most 3δ. If neither of these paths intersects cc 1 , then its length does not exceed 6δ (which follows from consideration of the triangle ce 3 g 3 ).

  and hence |t -t ′ | ≤ 4δ. If y and y ′ are sufficiently far from bc, i.e., if d ≥ 9δ, then |s -s ′ | ≤ 6δ by Lemma 2. Otherwise, we can give a rough estimate by the triangle inequality: |s -s ′ | ≤ |s -y| + |y -y ′ | + |y ′ -s ′ | ≤ 19δ. Hence, in any case, |s -s ′ | ≤ 19δ. We consider two cases.

Figure 5 .

 5 Figure 5. Construction of the continuous arc γ from the quasi-geodesic γ.

Figure 6 .

 6 Figure 6. Exponential contraction of the length of a curve γ under projection on a geodesic σ.

Figure 7 .

 7 Figure 7. Illustration of proof of Theorem 1

  set γ(w) = b for the midpoint w of I, and • we set D = min{|u -x|, |v -x|} and |a -γ(x)| = λD for any x ∈ [a, b]. It is easy to verify that γ is a well-defined quasi-geodesic. On the half-intervals [u, w] and [w, v], γ just stretches the distances by λ. We now take any two points x ∈ [u, w] and y ∈ [w, v]. Assuming that |u-x| ≤ |v-y|, we obviously have |x-y| = |u-v|-|u-x|-|v-y|. I. The lower bound of |γ(x) -γ(y)| is given by 1 λ (|u -v| -|u -x| -|v -y|) -c ≤ 0 ≤ |γ(x) -γ(y)|. II. The upper bound of |γ(x) -γ(y)| is given by

Figure 8 .

 8 Figure 8. Illustration for Lemma 14.

Proof.

  By definition, Gromov's product of x and y in p is(x|y) p = 1 2 (|p -x| + |p -y| -|x -y|).We have the same equality for x, y, and p ′ . Hence,|(x|y) p ′ -(x|y) p | = | 1 2 (|p ′ -x| + |p ′ -y| -|p -x| -|p -y|)| ≤ |p -p ′ |.

Proof.

  For any point O, r 1 ≤ H(λ, c, δ) for sufficiently largeλ if d(O, f (O)) < r 0 . Otherwise, let γ be a geodesic such that d(O, γ) ≤ r 1 and d(f (O), γ) > d(O, f (O)) -r 2 .Because f (γ) is a quasi-geodesic with the same endpoints as γ, the quasi-geodesic lies near γ: f (γ) ⊂ U H (γ). Combining all the arguments, we obtaind(O, f (O)) ≤ d(f (O), γ) + r 2 ≤ H + r 2 .

  c 1 ln λ (f (γ ′ )), there exists a point O ′ of γ ′ such that |f (O ′ ) -f (O)| ≤ r 3 + c 1 ln λ. Now, d(f (O), γ) ≤ d(O ′ , γ) + r 4 ≤ |O ′ -O| + r 1 + r 4 ,and by the definition of a quasi-isometry, |O′ -O| ≤ λ(|f (O ′ ) -f (O)| + c) ≤ λ(r 3 + c + c 1 ln λ). Hence, d(f (O), γ) ≤ λ(r 3 + c + c 1 ln λ) + r 1 + r 4 . Finally, we conclude that d(O, f (O)) ≤ d(f (O), γ) + r 2 ≤ λ(r 3 + c + c 1 ln λ) + r 1 + r 2 + r 4 .10. Acknowledgment I am thankful to Professor P. Pansu for advising me through all the steps of this research. This work was supported by the President of the Russian Federation under the program of state support for leading scientific schools (Grant No. NSh-8462.2010.1).