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A QUANTITATIVE VERSION OF THE MORSE LEMMA AND IDEAL

BOUNDARY FIXING QUASIISOMETRIES

VLADIMIR SHCHUR

Abstract. The article is devoted to a proof of the optimal upper-bound for Morse
Lemma, its ”anti”-version and their applications. Roughly speaking, Morse Lemma states
that in a hyperbolic metric space, a λ-quasi-geodesic γ sits in a λ2-neighborhood of
every geodesic σ with same endpoints. Anti-Morse Lemma states that σ sits in a log λ-
neighborhood of γ. Applications include the displacement of points under quasi-isometries
fixing the ideal boundary.

1. Introduction

The aim of the article is to prove the optimal upper bound for Morse lemma which tells
that a quasi-geodesic can not go too far from a geodesic connecting its ends.

Theorem. In a δ-hyperbolic space E consider a (λ, c)-quasigeodesic γ. Let σ be a geodesic
segment, connecting its ends. Then γ lies in H-vicinity of σ, where

(1) H = λ2 (A1c+A2δ) ,

where A1 and A2 are two universal constants.

This result is an optimal one, that is there exists an example of a quasi-geodesic with
such a value of H, see Section 6.

Morse lemma is an important brick in the geometry of hyperbolic spaces. For example
it is used to prove that hyperbolicity is invariant under quasi-isometries between geodesic
spaces [1] (see Chapter 5.2, Theorem 12): let E and F be δ1- and δ2-hyperbolic geodesic
spaces. If there exists a (λ, c)-quasiisometry between these two spaces, then

δ1 ≤ 8λ(2H + 4δ2 + c).

Hyperbolic metric spaces have recently appeared in discrete mathematics and computer
science (see for example [2]). δ-hyperbolicity turns out to be more appropriate than other
notions of approximation by trees (e.g. tree-width) used previously. This motivates our
search for optimal bounds in cornerstones of hyperbolic group theory like Morse Lemma.

Another motivation comes from Gromov’s quasi-isometry classification problem for groups
[3]. When two groups are shown not to be quasi-isometric, one would like to give a quanti-
tative measurement of this fact like a lower bound on the distortion of maps between balls
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in these groups (we thank Itai Benjamini for pointing out to us this issue). We expect our
optimal bound in Morse Lemma to be instrumental in proving such lower bounds. As an
indication, we shall show that the center of a ball in a tree cannot be moved very far by a
self quasi-isometry.

Proposition 1. Let O be the center of a ball in a d-regular metric tree (d ≥ 3) of radius
R. Consider a self (λ, c)-quasi-isometry f of this ball. Then for any image of the center O

d(f(O), O) ≤ min{R,H + c+ λ(c+ 1)}.
As for a tree δ = 0 we have d(f(O), O) ≤ 2A1λ

2c for large enough λ. See Section 6 for
the proof of this proposition.

We shall give an example of a (λ, c)-quasiisometry of a ball in a d-reqular tree which
moves the center a distance λc away. We are currently unable to fill the gap between λc
and λ2c.

Here is a second illustration: in certain hyperbolic metric spaces, self-quasiisometries
fixing the ideal boundary move points a bounded distance away. Direct application of the
Morse Lemma yields a bound of H ∼ λ2c, whereas the examples we know achieve merely
λc. For this problem we are able to fill the gap partially. Our argument relies on the
following theorem, which we call Anti-Morse Lemma.

Theorem. In a δ-hyperbolic metric space let γ be a (λ, c)-quasi-geodesic and σ a geodesic,
connecting the end-poins of γ. Assume that 4δ is much less than log λ Than σ lies in the
A3(c+ δ) log λ-neighbourhood of γ, where A3 is some constant.

In Section 9 we shall define the class of geodesically rich hyperbolic spaces (it contains
all Gromov hyperbolic groups) for which we can prove

Theorem. Let X be a geodesically rich δ-hyperbolic metric space, let f be a (λ, c)-self-
quasiisometry fixing the boundary ∂X. Then for any point O of X the displacement
d(O, f(O)) does not exceed (A4 + c)λ log λ where A4 is a constant depending on the space
X.

First we discuss the geometry of hyperbolic spaces, prove a lemma on exponential con-
traction of lengths of curves with projections on geodesics. Then we discuss the invariance
of ∆-length of geodesics by quasi-isometries. Using these results we prove the quantitative
version of the Morse and Anti-Morse lemmas. We define the class of geodesically rich
spaces give for this class an estimation of a displacement of points by the ideal boundary-
fixing self-quasi-isometries. Finally, we show that this class includes all Gromov-hyperbolic
groups.

2. On the geometry of δ-hyperbolic spaces

Let E be a metric space with metric d. We shall also write |x−y| for the distance d(x, y)
between two points x and y of the space E. There exists several equivalent definitions of
hyperbolic metric spaces. First we present the most general definition, given by M. Gromov
[4], [1], but for our aims another one will be more convenient.
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Definition 1. Gromov’s product of two points x and y at point z is

(x, y)z =
1

2
(|x− z|+ |y − z| − |x− y|) .

Definition 2. A metric space E with metric d is called δ-hyperbolic if for every four points
p, x, y, z

(x, z)p ≥ min {(x, y)p, (y, z)p} − δ.

Definition 3. A geodesic triangle xyz is called δ-thin if the distance from any point p of
xy to the union of xz and yz does not exceed δ:

d(p, xz ∪ yz) ≤ δ.

For a complete geodesic space it can be easily shown that Definition 2 is equivalent to
the following (in fact, to be precise we should demand

(
1
2δ
)
-thin triangles in the following

definition):

Proposition 2. A geodesic metric space E is δ-hyperbolic if and only if every geodesic
triangle is 1

2δ-thin.

According to M. Bonk and O. Schramm [5], every δ-hyperbolic metric space embeds
isometrically into a complete δ-hyperbolic geodesic metric space. So without loss of gen-
erality, we shall consider only complete δ-hyperbolic geodesic spaces in the sequel. Given
points a and b, ab denotes an arbitrary geodesic segment from a to b.

Definition 4. In a metric space, a perpendicular from a point to a curve (in particular,
a geodesic) is a shortest path from this point to the curve.

Of course, perpendiculars are not necessarily unique.

Lemma 1. In a geodesic δ-hyperbolic space, consider a point b and a geodesic σ at distance
R from b. Let ba be a perpendicular from b to σ, where a lies on σ. Let c be a point of σ
at distance R+ 2∆ from b. Then |a− c| ≤ 2∆ + 4δ

Proof. The triangle abc is δ-thin by the definition of δ-hyperbolic space, hence, there exists
a point t on σ such that d(t, ba) ≤ δ and d(a, bc) ≤ δ. Let t1 and t2 be projections of
t on ba and bc respectively. R is the minimal distance from b to the points of σ. So
R = |b − a| ≤ |b − t1| + |t1 − t| ≤ |b − t1| + δ, R ≤ |b − t2| + |t2 − t| ≤ |b − t2| + δ.
Hence, |a − t1| ≤ δ and |c − t2| ≤ 2∆ + δ. By the triangle inequality, we obtain |a − c| ≤
|a− t1|+ |t1 − t|+ |t− t2|+ |t2 − c| ≤ 2∆ + 4δ. �

Remark 1. In particular, all the orthogonal projections of a point to a geodesic lie in a
segment of length 4δ.

Lemma 2. In a δ-hyperbolic space, take two points b and d such that |b−d| = ∆. Let σ be
a geodesic, let a and c be orthogonal projections of b and d respectively on σ. Assume that
|a− b| > 3∆ + 6δ, and that d is farther than b from σ. Consider two points x1 and x4 on
ab and cd, equidistant from σ, such that 2∆+5δ < d(x1, σ) = d(x4, σ) < |a− b|− (∆+2δ).
Then |x1 − x4| ≤ 4δ and |a− c| ≤ 8δ.
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Figure 1. Illustration for Lemma 1.

Proof. By the triangle inequality and since cd is a perpendicular to σ, |c−d| ≤ |a−b|+|b−d|,
whence |b− c| ≤ |c− d|+ |b− d| ≤ |a− b|+ 2|b− d|. By Lemma 1, |a− c| ≤ 2∆+ 4δ. The
triangle abc is δ-thin, |a − x1| > |a− c| + δ, thus by the triangle inequality, d(x1, ac) > δ,
hence, d(x1, bc) ≤ δ. Denote by x2 the point of bc nearest to x1. As the triangle bcd is also
δ-thin and |b− x2| ≥ |b− x1| − |x1 − x2| ≥ ∆+ δ, there exists a point x3 on cd such that
|x3−x3| ≤ δ. From the triangle cx1x3 it follows that |x3− c| ≥ |x1− c|−2δ ≥ |x1−a|−2δ.
On the other hand as x5c is a perpendicular to σ, |x3 − c| ≤ |x3 − x1| + |x1 − a|. Now,
|a − x1| = |c − x4|, hence |x4 − x3| ≤ 2δ. Finally we get the statement of the Lemma:
|x1 − x4| ≤ 4δ.

By the triangle inequality and as x1 and x4 are equidistant from σ: |x1 − c| ≤ |c− x4|+
|x4 − x1| ≤ |a− x1|+ 4δ. So using Lemma 1, we conclude that |a− c| ≤ 8δ. �

Lemma 3. Let σ be a geodesic segment, let a be a point not lying on σ and let c be a
projection of a on σ. Take an arbitrary point b of σ. Then the distance from c to the
projection d of b onto ac is at most 2δ.

Proof. By assumption, bd minimizes the distance from any its points to ac and as the
triangle bcd is δ-thin, there exists a point e of bd such that d(e, ac) = |e − d| ≤ δ and
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Figure 2. Illustration for Lemma 2.

d(e, bc) ≤ δ. As ac is a perpendicular to σ, |a− c| ≤ |a−d|+ |d−e|+d(e, bc) ≤ |a−d|+2δ.
Hence |c− d| ≤ 2δ. �

Lemma 4. As in the previous lemma, let σ be a geodesic segment, let a be a point not
lying on σ, let c be a projection of a on σ and let b be some point of σ. Denote by d a point
on ac at distance δ from c and by e a point of bc at distance 3δ from c. Then

• the distances from d and e to ab do not exceed δ, the distance from c to ab does not
exceed 2δ;

• the length of ab differs from the sum of the lengths of the two other sides at most
by 8δ,

|a− c|+ |b− c| − 2δ ≤ |a− b| ≤ |a− c|+ |b− c|+ 8δ.

Proof. The triangle abc is δ-thin. So, evidently, d(d, ab) ≤ δ (the distance from a point of
ac to ab is a continuous function). Take a point x of bc such that d(x, ca) ≤ δ. Using the
previous Lemma we get |b− x|+ d(x, ca) ≥ |b− c| − 2δ, hence |c− x| ≤ d(x, ca) + 2δ ≤ 3δ.

Now denote projections of d and e onto ab by d1 and e1 respectively. Then by the
triangle inequality we have:

• |a− d| − δ ≤ |a− d1| ≤ |a− d|+ δ;
• |b− e| − δ ≤ |b− e1| ≤ |b− e|+ δ;
• 0 ≤ |d1 − e1| ≤ |d1 − d|+ |d− c|+ |c− e|+ |e− e1| ≤ 6δ.
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Combining all these inequalities, we get the second point of our statement. �

Lemma 5. Let σ be a geodesic and let a and b be two points not lying on σ. Assume that a
and b have a common projection c on σ. Let d be a point of σ, denote by c1 the projection
of d on ab. Then

|d− c| ≤ |d− c1|+ 6δ.

σ 

d

a

b

c
1

c e

e

e

e

12

3

Figure 3. Illustration for Lemma 5.

Remark 2. Lemma 5 deals with a geodesic segment. For the complete geodesic passing
through a and b, the statement is not true as seen from Fig. 4.

Proof. Take a point e on bc such that |c − e| = δ. Consider the triangle bcd. bc is a
perpendicular to dc, hence d(e, bd) ≤ δ. Denote by e1 a projection of e on bd. Let e2 and
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Figure 4. Illustration for Remark 2.

e3 be projections of e1 on the geodesic segments dc1 and bc1 respectively. As the triangle
dbc1 is δ-thin, either |e1 − e2| ≤ δ or |e1 − e3| ≤ δ.

I. If d(e1, e2) ≤ δ, then |d− c| ≤ |c− e|+ |e− e1|+ |e1 − e2|+ |e2 − d| ≤ |d− c1|+ 3δ.
II. If d(e1, e2) > δ, the path cee3 has length at most 3δ. Apply the same arguments

to ad (we assume that it is possible, otherwise we could apply the first case to it). We
get points g, g1, g3 and the length of the path cgg3 is also at most 3δ. If none of these
paths intersects cc1, then its length does not exceed 6δ (it follows from consideration of
the triangle ce3g3).

�

Lemma 6. Let E be a δ-hyperbolic metric space, abc a triangle. Then the diameter of the
set S of points of the side ab, such that distance to bc and ac does not exceed 2d, is not
greater than C(d+ δ) where C is a constant.

Proof. Let x be a point of ab such that d(x, bc) ≤ δ and d(x, ac) ≤ δ, y be a point of ab
such that d(x, bc) ≤ d and d(x, ac) < d. Without loss of generality, assume that y ∈ (a, x).
As the triangle abc is δ-thin one of these two distances is not greater than δ. First, assume
that d(y, ac) ≤ δ.

Let x′, y′ be the points of ac such that d(xx′), d(yy′) ≤ δ. Denote by t, t′, s, s′ the
projections of x, x′, y, y′ on bc respectively. As x′t′ is a perpendicular to bc then |x′ − t′| ≤
|x′ − x| + |x − t| ≤ 2δ and hence, |t − t′| ≤ 4δ. If y and y′ are far enough from from bc,
that is if d ≥ 9δ, by Lemma 2 we have that |s − s′| ≤ 6δ. Otherwise we can give a rough
estimation by triangle inequality |s − s′| ≤ |s − y| + |y − y′| + |y′ − s′| ≤ 19δ. So, in any
case |s− s′| ≤ 19δ. Consider two cases.
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If s lies on the segment [b, t′], then by several applications of triangle inequality we have

|b−y| ≤ |b−s|+ |s−y| ≤ |b− t′|+ |s−y| ≤ |b−x|+ |x− t|+ |t− t′|+ |s−y| ≤ |b−x|+5δ+d.

And as |b− y| = |b− x|+ |x− y|, we obtain that |x− y| ≤ 5δ + d.
The same arguments we apply if s ∈ [t′, c]. Just notice that we can change y by y′ and

t with t′ with the errors less than δ and 19δ respectively.

|c− y′| ≤ |c− s′|+ |s′− y′| ≤ |c− s′|+ |s′− y′| ≤ |c− s|+19δ+ |s− y|+ δ ≤ |c− t′|+20δ+d

Now, as |c− t′| ≤ |c− x′|+ |x′ − t′| ≤ |c− x′|+ 2δ we get

|c− x′|+ |x′ − y′| = |c− y′| ≤ |c− x′|+ 22δ + d.

Finally, |x− y| ≤ |y − y′|+ |y′ − x′|+ |x− x′| ≤ 24δ + d.
The case of d(y, bc) ≤ δ is treated in the same way just by interchanging d and δ. �

3. quasi-geodesics and ∆-length

Definition 5. A map f : E → F between metric spaces is a(λ, c)-quasi-isometry if for any
two points x, y of E

1

λ
|x− y|E − c ≤ |f(x)− f(y)|F ≤ λ|x− y|E + c.

Definition 6. A (λ, c)-quasi-geodesic in F is a (λ, c)-quasi-isometry from a real interval
I = [0, l] to F .

Let γ : I → F be a curve. Assume that the interval I = [x0, xn] of length |I| = l
gives the parametrization of the quasi-geodesic γ. Take a subdivision Tn = (x0, x1, ..., xn),
denote γ(xi) by yi, i = 0, 1, . . . , n. The mesh of Tn is d(Tn) = min

0<i≤n
|yi − yi−1|.

Definition 7 (∆-length). Let γ : I → F be a curve. The value L∆(γ) = sup
Tn:d(Tn)≥∆

n∑

i=1

|yi−

yi−1| is called the ∆-length of the quasi-geodesic γ.

Note that for a geodesic, the values of ∆-length and classical length are the same.

Lemma 7. Let γ : I → F be a (λ, c)-quasi-geodesic. For ∆ ≥ 2c,

L∆(γ) ≤ 2λl.

Proof. By the definition of ∆-length, ∆ ≤ |yi − yi−1| ≤ λ|xi − xi−1|+ c, so as ∆ ≥ 2c, we
get |xi − xi−1| ≥ ∆−c

λ
≥ c

λ
.

Now by definition of quasi-geodesic (and quasi-isometry in particular) we have:

sup
Tn

∑

i

|yi − yi−1| ≤ sup
Tn

∑

i

(λ|xi − xi−1|+ c) ≤ sup
Tn

∑

i

2λ|xi − xi−1| = 2λl.

For the last equality we used that for every subdivision of the interval I the sum of
|xi − xi−1| is exactly equal to the length of I. �
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Lemma 8. Let γ : I → F be a (λ, c)-quasi-geodesic. Let R ≥ c be the distance between the
ends of γ, let ∆ ≥ 2c. Then the ∆-length of γ does not exceed L∆(γ) ≤ 4λ2R.

Proof. By the definition of quasi-isometry,

l

λ
− c ≤ R ≤ λl + c.

Hence l ≤ λ(R + c). And by Lemma 7,

L∆(γ) ≤ 2λ2(R + c).

In particular, for R ≥ c,

L∆(γ) ≤ 4λ2R.

�

The next Lemma allows us to replace arbitrary quasi-geodesics with continuous ones.

Lemma 9. Take a (λ, c)-quasi-geodesic γ and some ∆ ≥ c. Let T = t0, t1, . . . , tn ⊂ γ be
the set of points on γ such that T gives the value of ∆-length L∆.

(1) Then the curve γ̃ which consists of geodesic segments [ti, ti+1], i = 0, 1, . . . , n− 1 is
a (λ, 12∆ + 3c)-geodesic with (classical) length being equal to L∆.

(2) Let y, y′ be points of γ̃ such that d(y, y′) ≥ 6∆+ c. Let γ̃0 be the part of γ̃ between
y and y′. Then the (classical) length of γ̃0 is not greater than

L(γ̃0) ≤ 4λ2(R+ 6∆).

Proof. First, note that for every i = 0, 1, . . . , n−1 the length of the interval |[ti, ti+1]| ≤ 3∆.
Indeed, if |[ti, ti+1]| > 3∆ we can add a point t′i to the partition T . As the gaps on a quasi-
geodesic cannot be bigger than c such a point exists.

Assume that γ is parametrized by an interval I, t−1
i ∈ I are parameters of ti, i =

0, 1, . . . , n (see Fig. 5). Let [t−1
i , t−1

i+1] be the affine parametrization of geodesic segments
[ti, ti+1]. Then for the points of the same segment the conditions of being a (λ, 4c)-geodesic
are satisfied automatically.

To simplify notations, denote two different intervals of γ̃ by [x1, x2] and [x3, x4], their
parameters by [z1, z2] and [z3, z4]. Take two points y1 ∈ [x1, x2] and y2 ∈ [x3, x4], w1 and
w2 are their parameters. By the triangle inequality and by definition of a quasi-isometry:

|y1 − y2| ≤ |x2 − x3|+ |y1 − x2|+ |y2 − x3| ≤ |x2 − x3|+ 6∆ ≤ λ|z2 − z3|+ c+ 6∆.

In the same manner we get the lower bound

|y1 − y2| ≥ |x2 − x3| − |y1 − x2| − |y2 − x3| ≥ |x2 − x3| − 6∆ ≥ 1

λ
|z2 − z3| − c− 6∆.

By the definition of quasi-isometry, |zk − zk+1| ≤ λ(|xk − xk+1| + c) ≤ λ(3∆ + c) with
k = 1, 3. So,

|w1 − w2| − 2λ(3∆ + c) ≤ |z2 − z3| ≤ |w1 − w2|.
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x1

y1

x2 x3

y2

x4

z1 z2 z4

w1 w2
z3

(λ,c)

Figure 5. Construction of continuous arc γ̃ from quasi-geodesic γ.

Hence,

1

λ
|w1 − w2| −

2λ(3∆ + c)

λ
− 6∆− c ≤ |y1 − y2| ≤ λ|w1 − w2|+ 6∆ + c.

So, γ̃ is a quasi-geodesic with constants λ and 12∆ + 3c and the first statement of the
Lemma is proved.

To prove the second point we have just to notice that if |y1 − y2| ≥ 6∆ + c then by
triangle inequality c ≤ |x1 − x4| ≤ |y1 − y2| + 6∆. The lefthand inequality lets us apply
Lemma 8 to the part γ0 between x1 and x4 of the initial quasi-geodesic γ and to get the
upper bound we use the right part,

L(γ̃0) ≤ L∆(γ0) ≤ 4λ2(R+ 6∆).

�

4. Exponential contraction

Lemma 10 (Exponential contraction). Take some ∆ > 0. In a geodesic δ-hyperbolic space
E, let γ be a connected curve lying at distance not less than R ≥ ∆+58δ from a geodesic σ.
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Let L∆ be the ∆-length of γ. Denote r =
⌊
R−∆−58δ

19δ

⌋
19δ. Then the length of the projection

of γ on σ is not greater than

max

(
4δ

∆
e−

K
δ
r(L∆ +∆), 8δ

)

.

In other words, it is not greater than

• 4δ
∆ e−

K
δ
r(L∆ +∆) if R ≤ ∆+ 58δ + δ

K
log L∆+∆

2∆ ,
• 8δ otherwise.

Here the constant K = log2
19 depends only on the space E.

y y

xi

i i+1
y

j

xi+1

xk'

xk+1'

. . .
. . .

. . .

. . .

= xj xk+1'=

R
-(Δ

+
2
δ
)

1
4

0
δ

γ

σ

ξ

Figure 6. Exponential contraction of the length of a curve γ under pro-
jection on a geodesic σ.

Proof. Let y0, y1, . . . , yn be points of γ such that |yi − yi−1| = ∆ for i = 1, 2, . . . , n − 1,
|yn − yn−1| ≤ ∆ and y0 and yn are the ends of γ. Let yk be the point of this set which
is closest to σ. Take a perpendicular from yk to σ and a point xk on it with |yk − xk| =
∆ + 3δ. Now on the perpendiculars from all other points yi we take points xi such that
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d(xi, σ) = d(xk, σ). By Lemma 2, |xi − xi−1| ≤ 4δ for i = 1, 2, . . . , n. So,

n∑

i=1

|xi − xi−1| ≤ n4δ ≤ n∆
4δ

∆
≤ 4δ

∆
(L∆ +∆) .

Let x̄0 = x0, x̄n1 = xn and select points x̄i ∈ {x1, x2, . . . , xn−1} such that 8δ ≤ |xi −
xi−1| ≤ 16δ. For each i = 0, 1, . . . , n1, pick a perpendicular from x̄i to σ, move x̄i along it
towards σ for a distance 16δ + 3δ = 19δ and get x1i . By Lemma 2, |x1i − x1i−1| ≤ 4δ and

n1
∑

i=1

|x1i − x1i−1| ≤ n14δ ≤ 1

2

n1
∑

i=1

|x̄i − x̄i−1| ≤
1

2

n∑

i=1

|xi − xi−1| ≤
1

2

4δ

∆
(L∆ +∆) .

We can continue such a process while the distance from the set of points {xmi , i =
0, 1, . . . , nm} to σ is not less than 19δ and |xm0 − xmnm | ≥ 8δ. After k steps we shall have

nk
∑

i=1

|xki − xki−1| ≤
1

2k
4δ

∆
(L∆ +∆) =

4δ

∆
e−

log 2
19δ

(19δk)(L∆ +∆).

Denote 19δk by r and log 2
19 by K. We need 8δ ≤ 4δ

∆ e−Kr(L∆+∆), hence r ≤ δ
K
log L∆+∆

2∆ .
Now, if at some step m the distance between projections of the end points |xm0 − xmnm | is
not less than 8δ we use Lemma 2 to do the last projection onto σ and its length does
not exceed 8δ. Else, we have to do the last descent to the distance 55δ, using Lemma 2
(estimation for the projection onto a geodesic with ∆ = 16δ gives the necessary distance
from the set of points to the geodesic be greater than 3 ∗ 16δ + 6δ = 54δ) and intervals of
length not less than 8δ contract to intervals of length not more than δ, so at the last step,
we have a contraction factor of 1.

�

5. Quantitative version of the Morse Lemma

Now we are ready to prove our main result. In a δ-hyperbolic space E any (λ, c)-
quasi-geodesic γ lies in an H-neighbourhood of a geodesic σ, connecting its ends, where
the constant H depends only on the space E (in particular, on the constant δ) and the
quasiisometry constants λ and c.

5.1. Attempts. To motivate our method, let us describe a sequence of arguments yielding
sharper and sharper estimates.

Let us start with the proof in [1], Chapter 5.1, Theorem 6 and Lemma 8. [1] gets the
upper bound H ≤ λ8c2δ (up to universal constants, factors of order log2(λcδ)). The first
weak step of this proof is changing a (λ, c)-quasi-geodesic by a discrete (λ′, c)-quasi-geodesic
γ′ parametrized by an interval [1, 2, . . . , l] of integers, where λ′ ∼ λ2c. For a suitableR ∼ λ′2

take an arc xuxv of γ′. Introduce a partition of the arc xuxv: xu, xu+N , xu+2N , . . . , xv for
some well-chosen N ∼ λ′. The approximation of a δ-hyperbolic space by a tree (see [1]
Chapter 2.2, Theorem 12.ii) is used to give an estimation of the form |yu+iN −y′

u+(i+1)N | ≤
c′ ∼ log λ′. By triangle inequality |xu − xv| ≤ |xu − yu| + |yu − yu+N | + . . . + |yv − xu| ≤
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2(R + λ′) + ( |u−v|
N

+ 1)c′. On the other hand |u−v|
λ′ ≤ |xu − xv|. Combining these two

inequalities we get an estimation for |u − v| and, hence, for a distance from any point of
the arc xuxv to the point xu. The second weak step in this argument lies in the estimation
of the length of projections which can be improved significantly.

To improve [1]’s bound, we can use the Exponential Contraction Lemma 10 and Lemma
8 which do not require discretization and give much more precise estimation for a length
of a projection. One can then take R = log λ and by a similar triangle inequality get
H ≤ O(λ2 log λ).

Next we shall give a sketch of the proof of a stronger result (but not yet an optimal
one): H ≤ O(λ2 log∗ λ) where log∗ λ is the minimal number n of logarithms such that
log . . . log
︸ ︷︷ ︸

n

λ ≤ 1.

The previous argument is used as an initial step. It allows us to assume that the
endpoints x, x′ of γ satisfy |x− x′| ≤ O(log λ).

Then comes an iterative step. One proves that if xx′ is an arc on γ and |x−x′| = d1, then
there exist two points y, y′ at distance at most C2(c, δ)λ

2 from a geodesic σ1 connecting
x and x′ such that d2 := |y − y′| ≤ C3(c, δ) log d1. Indeed, pick a point z of the arc xx′

which is farthest from σ1. Let σ′ be a perpendicular from z to σ1. If all points of arc
xx′ (on either side of z) whose projection to σ′ lies at distance ≤ λ2 of σ1 are at distance
≥ log d1 from σ′, Lemma 10 implies that the length of the arc is ≫ λ2 log d1, contradicting
quasigeodesic assumption. So there are points y and y′ which are close to σ′. One can
arrange that their projections to σ′ are close to each other, yielding |y − y′| ≤ log d1.

We apply this relation several times starting with d1 = C1(c, δ) log λ until di ≤ 1 for
some i = log∗ λ.

So, to improve the upper-bound of H we used two key ideas: Exponential Contraction
and consideration of a projection of γ onto a different geodesic σ′.

5.2. Proof of the Morse Lemma. The same ideas will be used in the proof of the
quantitative version of the Morse Lemma but we should do it more accurately.

Theorem 1. In a δ-hyperbolic space E consider a (λ, c)-quasi-geodesic γ. Let σ be a
geodesic segment connecting its ends. Then γ lies in H-neighborhood of σ, where

(2) H = 4λ2

(

78c+

(

78 +
133

log 2
e

157 log 2
28

)

δ

)

.

Remark 3. It is easy to give an example where H = λ2c
2 (see Section 6.2).

Indeed, in a tree, a path that goes back and forth along a geodesic segment of length
λ2c is a (λ, c)-quasi-geodesic, for details see Section 6.

Proof. Applying Lemma 9 to the quasi-geodesic γ with ∆ = 2c, we obtain a continuous
(λ, 27c)-quasi-geodesic γ̃. By Lemma 8, γ lies in the 4λ2 · 6c = 24λ2c-neighborhood of γ̃.
From this moment we shall speak only about the (λ, 27c)-quasi-geodesic γ̃. To

save notations, we redenote it by γ, and let c̃ = 27c. The classical length of the part
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Figure 7. Illustration of proof of Theorem 1

of this quasi-geodesic between two points at distance R from each other is not greater than
4λ2(R+ c̃).

Introduce the following construction for the subdivision of the quasi-geodesic γ. Denote
the point of our quasi-geodesic which is farthest from σ by z. Let σ0 = σ be the geodesic
connecting the ends of γ. Let σ′

0 be the geodesic minimizing the distance between z and σ0
(as σ0 is a geodesic segment σ′

0 is not necessarily perpendicular to the complete geodesic
carrying σ0). Let s0 denote the point of intersection of σ0 and σ′

0. Let s′0 be the point of
σ′
0 such that the length of the segment [s0, s

′
0] is equal to δ. Consider the set of points of

γ whose projections onto σ′
0 belong to the segment [s0, s

′
0]. The point z separates this set

into two subsets γ+0 and γ−0 .
Let d±0 denote the minimal distance of points of γ±0 to σ′

0. Introduce also the following
notations:

• d0 = d+0 + d−0 + δ;
• γ1 is a connected component of γ \(γ+0 ∪γ−0 ) containing z, it is also a quasi-geodesic
with the same constants and properties as γ;

• σ1 is a geodesic, connecting the ends of the subquasi-geodesic γ1;
• L1 is the length of γ1.

Applying the same idea to the curve γ1, the same point z and the geodesic σ1 we
obtain the geodesic σ′

1, parts γ
±
1 of the quasi-geodesic and distances d±1 . We have l(σ′

0) ≤
l(σ′

1) + δ + 6δ. To show it apply Lemma 5 assuming c = s′0, d = z and a and b are the end
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points of γ1. Continuing the process we obtain a subdivision of γ by γ±i and two families
of geodesics σi and σ′

i. Finally for some n we shall obtain dn ≤ c̃+ δ + 77δ = 78δ + c̃. See
Figure 7.

Li is the length of the subcurve γi−1, which is also a quasi-geodesic. So, by construction,
l(σ′

n) ≤ Ln ≤ 4(dn + c̃)λ2. Hence

l(σ′
0) ≤

n∑

i=1

7δ + 4(78δ + 2c̃)λ2.

Our goal is to prove that for large enough λ the sum
∑

di does not exceed Cλ2, where C
is a constant, depending only on c̃ and δ.

As for a segment, the value of classical length is not less then the value of ∆′-length, we

get by Lemma 10 (with ∆′ = δ) and as

⌊
(d±i+1−δ−58δ)

19δ

⌋

19δ ≥ d±i+1 − 78δ that

l(γ+i ∪ γ−i ) ≥ δ
δ

4δ
max

(

e
K
δ
(d+i+1−78δ), e

K
δ
(d−i+1−78δ)

)

≥ δ

4
e

K
2δ

(di+1−δ−156δ).

On the other hand l(γ+i ∪ γ−i ) = Li − Li+1. Hence, after denoting the expression δ
4e

− 157K
2

by C0,

(3) C0e
K
2δ

di+1 ≤ Li − Li+1.

Let g±i be a point of γ±i which minimizes distance to σ′
i. The part of the quasi-geodesic

γ between g+i and g−i is also a quasi-geodesic with the same constants and properties. By
the triangle inequality, |g−i − g+i | < d+i + d−i + δ. So, by construction (see the begining of
the proof) and as di ≥ 78δ,

(4) Li ≤ 4λ2(di + c̃) ≤ 8λ2di.

The function e−d is decreasing. Thus, as di ≥ 4
λ2Li, we get

K

2δ
die

−K
2δ

di ≤ K

2δ

4

λ2
Lie

−K
2δ

4

λ2
Li .

Now we are ready to estimate n:

n =
n∑

i=1

1 =
1

C0

n∑

i=1

e−
K
2δ

diC0e
K
2δ

di ≤ 1

C0

λ2δ

4K

n∑

i=1

e−
K
2δ

8

λ2
Li

4K

λ2δ
(Li−1 − Li).

Denoting by Xi =
4K
λ2δ

Li,

n∑

i=1

i ≤ λ2δ

4C0K

n∑

i=1

e−Xi(Xi−1 −Xi),
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and as the function e−X is decreasing for X ≥ 0 we can use the estimation
n∑

i=1

e−Xi(Xi−1 −Xi) ≤
∫ ∞

0
e−XdX = −e−x|∞0 = 1.

Summarizing all the facts and returning to the initial notations and remembering that
K = log 2

19 , finally we obtain the claimed result

H = 4λ2

(

78c+

(

78 +
133

log 2
e

157 log 2
38

)

δ

)

.

�

6. Examples

6.1. Proof of Proposition 1.

Proposition. Let O be a center of the ball in a d-regular metric tree (d ≥ 3) of radius R.
Consider self (λ, c)-quasi-isometry f of this ball. Then for any image f(O) of center O

d(f(O), O) ≤ min{R,H + c+ λ(c+ 1)}.
Proof. Call a branch every connected component of a ball with deleted center O. Call the
points which are sent to the branch containing the image of the center f(O) green points,
all other points of T will be called red.

We are going to show that there exist two red points r1 and r2 such that the distance
from the geodesic (r1, r2) to the center O is not greater than r = c + 1. By Definition 5
a c-neighbourhood of every point of the border should contain a point of the image. We
need to have at least (d−1)dR−c−1 red points near the border (we exclude the green part).

The number of points in each connected component of complement of the ball of radius r
is less than dR−r. So, if r >> c then one component contains insufficient number of points
to cover the border of B. Hence, there exists two points r1 and r2 in different components
of T , which means that the geodesic r1r2 passes at distance less than r from the center
O and the quasi-geodesic f([r1, r2]) passes at distance λr + c from f(O) and lies at H-
neighbourhood of the geodesic f(r1)f(r2). As every path from f(O) to f(r1)f(r2) goes
through O we conclude that d(O, f(0)) < H + c+ λr. We have just to choose some good
value for r. The simple calculation of the number of points in a mentioned component
gives an estimation 1 + d + d2 + · · · + dR−r ≤ 1

ln d
dR−r+1. For r = c + 1 we have that

1
ln d

dR−r+1 ≤ (d− 1)dR−c−1 what finishes the proof.
�

6.2. Optimality of Theorem 1. Let us give an example of a (λ, c)-quasi-geodesic γ in

a tree with H = λ2c
2 . Indeed we take a real interval [a, b] of length λ2c

2 which is a subtree.
To parametrize γ we use an interval I = [u, v] of length λc. Define γ as follows,

• γ(u) = γ(v) = a,
• for the midpoint w of I we put γ(w) = b,
• for any x ∈ [a, b] let D = min{|u− x|, |v − x|} and |a− γ(x)| = λD.
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It is easy to verify that γ is a well-defined quasi-geodesic. On the half intervals [u,w]
and [w, v] γ just stretches out the distances by λ. Now take any two points x ∈ [u,w] and
y ∈ [w, v]. Assume |u− x| ≤ |v − y|, evidently |x− y| = |u− v| − |u− x| − |v − y|.

I. The lower bound for distance between γ(x) and γ(y) is given by

1

λ
(|u− v| − |u− x| − |v − y|)− c ≤ 0 ≤ |γ(x)− γ(y)|.

II. For the upper bound,
λ(|u− v| − |u− x| − |v − y|) + c− (|a− γ(y)| − |a− γ(x)|) = λ(|u − v| − |u− x| − |v −

y|) + c− λ(|v − y| − |u− x|) = λ2c− 2λ|v − y|+ c ≥ c ≥ 0.

6.3. Achieving displacement λc. Now we are going to describe a self-quasi-isomtery f
of a ball B in a tree which moves the center O at distance λc/2. Assume that the radius
of B is greater than λc. Notice, that for any two points inside the ball B1 with a center
in O and a radius λc their images can be just the same point. Let the quasi-isometry f to
fix the boundary of B1, let the distance |O − f(O)| = λc/2. The segment [O, f(O)] is sent
in the only point f(O). For any point a of ∂B1 denote a projection of a on [O, f(O)] by
a′ and we assume that the interval [a, a′] is linearly stretched out and sent to the interval
[a, f(O)]. Such a map f assigns to any point only one image. It is easy to verify, that f
is a quasi-isometry as the distances between points can be diminished up to 0 and are not
increased more than λ times.

7. Anti-Morse Lemma

We have already proved, that any quasi-geodesic γ in a hyperbolic space lies at distance
not more than λ2(c + δ) from a geodesic segment σ, connecting its ends. This estimation
cannot be improved. But the curious thing is that the mentioned above geodesic lies in
log λ-neighbourhood of the quasi-geodesic! So, we can say that any quasi-geodesic is log λ-
quasi-convex. In some particular spaces this upper-bound can be improved: for example
in a tree any quasi-geodesic is c-quasi-convex.

The proof of this theorem will be based on

• the Lemma 10 on exponential contraction to prove that at the distance log λ from
the geodesic σ is at most λ2 log λ;

• the analog of the Lemma 10 on exponential contraction to prove that the length of
a circle of radius R is at least eR (up to some constants).

Lemma 11. Let X be a hyperbolic metric space, γ - a (λ, c)-quasi-geodesic, σ - the geodesic
connecting the ends of γ. Take an arc (yu, yv) of γ such that no point of this arc lies at
distance less than C1 log λ + C2 from σ and yu and yv are the closest to σ points of the
arc. Then the length of the projection of arc (yu, yv) on σ does not exceed max(8δ, C3 log λ)
(with some well-choosen constants C1, C2, C3 depending linearly on c).

Proof. By the definition of a quasi-geodesic we get

|u− v|
λ

− c ≤ |yu − yv| ≤ λ|u− v|+ c.
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On the other hand

|yu − yv| ≤ |yu − y′u|+ |y′u − y′v|+ |y′v − yv|,
where y′u and y′v are the projections of yu and yv on σ.

Adjust constants c1 and c2 so that c1 log λ+c2 =
19δ2

K
log 8δλ4

∆ +∆+58δ with ∆ = 2c (such
a choice allows us to apply apply Lemma 8). Apply the Lemma on exponential contraction
(we assume that the length of the arc is rather big to use the estimation with an exponential
factor and not to treat the evident case of 8δ for the length of the projection). Denote the
∆-length of an arc (yu, yv) by l(yu, yv).

|y′u − y′v| ≤ l(yu, yv)e
−K

δ
(r−∆−58δ) =

1

2λ4
l(yu, yv).

Combining all these inequalities and using Lemma 8 we get

|u− v|
λ

− c ≤ |yu − yv| ≤
8

K
log

4
√
2λ+

1

8λ4
l(yu, yv)

≤ 8

K
log

4
√
2λ+ 4λ2 1

8λ4
|yu − yv|

≤ 8

K
log

4
√
2λ+

1

2λ2
(λ|u− v|+ c).

So, finally we conclude that |yu − yv| ≤ C3λ
2 log λ, hence l(yu, yv) ≤ C3λ

4logλ and,
finally, the length of the projection of the arc (yu, yv) of γ does not exceed max(8δ, C3 log λ).

�

Theorem 2. In a δ-hyperbolic metric space let γ be a (λ, c)-quasi-geodesic and σ a geodesic,
connecting the end-points of γ. Assume that 4δ is much less than log λ Then σ lies in
(c+ δ) log λ-neighbourhood of γ.

Proof. The proof of the theorem follows directly from the previous Lemma. As we have
already proven for every point z′ of σ there exists a point z of γ such that the projection
of z on σ lies at distance not more than several times (c+ δ) from z′. So, for simplicity we
assume, that for any point of σ there exists a point of γ projecting onto this point.

If the distance between z and z′ is less than C1 log λ for some constant C1 = C1(c, δ)
(the value of C1 can be found from the previous lemma) then the statement is already
proved. If not, take an arc of γ containing the point z such that the end-points yu and yv
of γ lies at distance C1 log λ from σ and these points are points of this arc which are the
closest to σ. So, by the previous Lemma we get that the length of the projection (which
includes z) of the arc (yu, yv) does not exceed C4 log λ. Hence, the distance from z to yu
(and yv) is not greater than (C1 + C4) log λ.

�
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8. Geodesically rich spaces

Definition 8. Call a metric space X geodesically rich if there exist constants r0, r1, r2, r3, r4
• for every pair of points p and q with d(p, q) ≥ r0 there exists a geodesic γ such that
d(p, γ) < r1 and |d(q, γ) − d(q, p)| < r2;

• for any geodesic γ and any point p in X there exists a geodesic γ′, passing in a
r3-neighbourhood of the point p and such that the distances from p to γ and from
γ′ to γ differ by not more than r4.

Example 1. A line and a ray are not geodesically rich. Both of them satisfy the second,
but not the first condition of the definition.

Example 2. Non-elementary hyperbolic groups are geodesically rich. We will prove this
fact later.

Any δ-hyperbolic metric space H can be isometrically embedded in a geodesically-rich
δ-hyperbolic metric space G (with the same constant of hyperbolicity). Take a 3-regular
tree with a root (T,O), assume G = H × T , and set the metric in a similar manner as in
a real tree:

• the distance between points in the subspace (H,O) equals the distance between
corresponding point in H;

• the distance between other points equals the sum of three distances: from the points
to their projections on (H,O) and the distance between the projections in (H,O).

It is easy to show that the space G is δ-hyperbolic and geodesically rich. But such a
procedure completely changes the ideal boundary of the space. So we ask another question:

Question 1. Let H be a δ-hyperbolic metric space. Is it possible to embed isometrically H
in a geodesically rich δ-hyperbolic metric space G with an isomorphic boundary?

Lemma 12. Let G be a non-elementary hyperbolic group. Then there exist constants c1, c2,
such that for any point p and any geodesic γ in G such that distance between them is not
less than c1, there exists a geodesic γ′ with a point q minimizing (up to constant times δ)
the distance to γ and at the distance at most c2 from p.

Proof. By symmetry we can assume that p is the unity of the group G. We supply the ideal
boundary G(∞) by a visual distance. As G is a non-elementary group, its ideal boundary
G(∞) has at least three points (hence, infinitely many points).

First we are going to prove by contradiction that there exists such ε that for every pair
of points ξ, η of G(∞) the union of the two balls with centers in these points and radii ε
does not cover the whole ideal boundary. On the contrary, assume that there exist two
sequences of points ξn and ηn such that the union of B(ξn,

1
n
) and B(ηn,

1
n
) includes G(∞).

By compactness, we can assume that ξn → ξ and ηn → η and we get that G(∞) lies in the
union of B(ξ, 2

n
) and B(η, 2

n
), hence the ideal boundary consists only of two points ξ and

η which contradicts the assumption that G is non-elementary.
Let c1 be such a constant that if geodesic γ lies at distance at least c1 from the point p

then the visual distance between its end-points (at infinity) is less than ε/2. Now take two
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points ξ and η of G(∞) outside of ε/4-neighbourghood of γ(∞) such that distance between
ξ and η is greater than ǫ. Such a choice is possible due to previous argument. Let γ′ be a
geodesic with ends ξ and η. Hence, d(p, γ′) < c1. Lemma 13 completes the proof.

�

Lemma 13. Let X be a δ-hyperbolic space. Then for every ǫ > 0 there exist constants
c1, c2 such that for every geodesics γ, γ′ and every point p such that d(p, γ) < c1 and visual
distance between the ends γ(∞) and γ′(∞) ≥ ε there exists a point q on γ minimizing the
distance to γ′ up to some constant times δ and such that d(q, p) ≤ c2.

Proof. By Lemma 15 we can change the point p with its projection p′ on the geodesic γ.
Let a′ and b′ be the projections on γ of the end a = γ′(−∞) and the point b of γ′ which
minimizes the distance from γ′ to γ.

Consider two sequences xn and yn of points on aa′ and a′γ(+∞) respectively such that
limn→∞ xn = a and limn→∞ yn = γ(+∞). Denote the projections of xn by a′n, evidently
a′n → a′ with n → ∞. By the definition of Gromov’s product, (x|y)p′ = limn→∞(xn|yn)p′ .
Now using Lemma 4 we will estimate (xn|yn)p′ :

(xn|yn)p′ =
1

2
(|p′−xn|+|p′−yn|−|xn−yn|) ≤

1

2
(|p′−a′n|+|a′n−xn|+8δ+|p′−yn|−|a′n−xn|−|a′n−yn|+2δ).

Now, if p′ lies between a′ and b′ then (xn|yn)p′ ≤ 5δ, if not (we assume that p′ is closer
to a′, that is the order of points on γ is p′, a′, b′), (xn|yn)p′ ≤ |p′ − a′|+ 5δ.

So, to finish the proof we have now to prove that the point a′ lies not far from ab. Apply
Lemma 4 one more time to the triangle aa′b′: the distance d(a′, ab′) does not exceed 2δ.
So, as the triangle abb′ is δ-thin, then the distance from a′ to ab or bb′ is not greater than
3δ. In the first case the statement is proven immediately. In the second case we have to
notice, that bb′ is a perpendicular to ab′, hence d(a′b′) ≤ 2d(a′, bb′) ≤ 6δ. So, in this case
a′ is near the projection of the closest to ab′ point of ab what finishes the proof. �

Lemma 14. Let G be a non-elementary hyperbolic group. Then there exist constants
c0, c1, c2 such that for every two points p, q in the group G with d(p, q) > r0 there exists a
geodesic γ such that d(p, γ) ≤ r1 and |d(p, q)− d(q, γ)| ≤ r2.

Proof. First we assume that p is the unity of the group. We argue by contradiction: suppose
the statement not to be true, there exists a sequence of points qn such that |qn − p| → ∞
with n → ∞ and all pairs p and qn do not satisfy the conditions of the Lemma. We suppose
ξ be a limit point of this sequence. As in the proof of Lemma 12 we supply the border of
a group with a visual metric. And the same arguments provide that there exist ε > 0 and
points η and η′ on the ideal boundary G(∞) such that pairwise visual distances between
ξ, η and η′ are greater than ε. We are going to show that the geodesic γ with ends η and
η′ satisfies the conditions of the statement of Lemma which leads to the contradiction.

In the sequal we shall write ξ, η and η′ but we will assume that we consider three
sequences of points converging to the corresponding points of the ideal boundary. The
triangle pηη′ is δ-thin. Take a point s of ηη′ such that d(s, pη) ≤ δ and d(s, pη′) ≤ δ.
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Figure 8. Illustration for Lemma 14.

Denote by t and t′ projections of s onto pη and pη′ respectively. By the triangle inequality

|η − t|+ |η′ − t′| − 2δ ≤ |η − η′| ≤ |η − t|+ |η′ − t′|+ 2δ.

And by the hypothesis

visdistp(η, η
′) = e−(η|η′)p > ε.

Hence,
|p− η|+ |p− η′| − |η − η′| < 2ε0,

where ε0 = − ln ǫ
Combining two inequalities we obtain that |p − t|+ |p − t′| ≤ 2(ε0 + δ) and d(p, ηη′) ≤

2ε0+3δ. The same arguments applied to the triangles pηξ and pη′ξ show that the distance
from the point p to the geodesics ηξ and η′ξ also does not exceed 2ε0 + 3δ. Denote the
projections of p onto ηη′, ηξ and η′ξ by p1, p2 and p3 respectively, the projection of ξ onto
ηη′ by q. Simply by triangle inequality |p1−p2| ≤ |p1−p|+ |p−p2| ≤ 2(2ǫ0+3δ). Applying
Lemma 4 to the triangles qξη and qξη′ we get that the point q lies not farther than 2δ
from both ηξ and η′ξ. So, both p1 and q lie at bounded distances from ηξ and η′ξ and we
can apply Lemma 6 which gives us that p1 and q lie near each other, at a distance of order
ε0 + δ. �

Lemma 15. Let X be a δ-hyperbolic space, ξ and η - two points of ideal boundary ∂X, p
and p′ - two points at distance D from each other. Then visual distances between ξ and η
from points p and p′ satisfy the following inequality:

dp′(ξ, η) ≤ eDdp(ξ, η).
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Proof. By definition, Gromov’s product of x and y in p is

(x|y)p =
1

2
(|p − x|+ |p− y| − |x− y|).

We have the same equality for x, y and p′. Hence,

|(x|y)p′ − (x|y)p| = |1
2
(|p′ − x|+ |p′ − y| − |p− x| − |p− y|)| ≤ |p− p′|.

The last inequality follows from the triangle inequality. So, by definition of visual metric:

dp′(ξ, η) = e(ξ|η)p′ ≤ e(ξ|η)p+|p−p′| = eDdp(ξ, η).

�

9. Ideal boundary fixing quasi-isometries

In this section we are going to give some estimations on the displacement of points in
geodesically rich spaces under the ideal boundary fixing quasi-isometries. For the instance
we do not know if these results are optimal or not.

Remark 4. Let X be some metric space satisfying the first condition of being geodesically
rich. Let f : X → X be a (λ, c)-self-quasiisometry fixing the boundary ∂X. Then for
sufficiently big λ for any point O ∈ X the distance between this point and its image f(O)
does not exceed H(λ, c, δ) + r2 where the constant C1 depends only on the space X.

Proof. For any point O if d(O, f(O)) < r0 then for sufficiently big λ r1 ≤ H(λ, c, δ).
Otherwise let γ be a geodesic such that d(O, γ) ≤ r1 and d(f(O), γ) > d(O, f(O))− r2. As
f(γ) is a quasigeodesic with the same as γ end-points, then the quasi-geodesic lies near γ:
f(γ) ⊂ UH(γ). Combining all the arguments we obtain:

d(O, f(O)) ≤ d(f(O), γ) + r2 ≤ H + r2.

�

We do not know if it is possible to improve this upper-bound in the general case. But
for the case of geodesically rich space we improve the boundary from λ2 to λ log λ.

Theorem 3. Let X be a (r1, r2)-geodesically rich δ-hyperbolic metric space, f be a (λ, c)-
self-quasiisometry fixing a boundary ∂X. Than for any point O of X the displacement
d(O, f(O)) does not exceed max(r0, λ(r3 + c+ c1 log λ) + r1 + r2 + r4).

Proof. As f fixes the boundary of X and by Anti-Morse Lemma, a (c1 log λ)-neighbourhood
(where c1 = c+ δ) of an image f(σ) of any geodesic σ includes σ: σ ⊂ Vc1 logλ(f(σ)). All
the constants r0, r1, r2, r3, r4 are the same constants as in the definition of a geodesically
rich space. Take any point O in X. Assume that d(O, f(O)) ≥ r0 because otherwise there
is nothing to prove. There exists a geodesic γ such that d(γ,O) ≤ r1 and |d(O, f(O)) −
d(f(O), γ)| ≤ r2 and there also exists a geodesic γ′ such that f(O) lies in r3-neighbourhood
of γ′ and such that f(O) is (up to r4) the point of γ′ which is closest to γ.

Since γ′ ⊂ Vc1 log λ(f(γ
′)), there exists a point O′ of γ′ such that |f(O′) − f(O)| ≤

r3 + c1 log λ. Now, d(f(O), γ) ≤ d(O′, γ) + r4 ≤ |O′ − O| + r1 + r4 and by definition of
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quasi-isometry |O′−O| ≤ λ(|f(O′)− f(O)|+ c) ≤ λ(r3+ c+ c1 log λ). Hence, d(f(O), γ) ≤
λ(r3 + c + c1 log λ) + r1 + r4. Finally we conclude that d(O, f(O)) ≤ d(f(O), γ) + r2 ≤
λ(r3 + c+ c1 log λ) + r1 + r2 + r4. �
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