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Abstract

Let n ¥ 4, and let BnpS2q denote the n-string braid group of the sphere. In [GG5], we showed
that the isomorphism classes of the maximal finite subgroups of BnpS2q are comprised of cyclic,
dicyclic (or generalised quaternion) and binary polyhedral groups. In this paper, we study
the infinite virtually cyclic groups of BnpS2q, which are in some sense, its ‘simplest’ infinite
subgroups. As well as helping to understand the structure of the group BnpS2q, the knowledge
of its virtually cyclic subgroups is a vital step in the calculation of the lower algebraic K-theory
of the group ring of BnpS2q over Z, via the Farrell-Jones fibred isomorphism conjecture [GJM].

The main result of this manuscript is to classify, with a finite number of exceptions and
up to isomorphism, the virtually cyclic subgroups of BnpS2q. As corollaries, we obtain the
complete classification of the virtually cyclic subgroups of BnpS2q when n is either odd, or is
even and sufficiently large. Using the close relationship between BnpS2q and the mapping class
group MCGpS2, nq of the n-punctured sphere, another consequence is the classification (with
a finite number of exceptions) of the isomorphism classes of the virtually cyclic subgroups of
MCGpS2, nq.

The proof of the main theorem is divided into two parts: the reduction of a list of possible
candidates for the virtually cyclic subgroups of BnpS2q obtained using a general result due to
Epstein and Wall to an almost optimal familyVpnq of virtually cyclic groups; and the realisation
of all but a finite number of elements of Vpnq. The first part makes use of a number of techniques,
notably the study of the periodicity and the outer automorphism groups of the finite subgroups
of BnpS2q, and the analysis of the conjugacy classes of the finite order elements of BnpS2q. In the
second part, we construct subgroups of BnpS2q isomorphic to the elements of Vpnq using mainly
an algebraic point of view that is strongly inspired by geometric observations, as well as explicit
geometric constructions in MCGpS2, nq which we translate to BnpS2q.

In order to classify the isomorphism classes of the virtually cyclic subgroups of BnpS2q, we
obtain a number of results that we believe are interesting in their own right, notably the char-
acterisation of the centralisers and normalisers of the maximal cyclic and dicyclic subgroups of
BnpS2q, a generalisation to BnpS2q of a result due to Hodgkin for the mapping class group of the
punctured sphere concerning conjugate powers of torsion elements, the study of the isomorph-
ism classes of those virtually cyclic groups of BnpS2q that appear as amalgamated products, as
well as an alternative proof of a result due to [BCP, FZ] that the universal covering of the nth

configuration space of S2, n ¥ 3, has the homotopy type of S3.
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Introduction and statement of the main
results

The braid groups Bn of the plane were introduced by E. Artin in 1925 and further stud-
ied in 1947 [A1, A2]. They were later generalised by Fox to braid groups of arbitrary
topological spaces via the following definition [FoN]. Let M be a compact, connected
surface, and let n P N. We denote the set of all ordered n-tuples of distinct points of M,
known as the nth configuration space of M, by:

FnpMq �  pp1, . . . , pnq ∣∣ pi P M and pi � pj if i � j
(

.

Configuration spaces play an important rôle in several branches of mathematics and
have been extensively studied, see [Bi, CG, FH, Hn] for example.

The symmetric group Sn on n letters acts freely on FnpMq by permuting coordinates.
The corresponding quotient space FnpMq{Sn will be denoted by DnpMq. The nth pure
braid group PnpMq (respectively the nth braid group BnpMq) is defined to be the funda-
mental group of FnpMq (respectively of DnpMq).

Together with the real projective plane RP2, the braid groups of the 2-sphere S2 are
of particular interest, notably because they have non-trivial centre [GVB, GG1], and
torsion elements [VB, Mu]. Indeed, Fadell and Van Buskirk showed that among the
braid groups of compact, connected surfaces, BnpS2q and BnpRP2q are the only ones to
have torsion [FVB, VB]. Let us recall briefly some of the properties of BnpS2q [FVB, GVB,
VB].

If D2 � S2 is a topological disc, there is a homomorphism ι : Bn ÝÑ BnpS2q induced
by the inclusion. If β P Bn then we shall denote its image ιpβq simply by β. Then BnpS2q
is generated by σ1, . . . , σn�1 which are subject to the following relations:

σiσj � σjσi if |i � j| ¥ 2 and 1 ¤ i, j ¤ n� 1 (1)

σiσi�1σi � σi�1σiσi�1 for all 1 ¤ i ¤ n� 2, and (2)

σ1 � � � σn�2σ2
n�1σn�2 � � � σ1 � 1. (3)

Consequently, BnpS2q is a quotient of Bn. The first three sphere braid groups are finite:
B1pS2q is trivial, B2pS2q is cyclic of order 2, and B3pS2q is a ZS-metacyclic group (a group
whose Sylow subgroups, commutator subgroup and commutator quotient group are
all cyclic) of order 12, isomorphic to the semi-direct product Z3 � Z4 of cyclic groups,
the action being the non-trivial one. For n ¥ 4, BnpS2q is infinite. The Abelianisation of
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BnpS2q is isomorphic to the cyclic group Z2pn�1q. The kernel of the associated projection#
ξ : BnpS2q ÝÑ Z2pn�1q

σi ÞÝÑ 1 for all 1 ¤ i ¤ n� 1
(4)

is the commutator subgroup Γ2
�
BnpS2q�. If w P BnpS2q then ξpwq is the exponent sum

(relative to the σi) of w modulo 2pn� 1q. Further, we have a natural short exact sequence

1 ÝÑ PnpS2q ÝÑ BnpS2q πÝÑ Sn ÝÑ 1, (5)

π being the homomorphism that sends σi to the transposition pi, i � 1q.
Gillette and Van Buskirk showed that if n ¥ 3 and k P N then BnpS2q has an element

of order k if and only if k divides one of 2n, 2pn � 1q or 2pn � 2q [GVB]. The torsion
elements of BnpS2q and BnpRP2q were later characterised by Murasugi:

THEOREM 1 (Murasugi [Mu]). Let n ¥ 3. Then up to conjugacy, the torsion elements of
BnpS2q are precisely the powers of the following three elements:
(a) α0 � σ1 � � � σn�2σn�1 (of order 2n).
(b) α1 � σ1 � � � σn�2σ2

n�1 (of order 2pn� 1q).
(c) α2 � σ1 � � � σn�3σ2

n�2 (of order 2pn� 2q).
So the maximal finite cyclic subgroups of BnpS2q are isomorphic to Z2n, Z2pn�1q

or Z2pn�2q. In [GG3], we showed that BnpS2q is generated by α0 and α1. Let ∆
2
n �pσ1 � � � σn�1qn denote the so-called ‘full twist’ braid of BnpS2q. If n ¥ 3, ∆

2
n is the unique

element of BnpS2q of order 2, and it generates the centre of BnpS2q. It is also the square
of the ‘half twist’ element defined by:

∆n � pσ1 � � � σn�1qpσ1 � � � σn�2q � � � pσ1σ2qσ1. (6)

It is well known that:

∆nσi∆
�1
n � σn�i for all i � 1, . . . , n� 1. (7)

The uniqueness of the element of order 2 in BnpS2q implies that the three elements α0,
α1 and α2 are respectively nth, pn � 1qth and pn � 2qth roots of ∆

2
n, and this yields the

useful relation:
∆

2
n � αn�i

i for all i P t0, 1, 2u. (8)

In what follows, if m ¥ 2, Dic4m will denote the dicyclic group of order 4m. It admits a
presentation of the form A

x, y
∣

∣

∣
xm � y2, yxy�1 � x�1

E
. (9)

If in addition m is a power of 2 then we will also refer to the dicyclic group of order
4m as the generalised quaternion group of order 4m, and denote it by Q4m. For example,
if m � 2 then we obtain the usual quaternion group Q8 of order 8. Further, T� (resp.
O�, I�) will denote the binary tetrahedral group of order 24 (resp. the binary octahedral
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group of order 48, the binary icosahedral group of order 120). We will refer collectively
to T�, O� and I� as the binary polyhedral groups. More details on these groups may be
found in [AM, Cox, CM, Wo], as well as in Section I.3 and the Appendix.

In order to understand better the structure of BnpS2q, one may study (up to iso-
morphism) the finite subgroups of BnpS2q. From Theorem 1, it is clear that the fi-
nite cyclic subgroups of BnpS2q are isomorphic to the subgroups of Z2pn�iq, where i Pt0, 1, 2u. Motivated by a question of the realisation of Q8 as a subgroup of BnpS2q of
R. Brown [ATD] in connection with the Dirac string trick [F, N], as well as the study
of the case n � 4 by J. G. Thompson [ThJ], we obtained partial results on the classific-
ation of the isomorphism classes of the finite subgroups of BnpS2q in [GG4, GG6]. The
complete classification was given in [GG5]:

THEOREM 2 ([GG5]). Let n ¥ 3. Up to isomorphism, the maximal finite subgroups of BnpS2q
are:
(a) Z2pn�1q if n ¥ 5.
(b) Dic4n.
(c) Dic4pn�2q if n � 5 or n ¥ 7.
(d) T� if n � 4 mod 6.
(e) O� if n � 0, 2 mod 6.
(f) I� if n � 0, 2, 12, 20 mod 30.

REMARKS 3.
(a) By studying the subgroups of dicyclic and binary polyhedral groups, it is not diffi-
cult to show that any finite subgroup of BnpS2q is cyclic, dicyclic or binary polyhedral
(see Proposition 85).
(b) As we showed in [GG4, GG5], for i P t0, 2u,

∆nα1i∆�1
n � α1�1

i , where α1i � α0αiα
�1
0 � α

i{2
0 αiα

�i{2
0 , (10)

and the dicyclic group of order 4pn� iq is realised in terms of the generators of BnpS2q
by: �

α1i, ∆n
D

,

which we shall refer to hereafter as the standard copy of Dic4pn�iq in BnpS2q.
A key tool in the proof of Theorem 2 is the strong relationship due to Magnus of

BnpS2q with the mapping class group MCGpS2, nq of the n-punctured sphere, n ¥ 3,
given by the short exact sequence [FM, MKS]:

1 ÝÑ A
∆

2
n

E ÝÑ BnpS2q ϕÝÑMCGpS2, nq ÝÑ 1. (11)

As we shall see, it will also play an important rôle in various parts of this paper, not-
ably in the study of the centralisers and conjugacy classes of the finite order elements
in Part I, as well as in some of the constructions in Part II. There is a short exact
sequence for the mapping class group analogous to equation (5); the kernel of the
homomorphism MCGpS2, nq ÝÑ Sn is the pure mapping class group PMCGpS2, nq,
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which may also be seen as the image of PnpS2q under ϕ. In particular, since for n ¥ 4,
PnpS2q � Pn�3pS2z tx1, x2, x3uq � Z2 [GG1], where the second factor is identified with�

∆
2
n
D

, it follows from the restriction of equation (11) to PnpS2q that PMCGpS2, nq �
Pn�3pS2z tx1, x2, x3uq, in particular PMCGpS2, nq is torsion free for all n ¥ 4.

In this paper, we go a stage further by classifying (up to isomorphism) the virtually
cyclic subgroups of BnpS2q. Recall that a group is said to be virtually cyclic if it contains
a cyclic subgroup of finite index (see also Section I.1). It is clear from the definition
that any finite subgroup is virtually cyclic, so in view of Theorem 2, it suffices to con-
centrate on the infinite virtually cyclic subgroups of BnpS2q, which are in some sense
its ‘simplest’ infinite subgroups. The classification of the virtually cyclic subgroups
of BnpS2q is an interesting problem in its own right. As well as helping us to under-
stand better the structure of these braid groups, the results of this paper give rise to
some K-theoretical applications. We remark that our work was partially motivated by
a question of S. Millán-López and S. Prassidis concerning the calculation of the algeb-
raic K-theory of the braid groups of S2 and RP2. It was shown recently that the full
and pure braid groups of these two surfaces satisfy the Fibred Isomorphism Conjec-
ture of F. T. Farrell and L. E. Jones [BJL, JM1, JM2]. This implies that the algebraic
K-theory groups of their group rings (over Z) may be computed by means of the al-
gebraic K-theory groups of their virtually cyclic subgroups via the so-called ‘assembly
maps’. More information on these topics may be found in [BLR, FJ, JP]. The main
theorem of this paper, Theorem 5, is currently being applied to the calculation of the
lower algebraic K-theory of ZrBnpS2qs [GJM], which generalises results of the thesis of
Millán-López [JM3, ML] where she calculated the lower algebraic K-theory of the group
rings of PnpS2q and PnpRP2q using our classification of the virtually cyclic subgroups of
PnpRP2q [GG8]. This application to K-theory thus provides us with additional reasons
to find the virtually cyclic subgroups of BnpS2q.

As we observed previously, if n ¤ 3 then BnpS2q is a known finite group, and so
we shall suppose in this paper that n ¥ 4. Our main result is Theorem 5, which yields
the complete classification of the infinite virtually cyclic subgroups of BnpS2q, with a
small number of exceptions, that we indicate below in Remark 6. Recall that by results
of Epstein and Wall [Ep, Wa] (see also Theorem 17 in Section I.1), any infinite virtually
cyclic group G is isomorphic to F � Z or G1 �F G2, where F is finite and rGi : Fs � 2
for i P t1, 2u (we shall say that G is of Type I or Type II respectively). Before stating
Theorem 5, we define two families of virtually cyclic groups. If G is a group, let Aut pGq
(resp. Out pGq) denote the group of its automorphisms (resp. outer automorphisms).

DEFINITION 4. Let n ¥ 4.

(1) Let V1pnq be the union of the following Type I virtually cyclic groups:

(a) Zq �Z, where q is a strict divisor of 2pn� iq, i P t0, 1, 2u, and q � n� i if n� i is odd.
(b) Zq �ρ Z, where q ¥ 3 is a strict divisor of 2pn� iq, i P t0, 2u, q � n� i if n is odd, and
ρp1q P Aut

�
Zq

�
is multiplication by �1.

(c) Dic4m �Z, where m ¥ 3 is a strict divisor of n� i and i P t0, 2u.
(d) Dic4m �νZ, where m ¥ 3 divides n � i, i P t0, 2u, pn � iq{m is even, and where
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νp1q P Aut pDic4mq is defined by: #
νp1qpxq � x
νp1qpyq � xy

(12)

for the presentation (9) of Dic4m.
(e) Q8 �θ Z, for n even and θ P HompZ, Aut pQ8qq, for the following actions:

(i) θp1q � Id.
(ii) θ � α, where αp1q P Aut pQ8q is given by αp1qpiq � j and αp1qpjq � k, where Q8 �t�1,�i,�j,�ku.
(iii) θ � β, where βp1q P Aut pQ8q is given by βp1qpiq � k and βp1qpjq � j�1.

(f) T� �Z for n even.
(g) T� �ω Z for n � 0, 2 mod 6, where ωp1q P Aut pT�q is the automorphism defined as
follows. Let T� be given by the presentation [Wo, p. 198]:A

P, Q, X
∣

∣

∣
X3 � 1, P2 � Q2, PQP�1 � Q�1, XPX�1 � Q, XQX�1 � PQ

E
, (13)

and let ωp1q P Aut pT�q be defined by$'&'% P ÞÝÑ QP

Q ÞÝÑ Q�1

X ÞÝÑ X�1.

(14)

More details concerning this automorphism will be given in Section I.3.
(h) O� �Z for n � 0, 2 mod 6.
(i) I� �Z for n � 0, 2, 12, 20 mod 30.

(2) Let V2pnq be the union of the following Type II virtually cyclic groups:

(a) Z4q �Z2q Z4q, where q divides pn� iq{2 for some i P t0, 1, 2u.
(b) Z4q �Z2q Dic4q, where q ¥ 2 divides pn� iq{2 for some i P t0, 2u.
(c) Dic4q �Z2q Dic4q, where q ¥ 2 divides n� i strictly for some i P t0, 2u.
(d) Dic4q �Dic2q Dic4q, where q ¥ 4 is even and divides n� i for some i P t0, 2u.
(e) O��T� O�, where n � 0, 2 mod 6.

Finally, let Vpnq � V1pnq�V2pnq. Unless indicated to the contrary, in what follows,
ρ, ν, α, β and ω will denote the actions defined in parts (1)(b), (d), (e)(ii), (e)(iii) and (g)
respectively.
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The main result of this paper is the following, which classifies (up to a finite number
of exceptions), the infinite virtually cyclic subgroups of BnpS2q.
THEOREM 5. Suppose that n ¥ 4.
(1) If G is an infinite virtually cyclic subgroup of BnpS2q then G is isomorphic to an element of
Vpnq.
(2) Conversely, let G be an element of Vpnq. Assume that the following conditions hold:
(a) if G � Q8 �α Z then n R t6, 10, 14u.
(b) if G � T� �Z then n R t4, 6, 8, 10, 14u.
(c) if G � O��Z or G � T� �ω Z then n R t6, 8, 12, 14, 18, 20, 26u.
(d) if G � I� �Z then n R t12, 20, 30, 32, 42, 50, 62u.
(e) if G � O��T� O� then n R t6, 8, 12, 14, 18, 20, 24, 26, 30, 32, 38u.
Then there exists a subgroup of BnpS2q isomorphic to G.
(3) Let G be isomorphic to T� �Z (resp. to O� � Z) if n � 4 (resp. n � 6). Then BnpS2q has
no subgroup isomorphic to G.

REMARK 6. Together with Theorem 2, Theorem 5 yields a complete classification of the
virtually cyclic subgroups of BnpS2q with the exception of a small (finite) number of
cases for which the problem of their existence is open. These cases are as follows:
(a) Type I subgroups of BnpS2q (see Propositions 62 and 66, as well as Remarks 64
and 67):
(i) the realisation of Q8 �α Z as a subgroup of BnpS2q, where n belongs to t6, 10, 14u and
αp1q P Aut pQ8q is as in Definition 4(1)(e)(ii).
(ii) the realisation of T� �Z as a subgroup of BnpS2q, where n belongs to t6, 8, 10, 14u.
(iii) the realisation of T� �ω Z as a subgroup of BnpS2q, where the action ω is given by
Definition 4(1)(g), and n P t6, 8, 12, 14, 18, 20, 26u.
(iv) the realisation of O� �Z as a subgroup of BnpS2q, where n P t8, 12, 14, 18, 20, 26u.
(v) the realisation of I��Z as a subgroup of BnpS2q, where n P t12, 20, 30, 32, 42, 50, 62u.
(b) Type II subgroups of BnpS2q (see Remark 72 and Proposition 73):
(i) for n P t6, 8, 12, 14, 18, 20, 24, 26, 30, 32, 38u, the realisation of the group O��T� O� as
a subgroup of BnpS2q.

Since the above open cases occur for even values of n, the complete classification
of the infinite virtually cyclic subgroups of BnpS2q for all n ¥ 5 odd is an immediate
consequence of Theorem 5.

THEOREM 7. Let n ¥ 5 be odd. Then up to isomorphism, the following groups are the infinite
virtually cyclic subgroups of BnpS2q.
(I) (a) Zm �θ Z, where θp1q P tId,� Idu, m is a strict divisor of 2pn � iq, for i P t0, 2u, and
m � n� i.
(b) Zm �Z, where m is a strict divisor of 2pn� 1q.
(c) Dic4m �Z, where m ¥ 3 is a strict divisor of n� i for i P t0, 2u.
(II) (a) Z4q �Z2q Z4q, where q divides pn� 1q{2.
(b) Dic4q �Z2q Dic4q, where q ¥ 2 is a strict divisor of n� i, and i P t0, 2u
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Most of this manuscript is devoted to proving Theorem 5, and is broadly divided
into two parts, I and II, together with a short Appendix. The aim of Part I is to prove
Theorem 5(1). In conjunction with Theorem 2, Theorem 17 gives rise to a family VC
of virtually cyclic groups, defined in Section I.1, with the property that any infinite
virtually cyclic subgroup of BnpS2q belongs to VC. In that section, we shall discuss a
number of properties pertaining to virtually cyclic groups. Proposition 26 describes
the correspondence in general between the virtually cyclic subgroups of a group G
possessing a unique element x of order 2 and its quotient G{ xxy. By the short exact
sequence (11), this proposition applies immediately to BnpS2q and MCGpS2, nq, and
will be used at various points, notably to obtain the classification of the virtually cyclic
subgroups of MCGpS2, nq from that of BnpS2q. Two other results of Section I.1 that
will prove to be useful in Section II.8 are Proposition 20 which shows that almost all
elements of V2pnq of the form G �H G may be written as a semi-direct product Z� G,
and Proposition 27 which will be used to determine the number of isomorphism classes
of the elements of V2pnq.

The principal difficulty in proving Theorem 5 is to decide which of the elements of
VC are indeed realised as subgroups of BnpS2q. This is achieved in two stages, reduction
and realisation. In the first stage, we reduce the subfamily of VC of Type I groups in
several ways. To this end, in Section I.2, we obtain a number of results of independent
interest concerning structural aspects of BnpS2q. The first of these is the calculation
of the centraliser and normaliser of its maximal finite cyclic and dicyclic subgroups.
Note that if i P t0, 1u, the centraliser of αi, considered as an element of Bn, is equal toxαiy [BDM, GW]. A similar equality holds in BnpS2q and is obtained using equation (11)
and the corresponding result for MCGpS2, nq due to L. Hodgkin [Ho]:

PROPOSITION 8. Let i P t0, 1, 2u, and let n ¥ 3.
(a) The centraliser of xαiy in BnpS2q is equal to xαiy, unless i � 2 and n � 3, in which case it is
equal to B3pS2q.
(b) The normaliser of xαiy in BnpS2q is equal to:$''&''%xα0, ∆ny � Dic4n if i � 0A

α2, α�1
0 ∆nα0

E � Dic4pn�2q if i � 2xα1y � Z2pn�1q if i � 1,

unless i � 2 and n � 3, in which case it is equal to B3pS2q.
(c) If i P t0, 2u, the normaliser of the standard copy of Dic4pn�iq in BnpS2q is itself, except
when i � 2 and n � 4, in which case the normaliser is equal to α�1

0 σ�1
1 xα0, ∆4y σ1α0, and is

isomorphic to Q16.

If F is a maximal dicyclic or finite cyclic subgroup of BnpS2q, parts (a) and (b) imply
immediately that BnpS2q has no Type I subgroup of the form F�Z.

The second reduction, given in Proposition 35 in Section I.3, will make use of the fact
that if θ : Z ÝÑ Aut pFq is an action of Z on the finite group F, the isomorphism class
of the semi-direct product F�θ Z depends only on the class of θp1q in Out pFq. Since we
are interested in the realisation of isomorphism classes of virtually finite subgroups in
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BnpS2q, it will thus be sufficient to study the Type I groups of the form F �θ Z, where
θp1q runs over a transversal of Out pFq in Aut pFq. To this end, in Section I.3, we recall
the structure of Out pFq for the binary polyhedral groups. One could also carry out this
analysis for the other finite subgroups of BnpS2q given by Theorem 2, but the resulting
conditions on θ are weaker than those obtained from a generalisation of a second result
of L. Hodgkin concerning the powers of αi that are conjugate in BnpS2q. More precisely,
in Section I.4, we prove the following proposition.

PROPOSITION 9. Let n ¥ 3 and i P t0, 1, 2u, and suppose that there exist r, m P Z such that
αm

i and αr
i are conjugate in BnpS2q.

(a) If i � 1 then αm
1 � αr

1.
(b) If i P t0, 2u then αm

i � α�r
i .

In particular, conjugate powers of the αi are either equal or inverse. So if F is a
finite cyclic subgroup of BnpS2q then by Theorem 1 the only possible actions of Z on
F are the trivial action and multiplication by �1. This also has consequences for the
possible actions of Z on dicyclic subgroups of BnpS2q. As in Proposition 8, the proof
of Proposition 9 will make use of a similar result for the mapping class group and the
relation (11).

The final reduction, described in Section I.5.2, again affects the possible Type I sub-
groups that may occur, and is a manifestation of the periodicity (with least period 2 or
4) of the subgroups of BnpS2q that was observed in [GG5] for the finite subgroups. The
following proposition will be applied to rule out Type I subgroups of BnpS2q isomorphic
to F �θ Z with non-trivial action θ, where F is either O� or I� (one could also apply the
result to the other possible finite groups F, but this is not necessary in our context in
light of the consequences of Proposition 9 mentioned above). The following proposi-
tion may be found in [BCP, FZ], and may be compared with the analogous result for
RP2 [GG2, Proposition 6]. We shall give an alternative proof in Section I.5.1.

PROPOSITION 10 ([BCP, FZ]).
(a) The space F2pS2q (resp. D2pS2q) has the homotopy type of S2 (resp. of RP2). Hence the
universal covering space of D2pS2q is F2pS2q.
(b) If n ¥ 3, the universal covering space of FnpS2q or DnpS2q has the homotopy type of the
3–sphere S3.

Putting together these reductions will allow us to prove Theorem 5(1), first for the
groups of Type I in Section I.6.1, and then for those of Type II in Section I.6.2. The
structure of the finite subgroups of BnpS2q imposes strong constraints on the possible
Type II subgroups, and the proof in this case is more straightforward than that for Type I
subgroups.

The second part of the paper, Part II, is devoted to the analysis of the realisation
of the elements of V1pnq²V2pnq as subgroups of BnpS2q and to proving parts (2) and
(3) of Theorem 5. With the exception of the values of n excluded by the statement of
part (2), we prove the existence of the elements of Vpnq as subgroups of BnpS2q, first
those of Type I in Sections II.1– II.4, and then those of Type II in Section II.6. The results
of these sections are gathered together in Proposition 68 (resp. Proposition 73) which
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proves Theorem 5(2) for the subgroups of Type I (resp. Type II). The construction of
the elements of Vpnq involving finite cyclic and dicyclic groups are largely algebraic,
and will rely heavily on Lemma 51, as well as on Lemma 29 which describes the action
by conjugation of the αi on the generators of BnpS2q. In contrast, the realisation of
the elements of Vpnq involving the binary polyhedral groups is geometric in nature,
and occurs on the level of mapping class groups via the relation (11). The constraints
involved in the constructions indicate why the realisation of such elements is an open
problem for the values of n given in Remark 6. For n P t4, 6u, in Proposition 62(d) we are
also able to rule out the existence of the virtually cyclic groups given in Theorem 5(3).

In Section II.8, we discuss the isomorphism problem for the amalgamated products
that occur as elements of V2pnq. It turns out that with one exception, abstractly there is
only one way (up to isomorphism) to embed the amalgamating subgroup in each of the
two factors. With the help of Proposition 27, we are able to prove the following result.

PROPOSITION 11. For each of the amalgamated products given in Definition 4(2), abstractly
there is exactly one isomorphism class, with the exception of Q16 �Q8 Q16, for which there are
exactly two isomorphism classes.

Note that Proposition 11 refers to abstract isomorphism classes, and does not de-
pend on the fact that the amalgamated products occurring as elements of V2pnq are
realised as subgroups of BnpS2q. In the exceptional case, that of Q16 �Q8 Q16, abstractly
there are two isomorphism classes defined by equations (75) and (77). In Corollary 76,
we show that abstractly, all but one of the isomorphism classes of the elements of V2pnq
of the form G �H G may be written as a semi-direct product of Z by G. In Propos-
itions 77 and 78, if n ¥ 4 is even we show that one of these isomorphism classes is
always realised as a subgroup of BnpS2q, while the other isomorphism class is real-
ised as a subgroup of BnpS2q for all n R t6, 14, 18, 26, 30, 38u. It is an open question
as to whether this second isomorphism class is realised as a subgroup of BnpS2q for
n P t6, 14, 18, 26, 30, 38u

In Section II.9, we deduce the classification of the virtually cyclic subgroups of
MCGpS2, nq (with a finite number of exceptions). As we shall see, it will follow from
Proposition 26 that the homomorphism ϕ of the short exact sequence (11) induces a
correspondence that is one-to-one, with the exception of subgroups of BnpS2q that are
isomorphic to Zm �θ Z or Z2m �θ Z for m odd, which are sent to the same subgroup
Zm �θ1 Z of MCGpS2, nq, the action θ1 being given as in Proposition 12(b) below.

PROPOSITION 12. Let n ¥ 4, and let ϕ : BnpS2q ÝÑMCGpS2, nq be the epimorphism given
by equation (11).
(a) Let H1 be an infinite virtually cyclic subgroup of MCGpS2, nq of Type I (resp. Type II).
Then ϕ�1pH1q is a virtually cyclic subgroup of BnpS2q of Type I (resp. Type II).
(b) Let H be a Type I virtually cyclic subgroup of BnpS2q, isomorphic to F �θ Z, where F is
a finite subgroup of BnpS2q and θ P HompZ, Aut pFqq. Then ϕpHq � ϕpFq �θ1 Z, where
θ1 P HompZ, Aut pF1qq satisfies θ1p1qp f 1q � ϕpθp1qp f qq for all f 1 P F1 and f P F for which
ϕp f q � f 1.
(c) Let H be a Type II virtually cyclic subgroup of BnpS2q isomorphic to G1 �F G2, where
G1, G2 and F are finite subgroups of BnpS2q, and F is an index 2 subgroup of G1 and G2. Then
ϕpHq � ϕpG1q�ϕpFq ϕpG2q.

9



Equation (11) and Definition 4 together imply that the following virtually cyclic
groups are those that will appear in the classification of the virtually cyclic subgroups
of MCGpS2, nq. If m ¥ 2, let Dih2m denote the dihedral group of order 2m.

DEFINITION 13. Let n ¥ 4.

(1) Let rV1pnq be the union of the following Type I virtually cyclic groups:
(a) Zq �Z, where q is a strict divisor of n� i, i P t0, 1, 2u.
(b) Zq �rρ Z, where q ¥ 3 is a strict divisor of n � i, i P t0, 2u, and rρp1q P Aut

�
Zq

�
is

multiplication by �1.
(c) Dih2m �Z, where m ¥ 3 is a strict divisor of n� i and i P t0, 2u.
(d) Dih2m �rνZ, where m ¥ 3 divides n � i, i P t0, 2u, pn � iq{m is even, and whererνp1q P Aut pDih2mq is defined by: # rνp1qpxq � xrνp1qpyq � xy

for the presentation of Dih2m given by
�

x, y
∣

∣ xm � y2 � 1, yxy�1 � x�1
D

.
(e) pZ2 `Z2q �rθ Z, for n even and rθ P HompZ,Z2 `Z2q, for the following actions:

(i) rθp1q � Id.
(ii) rθ � rα, where rαp1q P Aut pZ2 `Z2q is given by rαp1qpp1, 0qq � p0, 1q and rαp1qpp0, 1qq �p1, 1q.
(iii) rθ � rβ, where rβp1q P Aut pZ2 `Z2q is given by rβp1qpp1, 0qq � p1, 1q and rβp1qpp0, 1qq �p0, 1q.
(f) A4 �Z for n even.
(g) A4 �rω Z for n � 0, 2 mod 6, where rωp1q P Aut pA4q is the automorphism defined as
follows. Let A4 � pZ2 `Z2q �Z3 where the action of Z3 on Z2 `Z2 permutes cyclically
the three elements p1, 0q, p0, 1q and p1, 1q, and let rX be a generator of the Z3-factor. Then
we define rωp1q P Aut pA4q by: $'&'% p1, 0q ÞÝÑ p1, 1qp0, 1q ÞÝÑ p0, 1qrX ÞÝÑ rX�1.

(h) S4 �Z for n � 0, 2 mod 6.
(i) A5 �Z for n � 0, 2, 12, 20 mod 30.
(2) Let rV2pnq be the union of the following Type II virtually cyclic groups:
(a) Z2q �Zq Z2q, where q divides pn� iq{2 for some i P t0, 1, 2u.
(b) Z2q �Zq Dih2q, where q ¥ 2 divides pn� iq{2 for some i P t0, 2u.
(c) Dih2q �Zq Dih2q, where q ¥ 2 divides n� i strictly for some i P t0, 2u.
(d) Dih2q �Dihq Dih2q, where q ¥ 4 is even and divides n� i for some i P t0, 2u.
(e) S4 �A4 S4, where n � 0, 2 mod 6.

Finally, let rVpnq � rV1pnq� rV2pnq.
10



We thus obtain the classification of the virtually cyclic subgroups of MCGpS2, nq
(with a finite number of exceptions)

THEOREM 14. Let n ¥ 4. Every infinite virtually cyclic subgroup of MCGpS2, nq is the image
under ϕ of an element of Vpnq, and so is an element of rVpnq. Conversely, if G is an element
of Vpnq that satisfies the conditions of Theorem 5(2) then ϕpGq is an infinite virtually cyclic
subgroup of MCGpS2, nq.

In Proposition 81, we prove a result similar to that of Proposition 11 for the Type II
subgroups of MCGpS2, nq that appear in Definition 13(2), namely that there is a single
isomorphism class for such groups, with the exception of the amalgamated product
Dih8 �Dih4 Dih8, for which there are exactly two isomorphism classes. In an analogous
manner to that of BnpS2q, if n is even then Proposition 83 shows that each of these
two classes is realised as a subgroup of MCGpS2, nq, with the possible exception of the
second isomorphism class when n belongs to t6, 14, 18, 26, 30, 38u.

As we mentioned previously, the real projective plane RP2 is the only other surface
whose braid groups have torsion. In light of the results of this paper, it is thus natural to
consider the problem of the classification of the virtually cyclic subgroups of BnpRP2q
up to isomorphism. This is the subject of work in progress [GG10]. The first step, the
classification of the finite subgroups of BnpRP2q, was carried out in [GG9, Theorem 5].
As in this paper, the classification of the infinite virtually cyclic subgroups of BnpRP2q is
rather more difficult than in the finite case, but the combination of [GG9, Corollary 2],
which shows that BnpRP2q embeds in B2npS2q, with Theorem 5 should be helpful in this
respect.
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Part I

Virtually cyclic groups: generalities,
reduction and the mapping class group

In Part I, we start by recalling the definition of virtually cyclic groups and their charac-
terisation due to Epstein and Wall. In Section 1, applying Theorem 2, in Proposition 22
we obtain a family VC of virtually cyclic groups that are potential candidates to be sub-
groups of BnpS2q. The initial aim is to whittle down VC to the subfamily Vpnq of infinite
virtually cyclic groups described in Definition 4 with the property that any infinite vir-
tually cyclic subgroup of BnpS2q is isomorphic to an element of Vpnq. In Section 1, we
also prove a number of results concerning infinite virtually cyclic groups, in particular
Proposition 26, which will be used in Part II to construct certain Type II subgroups, and
to prove Theorem 14. Also of interest is Proposition 27, which will play an important
rôle in Section II.8 in the study of the isomorphism classes of the Type II subgroups of
BnpS2q, notably in the proof of Proposition 11, which shows that there is just one iso-
morphism class of each such subgroup, with the exception of Q16 �Q8 Q16, for which
there are two isomorphism classes. Another result that shall be applied in Section II.8
is Proposition 20 which implies that almost all elements of V2pnq of the form G �H G
may be written as semi-direct products Z� G. In Section II.9 we will see that a similar
result holds for the isomorphism classes of the Type II subgroups of MCGpS2, nq, the
exceptional case being Dih8 �Dih4

Dih8.
In Part I, we then study the elements of VC of the form F�θ Z, where F is one of the

finite groups occurring as a finite subgroup of BnpS2q. One of the main difficulties that
we face initially is that in general there are many possible actions of Z on F. However,
as we shall see in Sections 2–5, a large number of these actions are incompatible with the
structure of BnpS2q. In Section 2, we prove Proposition 8, which will enable us to rule
out the case where F is a maximal finite cyclic or dihedral group. In Section 3, we ob-
tain a second reduction using the fact that the isomorphism class of F�θ Z depends only
on the outer automorphism induced by θp1q in Out pFq. Since we are primarily inter-
ested in the isomorphism classes of the virtually cyclic subgroups of BnpS2q, it follows
that it suffices to consider automorphisms of F belonging to a transversal of Out pFq in
Aut pFq. The subsequent study of the structure of Out pFq, where F is either Q8 or one
of the binary polyhedral groups, then narrows down the possible Type I subgroups of
BnpS2q. If F � T�, O� or I� then Out pFq � Z2, so we have just two possible actions to
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consider, the trivial one, and a non-trivial one, which we shall describe. In Section 4,
we obtain in Proposition 9 an extension to BnpS2q of a result of Hodgkin concerning the
centralisers of finite order elements of MCGpS2, nq. This allows us to reduce greatly
the number of possible actions in the case where F is cyclic or dicyclic. In Section 5.1,
in Proposition 10 we give an alternative proof of a result of [BCP, FZ] that says that if
n ¥ 3, the universal covering space of the nth permuted configuration space DnpS2q of
S2 has the homotopy type of S3. This fact will then be used in Section 5.2 to show in
Lemma 41 that the non-trivial subgroups of BnpS2q have cohomological period 2 or 4.
The ensuing study of the cohomology of the groups of the form F �θ Z, where F � O�
or I�, will allow us to exclude the possibility of the non-trivial action in these cases.
Putting together the analysis of Sections 2–5 will lead us to the proof of Theorem 5(1)
for the Type I subgroups. In Section 6.2, we study the infinite virtually cyclic groups
of the form G1 �F G2, where F, G1, G2 are finite and rGi : Fs � 2 for i � 1, 2. Using the
cohomological properties obtained in Section 5.2 and the relation with the groups of
the form F �θ Z, we show that any group of this form that is realised as a subgroup of
BnpS2q is isomorphic to an element of V2pnq. This will enable us to prove Theorem 5(1)
in Section 6.2.

1 Virtually cyclic groups: generalities

We start by recalling the definition and Epstein and Wall’s characterisation of virtually
cyclic groups. We then proceed to prove some general results concerning these groups,
notably Propositions 11 and 26, that will be used in Part II of the manuscript.

DEFINITION 15. A group is said to be virtually cyclic if it contains a cyclic subgroup of
finite index.

REMARKS 16.
(a) Every finite group is virtually cyclic.
(b) Every infinite virtually cyclic group contains a normal subgroup of finite index.

The following criterion is well known; most of the first part is due to Epstein and
Wall [Ep, Wa].

THEOREM 17. Let G be a group. Then the following statements are equivalent.
(a) G is a group with two ends.
(b) G is an infinite virtually cyclic group.
(c) G has a finite normal subgroup F such that G{F is isomorphic to Z or to the infinite dihedral
group Z2 �Z2.
Equivalently, G is of the form:
(i) F �θ Z for some action θ P HompZ, Aut pFqq, or
(ii) G1 �F G2, where rGi : Fs � 2 for i � 1, 2,
where G1, G2 and F are finite groups.

DEFINITION 18. An infinite virtually cyclic group will be said to be of Type I (resp.
Type II) if it is of the form given by (i) (resp. by (ii)).
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Proof of Theorem 17. The equivalence of parts (a) and (b) may be found in [Ep], and the
implication (a) implies (c) is proved in [Wa]. So to prove the first part, it suffices to show
that (c) implies (b). Suppose then that G has a finite normal subgroup F such that G{F
is isomorphic to Z or to Z2 � Z2. Clearly G is infinite. Assume first that G � F �θ Z,
where θ P HompZ, Aut pFqq, let k be the order of the automorphism θp1q P Aut pFq,
let s : G{F ÝÑ G be a section for the canonical projection p : G ÝÑ G{F, and let x be a
generator of the infinite cyclic group G{F. Since θpxqp f q � spxq f spx�1q for all f P F, it
follows that the infinite cyclic subgroup

�
spxkqD is central in G, and that there exists a

commutative diagram of short exact sequences of the form:

1

��

1

���
spxkqD p

∣

∣

∣

∣xspxkqy� //

��

�
xk
D � kZ

��

1 // F //

ϕ|F �
��

G

ϕ
��

p
// G{F � Zpϕ

��

// 1

1 // Ker pppq // G
L�

spxkqD
��

pp // Z{kZ
��

// 1,

1 1

(15)

the left-hand vertical extension being central, where

ϕ : G ÝÑ G{AspxkqE and pϕ : Z ÝÑ Z{kZ
are the canonical projections, and pp : G{ �spxkqD ÝÑ Z{kZ is the epimorphism induced
on the quotients. Since the restriction of p to

�
spxkqD is an isomorphism, it follows that

ϕ |F : F ÝÑ Ker pppq is too. Thus G{ �spxkqD is of order k |F|. Since
�

spxkqD is infinite
cyclic, the left-hand vertical extension then implies that G is virtually cyclic.

Now suppose that G{F � Z2 �Z2. Then G{F � Z�Z2, where the action of Z2 on Z

is non trivial. So there exist a short exact sequence

1 ÝÑ F ÝÑ G
pÝÑ Z�Z2 ÝÑ 1

and a split extension

1 ÝÑ F ÝÑ pG p| pGÝÑ Z ÝÑ 1,

where pG is the inverse image of the Z-factor of Z � Z2 under p. Let x be a generator

of Z, and let s : Z ÝÑ pG be a section for p
∣

∣

∣ pG . Applying the argument of the previous

paragraph to pG � F�Z, there exists a central extension

1 ÝÑ A
spxkqE ÝÑ pG ÝÑ pGMA

spxkqE ÝÑ 1,
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where k is the order of Aut pFq. Let m � |F|. We claim that
�

spxmkqD is normal in G1 �F

G2. To see this, first note that
�

spxmkqD � Zp pGq. Now let g P Gz pG. Then ppgspxkqg�1q �
x�k since ppgq is sent to an element of the form pxq, 1q in Z� Z2, where q P Z. Hence
gspxkqg�1 � spx�kq f , where f P F. Since spxkq P Zp pGq, spxkq commutes with f , and so

gspxmkqg�1 � pspx�kq f qm � spx�mkq. (16)

We thus have the following commutative diagram of short exact sequences:

1

��

1

��

1 //
�

spxmkqD // pG
��

// pG L�
spxmkqD
��

// 1

1 //
�

spxmkqD // G

��

// G
L�

spxmkqD
��

// 1.

Z2

��

Z2

��
1 1

(17)

An argument similar to that of the previous paragraph shows that
∣

∣

∣

pG L�
spxmkqD ∣∣

∣
� m2k,

and so
∣

∣G
L�

spxmkqD ∣∣ � 2m2k. Since
�

spxmkqD � Z, it follows from the second row of (17)
that G is virtually cyclic. This shows that (c) implies (b), and thus completes the proof
of the first part of the statement.

We now prove the second statement of the theorem. First note that in part (c), the
fact that G{F is isomorphic to Z is clearly equivalent to condition (i). Suppose then that
condition (ii) holds. Since rGi : Fs � 2 for i � 1, 2, F is normal in Gi, so is normal in
G � G1 �F G2, and G{F � Z2 �Z2. Finally, suppose that G has a finite normal subgroup
F such that G{F � Z2 � Z2. Let Π : G ÝÑ G{F denote the canonical projection. For
i � 1, 2, let yi P G{F be such that G{F � �

y1, y2
∣

∣ y2
1 � y2

2 � 1
D

, and let Gi � Π
�1pxyiyq.

Then the groups Gi are finite and each contain F as a subgroup of index 2. We can
thus form the amalgamated product G1 �F G2. So F is normal in G1 �F G2, and the
quotient pG1 �F G2q{F is isomorphic to Z2 � Z2. By standard properties of amalgam-
ated products, there exists a unique (surjective) homomorphism ϕ : G1 �F G2 ÝÑ G
that makes the following diagram of short exact sequences commutative:

1 // F // G1 �F G2

ϕ

��

q
// pG1 �F G2q{Fpϕ

��

// 1

1 // F // G
Π // G{F // 1,

q being the canonical projection, and where pϕ is the induced homomorphism on the
quotients. Now for i � 1, 2, ϕpgq � g for all g P Gi, and so pϕpqpxiqq � yi. In particular,
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pϕ sends the Z2-factors of pG1 �F G2q{F isomorphically onto those of G{F, and thus pϕ is
an isomorphism. It follows from the 5-Lemma that ϕ is also an isomorphism.

The following result shows that the type of an infinite virtually cyclic group is de-
termined by the (non) centrality of the extension given by Theorem 17(b).

PROPOSITION 19. Let G be an infinite virtually cyclic group. Then G is of Type I (resp. of
Type II) if and only if the extension

1 ÝÑ Z ÝÑ G ÝÑ F ÝÑ 1 (18)

arising in the definition of virtually cyclic group is central (resp. is not central).

Proof. In order to prove the proposition, we start by showing that if

1 ÝÑ Z
ι jÝÑ G ÝÑ Fj ÝÑ 1 for j � 1, 2,

are extensions of G, with Fj finite, then they are either both central or both non central.
Note that the intersection ι1pZqX ι2pZq is a normal subgroup of G of finite index, and so
is infinite cyclic. Since an automorphism of Z is completely determined by its restriction
to the subgroup kZ � Z for any k � 0, (as the automorphism and its restriction are either
both equal to Id or to � Id), the two extensions are thus either both central or both non
central.

To prove the necessity of the condition, consider the extension (18) given by the
definition of virtually cyclic group. Assume first that G is of Type I. By the first part
of Theorem 17, there exists a finite subgroup F1 of G and θ P HompZ, Aut pF1qq such
that F1 �θ Z. Using the notation of the first part of the proof of Theorem 17, as in the
commutative diagram (15), we obtain a central extension

1 ÝÑ A
spxkqE ÝÑ G ÝÑ G

MA
spxkqE ÝÑ 1.

Since
�

spxkqD � Z, it follows from the first paragraph that the extension (18) is central.
Now suppose that G is of Type II. From the proof of the first part of Theorem 17,

from the commutative diagram (17) we obtain an extension

1 ÝÑ A
spxmkqE ÝÑ G ÝÑ G

MA
spxmkqE ÝÑ 1,

where
�

spxmkqD � Z, G
L�

spxmkqD is finite. Equation (16) implies that this extension is
non central. Using the first paragraph once more, it follows that the extension (18) is
non central. This proves the necessity of the conditions.

Conversely, if the extension (18) is central (resp. non central) then from Theorem 17,
it must be of Type I (resp. Type II) because as we saw in the two previous paragraphs,
any group of Type I (resp. Type II) is the middle group of a central (resp. non central)
extension. But by the first paragraph of this proof, this property is independent of the
short exact sequence.

The following proposition will be used in Section II.8 to give an alternative descrip-
tion of the elements of V2pnq as semi-direct products.
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PROPOSITION 20. Let G1 and G2 be isomorphic groups, and consider the amalgamated product
G � G1 �H G2 defined by

H1 // G1

%%JJJJJJJJJJ

H

i1
>>~~~~~~~~

i2   A
AA

AA
AA

A G1 �H G2,

H2 // G2

99tttttttttt

where for j � 1, 2, Hj is a subgroup of Gj of index 2 and ij : H ÝÑ Hj is an embedding of the
abstract group H in Gj, the remaining arrows being inclusions. Suppose that the isomorphism
i2 � i�1

1 : H1 ÝÑ H2 extends to an isomorphism ι : G1 ÝÑ G2. Then G � Z� Gi, where the
action is given by

gitg
�1
i � #

t if gi P Hi

t�1 if gi P GizHi,
(19)

t being a generator of the Z-factor.

Proof. We start by constructing a homomorphism α : G1 �H G2 ÝÑ G2. It suffices to
define α on the elements of G1 and G2. Let

αpxq � #
ιpxq if x P G1

x if x P G2.

Then α is well defined, since if h P H then αpi1phqq � ιpi1phqq � i2phq � αpi2phqq since
ijphq P Hj for j P t1, 2u. Hence we obtain a split short exact sequence:

1 ÝÑ Ker pαq ÝÑ G1 �H G2 ÝÑ G2 ÝÑ 1, (20)

where a section s : G2 ÝÑ G1 �H G2 is just given by inclusion. It remains to show that
Ker pαq � Z, and to determine the action.

Let p : G1 �H G2 ÝÑ Z2 �Z2 be the canonical projection of G1 �H G2 onto the quo-
tient pG1 �H G2q{H. If h P H then αpi2phqq � i2phq, so the lower left-hand square of the
following diagram of short exact sequences is commutative:

1

��

1

��
Ker pαq

��

Z

��
1 // H

i2// G1 �H G2
p

//

α
��

Z2 �Z2 //pα
��

1

1 // H
i2 //

��

G2
p|G2 //

��

Z2 //

��

1.

1 1 1
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Thus α induces a homomorphism pα : Z2 �Z2 ÝÑ Z2 that makes the lower right-hand
square commute. Let i P t1, 2u, and suppose that gi P GizHi. If i � 1 then αpg1q � ιpg1q P
G2zH2 because ι is an isomorphism that sends H1 to H2, while if i � 2 then αpg2q �
g2 P G2zH2. We conclude that ppαpgiqq � 1. Setting xi � ppgiq, the commutativity of
the above diagram implies firstly that pαpxiq � 1, and hence Ker ppαq � xx1x2y � Z, and
secondly that the restriction

p
∣

∣

Kerpαq : Ker pαq ÝÑ Ker ppαq
is an isomorphism and that Ker pαq � �

g1pιpgp1qqq�1
D � Z for any g1 P G1zH1. Thus

G1 �H G2 � Z�G2 by equation (20). Further, if g2 P G2 then

p
�

g2
�
g1pιpgp1qqq�1�g�1

2


 � ppg2qx1x2ppg�1
1 q� #

x1x2 if g2 P i2pHq � H2

x2x1x2x�1
2 � x2x1 � px1x2q�1 if g2 P G2zH2.

The action given by equation (19) then follows from the commutativity of the above
diagram, where t is taken to be the element g1pιpgp1qqq�1.

We now turn our attention to the virtually cyclic subgroups of BnpS2q.
DEFINITION 21. Given n ¥ 4, let VC denote the family of virtually cyclic groups con-
sisting of all groups of Type I and Type II whose factors F, G1 and G2, as described by
Theorem 17, are subgroups of Z2pn�1q, Dic4n, Dic4pn�2q, T�, O� or I�.

The family VC thus consists of the infinite virtually cyclic groups that are formed
using the finite subgroups of BnpS2q. The following proposition is an immediate con-
sequence of Theorems 2 and 17.

PROPOSITION 22. Let G be a virtually cyclic subgroup of BnpS2q.
(a) If G is finite then it is isomorphic to a subgroup of one of Z2pn�1q, Dic4n, Dic4pn�2q, T�, O�
or I�.
(b) If G is infinite then it is isomorphic to an element of VC .

We recall the following general result from [GG8], which will prove to be very useful
when it comes to constructing subgroups of BnpS2q of Type II.

PROPOSITION 23 ([GG8, Lemma 15]). Let G � G1 �F G2 be a virtually cyclic group of
Type II, and let ϕ : G1 �F G2 ÝÑ H be a homomorphism such that for i � 1, 2, the restriction
of ϕ to Gi is injective. Then ϕ is injective if and only if ϕpGq is infinite.

REMARK 24. Proposition 23 will be applied in the following manner: we will be given
finite subgroups rG1, rG2 of BnpS2q such that rF � rG1

� rG2 is of index two in both rG1

and rG2. The aim will be to prove that the subgroup
A rG1

� rG2

E
is the amalgamated

product of rG1 and rG2 along rF. It will suffice to show that
A rG1

� rG2

E
is infinite. Sup-

pose that this is indeed the case. Let G1 and G2 be abstract groups isomorphic re-
spectively to rG1 and rG2 whose intersection is an index two subgroup F. We define a
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map ϕ : G1 �F G2 ÝÑ A rG1
� rG2

E
that sends F onto rF and Gi onto rGi isomorphically for

i � 1, 2. Then ϕ is a surjective homomorphism, and by Proposition 23, is an isomorph-
ism.

As an easy exercise, we may deduce the classification of the virtually cyclic sub-
groups of PnpS2q. If n ¤ 3 then PnpS2q is trivial if n ¤ 2, and P3pS2q � Z2. So suppose
that n ¥ 4. The only finite subgroups of PnpS2q are teu and

�
∆

2
n
D

, both of which are
central.

PROPOSITION 25. Let n ¥ 4. The virtually cyclic subgroups of PnpS2q are teu, �∆
2
n
D

, xxy � Z

and
�

∆
2
n, x

D � Z2 �Z, where x is any element of PnpS2qz  ∆
2
n
(

.

Proof. Let G be an infinite virtually cyclic subgroup of PnpS2q. The Type I subgroups are
Z and Z2 � Z (both are realised, by taking xxy and

�
∆

2
n, x

D
respectively, where x is any

element of PnpS2qz �∆
2
n
D

). As for the Type II subgroups, the only possibility is F � teu
and G1 � G2 � �

∆
2
n
D

, but then G � Z2 �Z2 since
�

∆
2
n
D

is the unique subgroup of PnpS2q
of order two.

The following result will be used later on to show that there is an almost one-
to-one correspondence between the virtually cyclic subgroups of BnpS2q and those of
MCGpS2, nq. This will also enable us to construct copies of T� � Z (Proposition 62)
and O� �T� O� (Proposition 71) in BnpS2q for certain values of n, as well as to prove
Theorem 14.

PROPOSITION 26. Let G be a group that possesses a unique element x of order 2, let G1 �
G{ xxy, and let p : G ÝÑ G1 denote the canonical projection.

(a) Let H be a virtually cyclic subgroup of G.

(i) H1 � ppHq is a virtually cyclic subgroup of G1 of the same type (finite, of Type I or of Type II)
as H.
(ii) Let H � F �θ Z, where F is a finite subgroup of G and θ P HompZ, Aut pFqq. Then
ppHq � ppFq �θ1 Z, where θ1 P HompZ, Aut pF1qq is the action induced by θ, and defined by
θ1p1qp f 1q � p

�
θp1qp f q� for all f 1 P F1, where f P F satisfies pp f q � f 1.

(iii) Let H � G1 �F G2, where G1, G2 are subgroups of H, and F � G1 X G2 is of index 2 in
G1 and G2. Then ppHq � ppG1q�ppFq ppG2q.
(b) Let H1 be a virtually cyclic subgroup of G1.
(i) H � p�1pH1q is a virtually cyclic subgroup of G of the same type (finite, of Type I or of
Type II) as H1.
(ii) If H1 � G1

1 �F1 G1
2, where G1

1, G1
2 are subgroups of H1, and F1 � G1

1 X G1
2 is of index 2 in

G1
1 and G1

2, then H � p�1pG1
1q�p�1pF1q p�1pG1

2q.
(c) Let H1 and H2 be isomorphic subgroups of G. Then ppH1q and ppH2q are isomorphic
subgroups of G1.
Proof. First note that since x is the unique element of G of order 2, the subgroup xxy is
characteristic in G, in particular, x P ZpGq. We start by proving parts (a)(i) and (b)(i).
The result is clear if either H or H1 is finite, so it suffices to consider the cases where they
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are infinite. Before proving the statement in these cases, let us introduce some notation.
Suppose that H (resp. H1) is an infinite virtually cyclic subgroup of G (resp. G1). Then
by Theorem 17, H (resp. H1) has a finite normal subgroup F (resp. F1) such that H{F
(resp. H1{F1) is isomorphic to Z if H (resp. H1) is of Type I, and to Z2 �Z2 if H (resp. H1)
is of Type II. Let H1 � ppHq and F1 � ppFq (resp. H � p�1pH1q and F � p�1pF1q). So H1
(resp. H) is infinite, and F1 (resp. F) is finite. Further, p |F : F ÝÑ F1 and p |H : H ÝÑ H1
are surjective, F1 (resp. F) is normal in H1 (resp. H), andteu � Ker pp |F q � Ker pp |H q � Ker ppq � xxy . (21)

Then we have the following commutative diagram of short exact sequences:

1

��

1

��
Ker pp |F q

��

// Ker pp |H q
��

1 // F //

p|F
��

H

p|H
��

q
// H{Fpp

��

// 1

1 // F1 //

��

H1 q1
//

��

H1{F1 // 1,

1 1

(22)

where q : H ÝÑ H{F and q1 : H1 ÝÑ H1{F1 are the canonical projections, the mappp : H{F ÝÑ H1{F1
is the induced surjective homomorphism on the quotients and Ker pp |F q ÝÑ Ker pp |H q
is inclusion. We claim that Ker pp |F q � Ker pp |H q. This being the case, pp is an iso-
morphism, and thus H and H1 are virtually cyclic groups of the same type, which
proves the proposition. If x R H then Ker pp |F q � Ker pp |H q � teu trivially by equa-
tion (21). So assume that x P H. To prove the claim, by equation (21), it suffices to
show that x P F. We separate the two cases corresponding to parts (a)(i) and (b)(i) of
the statement.

(a)(i) If H is of Type I then H � F�Z, and so x P F since x is of finite order. So suppose
that H is of Type II. Then H � G1 �F G2, where G1, G2 are subgroups of H that contain F
as a subgroup of index 2. By standard properties of amalgamated products, x belongs
to a conjugate in H of one of the Gi because it is of finite order, and since x P ZpGq,
it belongs to one of the Gi, which shows that G1 and G2 are of (the same) even order.
The fact that x is the unique element of G of order 2 implies that x P G1 X G2 � F as
required.
(b)(i) In this case, Ker pp |F q � Ker pp |H q � Ker ppq � xxy by construction.

This proves the claim, and thus we obtain parts (a)(i) and (b)(i).

20



We now prove part (a)(ii). Let H be an infinite Type I subgroup of G and let F be a
finite normal subgroup of H such that there exists a short exact sequence of the form

1 ÝÑ F ÝÑ H
qÝÑ H{F ÝÑ 1,

where H{F � Z, and where q : H ÝÑ H{F is the canonical projection. By the previ-
ous paragraph, we thus have the commutative diagram (22), pp being an isomorphism.
Let z be a generator of H{F, let s : H{F ÝÑ H be a section for q such that θpzqp f q �
spzq. f . spz�1q for all f P F, where θ P HompH{F, Aut pFqq is given. The commut-
ativity of the diagram (22) implies that s1 � p � s � pp�1 : H1{F1 ÝÑ H1 is a section for
q1. Since x P ZpGq, if x P F then θpzqpxq � x, and so p induces a homomorphism
Φ : Aut pFq ÝÑ Aut pF1q satisfying Φpαqppp f qq � ppαp f qq for all f P F and α P Aut pFq.
We thus obtain a homomorphism θ1 : H1{F1 ÝÑ Aut pF1q defined by θ1 � Φ � θ � pp�1 that
makes the following diagram commute:

H{F θ //pp
��

Aut pFq
Φ

��
H1{F1 θ1 // Aut pF1q .

In particular, if f 1 P F1 and if f P F is such that pp f q � f 1 then:

s1pz1q. f 1. s1pz1�1q � p � spzq. pp f q. p � spz�1q � ppspzq. f . spz�1qq � ppθpzqqp f q� Φ � θpzqp f 1q � θ1pz1qp f 1q,
and thus H1 � F1 �θ1 Z, where θ1 P HompZ, Aut pF1qq is the homomorphism induced
by θ P HompZ, Aut pFqq given by θ1p1qp f 1q � ppθp1qp f qq for all f 1 P F1, where f P F
satisfies pp f q � f 1, and where we write the generators of H{F and H1{F1 as 1. This
proves part (a)(ii).

We now prove part (a)(iii). Let H, G1, G2 and F be as in the statement, and let
H1, G1

1, G1
2 and F1 be their respective images under p. Then H{F � Z2 � Z2, and once

more we have the commutative diagram (22), pp being an isomorphism. By part (a)(i),
H1 is a Type II subgroup of G. Now F1 is of index 2 in both G1

1 and G1
2, and the inclu-

sions F1 � G1
i give rise to an amalgamated product G1

1 �F1 G1
2 whose quotient by F1 is

isomorphic to Z2 �Z2. Since H � xG1 YG2y and p |H : H ÝÑ H1 is surjective, we have
that H1 � �

G1
1 Y G1

2

D
. By the universality property of amalgamated products, there ex-

ists a surjective homomorphism α : G1
1 �F1 G1

2 ÝÑ H1 satisfying αpg1iq � g1i for all g1i P G1
i.

We thus obtain the following commutative diagram of short exact sequences:

1 // F1 // G1
1 �F1 G1

2

α

��

// Z2 �Z2pα
��

// 1

1 // F1 // H1 q1
// H1{F1 // 1,

where pα is the homomorphism induced on the quotients. The surjectivity of α implies
that of pα. The finiteness of Z2 implies that the free product Z2 � Z2, which is finitely
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generated, is residually finite [Coh, Proposition 22]. It thus follows that H1{F1 � Z2 �Z2
is Hopfian [Coh, see the proof of the Corollary, page 12], so pα is an isomorphism. Using
the 5-Lemma, we see that α is an isomorphism as required.

We now prove part (b)(ii). For i � 1, 2, let Gi � p�1pG1
iq. Since H1 � G1

1 �F1 G1
2 andpp is an isomorphism, we have that H1{F1 � H{F � Z2 � Z2. Now F is a subgroup of

both G1 and G2, and the corresponding inclusions give rise to an amalgamated product
G1 �F G2 whose quotient by F is isomorphic to Z2 � Z2. The equality H1 � �

G1
1 YG1

2

D
implies that H � xG1 YG2y, and it follows from the universality property of amalgam-
ated products that there exists a (unique) surjective homomorphism α : G1 �F G2 ÝÑ H
satisfying αpgiq � gi for all gi P Gi. We thus have a commutative diagram of the form

1 // F // G1 �F G2

α

��

// Z2 �Z2pα
��

// 1

1 // F // H
q

// H{F // 1,

where pα is the homomorphism induced by α that makes the diagram commute, which
is surjective because α is, and is thus an isomorphism since Z2 � Z2 is Hopfian. The
5-Lemma implies the result.

Finally, we prove part (c). Let ψ : H1 ÝÑ H2 be an isomorphism between H1 and
H2. Since x is the unique element of G of order 2, then x P H1 if and only if x P H2,
and since Ker ppq � xxy, we have Ker

�
p
∣

∣H1

� � Ker
�

p |H2

�
. We thus have the following

commutative diagram of short exact sequences:

1 // Ker
�

p
∣

∣H1

�
// H1�ψ

��

p
// ppH1qpψ

��

// 1

1 // Ker
�

p |H2

�
// H2

p
// ppH2q // 1,

where pψ : ppH1q ÝÑ ppH2q is the surjective homomorphism induced by ψ. The 5-Lemma
then implies that pψ is an isomorphism.

We thus obtain directly Proposition 12:

Proof of Proposition 12. Taking G � BnpS2q, G1 � MCGpS2, nq and ϕ as given in equa-
tion (11), and applying Proposition 26 yields the result.

We finish this section with the following result that will be applied in Section II.8
to study the isomorphism classes of the elements of V2pnq. For k � 1, 2, let Gk, F be
finite groups such that F is abstractly isomorphic to a subgroup of Gk of index 2, and let
ik, jk : F ÝÑ Gk be pairs of embeddings. We can then form two amalgamated products,
G1 �F G2 (with respect to the embeddings i1, i2) and G1 �1

F G2 (with respect to the em-
beddings j1, j2). Suppose that for k � 1, 2, there exist automorphisms θk : Gk ÝÑ Gk
satisfying θk � ik � jk.

PROPOSITION 27. Under the above hypotheses, the two amalgamated products G1 �F G2 and
G1 �1

F G2 are isomorphic.
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Proof. The hypotheses imply the existence of the following commutative diagram:

G1
θ1 //

$$I
IIIIIIIII G1

''NNNNNNNNNNNN

F

i1
@@��������

i2 ��>
>>

>>
>>

> G1 �F G2 // G1 �1
F G2,

G2 θ2

//

::uuuuuuuuuu
G2

77pppppppppppp

where for l � 1, 2, the homomorphisms from Gl to G1 �F G2 and G1 �1
F G2 are inclusions.

By the universal property of amalgamated products, there exists a unique (surjective)
homomorphism G1 �F G2 ÝÑ G1 �1

F G2. We obtain the inverse of this homomorphism
in a similar manner, by replacing i1, i2, θ1 and θ2 by j1, j2, θ�1

1 and θ�1
2 respectively and

by exchanging the rôles of G1 �F G2 and G1 �1
F G2.

2 Centralisers and normalisers of some maximal finite sub-

groups of BnpS2q
Theorem 1 asserts that up to conjugacy, the maximal finite order cyclic subgroups of
BnpS2q are of the form xαiy for i P t0, 1, 2u. On the other hand, [GG5, Theorem 1.3
and Proposition 1.5(1)] implies that up to conjugacy, the maximal dicyclic subgroups of
BnpS2q are the standard dicyclic subgroups of Remark 3(b). In this section, we determ-
ine the centralisers and normalisers of these subgroups. In the cyclic case, our results
mirror those for finite order elements of MCGpS2, nq, and shall be used to construct the
possible actions of Z on cyclic and dicyclic subgroups of BnpS2q.

We first prove the following proposition which states that an infinite subgroup of
BnpS2q cannot be formed solely of elements of finite order.

PROPOSITION 28. Any infinite subgroup of BnpS2q contains an element of infinite order. In
particular, any subgroup of BnpS2q consisting entirely of elements of finite order is itself finite.

Proof. Let H be an infinite subgroup of BnpS2q. Consider the following restriction of the
short exact sequence (5):

1 ÝÑ PnpS2q X H ÝÑ H
π|HÝÑ πpHq ÝÑ 1,

where πpHq is a subgroup of Sn. If PnpS2q X H is finite then it follows that H is finite,
which contradicts the hypothesis. So PnpS2q X H is infinite, but since the torsion of
PnpS2q is precisely

 
e, ∆

2
n
(

, H must contain an element of infinite order.

The following lemma will play a fundamental rôle in the rest of the paper.
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LEMMA 29. Let i P t0, 1, 2u. Then:

αl
iσjα

�l
i � σj�l for all j, l P N satisfying j� l ¤ n� i � 1, (23)

σ1 � α2
i σn�i�1α�2

i . (24)

Further, if 0 ¤ q ¤ n, we have:

α
q
0 � pσ1 � � � σq�1qq � q¹

k�1

pσq�k�1 � � � σn�kq. (25)

REMARKS 30.
(a) An alternative formulation of equations (23) and (24) is that conjugation by αi per-
mutes the n� i elements

σ1, . . . , σn�i�1, αiσn�i�1α�1
i

cyclically.
(b) If 0 ¤ q ¤ n then using equation (25), α

q
0 may be interpreted geometrically as a full

twist on the first q strings, followed by the passage of these q strings over the remaining
n� q strings (see Figure 1 for an example). If further q divides n then α

q
0 admits a block

structure (see also Remark 39(b)).

�
Figure 1: The braid α3

0 in B6pS2q, first in its usual form, and then in the formpσ1σ2q3pσ3σ4σ5qpσ2σ3σ4qpσ1σ2σ3q of equation (25).

Proof of Lemma 29. Let i P t0, 1, 2u. We start by establishing equations (23) and (24). First
note that α1 � α0σn�1 and α2 � α0σ�1

n�1σn�2, so if 1 ¤ j ¤ n� i� 2, αiσjα
�1
i � α0σjα

�1
0 �

σj�1 using standard properties of α0. If further l P N and j� l ¤ n� i� 1, αl
iσjα

�l
i � σj�l,

which proves equation (23). Since n� i� 2 ¥ 0, we obtain

σ1 � αn�i
i σ1α

�pn�iq
i � α2

i αn�i�2
i σ1α

�pn�i�2q
i α�2

i � α2
i σn�i�1α�2

i ,

using equations (8) and (23), which proves equation (24). We now prove equation (25).
Let us prove by induction that for all m P t0, . . . , qu,

α
q
0 � pσ1 � � � σq�1qmα

q�m
0 � m¹

k�1

pσm�k�1 � � � σn�q�m�kq. (26)
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Clearly the equality holds if m � 0. So suppose that it is true for some m P t0, . . . , q� 1u.
Then q� pm� 1q ¥ 0, and:

α
q
0 � pσ1 � � � σq�1qmα

q�m
0 � m¹

k�1

pσm�k�1 � � � σn�q�m�kq� pσ1 � � � σq�1qm�1σq � � � σn�1α
q�pm�1q
0 � m¹

k�1

pσm�k�1 � � � σn�q�m�kq� pσ1 � � � σq�1qm�1α
q�pm�1q
0 σm�1 � � � σn�q�m � m�1¹

k�2

pσm�k�2 � � � σn�q�m�k�1q� pσ1 � � � σq�1qm�1α
q�pm�1q
0 � m�1¹

k�1

pσpm�1q�k�1 � � � σn�q�pm�1q�kq
using equation (23), which gives equation (26). Taking m � q in that equation yields
equation (25).

As well as being of interest in its own right, the following result will prove to be
useful when we come to discussing the possible Type I subgroups whose finite factor is
cyclic. If H is a subgroup of a group G then we denote the centraliser (resp. normaliser)
of H in G by ZGpHq (resp. NGpHq).
PROPOSITION 31. Let n ¥ 4, and let i P t0, 1, 2u. Then ZBnpS2qpxαiyq � xαiy.

In order to prove Proposition 31, we first state a result due to L. Hodgkin concerning
the centralisers of finite order elements in MCGpS2, nq.
PROPOSITION 32 ([Ho]). Let n ¥ 3, let γ P MCGpS2, nq be an element of finite order r ¥ 2,
and let f be a rotation of S2 by angle 2πm{r about the axis passing through the poles which
represents γ, where gcd pm, rq � 1. Let Λ be the subgroup of the mapping class group of
the quotient space S2{ x f y whose set of marked points is the union of the image of the n marked
points under the quotient map S2 ÝÑ S2{ x f ywith the two poles of S2{ x f y, and whose elements
fix these two poles if r � 2 or r divides n� 1, and leaves the set of poles invariant if r � 2 and r
does not divide n� 1. Then there is an exact sequence

1 ÝÑ Zr ÝÑ ZMCGpS2,nqpxγyq ÝÑ Λ ÝÑ 1. (27)

REMARK 33. Hodgkin’s proof of the result is for elements of prime power order [Ho,
Proposition 2.5], but one may check that it holds for any finite order element.

We now come to the proof of Proposition 31.

Proof of Proposition 31. Let z belong to ZBnpS2qpxαiyq. We start by showing that either
ZMCGpS2,nqpxaiyq � xaiy, or in the case n � 4, i � 2, the possibility that ZMCGpS2,4qpxa2yq �
Z2 ` Z2 is also allowed. Consider the short exact sequence (11). Take m � 1 and r �
n � i ¥ 2 in the statement of Proposition 32. Up to conjugacy, we may suppose that
ϕpαiq � ai, where we denote the mapping class of the rotation f of that proposition by
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ai. Then S2{ x f y may be regarded as a sphere with three marked points, two of which
are the poles, and the other marked point corresponds to the single orbit of r marked
points in S2. Suppose first that r � 2 or i � 1 (in the latter case, r clearly divides n� 1).
Then Λ is the subgroup of the mapping class group of S2{ x f y whose elements fix each
of the poles, as well as the remaining marked point. Hence Λ is the pure mapping class
group of S2{ x f y, which is trivial. It follows from equation (27) that ZMCGpS2,nqpaiq is
cyclic of order r, and so is equal to xaiy. Now suppose that r � 2 and i � 1. Since n ¥ 3,
we have that n � 4 and i � 2. In this case, Λ is the subgroup of the mapping class group
of S2{ x f ywhose elements leave the set of poles invariant (and fix the remaining marked
point), and so is isomorphic to Z2. By equation (27), ZMCGpS2,nqpxa2yq is an extension of
Z2 by Z2, thus ZMCGpS2,4qpxa2yq is isomorphic to either Z4 or Z2 `Z2. In the former case,
we obtain ZMCGpS2,4qpxa2yq � xa2y.

We first consider the case where ZMCGpS2,nqpxaiyq � xaiy (so either r � 2 or i � 1, or
n � 4, i � 2 and ZMCGpS2,4qpxa2yq � xa2y). Now z1 � ϕpzq belongs to the centraliser of ai,
and so may be written in the form z1 � at

i , where t P t0, . . . , n� i � 1u. By equations (8)

and (11), z � αt
i ∆

2ε
n � α

t�εpn�iq
i , where ε P t0, 1u, and hence z P xαiy. Since ZBnpS2qpxαiyq

clearly contains xαiy, it follows that ZBnpS2qpxαiyq � xαiy as required.
Finally, suppose that n � 4, i � 2 and ZMCGpS2,4qpxa2yq � Z2 `Z2. Since

ϕpZB4pS2qpxα2yqq � ZMCGpS2,4qpxa2yq,
we have xα2y � ZB4pS2qpxα2yq � ϕ�1pZMCGpS2,4qpxa2yqq � Q8

using equation (11). If ZB4pS2qpxα2yq is isomorphic to Q8 then there exists at least one
element of ZB4pS2qpα2q that does not commute with α2, which is a contradiction. Soxα2y � ZB4pS2qpxα2yq, and this completes the proof of the proposition.

REMARK 34. As we shall see in Section II.4.1, in general the binary polyhedral groups
T�, O� and I� have infinite centraliser in BnpS2q.

We now proceed with the proof of Proposition 8.

Proof of Proposition 8. We first deal with the case n � 3 for both parts (a) and (b). We
have α0 � σ1σ2, α1 � σ1σ2

2 and α2 � σ2
1 , which are of order 6, 4 and 2 respectively. In

particular, α2 � ∆
2
3, and so the centraliser of α2 and the normaliser of xα2y are both

equal to B3pS2q. As for α0 and α1, they may be taken to be the generators x and y
of B3pS2q � Dic12 appearing in equation (9). Indeed, α3

0 � α2
1 � ∆

2
3 by equation (8),xα0, α1y � B3pS2q since xα0, α1y cannot be of order less than 12, and

α1α0α�1
1 � σ1σ2

2 σ1σ2σ�2
2 σ�1

1 � σ1σ2
2 σ1σ�1

2 σ�1
1 � σ�1

2 σ�1
1 by equation (3).

It follows from the presentation of equation (9) that xα0, α1y � Dic12, and the rest of the
statement follows using this presentation in the case m � 3.

We suppose henceforth that n ¥ 4.

(a) This is the statement of Proposition 31.
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(b) Let i P 0, 1, 2, let N � NBnpS2qpxαiyq, and let x P N. Then some power of x belongs to
the centraliser of xαiy in BnpS2q, which is equal to xαiy by Proposition 31. So x is of finite
order, and thus N is finite by Proposition 28. Let

G � $''&''%xα0, ∆ny � Dic4n if i � 0A
α2, α�1

0 ∆nα0

E � Dic4pn�2q if i � 2xα1y � Z2pn�1q if i � 1.

If i P t0, 2u then G is conjugate to the standard copy of Dic4pn�iq. Since rG : xαiys P t1, 2u,xαiy is normal in G, and so N � G. If G � N then we are done. So suppose that G � N,
and let M be a maximal finite subgroup containing N. Hence G is not maximal, and by
Theorem 2, we are in one of the following cases:

(i) n � 4 and i P t1, 2u. If i � 1 (resp. i � 2) then G � Z6 (resp. G � Q8). Since G �
N � M, it follows from Theorem 2 and the subgroup structure of the finite maximal
subgroups of B4pS2q (see Proposition 85) that N � M and N � T� (resp. N � T� or
N � Q16). Now xαiy is isomorphic to Z6 (resp. to Z4), but these subgroups are not
normal in T�, so N � T�. Hence i � 2 and N � Q16. Take N to have the presentation (9)
with m � 4. Since xα2y is isomorphic to Z4 and is normal in N, we have that xα2y � �

x2
D

.
Hence xα2y � xxy, but this contradicts the fact that xα2y is maximal cyclic in B4pS2q by
Theorem 1.
(ii) n � 6 and i � 2. Then xα2y � Z8 and G � Q16. Since the maximal finite subgroups
of B6pS2q are isomorphic to Dic24, Z10 or O� by Theorem 2, and G � N � M, it follows
that N � M � O�. However, this contradicts the fact that the copies of Z8 in O� are not
normal by Proposition 85. This completes the proof of part (b).

(c) Let i P t0, 2u, let G denote the standard copy of Dic4pn�iq, and let N be the normaliser
NBnpS2qpGq of G in BnpS2q. If x P N then some power of x centralises G, and so centralises

its cyclic subgroup
A

α0αiα
�1
0

E
of order 2pn� iq. It follows from part (b) that N is finite.

Since N � G, if G is maximal finite then G � N, and we are done. So suppose that G is
not maximal, and let M be a finite maximal subgroup of BnpS2q satisfying G � N � M.
Theorem 2 implies that n P t4, 6u and i � 2.

Suppose first that n � 4, so G � Q8. Then M is isomorphic to T� or Q16 by The-
orem 2, and N � M by Proposition 85. Suppose first that N � T� � Q8 �Z3. Then G is
the unique subgroup of M isomorphic to Q8. The form of the action of Z3 on Q8 implies
that the elements of G of order 4 are pairwise conjugate. However, this is impossible
since the permutations of the order 4 elements α2 and α�1

0 ∆4α0 of G have distinct cycle
types. Thus N � Q16. By [GG5, Proposition 1.5 and Theorem 1.6], the standard copyxα0, ∆4y of Q16 in B4pS2q, which is a representative of the unique conjugacy class of sub-
groups isomorphic to Q16, contains representatives of the two conjugacy classes of Q8,
from which it follows that there exists a subgroup K of B4pS2q conjugate to xα0, ∆4y and
containing G. Since rK : Gs � 2, G is normal in K, so K � N. The maximality of Q16
as a finite subgroup of B4pS2q implies that K � N � Q16. Furthermore, we claim that
K � α�1

0 σ�1
1 xα0, ∆4y σ1α0. Indeed, K has a subgroup isomorphic to Q8 that is generated
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by the following two elements:

α�1
0 σ�1

1 α2
0σ1α0 � α�1

0 α2
0σ�1

3 σ1 � α�1
0 ∆4α0

α�1
0 σ�1

1 α0∆4σ1α0 � α�1
0 σ�1

1 α0σ3∆4α0 � α�1
0 σ2σ2

3 α0. α�1
0 ∆4α0 � α2. α�1

0 ∆4α0,

which are also generators of G. We have used relations (6) and (7), as well as Lemma 29
to obtain these equalities. This proves the claim, and completes the proof in the case
n � 4.

Finally, suppose that n � 6, so G � Q16. If G � N then as in part (b)(ii) it follows
that N � O�. But by Proposition 85, the copies of Q16 in O� are not normal, which
yields a contradiction. We thus conclude that G � N as required.

3 Reduction of isomorphism classes of F�θ Z via Out pFq
If F is a group, let Inn pFq denote the normal subgroup of inner automorphisms of
the group Aut pFq of automorphisms of F, and recall that Inn pFq � F{ZpFq, where
ZpFq denotes the centre of F. By Theorem 17, any Type I group is of the form F �θ

Z for some action θ P HompZ, Aut pFqq, where F is finite. The following proposi-
tion asserts that the isomorphism class of such a group depends only on the homo-
morphism θ : Z ÝÑ Out pFq which is the composition of θ with the canonical projection
Aut pFq ÝÑ Out pFq.
PROPOSITION 35 ([AB, Chapter 1.2, Proposition 12]). Let F be a finite group, and let

θ, θ1 : Z ÝÑ Aut pFq
be homomorphisms such that θ � θ1. Then the groups F �θ Z and F �θ1 Z are isomorphic.

In order to help us determine (up to isomorphism) the possible Type I groups arising
as subgroups of BnpS2q, it will be appropriate at this juncture to describe Out pFq, where
F is one of the finite subgroups Q8, T�, O� or I� of BnpS2q. By choosing a transversal in
Aut pFq of Out pFq, from Proposition 35 we may obtain all possible isomorphism classes
of the groups F �θ Z (we shall always choose the identity as the representative of the
trivial element of Out pFq). It then follows directly from Proposition 22(b) that any
Type I subgroup of BnpS2q involving F is isomorphic to one of the groups belonging to
this family. Cohomological considerations will then be applied in Section 5 to rule out
those subgroups involving O� and I� for all but the trivial action. Note that we could
carry out the study of Out pFq for the other finite subgroups of BnpS2q, but in Section 4
we will obtain stronger conditions on the possible actions of Z on F using Proposition 9.

(1) F � Q8: we have Aut pQ8q � S4 [AM, p. 149], ZpQ8q � Z2 and Inn pQ8q � Z2 `Z2.
Therefore Out pQ8q � S4{pZ2 `Z2q � S3.
(2) F � T�. Writing Q8 � t�1,�i,�j,�ku, it is well known that T� is isomorphic to
Q8 �Z3 [AM, CM], where the action of Z3 permutes cyclically the elements i, j, k of Q8.
From [GoG3, Theorem 3.3], we have Aut pT�q � S4. Now ZpT�q � Z2, so Inn pT�q �pZ2`Z2q�Z3 � A4, where the action permutes cyclically the three non-trivial elements
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of Z2 ` Z2. Therefore Out pT�q � Z2. Let T� be given by the presentation (13). The
non-trivial element of Out pT�q is represented by the automorphism ωp1q of T� defined
by equation (14). Indeed, if S P xP, Qy then any automorphism of T� which sends
X to SX�1 is not an inner automorphism. This follows since PXP�1 � PQ�1X, and
QXQ�1 � P�1X, so any conjugate of X in T� belongs to the coset xP, Qy . X, but on the
other hand, SX�1 belongs to the coset xP, Qy . X�1 which is distinct from xP, Qy . X. As
we shall see presently in case (3), the automorphism given by (14) is the restriction to
T� of conjugation by an element R P O�zT�.
(3) F � O�: from [Wo, p. 198], O� is generated by X, P, Q, R which are subject to the
following relations:$'&'%X3 � 1, P2 � Q2 � R2, PQP�1 � Q�1,

XPX�1 � Q, XQX�1 � PQ,

RXR�1 � X�1, RPR�1 � QP, RQR�1 � Q�1.

(28)

Comparing the presentations given by equations (13) and (28), we see that O� admitsxP, Q, Xy � T� as its index 2 subgroup. So we have the extensions [AM, page 150]:

1 ÝÑ T� ÝÑ O� ÝÑ Z2 ÝÑ 1,

and [GoG3, Proposition 4.1]:

1 ÝÑ Z2 ÝÑ Aut pO�q ÝÑ Aut pT�q ÝÑ 1. (29)

Now ZpO�q � Z2, and so Inn pO�q � O�{ZpO�q � S4. From equation (29) and part (2)
above, |Aut pO�q| � 48, and thus Out pO�q � Z2. The non-trivial element of Out pO�q is
represented by the following element of Aut pO�q:$'''&'''% P ÞÝÑ P

Q ÞÝÑ Q
X ÞÝÑ X

R ÞÝÑ R�1.

To see this, suppose on the contrary that this automorphism arises as conjugation by
some element S P O�. Since rO� : T�s � 2 and R R T�, there exists t P T� such that S � t
or S � tR. If S � t then S commutes with all of the generators of T�, hence belongs
to the centre

�
P2
D

of T�. But ZpO�q � �
P2
D

, so conjugation by S cannot send R to R�1

since R is of order 4. Thus S � tR, and so X � SXS�1 � tX�1t�1, but this implies
that X and X�1 belong to the same conjugacy class in T�, and as we saw in case (2)
above, this is impossible. We conclude that the given automorphism is not an inner
automorphism, so must represent the non-trivial element of Out pO�q.
(4) F � I�: we know that I� � SL2pF5q [AM, page 151], ZpI�q � Z2, Inn pI�q �
I�{ZpI�q � A5, Aut pI�q � S5 [GoG3, see Theorem 2.1], and Out pI�q � Z2 (see [AM,
page 151] or [GoG2, page 207]). The non-trivial element of Out pI�q is represented by
the automorphism of I� which in terms of SL2pF5q is conjugation by the matrix

�
w 0
0 1

�
,

where w is a non square of F5 [AM, page 152].
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Let us come back to case (1) where F � Q8. Since Out pQ8q � S3, a priori, we
need to decide which of the six groups of the form Q8 �Z are realised. We may how-
ever make a minor simplification as follows. Recall from Definition 4(e) that α, β P
HompZ, Aut pQ8qq are such that αp1q is the automorphism of Q8 of order 3 that per-
mutes i, j and k cyclically, and βp1q is the automorphism that sends i to k and j to j�1.
The following lemma shows that we may reduce further the number of isomorphism
classes of Q8 �Z from the six representatives of the elements of Out pQ8q to just three.

LEMMA 36. Let H be of the form Q8 �θ Z, where θ P HompZ, Aut pQ8qq. Then H is iso-
morphic to one of Q8 �Z, Q8 �α Z and Q8 �β Z.

Proof. Since Out pQ8q � S3, there exists γ P  
Id, α, α2, β, α � β, α2 � β

(
such that H is

isomorphic to Q8 �γ Z by Proposition 35. We claim that:

(a) Q8 �α Z and Q8 �α2 Z are isomorphic.
(b) Q8 �β Z, Q8 �α�β Z and Q8 �α2�β Z are isomorphic.

To prove the claim, we define isomorphisms ϕ : Q8 �θ Z ÝÑ Q8 �θ1 Z, where the ac-
tions θ, θ1 P HompZ, Aut pQ8qq run through the possible pairs given by (a) and (b). Let
t (resp. t1) denote the generator of the Z-factor of Q8 �θ Z (resp. of Q8 �θ1 Z). Defining
ϕ by:

(i) i ÞÝÑ i, j ÞÝÑ k and t ÞÝÑ kt1 if θ � α and θ1 � α2,
(ii) i ÞÝÑ k, k ÞÝÑ j, j ÞÝÑ i and t ÞÝÑ jt1 if θ � β and θ1 � α � β,
(iii) i ÞÝÑ j, k ÞÝÑ i, j ÞÝÑ k and t ÞÝÑ jt1 if θ � β and θ1 � α2 � β,

we may check that ϕ gives rise to an isomorphism between each pair of groups. In
particular, there are only three isomorphism classes of semi-direct products Q8 �θ Z,
namely those for which θp1q P tId, αp1q, βp1qu.
REMARK 37. Since pαp1qq3 � pβp1qq2 � IdF, it will suffice to study the existence of semi-
direct products of the form Q8 �α Z and Q8 �β Z.

4 Reduction of isomorphism classes of F �θ Z via con-

jugacy classes

In this section, we use the relation between MCGpS2, nq and BnpS2q given by equa-
tion (11) to prove Proposition 9. As a consequence, the only possible actions on cyclic
groups that are realised as subgroups of BnpS2q are the trivial action, and multiplica-
tion by �1. This will subsequently be used to rule out many Type I groups involving
dicyclic factors.

In order to prove Proposition 9, we first state Proposition 38 whose statement, seem-
ingly well known to the experts in the field, is related to a classical problem of Nielsen
concerning the conjugacy problem in the mapping class group. The first proof we found
in the literature is due to L. Hodgkin [Ho] (see also [McH] for related results).
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PROPOSITION 38. Let n, r ¥ 2 be such that MCGpS2, nq has elements of order r.
(a) Suppose that either r ¥ 3, or r � 2 and n is odd. Then there is a unique value of i Pt0, 1, 2u for which r divides n� i. Let f be a rotation of S2 of angle 2πm{r, where m P N and
gcd pm, rq � 1, and let γ P MCGpS2, nq denote the mapping class of f . Then any element
γ1 P MCGpS2, nq of order r is conjugate to γ. Further, any two distinct powers of γ are
conjugate in MCGpS2, nq if and only if the following conditions hold:
(i) they are inverse, and
(ii) i P t0, 2u.
(b) If r � 2 and n is even then r divides both n and n � 2, and so both the choices i � 0 and
i � 2 are possible. In the first (resp. second) case, we obtain an element γ0 (resp. γ2) of order
2 that fixes none (resp. exactly two) of the n marked points of S2. Further, every element of
MCGpS2, nq of order 2 is conjugate to exactly one of γ0 or γ2.

The proof of Proposition 38 may be deduced in a straightforward manner from
that of [Ho, Proposition 2.1]. Before coming to the proof of Proposition 9, we first
define some notation that shall also be used later in Sections II.4.1 and II.6.2. If X is
an n-point subset of S2, let Homeo�pS2, Xq denote the set of orientation-preserving
homeomorphisms that leave X invariant. There is a natural surjective homomorph-
ism Ψ : Homeo�pS2, Xq ÝÑMCGpS2, nq, where Ψp f q � r f s denotes the mapping class
of the homeomorphism f P Homeo�pS2, Xq.
Proof of Proposition 9. Let i P t0, 1, 2u. Let 1 ¤ m, r ¤ 2pn� iq, and suppose that αm

i and
αr

i are conjugate powers of αi in BnpS2q. Then there exists z P BnpS2q such that

zαm
i z�1 � αr

i . (30)

Let µ � gcd pm, 2pn� iqq, and set q � 2pn � iq{µ. Then αm
i and αr

i are both of order q,
and generate the same subgroup

�
α

µ
i

D
of xαiy. In particular, there exists 1 ¤ τ   q with

gcd pτ, qq � 1 such that αmτ
i � α

µ
i . Setting ξ � rτ and raising equation (30) to the τth

power yields zα
µ
i z�1 � α

ξ
i . Now α

µ
i and α

ξ
i generate the same subgroup of xαiy, so there

exists 1 ¤ t   q with gcd pt, qq � 1 such that α
ξ
i � α

tµ
i , and hence

zα
µ
i z�1 � α

ξ
i � α

tµ
i . (31)

We claim that it suffices to show that α
ξ
i P !

α
µ
i , α

�µ
i

)
. Suppose for a moment that the

claim holds. Since gcd pτ, qq � 1, there exist u, v P Z such that uτ � vq � 1, and so

αmτu
i � α

mp1�vqq
i � αm

i .
�
α

mq
i

�v � αm
i (32)

since αm
i is of order q. Similarly,

αrτu
i � α

rp1�vqq
i � αr

i .
�
α

rq
i

�v � αr
i (33)

since αr
i is also of order q. But

αmτu
i � α

µu
i � α

�ξu
i � α�rτu

i , (34)
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and putting together equations (32), (33) and (34), we obtain αm
i � α�r

i . As we shall see
below, if i � 1 then in fact αm

1 � αr
1, which will prove the proposition in this case. We

now proceed to prove the claim, separating the cases i � 1 and i P t0, 2u.
(i) Let i � 1. Projecting relation (31) onto the AbelianisationZ2pn�1q of BnpS2q, we obtain
nµ � nµt mod 2pn� 1q, in other words, there exists k ¥ 0 such that nµpt� 1q � k. 2pn�
1q. Now n and n� 1 are coprime, so there exists l ¥ 0 such that µpt � 1q � lpn� 1q and
2k � nl. But 1 ¤ t   q � 2pn� 1q{µ, thus µ ¤ µt   2pn� 1q, which implies that

0 ¤ µpt� 1q ¤ 2pn� 1q � µ   2pn� 1q,
and thus

0 ¤ lpn� 1q   2pn� 1q.
It follows that l � 0 or l � 1. If l � 1 then n � 2k, so n is even. Further, t � 1 �pn� 1q{µ � q{2, hence q is even. But gcdpt, qq � 1, so t is odd, thus µpt � 1q � n� 1 is
even, and n is odd, a contradiction. We conclude that l � 0, so t � 1, and so α

µ
1 � α

ξ
1.

As we saw above, this implies that αm
1 � αr

1, which proves part (a) of the proposition.
(ii) Let i P t0, 2u. Consider equation (31) and the short exact sequence (11). Let w �
ϕpzq, let ai � ϕpαiq, and let X be an n-point subset of S2 consisting of n � i equally-
spaced points on the equator, with the remaining i points distributed at the poles.
Then waµ

i w�1 � aξ
i , and we may suppose ai to be represented by the homeomorph-

ism fi P Homeo�pS2, Xq that is rigid rotation of S2 of angle 2π{pn � iq. It follows from
Proposition 38 that aµ

i and aξ
i are either equal or are inverses, and since ai is of order

n� i, ξ � �µ mod n� i, so ξ � �µ � δpn � iq, where δ P Z. If δ is even then α
ξ
i � α

�µ
i

by equation (8), and as we saw above, this implies that αm
i � α�r

i , which proves part (b)
of the proposition in this case. So assume that δ is odd, in which case

zα
µ
i z�1 � α

ξ
i � α

�µ�δpn�iq
i � α

�µ
i ∆

2
n, (35)

also using equation (8). Conjugating equation (35) by α
�i{2
0 ∆nα

i{2
0 , replacing z by the

element α
�i{2
0 ∆nα

i{2
0 z and using equation (10) if necessary, we may suppose that

zα
µ
i z�1 � α

µ
i ∆

2
n. (36)

Notice however that since ∆
2
n is central and of order 2, the relation

α
ξ
i � α

�µ
i ∆

2
n (37)

of equation (35) persists under this conjugation. Conjugating equation (36) by z�1 and
multiplying by ∆

2
n yields:

α
µ
i ∆

2
n � z�1α

µ
i z. (38)

The Abelianisation of equation (38) yields npn � 1q � 0 mod 2pn� 1q, so n must be
even for a solution to exist. In particular, if n is odd, there is no z P BnpS2q satisfying
equation (38). So let n ¥ 4, and suppose that equation (38) admits a solution z P BnpS2q.
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If µ P tn� i, 2pn� iqu then α
µ
i P �

∆
2
n
D

, and this equation implies that ∆
2
n � Id, hence

n ¤ 2, which gives a contradiction. So µ R tn� i, 2pn� iqu, and since µ � 2pn � iq, we
must have 1 ¤ µ   n � i. Moreover, q � 2pn � iq{µ cannot be odd, for if it were then
α

µ
i ∆

2
n would be of order 2q because α

µ
i is of order q and ∆

2
n is central. But this contradicts

equation (38), so q is even, and hence µ divides n� i. If pn� iq{µ � 2 then µ � pn� iq{2,
and

α
ξ
i � α

� pn�iq
2 �pn�iq

i � α
	pn�iq{2
i � α

	µ
i

by equation (37), which proves the result in this case. Since µ   n � i, we suppose
henceforth that pn� iq{µ ¥ 3.

We first assume that i � 0, so µ divides n and n{µ ¥ 3. Consider the image of
equation (38) under the homomorphism π of equation (5). Then πpαµ

0 q � pn�µ� 1, n�
2µ� 1, . . . , µ� 1, 1qpn� µ� 2, n� 2µ� 2, . . . , µ� 2, 2q � � � pn, n� µ, . . . , 2µ, µq consists of
µ disjoint n{µ-cycles. For j � 1, . . . , µ, the elements that appear in the jth such cycle are

of the form µ
�

n
µ � k

	 � j, where k � 1, . . . , n{µ. Since πp∆2
nq is trivial, πpzq commutes

with πpαµ
0 q, and so πpzq permutes the µ n{µ-cycles of πpαµ

0 q, and preserves the cyclic

order of the elements within each cycle. In particular, if πpzq sends j to µ
�

n
µ � k1	� j1,

where j1 P t1, . . . , µu and k1 P t1, . . . , n{µu then

πpzq�µ

�
n
µ
� k


� j

 � π

�
α

kµ
0

� �πpzqpjq � πpzq �π
�
α

kµ
0

�pjq� π
�

α
kµ
0

	�
µ

�
n
µ
� k1
� j1
� µ

��
n
µ
� k


� k1
� j1 mod n. (39)

To coincide with the convention that we use for braids, note that we compose permuta-
tions from left to right. Now let j � 1, and let j1 P t1, . . . , µu and k1 P t1, . . . , n{µu be

such that πpzqp1q � µ
�

n
µ � k1	� j1. Set

ζ � pσ1 � � � σj1�1qpσµ�1 � � � σµ�j1�1q � � � pσn�µ�1 � � � σn�µ�j1�1q.
Since 1 ¤ j1 ¤ µ, for k � 1, . . . , n{µ, the blocks σµp n

µ�kq�1 � � � σµp n
µ�kq�j1�1 commute pair-

wise. By equations (23) and (24), ζ and α
µ
0 commute, hence

ζz�1α
µ
0 zζ�1 � α

µ
0 ∆

2
n. (40)

Now πpζqp1q � j1, so for all k � 1, . . . , n{µ,

πpζz�1q�µ

�
n
µ
� k


� 1

 � πpz�1q�µ

�
n
µ
� k


� j1
� µ

�
n
µ
� k � k1
� 1,
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by equation (39). Thus ζz�1 and α
µ
0 belong to the subgroup Bn{µ,n�n{µpS2q of BnpS2q

which here denotes the subgroup of those braids whose permutation leaves the sett1, µ� 1, . . . , n� µ� 1u invariant. Let z1 denote the image of zζ�1 under the projection
onto Bn{µpS2q. Since the kernel

Bn�n{µpS2z  x1, xµ�1, . . . , xn�µ�1
(q

of the surjective homomorphism Bn{µ,n�n{µpS2q ÝÑ Bn{µpS2q is torsion free (this follows
for example from [GG7, Proposition 2.5]), the element α

µ
0 , which is of order q, is sent

to an element β of Bn{µpS2q of order q, and ∆
2
n is sent to ∆

2
n{µ, the unique element of

Bn{µpS2q of order 2 (using equation (25), it is in fact possible to show that β is equal to
the element α0 of Bn{µpS2q, see Figure 2 for an example in the case n � 6 and µ � 2).
Now q � 2n{µ ¥ 6, so by Theorem 1, there exists z2 P Bn{µpS2q and 1 ¤ k   q,

Figure 2: The element α2
0 of B3,3pS2q is sent to the element α0 of B3pS2q under the projec-

tion B3,3pS2q ÝÑ B3pS2q.
gcd pk, qq � 1, such that β � z2αk

0z2�1 (α0 here being considered as the standard finite
order element of Bn{µpS2q). The image of equation (40) under this projection yields:

z1�1z2αk
0z2�1z1 � z2αk

0z2�1
∆

2
n{µ in Bn{µpS2q,

so
z1αk

0z�1
1 � αk

0∆
2
n{µ in Bn{µpS2q. (41)

where z1 � z2�1z1�1z2. There exist λ1, λ2 P Z such that λ1k � λ2q � 1, so αλ1k
0 � α0 in

Bn{µpS2q. Since q is even, λ1 is odd, and raising equation (41) to the λ1
th power yields

z1α0z�1
1 � α0∆

2
n{µ � α

1� n
µ

0 P Bn{µpS2q. (42)

Hence z1 P NBn{µpS2qpxα0yq, and so by Proposition 8(b), z1 is an element of
A

α0, ∆n{µE �
Dic4n{µ, and z1 � αλ

0 ∆
ε
n{µ, where 0 ¤ λ   2n{µ and ε P t0, 1u. Thus

z1α0z�1
1 � ∆

�ε
n{µα0∆

ε
n{µ � #

α0 if ε � 0
α�1

0 if ε � 1.
(43)
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Combining equations (42) and (43), we obtain ∆
2
n{µ P  

Id, α2
0

(
. Now n{µ ¥ 3, so α2

0

(resp. ∆
2
n{µ) is of order n{µ (resp. 2), which yields a contradiction.

Suppose finally that i � 2, so µ � n � 2 and pn � 2q{µ ¥ 3. Since n must be even
in order that equation (38) possess a solution, these conditions imply that n ¥ 6. Let
t P tn� 1, nu. Projecting equation (38) into Sn leads to the equality pπpαµ

2 q � πpzqqptq �pπpzq � πpαµ
2 qqptq, and this implies that

πpαµ
2 qpπpzqptqq � πpzqptq,

so πpzqptq P Fixpπpαµ
2 qq. Since 1 ¤ µ   n� 2, we have Fixpπpαµ

2 qq � tn� 1, nu, and thus
πpzqptq P tn� 1, nu. We conclude that z P Bn�2,2pS2q, Bn�2,2pS2q being the subgroup
of BnpS2q whose elements induce permutations that leave tn� 1, nu invariant. This
permits us to project equation (38) onto Bn�2pS2q by forgetting the last two strings. It is
clear that α2 (as an element of Bn�2,2pS2q) projects to α0 (as an element of Bn�2pS2q), and
so ∆

2
n � αn�2

2 (which is an element of Bn�2,2pS2q) projects to αn�2
0 � ∆

2
n�2 (as an element

of Bn�2pS2q) by equation (8). We thus obtain:

z1�1α
µ
0 z1 � α

µ
0 ∆

2
n�2, (44)

where z1 is the image of z under this projection. But n� 2 ¥ 4, and applying the analysis
of the case i � 0 to equation (44) yields a contradiction. This proves the result in the
case i � 2, and thus completes the proof of the proposition.

REMARKS 39.
(a) If i P t0, 2u then the converse of Proposition 9(b) holds using the construction of the
corresponding dicyclic groups of Remark 3(b).
(b) If µ divides n � i where i P t0, 1, 2u, the braid α

µ
i admits a block structure using

arguments similar to those of the second part of Lemma 29. If q � pn� iq{µ then α
µ
i may

be thought of as a collection of q blocks, each comprised of µ strings (see Figures 3 and 4
for examples where n� i � 12 and µ � 4, as well as Figure 1 for the case i � 0, n � 6 and
µ � 3). The first block contains a full twist on its µ strings, and passes over each of the
remaining q� 1 blocks. If i � 1 (resp. i � 2) then the last (resp. penultimate) string then
wraps around this first block. If i � 2 then there is an additional final vertical string.
In terms of the Nielsen-Thurston classification of surface homeomorphisms applied to
braid groups, these braids are reducible, and a set of reducing curves may be read off
from these braid diagrams (see [BNG, GW] for more information).

One immediate consequence of Proposition 9 is that it allows us to narrow down
the possible Type I subgroups of BnpS2q involving cyclic or dicyclic factors, with the
exception of Q8.

COROLLARY 40. Let G be a Type I subgroup of BnpS2q of the form F �θ Z.
(a) Suppose that F is cyclic.
(i) If |F| divides 2pn� 1q then G � F �Z.
(ii) If |F| divides 2pn� iq, where i P t0, 2u, then either G � F �Z or G � F �ρ Z, where ρ is
the action defined in Definition 4(b) (multiplication by �1).
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∆
2
4

Figure 3: The braid α4
0 in B12pS2q.

∆
2
4

Figure 4: The braid α4
1 in B13pS2q. The braid α4

2 in B14pS2q is obtained by adding an extra
vertical string on the right of this braid.

(b) Let m ¥ 3 divide n� i, where i P t0, 2u, and let F be dicyclic of order 4m with the presenta-
tion given by equation (9). Then either G � F�Z or G � F�ν Z, where ν is the action defined
by equation (12).
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Proof.

(a) Let G be a Type I subgroup of BnpS2q of the form F �θ Z, where F is cyclic. Up
to conjugacy, we may suppose by Theorem 1 that there exist i P t0, 1, 2u and 1 ¤ l ¤
2pn � iq such that l divides 2pn � iq, and F � �

αl
i

D
, with |F| � 2pn � iq{l. There exists

z P BnpS2q of infinite order such that the action θ on F is realised by conjugation by z,
so zαl

iz
�1 � αlm

i , where gcd pm, 2pn� iq{lq � 1. From Proposition 9, αlm
i � αl

i if i � 1 and

αlm
i P !αl

i , α�l
i

)
if i P t0, 2u, which implies the result.

(b) Let G be a Type I subgroup of BnpS2q of the form F �θ Z, where F � Dic4m has the
given presentation, and let the action θ of Z on F be realised by conjugation by z, where
z P BnpS2q is of infinite order. Since m ¥ 3, xxy is the unique cyclic subgroup of F of
order 2m, so is invariant under conjugation by z. By part (a)(ii), zxz�1 � θp1qpxq � xε,
where ε P t1,�1u. Further, the elements of Fz xxy � xxy y are permuted by the action,
so zyz�1 � θp1qpyq � x2k�δy for some k P t0, 1, . . . , m� 1u and δ P t0, 1u. If ε � 1 (resp.
ε � �1) then consider the action θ1 defined by θ1p1q � ι � θp1q, where ι P Inn pFq is
conjugation by x�k (resp. by xk�δy). So θ1p1qpxq � x, and θ1p1qpyq � xδy, which gives
rise to the two possible actions given in the statement. Since the automorphisms θp1q
and θ1p1q of F differ by an inner automorphism, it follows from Proposition 35 that G
and F�θ1 Z are isomorphic.

5 Reduction of isomorphism classes of F�θ Z via period-

icity

We now turn our attention to the Type I subgroups G of BnpS2q of the form F �θ Z,
where F is equal to O� or I�. The arguments of Section 3 showed that there are two
possible actions. The aim of this section is to rule out the non-trivial action in each
case, which will imply that G is isomorphic to F � Z. This is achieved in two stages.
First, in Section 5.1 we give an alternative proof of the fact that the homotopy type of
the universal covering space of the configuration spaces FnpS2q and DnpS2q is that of
S2 if n ¤ 2, and that of S3 otherwise. This result appears to be an interesting fact in
its own right, and mirrors that for the projective plane RP2 [GG2]. As a consequence,
in Lemma 41 we generalise the fact that any nontrivial finite subgroup of BnpS2q is
periodic of least period 2 or 4 [GG6] to its infinite subgroups. Secondly, if F P tO�, I�u,
in Proposition 44 we recall some facts concerning the cohomology of F. From this, it
will follow in these cases that θp1q is an inner automorphism, and so by Proposition 35,
F �θ Z is isomorphic to F �Z.

5.1 The homotopy type of the configuration spaces FnpS2q and DnpS2q
The purpose of this section is to describe the homotopy type of the universal cover-
ing space of FnpS2q and DnpS2q. For n � 1, we have F1pS2q � D1pS2q � S2, which is
simply connected. So assume from now on that n ¥ 2. We give an alternative proof of
Proposition 10 which is due to [BCP, FZ].
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Proof of Proposition 10. First observe that FnpS2q and DnpS2q have the same universal
covering space because FnpS2q is a finite n!-fold regular covering space of DnpS2q.
(a) This was proved in [GG9, Lemma 8].
(b) Let n ¥ 1. Consider the Fadell-Neuwirth fibration pn�1 : Fn�1pS2q ÝÑ FnpS2q ob-
tained by forgetting the last coordinate. The fibre over a point px1, . . . , xnq P FnpS2q may
be identified with F1pS2z tx1, . . . , xnuq. The related long exact sequence in homotopy is:

. . . ÝÑ πm�1pFn�1pS2qq ÝÑ πm�1pFnpS2qq ÝÑ πmpF1pS2z tx1, . . . , xnuqq ÝÑ
πmpFn�1pS2qq ÝÑ πmpFnpS2qq ÝÑ πm�1pF1pS2z tx1, . . . , xnuqq ÝÑ . . .

The fact that F1pS2z tx1, . . . , xnuq is a Kpπ, 1q-space implies that the homomorphism
πmpFn�1pS2qq ÝÑ πmpFnpS2qq induced by pn�1 is an isomorphism for all m ¥ 3 and
all n ¥ 1. It remains to study the case m � 2.

First suppose that n � 3. From part (a), F2pS2q has the homotopy type of S2, and
π2pF3pS2qq � t1u and π1pF3pS2qq � Z2 by [FVB]. Let ϕ : S3 ÝÑ F3pS2q be such that p2 �
p3 � ϕ is homotopic to the Hopf map η (such a ϕ exists because π3pF3pS2qq is isomorphic
to π3pF2pS2qq). We thus have the following diagram that commutes up to homotopy:

S3
ϕ
//

η

��

F3pS2q
p2�p3
��

S2 S2.

If m ¥ 3, η induces an isomorphism πmpS3q ÝÑ πmpS2q and p2 � p3 induces an iso-
morphism πmpF3pS2qq ÝÑ πmpS2q. Since π2pS3q and π2pF3pS2qq are trivial, the com-
mutativity of the above diagram implies that ϕ induces an isomorphism πmpS3q ÝÑ
πmpF3pS2qq for all m ¥ 2. Lifting to the corresponding universal covering spaces gives
rise to an isomorphism πmpS3q ÝÑ πmp�F3pS2qq for all m P N, �F3pS2q being the universal
covering space of F3pS2q, and so by Whitehead’s theorem, �F3pS2q has the homotopy type
of S3.

Let n ¥ 3. Then π2pFnpS2qq � t1u [FVB] and so the homomorphism

πmpFn�1pS2qq ÝÑ πmpFnpS2qq
induced by pn�1 is an isomorphism for all m ¥ 2. Lifting to the universal covering
spaces and applying Whitehead’s Theorem, part (a) and induction gives the result.

5.2 A cohomological condition for the realisation of Type I virtually

cyclic groups

In this section we apply Proposition 10 to derive a necessary cohomological condition
for an abstract group to be realised as a subgroup of BnpS2q. If F � O�, I�, this will
allow us to rule out the possibility of F �θ Z for the non-trivial action for each of these
groups described in Section 3. Following [AS], we recall the definition of a periodic
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group which extends the classical definition for finite groups. By Definition 2.1 and
the definition given just before Corollary 2.10 in [AS], we say that a group G is periodic
of period d ¥ 1 if there exist a non-negative integer r0 ¥ 0 and a cohomology class
u P HdpG,Zq such that the homomorphism HrpG, Aq YuÝÑ Hr�dpG, Aq is an isomorphism
for all r ¥ r0 and for all local coefficient systems A. From [AS, Corollary 2.14], if a
discrete group acts freely on a finite-dimensional CW-complex of dimension m whose
homotopy type is that of the sphere Sd�1 then the group G is periodic. By a standard
argument using the spectral sequence associated to the covering of the orbit space, it
is not hard to see that d is a period, and that we can take r0 � m � 1. An obvious
consequence of the above is the following lemma.

LEMMA 41. Let n ¥ 3, and let G be a group abstractly isomorphic to a subgroup of BnpS2q.
Then there exists r0 ¥ 1 such that HrpG,Zq � Hr�4pG,Zq for all r ¥ r0.

Proof. Since the universal covering space �DnpS2q of DnpS2q is a finite-dimensional CW-
complex, it is a homotopy 3–sphere by Proposition 10(a). Any subgroup of BnpS2q acts
freely on �DnpS2q, and thus is periodic of period 4. Taking A � Z yields the result.

We now apply Lemma 41 to the Type I groups of the form F �θ Z. If a group G acts
on a module A, let AG denote the submodule of A fixed by G, and let AG denote the
quotient of A by the submodule generated by ta � ga | a P A, g P Gu.
LEMMA 42. Let G � F �θ Z, where F is a finite periodic group and θ P HompZ, Aut pFqq,
and let θp1qpiq : HipF,Zq ÝÑ HipF,Zq be the induced automorphism on cohomology in dimen-
sion i. Then H�pG,Zq is as follows: H0pG,Zq � Z, H1pG,Zq � Z, and for all i P N,
H2ipG,Zq � H2ipF,ZqZ and H2i�1pG,Zq � H2ipF,ZqZ with respect to the Z-module struc-
ture on H2ipF,Zq induced by θ.

Proof. Consider the Lyndon-Hochschild-Serre spectral sequence associated with the
short exact sequence

1 ÝÑ F ÝÑ G ÝÑ Z ÝÑ 1.

The E2-term of this spectral sequence, given by HppZ, HqpF,Zqq, vanishes if p R t0, 1u
because the cohomological dimension of Z is equal to one. So outside of the two vertical
lines given by p � 0 and p � 1, the terms vanish which implies that all differentials are
necessarily trivial, and so the spectral sequence collapses. Further, since the cohomo-
logy of F in odd dimension vanishes, there is at most one non-trivial group Ep,q

2 with
p� q � r for each given r. Hence there is no extension problem from E8 to H�pGq, and
it suffices to compute the E2-term. The result follows from the well-known description
of the cohomology of Z with coefficients in A (see [Br, Chapter III, Section 1, Example
1]).

We now seek necessary conditions for the group G to have least period either 2 or
4. Let d be the least period of F. Then d is the least integer for which HdpF,Zq � Z|F|,
and if H2ipG,Zq � H2ipF,ZqZ � Z|F| then θp1qp2iq � Id. So there exists k P N such that
2i � kd. Let k0 be the least integer for which θp1qpk0dq � Id. If G is periodic, its period is
necessarily a multiple of k0d. In particular, if the least period of G is equal to either 2 or
4 then k0 P t1, 2u if d � 2, and k0 � 1 if d � 4.
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REMARK 43. The additive structure of the cohomology of the virtually cyclic groups of
Type I with integer coefficients was computed in detail in [Je] for the cases where F
is one of the groups of the form Za � Zb or Za � pZb �Q2iq. This corresponds to the
first two families of the classification of the finite periodic groups given by the Suzuki-
Zassenhaus Theorem [AM, Theorem 6.15].

Based on Lemma 42 and the knowledge of the cohomology of finite periodic groups,
we obtain the following result.

PROPOSITION 44. Let F P tO�, I�u, and let G � F�θ Z be a Type I subgroup of BnpS2q. Then
θp1q is an inner automorphism of F.

Proof. Suppose first that F � O�. By [GoG1, p. 39], the group O� has period 4, and the
induced automorphism on H4pO�,Zq � Z48 is trivial if θp1q is an inner automorphism,
and multiplication by 9 (so is non trivial) otherwise, thus the result follows.

Now suppose that F � I�, which we interpret as SL2pF5q. The non-trivial element of
Out pI�q is represented by the automorphism of I� which is conjugation by the matrix�

w 0
0 1

�
, where w is a non square of F5 [AM, page 152]. From [GoG2, Proposition 1.5], the

induced automorphism on the 5-primary component of the group H4pI�,Zq � Z120,
which is isomorphic to Z5, is multiplication by �1. For the trivial element of Out pI�q,
the induced homomorphism is trivial and the result follows.

6 Necessity of the conditions on V1pnq and V2pnq
Let n ¥ 4. In this section, we prove Theorem 5(1), which shows the necessity of the
conditions on V1pnq and V2pnq. We start by considering the subgroups of BnpS2q of
Type I, and then go on to study those of Type II.

6.1 Necessity of the conditions on V1pnq
We gather together the results of the previous sections to prove the following proposi-
tion, which is the statement of Theorem 5(1) for the Type I subgroups of BnpS2q.
PROPOSITION 45. Let n ¥ 4. Then every virtually cyclic subgroup of BnpS2q of Type I is
isomorphic to an element of V1pnq.

Before proving Proposition 45, we state and prove the following result which shows
that if F is a dicyclic subgroup of BnpS2q then up to conjugacy, it may be taken to be a
subgroup of one of the maximal dicyclic subgroups Dic4pn�iq, i P t0, 2u.
LEMMA 46. Let n ¥ 4, and let H be a subgroup of BnpS2q isomorphic to Dic4m, where m ¥ 2.
Then there exists i P t0, 2u such that H is conjugate to a subgroup of the standard maximal
dicyclic subgroup Dic4pn�iq of Remark 3(b).

REMARK 47. Under the hypotheses of Lemma 46, we have that m � n� i.
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Proof of Lemma 46. Let H � Dic4m, where m ¥ 2. By [GG5, Proposition 1.5(2)], H, as an
abstract finite group, is realised as a single conjugacy class in BnpS2q with the exception
that when n is even and m divides pn� iq{2, i P t0, 2u, there are exactly two conjugacy
classes. Using the subgroup structure of dicyclic groups and the construction of [GG5,
Theorem 1.6], it follows that H is conjugate to a subgroup of the one of the standard
maximal dicyclic subgroups Dic4pn�iq of BnpS2q, where i P t0, 2u.
Proof of Proposition 45. Let G be a infinite virtually cyclic subgroup of BnpS2q of Type I.
Then G is of the form F �θ Z, where F is a finite subgroup of BnpS2q, and θp1q P
HompZ, Aut pFqq. We separate the discussion into two cases.

(a) Suppose that F is isomorphic to one of the binary polyhedral groups T�, O�, I�.
Then n must satisfy the conditions given in Theorem 2 for the existence of F as a
subgroup of BnpS2q. Applying Proposition 35, up to isomorphism, we may restrict
ourselves to representative automorphisms θp1q of the elements of Out pFq � Z2 given
in Section 3. If θp1q � IdF then G � F � Z, and these are the elements of V1pnq given
by Definition 4(1)(f), (h) and (i) for the given values of n. So suppose that θp1q repres-
ents the nontrivial element of Out pFq. By Proposition 44, F � O�, I�, so F � T�, and
G is isomorphic to the element of V1pnq given by Definition 4(1)(g), the action ω being
that of equation (14). Since n must be even for the existence of T�, it remains to show
that n � 0, 2 mod 6. Suppose on the contrary that n � 6l � 4, where l P N, and sup-
pose that T� �ω Z is realised as a subgroup L of BnpS2q, with the T�-factor (resp. the
Z-factor) realised as a subgroup H (resp. xzy) of BnpS2q. Let (13) denote a presentation
of H. By the definition of ω, we have that ωp1qpXq � X�1 by equation (14). On the
other hand, X is of order 3, so up to conjugacy and inverses, it follows from Theorem 1
that X � α

2pn�1q{3
1 � α4l�2

1 . Since the action ω of Z on H is realised by conjugation by
z, we have ωp1qpXq � zXz�1 in L, which implies that zXz�1 � X�1. Abelianising this
relation in Z2pn�1q yields ξpXq � ξpX�1q. However,

ξpXq � ξpα4l�2
1 q � np4l � 2q � p6l � 4qp4l � 2q � 4l � 2

in Z12l�6, so ξpXq � ξpX�1q, and we obtain a contradiction.
(b) Suppose that F is not isomorphic to any of the three binary polyhedral groups
T�, O�, I�. Proposition 85 implies that F is cyclic or dicyclic. If F is dicyclic, isomorphic
to Dic4m for some m ¥ 2, then Lemma 46 implies that up to conjugation, F is a sub-
group of one of the standard dicyclic groups Dic4pn�iq, i P t0, 2u, and m � n � i. If
m � 2 then F � Q8 and n is even. Furthermore, by Lemma 36, up to an element of
Inn pFq, θp1q P  

IdQ8, α, β
(

, so G is isomorphic to an element of V1pnq given by Defini-
tion 4(1)(e). If m ¥ 3 then Corollary 40(b) applies, and up to an element of Inn pFq, there
are two cases to consider:

(i) θp1q � IdF, in which case G � Dic4m �Z. Since F admits a cyclic subgroup of order
2m, the realisation of G implies that of Z2m � Z. If m � n � i then up to conjugacy,
we may suppose by Theorem 1 that the cyclic factor is generated by αi, but this con-
tradicts Proposition 31, and hence m   n � i. Thus G is an element of V1pnq given by
Definition 4(1)(c).
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(ii) G � Dic4m �νZ, where νp1q is given by equation (12). Let F have the presentation
given by equation (9). Abelianising the relation νp1qpyq � xy in BnpS2q implies that
the exponent sum of x is congruent to zero modulo 2pn � 1q. On the other hand, x
is of order 2m, so by Theorem 1 is conjugate to α

lpn�iq{m
i , where gcd pl, 2mq � 1. In

particular, l is odd. Now the exponent sum of αi is congruent to n� 1 modulo 2pn� 1q,
and since that of x is congruent to zero modulo 2pn � 1q, it follows that lpn � iq{m is
even, and consequently pn � iq{m is even. Thus G is an element of V1pnq given by
Definition 4(1)(d).

Finally, suppose that F is cyclic of order q, say. By Theorem 1 there exists i P t0, 1, 2u
such that q divides 2pn � iq, and up to conjugacy, F � A

α
2pn�iq{q
i

E
. Applying Corol-

lary 40(a), we have that θp1q P tIdF,� IdFu up to an element of Inn pFq. If θp1q � IdF
then G � F �Z. But F cannot be maximal cyclic, for then its centraliser would contain
an element of infinite order, which contradicts Proposition 31, so q � 2pn� iq. Further,
if n� i is odd then q � n� i, for then

�
α2

i ∆
2
n
D � xαiy would be of order 2pn� iq, and its

centraliser would contain an element of infinite order, which contradicts Proposition 31
once more. Hence G is isomorphic to an element of V1pnq given by Definition 4(1)(a).
So suppose that θp1q � � IdF. Then G � F �ρ Z, where ρ is the action by conjugation
for which ρp1q is multiplication by �1. By Corollary 40(a), we have i P t0, 2u. Further,
the subgroup of G isomorphic to F �ρ 2Z is abstractly isomorphic to F � Z, and so we
conclude from the previous case that q � 2pn� iq, and that q � n� i if n is odd. Hence
G is isomorphic to an element of V1pnq given by Definition 4(1)(b). This shows that any
virtually cyclic subgroup of BnpS2q is isomorphic to an element of the family V1pnq as
required.

6.2 Necessity of the conditions on V2pnq
We now prove Theorem 5(1) for the Type II subgroups of BnpS2q.
PROPOSITION 48. Let n ¥ 4. Then every virtually cyclic subgroup of BnpS2q of Type II is
isomorphic to an element of V2pnq.
REMARK 49. Combining Propositions 45 and 48 yields the proof of Theorem 5(1).

Proof of Proposition 48. Let G be an infinite virtually cyclic subgroup of BnpS2q of Type II.
Then G � G1 �F G2, where F, G1 and G2 are finite subgroups of BnpS2q, and F is of index
2 in Gj, j � 1, 2. Suppose first that one of the Gj, G1 say, is binary polyhedral. Then
G1 � O� since T�, I� have no index 2 subgroup, F � T� since T� is the unique index 2
subgroup of O�, and G2 � O� since O� is the only finite subgroup of BnpS2q to have T�
as an index 2 subgroup. Thus G � O� �T� O�, which is the element of V2pnq given by
Definition 4(2)(e).

Assume now that the Gj are not binary polyhedral. By Remark 3(a), the Gj are cyclic
or dicyclic, and since they possess an even index subgroup, they are of even order, so
both contain the unique element ∆

2
n of order 2. This implies that F � G1 XG2 is of even

order, so the Gj are in fact of order 4q for some q P N.
Suppose that one of the Gj, G1 say, is cyclic. Then G1 � Z4q and F � Z2q. By

Theorem 1, there exists i P t0, 1, 2u such that 4q � 2pn� iq, so q � pn� iq{2. If G2 � Z4q,
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G is isomorphic to the element of V2pnq given by Definition 4(2)(a). If G2 � Dic4q then
q ¥ 2, and there exists i1 P t0, 2u such that q � n � i1 by Lemma 46. But n � i1 �
2
�

n�i
2

	� pi � i1q, so q � i � i1, and since q ¥ 2, we must have i P t0, 2u. In this case, G is
isomorphic to the element of V2pnq given by Definition 4(2)(b).

Finally, suppose that G1 � G2 � Dic4q, where q ¥ 2. Then F � Z2q or F � Dic2q,
and there exists i P t0, 2u such that q � n� i by Lemma 46. If F � Z2q then by standard
properties of the amalgamated product G � G1 �F G2, G has an index 2 subgroup G1
isomorphic to F�θ Z for some θ P HompZ, Aut pFqq. Since F is cyclic, θp1q P tIdF,� IdFu
by Corollary 40(a)(ii), and hence the subgroup F�θ 2Z is abstractly isomorphic to F�Z.
It follows from Theorem 1 and Proposition 31 that q � n� i, and so G is isomorphic to
the element of V2pnq given by Definition 4(2)(c). Now suppose that F � Dic2q. Then q ¥
4 is even, and hence G is isomorphic to the element of V2pnq given by Definition 4(2)(d).

REMARK 50. The cohomological property of Section 5.2 used to define the family V1pnq
appears to be important in this case. We do not know of an example of two finite
periodic groups G1, G2 of the same period d for which the amalgamated product G1 �F
G2 does not have period d. The Mayer-Vietoris sequence [Br, Chapter II, Section 7,
Corollary 7.7] suggests that such an example may not even exist.
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Part II

Realisation of the elements of V1pnq and
V2pnq in BnpS2q
In this Part, we prove that with a small number of exceptions (those described in Re-
mark 6), the isomorphism classes of Vpnq given in the statement of Theorem 5(2) are
indeed realised as subgroups of BnpS2q. For the realisation of the Type I groups, the
cases F � Zq, F � Dic4m (m ¥ 3), F � Q8 and F � T�, O�, I� will be treated in Sec-
tions 1, 2, 3 and 4 respectively, and the results will be brought together in Section 5.
The realisation of the Type II groups will be dealt with in Section 6, and this will enable
us to prove Theorem 5(2) in Section 7. In the first three cases, the constructions are al-
gebraic, but are heavily inspired by geometric considerations, and it may be helpful for
the reader to draw some pictures. If F is binary polyhedral, the corresponding virtu-
ally cyclic groups will be obtained geometrically by considering certain multitwists in
MCGpS2, nq, and then lifting the corresponding mapping class to an element of BnpS2q
via equation (11). Theorem 5(3) will be proved in Section 4.1. In Section 8, we discuss
the question of the number of isomorphism classes of the Type II virtually cyclic sub-
groups of BnpS2q, which will enable us to prove Proposition 11. Finally, in Section 9, we
apply Theorem 5 and Proposition 12 to the problem of the classification of the virtually
cyclic subgroups of MCGpS2, nq, from which we will obtain directly Theorem 14.

1 Type I subgroups of BnpS2q of the form F � Z with F
cyclic

Let n ¥ 4, and let F be a finite cyclic subgroup of BnpS2q. In order to construct elements
of V1pnq involving F, we require elements of BnpS2q of infinite order whose action on
F by conjugation is compatible with Proposition 9. Since these actions are given by
multiplication by �1, we will be interested in finding elements z P BnpS2q of infinite
order for which zxz�1 � x�1 for all x P F. This comes down to studying the centraliser
and normaliser of F in BnpS2q. Note that by Theorem 1, there exist i P t0, 1, 2u and 0 ¤
m   2pn� iq, m � 2pn� iq, such that F is conjugate to

�
αm

i

D
. Since conjugate subgroups

have conjugate centralisers and normalisers, we may suppose for our purposes that
F � �

αm
i

D
.
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1.1 Type I subgroups of the form Zq �Z

We first study the centralisers of powers of the αi, i P t0, 1, 2u, which will give rise to
Type I subgroups of the form Zq �Z.

LEMMA 51. Let n ¥ 4, and let i P t0, 1, 2u. Suppose that m P N divides 2pn� iq, and let

r � #
m if m � n� i
m
2 if m � n� i.

Then:
(a) r � n� i, and ZBnpS2qp�αr

i

Dq � ZBnpS2qp�αm
i

Dq.
(b) If r � 1 then ZBnpS2qp�αm

i

Dq � xαiy.
(c) If r ¥ 2 then ZBnpS2qp�αm

i

Dq � �
δr,i

D
, where the element

δr,i � σ1σr�1 � � � σn�i�r�1 � pn�i�rq{r¹
k�0

σkr�1 (45)

is of infinite order.

Proof.
(a) The statement clearly holds if m � n � i. So suppose that m � n � i. Since qm �
2pn � iq for some q P N, we have q{2 � pn � iq{m. Thus q is odd, m is even, r � m{2
is an integer and q � pn � iq{r, which proves the first part of the statement. For the
second part, note first that ZBnpS2qp�αr

i

Dq � ZBnpS2qp�αm
i

Dq. Conversely, suppose that
z P BnpS2q commutes with αm

i . Then z commutes with αm
i ∆

2
n � αn�m�i

i by equation (8).
Further, αm

i is of order q, which is odd. Hence αm
i ∆

2
n is of order 2q. Since αm

i ∆
2
n P xαiy

and
∣

∣

�
αr

i

D∣
∣ � 2q, we have

�
αm

i ∆
2
n
D � �

αr
i

D
, so z commutes with αr

i , and this completes
the proof of part (a).
(b) If r � 1 then ZBnpS2qp�αm

i

Dq � ZBnpS2qpxαiyq � xαiy by part (a) and Proposition 8.
(c) Suppose that r ¥ 2. We first show that δr,i is of infinite order. Assume on the
contrary that δr,i is of finite order. By Theorem 1, there exist l P t0, 1, 2u and 0 ¤ µ  
2pn� iq such that δr,i is conjugate to α

µ
l . Since r ¥ 2, the permutation πpδr,iq consists of

the product of s disjoint transpositions, plus n � 2s fixed points, where s � pn � iq{r.
In particular, δr,i R PnpS2q, so δr,i � ∆

2
n, µ � n � l by equation (8), and πpδr,iq has

exactly l fixed points. Suppose first that l P t0, 2u. Since ξpαlq � n� 1 in Z2pn�1q,
ξpδr,iq � ξpαµ

l q � s belongs to the subgroup
�

n� 1
D

, so there exists λ P N such that
λpn� 1q � s. But

n� 1 ¤ λpn� 1q � s � pn� iq{r ¤ n{2,

so n ¤ 2, which yields a contradiction. Hence l � 1, πpδr,iq has a single fixed point, thus
1 � n� 2s � prs� iq � 2s � spr � 2q � i, and i P t0, 1u. If i � 0 then s � 1 and r � n � 3,
which gives rise to a contradiction. So i � 1, r � 2, n � 2s� 1 (which implies that n ¥ 5)
and δr,i � δ2,1 � σ1σ3 � � � σn�2. But δ2,1 belongs to the subgroup Bn�1,1pS2q of n-string
braids whose permutation fixes the element n. Under the projection Bn�1,1pS2q ÝÑ

45



Bn�1pS2q given geometrically by forgetting the last string, δ2,1 is sent to the element
δ2,0 of Bn�1pS2q, which must then also be of finite order. However, using the fact that
n � 1 ¥ 4, the above discussion implies that the element δ2,0 of Bn�1pS2q is of infinite
order, hence the element δ2,1 of BnpS2q is also of infinite order.

It remains to prove that δr,i commutes with αm
i . By part (a), it suffices to show that

it commutes with αr
i . First note that the product in equation (45) is taken over k �

0, 1, . . . , s� 1. If 0 ¤ k ¤ s� 2, we have

1 ¤ r � pkr � 1q ¤ rps� 1q � 1 � n� i� pr � 1q ¤ n� i� 1 since r ¥ 2,

and hence αr
i σkr�1α�r

i � σpk�1qr�1 by equation (23). If k � s� 1 then

αr
i σps�1qr�1α�r

i � αr
i σn�i�pr�1qα�r

i � α2
i σn�i�1α�2

i by equation (23)� σ1 by equation (24).

Since r ¥ 2, the terms σkr�1, 0 ¤ k ¤ s� 1, commute pairwise, and so

αr
i δr,iα

�r
i � αr

i

�
s�1¹
k�0

σkr�1

�
α�r

i � �
s�2¹
k�1

σkr�1

�
σ1 � δr,i,

using the previous calculations. This completes the proof of the proposition.

PROPOSITION 52. Let n ¥ 4, and let q P N. Then BnpS2q possesses a subgroup isomorphic
to Z� Zq if and only if there exists i P t0, 1, 2u such that the following three conditions are
satisfied:

(i) q divides 2pn� iq.
(ii) 1 ¤ q ¤ n� i.
(iii) q   n� i if n� i is odd.

Proof. The necessity of conditions (i)–(iii) was proved in Proposition 45. Conversely,
suppose that there exists i P t0, 1, 2u such that the conditions (i)–(iii) are satisfied. Then
m � 2pn� iq{q is an integer greater than or equal to two. Consider the subgroup

�
αm

i

D
of BnpS2q, which is isomorphic to Zq. With the notation of Lemma 51:

• if m � n� i then r � m ¥ 2.
• if m � n� i then q is odd, m is even and r � m{2. If r � 1 then m � 2 and so q � n� i,
but this contradicts condition (iii). Hence r ¥ 2.

So by Lemma 51(c), δr,i P ZBnpS2qp�αm
i

Dq, and thus the subgroup
�

αm
i , δr,i

D
of BnpS2q is

isomorphic to Z�Zq as required.

1.2 Type I subgroups of the form Zq �ρ Z

In this section, we consider the realisation in BnpS2q of Type I groups Zq �ρ Z, where
ρ P HompZ, Aut

�
Zq

�q, and ρp1q is multiplication by �1.
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PROPOSITION 53. Let n ¥ 4, and let q P N. Then BnpS2q possesses a subgroup isomorphic
to Zq �θ Z, for some action θ P HompZ, Aut

�
Zq

�q, θp1q � IdZq , if and only if the following
conditions are satisfied:
(i) q divides 2pn� iq, where i P t0, 2u.
(ii) 3 ¤ q ¤ n� i, and q   n� i if n is odd.
(iii) θp1q � ρp1q.
Proof. Suppose first that BnpS2q possesses a subgroup isomorphic to Zq �θ Z, where
θp1q � IdZq . Proposition 45 implies that conditions (i)–(iii) are satisfied (note that if
q P t1, 2u then θp1q � IdZq).

Conversely, suppose that conditions (i)–(iii) are satisfied, and let m � 2pn � iq{q.
From the proof of Proposition 52, and making use of the notation of Lemma 51, we
know that r ¥ 2 and that

�
αm

i , δr,i
D

is isomorphic to Zq � Z. We will modify slightly
the generator δr,i of the Z-factor in order to obtain an action on αm

i that is multiplication
by �1. To achieve this, let ∆

1
n � α�1

0 ∆nα0. Equation (10) implies that α�1
i � ∆

1
nαi∆

1�1
n .

Now let δ1r,i � ∆
1
nδr,i. Since δr,i commutes with αm

i , we have that δ1r,iα
m
i δ1�1

r,i � α�m
i ,

which will give rise to the required action on
�

αm
i

D
. We claim that δ1r,i is of infinite

order. This being the case, the subgroup
A

δ1r,i, αm
i

E
of BnpS2q is isomorphic to Zq �ρ Z,

where ρp1q � � IdZq , which will prove that the conditions (i)–(iii) are sufficient. To
prove the claim, first note that since ∆

2
n is central and of order 2, it suffices to prove that

β � δ12r,i∆
�2
n is of infinite order. Further:

β�p∆1
nδr,iq2∆

�2
n � α�1

0 ∆nα0δr,iα
�1
0 ∆

�1
n α0δr,i�α�2

0 ∆nσ1σr�1 � � � σn�i�2r�1σn�i�r�1∆
�1
n α2

0δr,i by equations (10) (i � 0), and (45)�α�2
0 σi�r�1σi�2r�1 � � � σn�r�1σn�1α2

0δr,i using equation (7) and the fact that r ¥ 2�#
α�2

0 σi�r�1α2
0. σi�2r�3 � � � σn�r�3σn�3δr,i if i � r ¤ 3

σi�r�3σi�2r�3 � � � σn�r�3σn�3σ1σr�1 � � � σn�2r�i�1σn�r�i�1 if i � r ¥ 4,

using equation (23). We distinguish these two cases:
(a) i � r ¥ 4. Then n � pi � rq � 1 ¤ n� 3, and the last two strings of β are vertical. If
β were of finite order, it would have to be conjugate to a power of α2 using Theorem 1
(observe that this is also the case if β is pure, since the only nontrivial torsion element
of PnpS2q is ∆

2
n, which is a power of α2 by equation (8)), and so its Abelianisation ξpβq

would be congruent to 0 modulo n� 1. On the other hand, ξpβq � ξpδ2
r,iq is congruent

to 2pn� iq{r mod 2pn� 1q. So there exists λ P N such that 2pn� iq{r � λpn� 1q. Hence
λrpn � 1q � 2pn � iq � 2pn � 1q � 2p1 � iq, and since 1 � i P t1,�1u, this implies that
n� 1 � 2, which is impossible. So β is of infinite order.
(b) i � r ¤ 3. Since r ¥ 2 and i P t0, 2u, we must have i � 0 and r P t2, 3u. Suppose first
that r � 3. Using equation (23), we obtain:

β � α�1
0 pα�1

0 σ2σ5 � � � σn�4σn�1α0qpα0σ1σ4 � � � σn�5σn�2α�1
0 qα0� α�1

0 pσ1σ2σ4σ5 � � � σn�5σn�4σn�2σn�1qα0.
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Now 3 � n by Lemma 51(a) and n ¥ 4, so n ¥ 6. Thus the projection of α0βα�1
0 onto

the first six strings is the braid β1 � σ1σ2σ4σ5 P B6pS2q. If β1 were of finite order, by
Theorem 1, it would be conjugate in B6pS2q to some power of α0 � σ1 � � � σ5 (because its
permutation has no fixed point), so its exponent sum would be congruent to 5 modulo
10. But this is clearly not the case, and so β1 and β are of infinite order in their respective
groups. Now assume that r � 2. Then

β � α�2
0 σ1σ3 � � � σn�3σn�1α2

0σ1σ3 � � � σn�3σn�1 � σ2
1 σ2

3 � � � σ2
n�3σ2

n�1

by equations (23) and (24). The projection of β onto B4pS2q by forgetting all but the
first four strings gives rise to the element σ2

1 σ2
3 of P4pS2q, which is equal to δ2

2,0 by equa-
tion (45), and so is of infinite order by Lemma 51(c). This implies that β is also of infinite
order.
So in both cases, β is of infinite order, and hence so is δ1r,i. This completes the proof of
the claim, and thus that of the proposition.

2 Type I subgroups of BnpS2q of the form F � Z with F
dicyclic, F � Q8

Let n ¥ 4 and i P t0, 2u. In this section, we consider the realisation in BnpS2q of Type I
subgroups of the form F �θ Z, where F � Dic4s, s ¥ 3. By Proposition 45, there are
two possible actions of Z on Dic4s to be considered. The trivial action, given by Defini-
tion 4(c) will be analysed in Proposition 54, while the nontrivial action, given by Defin-
ition 4(d) will be studied in Proposition 56.

PROPOSITION 54. Let n ¥ 4 and let s ¥ 3. Then Dic4s �Z is realised as a subgroup of BnpS2q
if and only if there exists i P t0, 2u such that s divides n� i strictly.

REMARK 55. In other words, if i P t0, 2u and s ¥ 3 divides n� i then Dic4s �Z is realised
as a subgroup of BnpS2q if and only if Dic4s is non maximal. Further, the value of i Pt0, 2u is unique since s ¥ 3.

Proof of Proposition 54. The necessity of the condition was shown in the proof of Propos-
ition 45(b)(i). Conversely, suppose that i P t0, 2u, let s ¥ 3 be such that s divides n � i
strictly, so s ¤ pn� iq{2. Set m � pn � iq{s ¥ 2. Then 2 ¤ m ¤ pn� iq{3. Consider the
subgroup

�
αm

i , ρm
D

, where

ρ � pσ1 � � � σm�1qpσm�1 � � � σ2m�1q � � � pσps�1qm�1 � � � σsm�1q (46)� s¹
j�1

�
σpj�1qm�1 � � � σjm�1

	
.

We claim that the bracketed terms of equation (46) are permuted cyclically under con-
jugation by αm

i . To prove the claim, first suppose that j P t1, . . . , s� 1u. Since jm � 1�
m � pj� 1qm� 1 ¤ sm� 1 � n� i � 1, it follows from equation (23) that

αm
i

�
σpj�1qm�1 � � � σjm�1

	
α�m

i � σjm�1 � � � σpj�1qm�1. (47)
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Now suppose that j � s. Then

αm
i

�
σps�1qm�1 � � � σsm�1

�
α�m

i � �
m�1¹
k�1

αm
i σn�i�m�kα�m

i

�
� �

m�1¹
k�1

αk�1
i σn�i�1α

�pk�1q
i

�
� �

m�1¹
k�1

αk�1
i σ1α

�pk�1q
i

� � σ1 � � � σm�1, (48)

by equations (23) and equation (24). The claim then follows from equations (47) and (48).
The fact that the bracketed terms of equation (46) commute pairwise implies that αm

i
and ρ commute, and that ρm P PnpS2q. If ρm were of finite order then ρm P �

∆
2
n
D

, so
ξpρmq � n � 1 modulo 2pn� 1q, and the exponent sum of ρm would be congruent to 0
modulo n� 1. On the other hand, the exponent sum of ρm modulo n� 1 is equal to:

smpm� 1q � pn� iqpm� 1q� pn� 1qpm� 1q � p1� iqpm� 1q � p1� iqpm� 1q. (49)

Since 1 � i P t1,�1u, n � 1 would thus divide m � 1, which is not possible because
2 ¤ m ¤ pn� iq{3   n. Thus ρ is of infinite order, and hence

�
αm

i , ρm
D � Z2s �Z.

Using the element ∆n and the subgroup
�

αm
i , ρm

D
, we will now construct a subgroup

isomorphic to Dic4s �Z, which will complete the proof of the proposition. First note that
for all 1 ¤ j1   j2 ¤ n� 1, the relationpσj1 � � � σj2�1qj2�j1�1 � pσj2�1σj2�2 � � � σj1qj2�j1�1 (50)

holds in Bn (cf. [MK, Chapter 2, Exercise 4.1], and using the fact that Bj2�j1 embeds in
Bn), and so holds in BnpS2q. Now

∆nρm
∆
�1
n � ∆n

�� s¹
j�1

�
σpj�1qm�1 � � � σjm�1

	m

�∆
�1
n� �� s¹

j�1

�
σmps�j�1q�i�1 � � � σmps�jq�i�1

	m

� by equation (7)� �� s¹
j�1

�
σmps�jq�1 � � � σmps�j�1q�1

	m

� by equation (50)� αi
0

�� s¹
j�1

�
σmps�jq�1 � � � σmps�j�1q�1

	m

�α�i
0 by equation (23)� αi

0

�� s¹
j1�1

�
σmpj1�1q�1 � � � σmj1�1

	m

�α�i
0 � αi

0ρmα�i
0 ,
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taking j1 � s � j � 1, and using also the fact that the inner bracketed terms commute
pairwise. It follows from equation (10) that ∆n commutes with the element ρ1m �
α

i{2
0 ρmα

�i{2
0 . Since

�
α1mi , ∆n

D � Dic4s where α1mi � α
i{2
0 αm

i α
�i{2
0 , it follows that the group�

α1mi , ∆n, ρ1mD is isomorphic to Dic4s �Z as required.

We now turn our attention to the other possible action in BnpS2q of Z on the dicyclic
subgroups.

PROPOSITION 56. Let n ¥ 4 and s ¥ 3, and consider the Type I group G � Dic4s �νZ, where
ν is defined by equation (12). Then BnpS2q possesses a subgroup isomorphic to G if and only if
the following two conditions are satisfied:
(i) s divides n� i for some i P t0, 2u, and
(ii) pn� iq{s is even.

Proof. The necessity of the conditions was obtained in part (b)(ii) of the proof of Pro-
position 45. Conversely, suppose that conditions (i) and (ii) hold. Set m � pn � iq{s,
and let α1i � α0αiα

�1
0 � α

i{2
0 αiα

�i{2
0 . Since m{2 P N by condition (ii), we may consider

the subgroup
A

α
1m{2
i , ∆n

E
of BnpS2q which is a dicyclic subgroup (of order 8s) of the

standard copy of Dic4pn�iq, and which contains the dicyclic subgroup
�

α1mi , ∆n
D

of order

4s. Taking x � α1mi and y � ∆n, the action by conjugation of α
1m{2
i on xx, yy coincides

with that given by θp1q in the statement of the proposition. From the proof of Propos-
ition 54, the subgroup

�
α1mi , ∆n, ρ1mD is isomorphic to Dic4s �Z, ρ1m being as defined in

that proof. We claim that α
1m{2
i ρ1m is of infinite order. This being the case, the subgroupA

α1mi , ∆n, α
1m{2
i ρ1mE is isomorphic to Dic4s �θZ, which will complete the proof of the

proposition. To prove the claim, we suppose that α
1m{2
i ρ1m is of finite order, and argue

for a contradiction. Since ρ1m P PnpS2q, πpα1m{2i ρ1mq � πpα1m{2i q. Now α
1m{2
i is of order 4s,

and the cycle decompositions of πpα1m{2i q and πpα1m{2i ρ1mq consist of m{2 2s-cycles (and
i fixed elements). The fact that the finite order elements of PnpS2q are the elements of�

∆
2
n
D

then implies that α
1m{2
i ρ1m is of order ks, where k P t2, 4u. Now α

12m{k
i also gener-

ates a subgroup of order ks, and since ks ¥ 6, by [GG5, Proposition 1.5(2)], there is a
single conjugacy class of such subgroups in BnpS2q. So there exist γ P BnpS2q and λ P N,
with gcdpλ, 2sq � 1, such that α

12mλ{k
i � γα

1m{2
i ρ1mγ�1. But ξpα1iq � 0 modulo n� 1, and

so it follows that ξpρ1mq � ξpρmq � 0 modulo n � 1. But using equation (49), we saw
in the proof of Proposition 54 that this is not the case. This yields a contradiction, and
proves the claim.

3 Type I subgroups of BnpS2q of the form Q8 �Z

The aim of this section is to prove the existence of Type I subgroups of BnpS2q of the
form Q8 � Z. As we saw in Lemma 36, up to isomorphism it suffices to consider the
two actions α and β defined in Definition 4(1)(e), of order 3 and 2 respectively. We start
by showing that the existence of the Type I subgroup T� �Z (resp. of T� �ω Z, for the
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nontrivial action ω given by equation (14)) implies that of Q8 �α Z (resp. of Q8 �β Z).
Using the results of Section II.4, this will imply the existence of Q8 �α Z and Q8 �β Z

as subgroups of BnpS2q for most even values of n. In the second part of this section, we
exhibit explicit algebraic constructions of Q8 �α Z (resp. Q8 �β Z) for all n � 0 mod 4,
n ¥ 8 (resp. all n ¥ 4 even).

PROPOSITION 57.

(a) The group T� �Z possesses a subgroup isomorphic to Q8 �α Z.
(b) The group T��ω Z for the action defined by equation (14) possesses a subgroup isomorphic
to Q8 �β Z.

Proof. Consider T� � Q8 �Z3 given by the presentation (13).

(a) Let G � T� �Z, and let Z be the generator of the Z-factor. Since X and Z commute,
the group xXZy is of infinite order and its action on Q8 by conjugation permutes cyc-
lically the elements P, Q and PQ of xP, Qy. Hence xP, Q, XZy � Q8 �α Z, where α is as
defined in Definition 4(1)(e).
(b) Let G � T� �ω Z, let Z be the generator of the Z-factor. The action of Z on T� by
conjugation coincides with that of equation (14). The restriction of this action to xP, Qy
exchanges P and QP, and sends Q to Q�1. Thus xP, Q, Zy � Q8 �β Z, where β is as
defined in Definition 4(1)(e).

REMARK 58. The realisation of T��Z (resp. T��ω Z) as a subgroup of BnpS2q for n even
and satisfying n � 12 or n ¥ 16 (resp. n � 0, 2 mod 6 and satisfying n � 24 or n ¥ 30)
will follow from Propositions 62 and 66. Proposition 57 then implies the existence of
Q8 �α Z (resp. Q8 �β Z) as a subgroup of BnpS2q for these values of n.

We now turn our attention to the problem of the algebraic realisation of Type I sub-
groups of the form Q8 �Z. In most cases, the existence of these subgroups follows by
combining Proposition 57 with Propositions 62 and 66. As we shall see later, we will
prove these two propositions using geometric constructions in MCGpS2, nq. Before do-
ing so, we exhibit explicit algebraic representations in terms of the standard generators
of BnpS2q, and in some cases, we obtain their existence for values of n that are not
covered by these propositions. We start by defining certain elements that shall be used
in the constructions, and in Lemma 59, we give some of their properties. Let n ¥ 4 be
even, and let

Ω1 � n{2�1¹
i�1

σ1 � � � σn{2�i and Ω2 � n{2�1¹
i�1

σn{2�1 � � � σn�i. (51)

Clearly Ω1 and Ω2 commute, and using equations (8) and (23), we see that

α
n{2
0 Ω1α

�n{2
0 � Ω2 and α

n{2
0 Ω2α

�n{2
0 � Ω1. (52)

For i � 1, . . . , n{2, set
ρi � σi � � � σi�n{2�1, (53)
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and
ρ � ρn{2 � � � ρ1. (54)

Geometrically, Ω1 (resp. Ω2) is the half twist on the first (resp. second) n{2 strings, and
ρ is the braid that passes the first n{2 strings over the second n{2 strings (see Figures 5, 6
and 7).

Figure 5: The braid ρ in B8pS2q.

Figure 6: The braid Ω1 in B8pS2q.

Figure 7: The braid Ω2 in B8pS2q.
LEMMA 59. With the above notation, the following relations hold:

(a) ρΩ1 � Ω2ρ.
(b) ∆n � Ω1Ω2ρ.
(c) ρΩ2 � Ω1ρ.
(d) Ω2 � σn�1pσn�2σn�1q � � � pσn{2�2 � � � σn�1qpσn{2�1 � � � σn�1q.
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(e) α
n{2
0 � Ω

2
1ρ.

(f) ∆n � Ω2α
n{2
0 Ω

�1
2 and α

n{2
0 � Ω1∆nΩ

�1
1 .

(g) ∆
2
n � Ω

2
1Ω

�2
2 .

Proof.
(a) First observe that

ρ1Ω1ρ�1
1 � σ1 � � � σn{2 ��n{2�1¹

i�1

σ1 � � � σn{2�i

�σ�1
n{2 � � � σ�1

1� σ1 � � � σn�1

��n{2�1¹
i�1

σ1 � � � σn{2�i

�σ�1
n�1 � � � σ�1

1� α0Ω1α�1
0 . (55)

For i � 1, . . . , n{2, we have

ρiα
i�1
0 Ω1α

�pi�1q
0 ρ�i

i � αi�1
0 pα�pi�1q

0 ρiα
i�1
0 qΩ1pα�pi�1q

0 ρ�i
i αi�1

0 qα�pi�1q
0� αi�1

0 ρ1Ω1ρ�1
1 α

�pi�1q
0 by equations (23) and (53)� αi

0Ω1α�i
0 by equation (55).

By induction on i, equations (52) and (55), it follows that

ρΩ1ρ�1 � ρn{2 � � � ρ1Ω1ρ�1
1 � � � ρ�1

n � α
n{2
0 Ω1α

�n{2
0 � Ω2

as required.
(b) We have:

∆n � n�1¹
i�1

pσ1 � � � σn�iq � n{2�1¹
i�1

pσ1 � � � σn�iq n�1¹
i�n{2pσ1 � � � σn�iq by equation (6)� n{2�1¹

i�1

pσ1 � � � σn{2�iqpσn{2�i�1 � � � σn�iq n{2�1¹
i�0

pσ1 � � � σn{2�iq� ��n{2�1¹
i�1

pσ1 � � � σn{2�iq n{2�1¹
i�1

pσn{2�i�1 � � � σn�iq�ρ1

n{2�1¹
i�1

pσ1 � � � σn{2�iq� Ω1

��n{2�1¹
i�1

ρn{2�i�1

�ρ1Ω1 by equations (51) and (53)� Ω1ρΩ1 � Ω1Ω2ρ by equations (53) and (54), and part (a).

(c) Since α
n{2
0 ∆nα

�n{2
0 � ∆

�1
n by equations (8) and (10), we have:

α
n{2
0 ρα

�n{2
0 � α

n{2
0 Ω

�1
2 Ω

�1
1 ∆nα

�n{2
0 � Ω

�1
1 Ω

�1
2 ∆

�1
n � ρ∆

2
n,

by part (b) and equation (52), using the fact that Ω1 and Ω2 commute. Conjugating the
relation ρΩ1 � Ω2ρ of part (a) by α

n{2
0 and using equation (52) gives the result.
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(d) For n{2� 1 ¤ i ¤ j ¤ n� 1, set τi,j � σi � � � σj (so τi,i � σi). For k � 1, . . . , n{2� 1, set

ωk � �� n{2�1¹
i�n{2�k

τn�i,n�1

��� n{2�1¹
i�n{2�k

τ�1
n{2�1,n{2�i

�.

Let Ω
1
2 � σn�1pσn�2σn�1q � � � pσn{2�2 � � � σn�1qpσn{2�1 � � � σn�1q. Since

ωn{2�1 � ��n{2�1¹
i�1

τn�i,n�1

���n{2�1¹
i�1

τ�1
n{2�1,n{2�i

�� Ω
1
2Ω

�1
2 by equation (51),

it suffices to show that ωn{2�1 � 1. To do so, we shall prove by induction that ωk � 1
for all k � 1, . . . , n{2� 1. If k � 1 then ω1 � τn{2�1,n�1τ�1

n{2�1,n�1 � 1. So suppose that
ωk � 1 for some k � 1, . . . , n{2� 2. First note that if i ¤ l   j,

τi,jτ
�1
i,l � pσi � � � σlσl�1σl�2 � � � σjqpσ�1

l � � � σ�1
i q� pσi � � � σlσl�1σ�1

l � � � σ�1
i qpσl�2 � � � σjq� τi,l�1σ�1

l � � � σ�1
i τ�1

i,l�1τi,j � σ�1
l�1 � � � σ�1

i�1τi,j� τ�1
i�1,l�1τi,j, (56)

using the fact that τi,l�1τmτ�1
i,l�1 � τm�1 for all i ¤ m ¤ l. So

ωk�1 � τn{2�k�1,n�1

�� n{2�1¹
i�n{2�k

τn�i,n�1

�τ�1
n{2�1,n�k�1

�� n{2�1¹
i�n{2�k

τ�1
n{2�1,n{2�i

�� τn{2�k�1,n�1. τn{2�k,n�1 � � � τn{2�1,n�1τ�1
n{2�1,n�k�1

�� n{2�1¹
i�n{2�k

τ�1
n{2�1,n{2�i

�� τn{2�k�1,n�1. τ�1
n{2�k�1,n�1

�� n{2�1¹
i�n{2�k

τn�i,n�1

��� n{2�1¹
i�n{2�k

τ�1
n{2�1,n{2�i

�� ωk � 1,

where we have used equation (56) k times to obtain the first equality of the last line.
The result follows by induction.
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(e) Using parts (c) and (d), and equations (51), (53) and (54), we have:

α
n{2
0 � pσ1 � � � σn�1qn{2 � n{2¹

i�1

pσ1 � � � σn{2�iσn{2�i�1 � � � σn�1q� n{2�1¹
i�1

pσ1 � � � σn{2�iq n{2¹
i�1

pσn{2�i�1 � � � σn�1q� Ω1

n{2¹
i�1

pσn{2�i�1 � � � σn�iσn�i�1 � � � σn�1q� Ω1

n{2¹
i�1

pσn{2�i�1 � � � σn�iq n{2¹
i�2

pσn�i�1 � � � σn�1q� Ω1ρ

n{2�1¹
i�1

pσn�i � � � σn�1q � Ω1ρΩ2 � Ω
2
1ρ.

(f) Applying successively parts (e), (c) and (b) and using the fact that Ω1 and Ω2 com-
mute yields:

Ω2α
n{2
0 Ω

�1
2 � Ω2Ω

2
1ρΩ

�1
2 � Ω2Ω

2
1Ω

�1
1 ρ � Ω1Ω2ρ � ∆n.

Further, using parts (b), (a) and (e), we have:

Ω1∆nΩ
�1
1 � Ω1Ω1Ω2ρΩ

�1
1 � Ω

2
1ρ � α

n{2
0 .

(g) Using equations (52) and (8) and part (f), we have

Ω
2
1Ω

�2
2 � Ω

2
1α

n{2
0 Ω

�2
1 α

�n{2
0 � Ω1

�
Ω1α

n{2
0 Ω

�1
1

	
Ω
�1
1 α

�n{2
0� Ω1

�
α

n{2
0 Ω2α

�n{2
0 . α

n{2
0 . α

n{2
0 Ω

�1
2 α

�n{2
0

	
Ω
�1
1 α

�n{2
0� Ω1

�
α

n{2
0 ∆nα

�n{2
0

	
Ω
�1
1 α

�n{2
0 � Ω1∆

�1
n Ω

�1
1 α

�n{2
0� α

�n{2
0 . α

�n{2
0 � ∆

2
n.

PROPOSITION 60. With the notation defined above,

(a)
A

α
n{2
0 , ∆n, α

n{4
0 Ω2

E � Q8 �α Z for all n � 0 mod 4, n ¥ 8.

(b)
A

α
n{2
0 , ∆n, Ω1∆n

E � Q8 �β Z for all n ¥ 4 even.

Proof. Remark 3(b) implies that the subgroup
A

α
n{2
0 , ∆n

E
of BnpS2q is isomorphic to Q8.

So to prove the proposition, we must study the action of the third generator in both
cases on this subgroup. Let Ω1 and Ω2 be as defined in equation (51).
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(a) Let n � 0 mod 4 where n ¥ 8, and let ν � α
n{4
0 Ω2. We have:

να
n{2
0 ν�1 � pαn{4

0 Ω2qαn{2
0 pΩ�1

2 α
�n{4
0 q � α

n{4
0 ∆nα

�n{4
0 by Lemma 59(f)� α

n{2
0 ∆n by equation (10), (57)

να
n{2
0 ∆nν�1 � α

n{2
0 ∆n. α

n{4
0 Ω2∆nΩ

�1
2 α

�n{4
0 by equation (57)� α

n{2
0 ∆n. α

3n{4
0 α

�n{2
0 Ω

2
2α

n{2
0 Ω

�2
2 α

�n{4
0 by Lemma 59(f)� α

n{2
0 ∆n. α

3n{4
0 Ω

2
1Ω

�2
2 α

�n{4
0 by equation (52)� α

n{2
0 ∆n. α

n{2
0 ∆

2
n by Lemma 59(g)� ∆

�1
n by equations (8) and (10), and (58)

ν∆
�1
n ν�1 � νpαn{2

0 ∆nq�1α
n{2
0 ν�1 (59)� α

n{2
0 by equations (8), (10), (57) and (58). (60)

Hence conjugation by ν permutes cyclically the elements α
n{2
0 , α

n{2
0 ∆n and ∆

�1
n , and thus

gives rise to the action α on the copy
A

α
n{2
0 , ∆n

E
of Q8 in BnpS2q. It remains to show that

ν is of infinite order. Its permutation is:

πpνq �p1, 3n{4� 1, n{2� 1, n{4� 1qp2, 3n{4� 2, n{2� 2, n{4� 2q � � �pn{4, n, 3n{4, n{2qpn{2 � 1, nqpn{2� 2, n� 1q � � � p3n{4, 3n{4� 1q,
and since n ¥ 8, the cycle decomposition of πpνq contains the transposition p3n{4� 1, nq
and the 6-cycle p1, 3n{4, n{2, n{4, n{2 � 1, n{4 � 1q. By Theorem 1, πpνq cannot be the
permutation of an element of BnpS2q of finite order. This shows that ν is of infinite

order, and so
A

α
n{2
0 , ∆n, α

n{4
0 Ω2

E � Q8 �α Z.
(b) Let n ¥ 4 be even. Set ζ � Ω1∆n. Then:

ζ∆nζ�1 � Ω1∆nΩ
�1
1 � α

n{2
0 by Lemma 59(f),

ζα
n{2
0 ζ�1 �Ω1∆nα

n{2
0 ∆

�1
n Ω

�1
1 α

�n{2
0 α

n{2
0�∆

2
nΩ1Ω

�1
2 α

n{2
0 by equations (8), (10) and (52)�∆

2
nα

n{2
0 ∆

�1
n α

n{2
0 by Lemma 59(b) and (e), and the commutativity of Ω1 and Ω2�∆n by equations (8) and (10),

ζα
n{2
0 ∆nζ�1 � ∆nα

n{2
0 � pαn{2

0 ∆nq�1 by equation (8) and the above two relations.

So conjugation by ζ exchanges ∆n and α
n{2
0 , and sends α

n{2
0 ∆n to pαn{2

0 ∆nq�1, hence gives

rise to the action β on the copy
A

α
n{2
0 , ∆n

E
of Q8 in BnpS2q. It remains to show that ζ is

of infinite order. Suppose first that n � 2 mod 4. Then:

πpζq �p1, n{2qp2, n{2� 1q � � � ppn� 2q{4, pn� 6q{4q. p1, nq.p2, n� 1q � � � pn{2, n{2� 1q.
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By Theorem 1, πpζq cannot be the permutation of a finite-order element of BnpS2q since
its cycle decomposition contains the transposition ppn� 2q{4, p3n� 2q{4q and the 4-cyclep1, n{2� 1, n{2, nq. So suppose that n � 0 mod 4. Then:

πpζq � p1, n{2qp2, n{2� 1q � � � pn{4, n{4� 1q. p1, nqp2, n� 1q � � � pn{2, n{2� 1q.
Hence the cycle decomposition of πpζq consists of the 4-cycles of the form pj, n{2 �
j, n{2�1� j, n�1� jq, where 1 ¤ j ¤ n{4, so if ζ is of finite order then by Theorem 1, it is
conjugate to a power of α0. Thus the Abelianisation of ζ is congruent to 0 modulo n� 1.
On the other hand, the Abelianisation of ζ � Ω1∆n is congruent to n

4

�n
2 � 1

�� n
2 pn� 1q

modulo 2pn� 1q, which is congruent modulo n� 1 to n
8 pn� 2q. But n

8 pn� 2q � 0 modulo

n� 1, which gives a contradiction. So ζ is of infinite order, and
A

α
n{2
0 , ∆n, ζ

E � Q8 �β Z

as required.

REMARKS 61.

(a) If we take n � 4 in the proof of Proposition 60(a) then ν � α1 is of order 6, and we
obtain the subgroup

�
α2

0, ∆4, α0Ω2
D

which is isomorphic to T� (see [GG5, Remark 3.2]).
However, a copy of Q8 �α Z in B4pS2q will be exhibited in the proof of Proposition 68.
Combining this with Propositions 57, 60 and 62 will prove the existence of Type I
subgroups of BnpS2q of the form Q8 �α Z for all n ¥ 4 even, with the exception of
n P t6, 10, 14u. Proposition 60(b) implies the existence of Type I subgroups of BnpS2q of
the form Q8 �β Z for all n ¥ 4 even.
(b) In the case where n � 2 mod 4, we do not know of an explicit algebraic represent-
ation of Q8 �α Z similar to that of the construction of Proposition 60(a) in the case n �
0 mod 4. In order to obtain such a representation, note that by [GG5, Proposition 1.5
and Theorem 1.6], the standard copy

�
α12, ∆n

D
of Dic4pn�2q exhibits both conjugacy

classes of subgroups isomorphic to Q8 in BnpS2q. To construct a copy H of Q8 �α Z, the

elements of the copy of Q8 of order 4 must be conjugate, so H � A
α
1pn�2q{2
2 , α12∆n

E
(up

to conjugacy). We then need to look for an element z of BnpS2q of infinite order whose
action by conjugacy on H permutes cyclically the elements α

1pn�2q{2
2 , ∆n and α

1pn�2q{2
2 ∆n

of H (or perhaps their inverses). Propositions 57(a) and 62(a) imply the existence of z,
but we have not been able to find explicitly such an element.

4 Type I subgroups of BnpS2q of the form F � Z with F �
T�, O�, I�

We now consider the problem of the existence of Type I subgroups of BnpS2q of the form
F �Z with F � T�, O�, I�. In the case where the product is direct, the question will be
treated in Section 4.1. Proposition 45 asserts that the only nontrivial action occurs when
F � T�, in which case the action is that given by equation (14). This possibility will be
dealt with in Section 4.2.
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4.1 Type I subgroups of BnpS2q of the form F �Z with F � T�, O�, I�
In this section, we prove the following result.

PROPOSITION 62.
(a) Suppose that n � 12 or that n ¥ 16 is even. Then the group T��Z is realised as a subgroup
of BnpS2q.
(b) Suppose that n � 24 or that n ¥ 30 is congruent to 0 or 2 mod 6. Then the group O� �Z

is realised as a subgroup of BnpS2q.
(c) Suppose that n � 60 or that n ¥ 72 is congruent to 0, 2, 12 or 20 mod 30. Then the group
I� �Z is realised as a subgroup of BnpS2q.
(d) The group T� �Z (resp. O� �Z) is not realised as a subgroup of B4pS2q (resp. B6pS2q).
REMARKS 63.
(a) Since T� �Z is not realised as a subgroup of B4pS2q, neither is T� �ω Z.
(b) Theorem 5(3) follows immediately from Proposition 62(d).

REMARK 64. For the following values of n not covered by Proposition 62, the associated
binary polyhedral group occurs as a subgroup of BnpS2q, but it is an open question as
to whether the given direct product is realised or not:
(i) T� �Z, for n P t6, 8, 10, 14u,
(ii) O��Z, for n P t8, 12, 14, 18, 20, 26u,
(iii) I� �Z, for n P t12, 20, 30, 32, 42, 50, 62u.
Proof of Proposition 62. We start by proving part (a). Suppose that n � 12 or that n ¥ 16
is even. Set n � 6l � 4m, where l ¥ 2 and m P t0, 1, 2u. Let ∆ be a regular tetrahedron,
and let X � ∆ be an n-point subset invariant under the action of the group Γ � A4 of
rotations of ∆. We may suppose that each edge of ∆ contains l equally-spaced points in
its interior. If m ¥ 1 then we place four points of X at the vertices of ∆, and if m � 2,
we add a further four points at the barycentres of the faces. We inscribe ∆ within the
sphere S2, and from now on, the two shall be identified by radial projection without
further comment.

Recall that Homeo�pS2, Xq and

Ψ : Homeo�pS2, Xq ÝÑMCGpS2, nq
were defined in Section I.4. Now Γ is a subgroup of Homeo�pS2, Xq whose image rΓ �
ΨpΓq under Ψ is also isomorphic to A4. Indeed, f P Homeo�pS2, Xq belongs to Ker pΨq
if and only if it is isotopic to the identity relative to X. Such an f would thus fix X
pointwise, but the only element of Γ which achieves this is the identity. So the restriction
of Ψ to Γ is injective.

Since rΓ � A4, the preimage Λ � ϕ�1
�rΓ� under the homomorphism ϕ of equa-

tion (11) is a copy of T�. The aim is to prove the existence of an element v of infinite
order belonging to the centraliser of Λ in BnpS2q. We claim that it suffices to exhibit
an element rz of infinite order belonging to the centraliser of rΓ in MCGpS2, nq. Indeed,
suppose such a rz exists, and let z P BnpS2q be a preimage of rz under ϕ. Clearly z is also
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of infinite order. Let w P Λ, and let rw � ϕpwq P rΓ. Then ϕprw, zsq � r rw, rzs � 1, sorw, zs � ∆
2ε
n , where ε P t0, 1u. Thus wzw�1 � z∆

2ε
n , hence wz2w�1 � z2 for all w P Λ, and

so we may take v � z2. It follows that xΛ, vy � T� �Z.
To prove the existence of rz, denote the edges of ∆ by e1, . . . , e6, and for j � 1, . . . , 6,

let f j P Γ be such that f jpe1q � ej (we choose f1 � Id). Let C1 be a positively oriented
simple closed curve containing the l points of X belonging to e1, and let A1 be a small
annular neighbourhood of C1, chosen so that the orbit C of C1 (resp. the orbit A of
A1) under the action of Γ consists of the six (disjoint) oriented simple closed curves
Cj � f jpC1q, j � 1, . . . , 6 (resp. six pairwise-disjoint annuli Aj � f jpA1q, j � 1, . . . , 6)
(see Figure 8). The orbits C and A are obviously invariant under this action. Each
Ci is associated with the edge ei of ∆, and bounds a disc containing the l points of
X X ei. Let T1 P Homeo�pS2, Xq be the (positive) Dehn twist along C1 in A1, and set
Ti � fi � T1 � f�1

i . Then Ti is the (positive) Dehn twist along Ci in Ai. Since the Ai are
pairwise disjoint, the Ti commute pairwise.

∆

A1

e1

C1

Figure 8: The geometric construction of rz in MCGpS2, 12q.
Set T � T1 � � � � � T6. Let us prove that T is an element of Homeo�pS2, Xq of infinite

order belonging to the centraliser of Γ. To see this, let f P Γ, and let x P ∆. First suppose
that x R �6

i�1 Ai. Then f pxq R �6
i�1 Ai since

�6
i�1 Ai is invariant under the action of

Γ, and so f � Tpxq � f pxq � T � f pxq as required. Now assume that x P Aj for some
j � 1, . . . , 6. By relabelling the edges of ∆ if necessary, we may suppose that x P A1. Letxgy � Z2 be the stabiliser of e1 in Γ. If we parametrise A1 as r0, 1s�S1 then T1 is defined
by T1pt, sq � pt, se2πitq, and the restriction of g to A1 is given by gpt, sq � pt, seπiq. A
straightforward calculation shows that g � T1 � T1 � g on A1. By considering the action
on the oriented edges of ∆, it follows that there exist i P t1, . . . , 6u and ε P t0, 1u such
that f � fi � gε, so f pxq P Ai, and:

T � f pxq � Ti � f pxq � Ti � fi � gεpxq � fi � T1 � gεpxq � fi � gε � T1pxq � f � Tpxq,
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using the facts that the Tj commute pairwise, and that for j � 1, . . . , 6, the support of
Tj is Aj. This shows that T belongs to the centraliser of Γ in Homeo�pS2, Xq, and sorT � ΨpTq belongs to the centraliser of rΓ in MCGpS2, nq. It remains to show that rT is
of infinite order. This is a consequence of a generalisation of the intersection number
formula for Dehn twists, see [FM, Propositions 3.2 and 3.4] for example. An alternat-
ive proof of this fact is as follows. Since rT belongs to the pure mapping class group
PMCGpS2, nq of S2 on n points, we may consider its image pT under the homomorph-
ism PMCGpS2, nq ÝÑ PMCGpS2, 4q, obtained in an analogous manner to the Fadell-
Neuwirth homomorphism by removing all but two pairs of points, one pair contained
in the small disc bounded by C1, and another pair contained in that bounded by C2.
Since C1 and C2 are both positively oriented, pT is the image under ϕ of a pure braid,
which choosing appropriate generators, may be written as σ2

1 σ2
3 . We saw at the end of

the proof of Proposition 53 that this element is of infinite order, and this implies thatrT is also of infinite order. We have thus shown that there exists an element rz � rT of
infinite order belonging to the centraliser of rΓ in MCGpS2, nq, and this proves part (a).

Applying a similar construction for O� (taking ∆ to be a cube) and for I� (taking ∆

to be a dodecahedron) yields parts (b) and (c). Note that in the case of O� (resp. I�), we
have that n � 0, 2 mod 6 (resp. n � 0, 2, 12, 20 mod 30). We set n � 12l � 8m� 6r (resp.
n � 30l � 20m� 12r), where l P N, and m, r P t0, 1u denote respectively the number of
points of X placed at the vertices of ∆ and at the barycentre of the faces of ∆. Since we
require l ¥ 2 in the construction, the excluded values of n are 6, 8, 12, 14, 18, 20 and 26
(resp. 12, 20, 30, 32, 42, 50 and 62).

Finally, we prove part (d). Suppose that T� � Z (resp. O� � Z) is realised as a sub-
group K of B4pS2q (resp. B6pS2q). Since T� (resp. O�) possesses elements of order 6 (resp.
8) by Proposition 85, K contains a subgroup H isomorphic to Z6 � Z (resp. Z8 � Z)
whose finite factor is conjugate to xα1y (resp. xα2y) by Theorem 1. But the existence of
H then contradicts Proposition 31.

As a consequence of Proposition 62(d), we obtain the following result which com-
plements that of Proposition 8.

COROLLARY 65. If n � 4 (resp. n � 6), let H be a subgroup of BnpS2q isomorphic to T� (resp.
O�). Then the normaliser of H in BnpS2q is H itself.

Proof. In both cases, H is finite maximal by Theorem 2, so it suffices to prove that
N � NBnpS2qpHq is finite. If x P N then some power of x belongs to ZBnpS2qpHq, but
by Proposition 62(d), x must be of finite order. Hence N is finite by Proposition 28.

4.2 Realisation of T� �ω Z

We now consider the realisation of T� �ω Z as a subgroup of BnpS2q, where ωp1q is as
defined in equation (14).

PROPOSITION 66. If O� �Z is realised as a subgroup of BnpS2q then so is T� �ω Z.
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REMARK 67. Let n R t6, 8, 12, 14, 18, 20, 26u. Putting together the results of Proposi-
tions 62(b) and 66, we see that T��ω Z is realised as a subgroup of BnpS2q if and only if
n � 0, 2 mod 6.

Proof of Proposition 66. Suppose that O� �Z is realised as a subgroup L of BnpS2q. Then
there exist a subgroup K of BnpS2q isomorphic to O� and an element z P BnpS2q of infin-
ite order such that z belongs to the centraliser of K. Let equation (28) denote a present-
ation of K, and let H � xP, Q, Xy denote the subgroup of K isomorphic to T�, with the
presentation of equation (13). Equations (14) and (28) imply that the restriction to H of
conjugation by the element R of K represents the nontrivial element of Out pT�q. But z
commutes with R, so zR is of infinite order, and since z also belongs to the centraliser
of H, it follows that xH, zRy � T� �ω Z.

5 Proof of the realisation of the elements ofV1pnq in BnpS2q
In this section, we bring together the results of Sections II.1–4 to prove Proposition 68.
This proposition will imply Theorem 5(2) for the Type I subgroups of BnpS2q, namely
the realisation of the virtually cyclic groups given by (1)(a)–(i) of Definition 4, with the
exception of the values of n given in Remark 6(a) and not covered by Theorem 5(2)(a)–
(d).

PROPOSITION 68. Let n ¥ 4. The following Type I virtually cyclic groups are realised as
subgroups of BnpS2q:
(a) Zq �Z, where q � 2pn� iq with i P t0, 1, 2u, 1 ¤ q ¤ n� i, and q   n� i if n� i is odd.
(b) Zq �ρ Z, where q � 2pn� iq with i P t0, 2u, 3 ¤ q ¤ n� i, q   n � i if n � i is odd, and
ρp1q P Aut

�
Zq

�
is multiplication by �1.

(c) Dic4m �Z, where m � n� i with i P t0, 2u, and 3 ¤ m ¤ pn� iq{2.
(d) Dic4m �νZ, where m � n � i with i P t0, 2u, m ¥ 3, pn � iq{m is even, and νp1q is the
automorphism of Dic4m given by equation (12).
(e) (i) Q8 �Z for all n even.
(ii) Q8 �α Z, for all n even, n R t6, 10, 14u, where αp1q P Aut pQ8q is given by αp1qpiq � j and
αp1qpjq � k, and where Q8 � t�1,�i,�j,�ku.
(iii) Q8 �β Z for all n even, where βp1q P Aut pQ8q is given by βp1qpiq � k and βp1qpjq � j�1.
(f) T� �Z, where n � 12 or n ¥ 16 is even.
(g) T� �ω Z, where n � 24 or n ¥ 30 and n � 0, 2 mod 6, and ωp1q is the automorphism of
T� given by equation (14).
(h) O� �Z, where n � 24 or n ¥ 30 and n � 0, 2 mod 6.
(i) I� �Z, where n � 60 or n ¥ 72 and n � 0, 2, 12, 20 mod 30.

Proof. Parts (a), (b), (c) and (d) are proved in Propositions 52, 53, 54 and 56 respectively.
By Proposition 60(b), Q8 �β Z is realised as a subgroup of BnpS2q for all n ¥ 4 even, and
its subgroup generated by Q8 and the square of the Z-factor is abstractly isomorphic to
Q8 �Z, which proves parts (e)(i) and (iii). We now consider the realisation of Q8 �α Z

as a subgroup of BnpS2q. Suppose first that n � 0 mod 4. If n ¥ 8 then the result
follows from Proposition 60(a). So suppose that n � 4. By [GG6, Theorem 1.3(3)], B4pS2q
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contains a copy of Q8 generated by x � σ3σ�1
1 and y � pσ2

1 σ2σ�3
1 qσ3σ�1

1 pσ3
1 σ�1

2 σ�2
1 q, and

the element a � σ2
1 σ2σ�3

1 , which is of infinite order, acts by conjugation on xx, yy by
sending x to y and y to xy. Hence the subgroup xx, y, ay of B4pS2q is isomorphic to
Q8 �α Z as required. Now suppose that n � 2 mod 4. If n R t6, 10, 14u then n ¥ 18.
So by Proposition 62(a), T� � Z is realised as a subgroup of BnpS2q, and we deduce
from Proposition 57(a) that BnpS2q contains a copy of Q8 �α Z, which proves part (e)(ii).
Parts (f), (h) and (i) follow directly from Proposition 62(a)–(c). Finally, to prove part (g),
if n � 24 or n ¥ 30 and n � 0, 2 mod 6 then O� � Z is realised as a subgroup of BnpS2q
by Proposition 62(b), and so BnpS2q contains a copy of T� �ω Z by Proposition 66.

REMARK 69. In Proposition 68(e)(ii), we do not know whether the Type I group Q8 �α Z

is realised as a subgroup of BnpS2q for n P t6, 10, 14u. In [GG5, Remark 3.3], we exhibited
a copy xγ, δy of T� in B6pS2q, where

γ � σ5σ4σ�1
1 σ�1

2 and δ � σ�1
3 σ�1

4 σ�1
5 σ�1

2 σ�1
1 σ�1

2 σ5σ4σ5σ5σ4σ3

(note that there is a typing error in the original version, the expression for δ there is
missing the terms σ5σ4σ5). The action of conjugation by γ permutes cyclically the ele-
ments γiδγ�i, i � 0, 1, 2, and gives rise to the semi-direct product structure Q8 �Z3 of
T�. In order to obtain a subgroup of B6pS2q isomorphic to Q8 �α Z, the proof of Propos-
ition 57(a) shows that it suffices to exhibit an element z P B6pS2q of infinite order that
commutes with γ and δ, but up until now, we have not been able to find such a z.

6 Realisation of the elements of V2pnq in BnpS2q
We now turn our attention to the problem of the realisation in BnpS2q of the virtually
cyclic groups of Type II described in Definition 4(2). In Section 6.1, we consider those
groups that contain a cyclic or dicyclic factor. In Section 6.2, we discuss the realisation
of O��T� O� in BnpS2q.
6.1 Realisation of the elements of V2pnq with cyclic or dicyclic factors

THEOREM 70. For all n ¥ 4, the following Type II virtually cyclic groups are realised as sub-
groups of BnpS2q:
(a) Z4q �Z2q Z4q, where i P t0, 1, 2u and q divides pn� iq{2.
(b) Z4q �Z2q Dic4q, where i P t0, 2u, q ¥ 2 and q divides pn� iq{2.
(c) Dic4q �Z2q Dic4q, where i P t0, 2u, q ¥ 2 and q divides n� i strictly.
(d) Dic4q �Dic2q Dic4q, where i P t0, 2u, and q ¥ 4 is an even divisor of n� i.

Proof. Let n ¥ 4. First recall that if 1 ¤ j ¤ n � 1, the kernel of the homomorphism
Pn�1pS2q ÝÑ PnpS2q defined geometrically by deleting the jth string may be identified
with the fundamental group

π1

�
S

2z  x1, . . . , xj�1, xj�1, . . . , xn�1
(

, xj

	
,
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which is a free group of rank n� 1 for which a presentation is given by�
A1,i, . . . , Ai�1,i, Ai,i�1, . . . , Ai,n | A1,i � � � Ai�1,i Ai,i�1 � � � Ai,n � 1

D
, (61)

and for which a basis is obtained by selecting any n � 1 distinct elements of the set 
A1,j, . . . , Aj�1,j, Aj,j�1, . . . , Aj,n�1

(
, where for 1 ¤ i   j ¤ n� 1,

Ai,j � σj�1 � � � σi�1σ2
i σ�1

i�1 � � � σ�1
j�1 � σ�1

i � � � σ�1
j�2σ2

j�1σj�2 � � � σi. (62)

We consider the four cases of the statement of the theorem in turn.
(a) We first treat the case q � 1, and then go on to deal with the general case q ¥ 2.

1st case: q � 1. We shall construct a subgroup of BnpS2q isomorphic to Z4 �Z2 Z4. Set
i � 2 if n is even, and i � 1 if n is odd. Then pn� iq is even, and the condition given in the
statement is satisfied. Let v1 � α

pn�iq{2
i , v2 � σn�iv1σ�1

n�i, and for j � 1, 2, let Gj � �
vj
D

.
Then

∣

∣Gj
∣

∣ � 4 by equation (8), and G1 X G2 � �
∆

2
n
D

since ∆
2
n is the unique element of

BnpS2q of order 2. Let H � xG1 YG2y. By Proposition 23, to prove that H � Z4 �Z2 Z4,
it suffices to show that H is of infinite order, or indeed that H contains an element of
infinite order. Consider the element v1v2 of H. A straightforward calculation shows
that:

πpv1q � �
1, n�i

2 � 1
	�

2, n�i
2 � 2

	 � � ��n�i
2 � 1, n� i� 1

	�
n�i

2 , n� i
	

πpv2q � �
1, n�i

2 � 1
	�

2, n�i
2 � 2

	 � � ��n�i
2 � 1, n� i� 1

	�
n�i

2 , n� i � 1
	

πpv1v2q � �
n�i

2 , n� i, n� i � 1
	

,

and thus πpv1v2q consists of one 3-cycle and n � 3 fixed points. So if n ¥ 6, by The-
orem 1, v1v2 is of infinite order, and this implies that H is infinite as required. It remains
to treat the cases n � 4, 5. Suppose first that n � 4, and assume that H is finite. Then H
is contained in a maximal finite subgroup K of B4pS2q, where K is isomorphic to Q16 or
T� by Theorem 2. Since πpv1v2q is a 3–cycle and the set of torsion elements of PnpS2q is�

∆
2
n
D

, v1v2 is of order 3 or 6, and so K � T�. On the other hand, the elements of order 4
of T� � Q8 � Z3 all belong to its subgroup isomorphic to Q8, and so the product v1v2
of elements of order 4 is of order 1, 2 or 4. This yields a contradiction, so H is infinite in
this case. Now suppose that n � 5. Using equations (8) and (23), as well as the fact that
α1 � α0σ4, we obtain:

v1v2 � α2
1σ4α2

1σ�1
4 � α4

1α�2
1 σ4α2

1σ�1
4 � ∆

2
5α�1

1 σ�1
4 α�1

0 σ4α0σ4α1σ�1
4� ∆

2
5σ�1

4 α�1
0 σ�1

4 σ3σ4α0 � ∆
2
5σ�1

4 σ�1
3 σ2σ3 � ∆

2
5σ2pσ�1

4 σ3qσ�1
2 .

So to show that v1v2 is of infinite order, it suffices to prove that σ�1
4 σ3 is of infinite order.

We have pσ�1
4 σ3q3 � σ�2

4 σ4σ3σ�1
4 σ3σ�1

4 σ3 � σ�2
4 σ�1

3 σ4σ2
3 σ�1

4 σ3 � σ�2
4 σ�2

3 σ2
4 σ2

3 . (63)

So pσ�1
4 σ3q3 belongs to the free group π1pS2z tx1, x2, x3, x5u , x4q, and in terms of the basistA2,4, A3,4, A4,5u of the latter, may be written as the commutator rA�1

4,5 , A�1
3,4s. It follows

that pσ�1
4 σ3q3 and H are of infinite order, and thus H � Z4 �Z2 Z4 by Proposition 23.
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2nd case: q ¥ 2. We claim that it suffices to find distinct cyclic subgroups G1, G2 of BnpS2q
of order 4q for which G1 X G2 contains a (cyclic) subgroup of order 2q. To prove the
claim, let G1 and G2 be subgroups of BnpS2q satisfying these conditions, and suppose
that H � xG1 Y G2y is finite. Let K be a maximal finite subgroup of BnpS2q containing H.
Since G1 � G2, K contains two distinct copies of Z4q, and so cannot be cyclic or dicyclic,
nor by Proposition 85 can it be isomorphic to T� or I�, since q ¥ 2. So suppose that
K � O�. Then q � 2 by Proposition 85, Gj � Z8, where j � 1, 2, and G1 X G2 � Z4 by
hypothesis. Under the restriction of the homomorphism ϕ of equation (11), O� is sent
to S4, the ϕpGjq are sent to subgroups of S4 generated by 4-cycles, and |ϕpG1 X G2q| � 2.
But in S4, the intersection of two subgroups generated by 4-cycles cannot be of order 2,
so K � O�. We conclude that H is infinite, hence H � Z4q �Z2q Z4q by Proposition 23,
which proves the claim.

We now exhibit subgroups G1 and G2 of BnpS2q satisfying the properties of the claim.
By hypothesis, m � pn� iq{2q P N. Let G1 � �

αm
i

D
and G2 � ξG1ξ�1, where

ξ � δ2m,i � σ1σ2m�1 � � � σmp2q�4q�1σmp2q�2q�1� σ1σ2m�1 � � � σn�i�4m�1σn�i�2m�1,

using the notation of equation (45). Then Gj � Z4q for j � 1, 2 by equation (8). Now
πpαm

i q contains the 2q-cycle p1, mp2q�1q�1, mp2q�2q�1, . . . , m�1q, and so πpαmk
i qp1q Pt1, m� 1, . . . , mp2q� 1q � 1u for all k P N. On the other hand,

πpξαm
i ξ�1qp1q � πpαm

i ξ�1qp2q� πpξ�1qpmp2q� 1q � 2q � mp2q� 1q � 2

(recall that as for braids, we compose permutations from left to right). Thus ξαm
i ξ�1 R

G1, so G2 � G1. Taking the integer m of Lemma 51 to be 2m, we have that 2m divides
n � i and so r � 2m ¥ 2. By part (c) of that proposition, ξ commutes with α2m

i . Thus
G1 XG2 � �

α2m
i

D � Z2q, and so G1 and G2 satisfy the hypotheses of the claim.

(b) Suppose that q ¥ 2 divides pn � iq{2 for some i P t0, 2u, so n is even. Set m �pn� iq{2q, and let
ξi � σ1� i

2
σ1�2m� i

2
� � � σ1�n�2m� i

2
, (64)

Equation (23) implies that ξi � α
i{2
0 δ2m,iα

�i{2
0 , where δ2m,i is as in equation (45). Taking

the integer m of Lemma 51 to be 2m, it follows from part (c) of that lemma that δ2m,i
commutes with α2m

i , and thus ξi commutes with α12m
i , where α1i is given by equation (10).

We analyse separately the two cases m � 1 and m ¥ 2.

1st case: m � 1. Then 2q � n� i. Take G1 � A
ξiα

1
iξ
�1
i

E
and G2 � �

α12i , α1i∆n
D

, where ξi is
as defined above. Then G1 � Z2pn�iq � Z4q, and G2 is one of the two dicyclic subgroups
of order 2pn � iq of the standard copy of Dic4pn�iq, so G2 � Dic4q and G1 � G2. Since
ξi commutes with α12i , it follows that G1 X G2 � �

α12i D � Z2q. Set H � xG1 Y G2y. By
Proposition 23, to see that H � Z4q �Z2q Dic4q, it suffices to show that H contains an

element of infinite order. Consider η � ξiα
1
iξ
�1
i . α1i∆n P H. Since ξi commutes with ∆n
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by equation (7) as well as with α12i , and n� i is even, we have

η2pn�iq � pξiα
1
iξ
�1
i α1i∆n. ξiα

1
iξ
�1
i α1i∆�1

n . ∆
2
nqn�i � pξiα

1
iξ
�1
i α1iξiα

1�1
i ξ�1

i α1�1
i ∆

2
nqn�i� pξiα

1
iξ
�1
i α1i. α1�2

i q2pn�iq � pξiα
1
iξ
�1
i α1iq2pn�iqα1�4pn�iq

i � rη2pn�iq,
using also equation (8), where rη � ξiα

1
iξ
�1
i α1i. (65)

So to prove that η is of infinite order, it suffices to show that rη is of infinite order. Since
πpξiq is of order 2 and

πpξiq � �
1� i

2 , 2� i
2

	 �
3� i

2 , 4� i
2

	 � � ��n� 1� i
2 , n� i

2

	
πpα1iq � �

n� i
2 , n� 1� i

2 , . . . , 2� i
2 , 1� i

2

	
,

we have
πprηq � pπpξiα

1
iqq2 � �

n� i
2 , n� i

2 � 2, . . . , 4� i
2 , 2� i

2

	2
,

and the cycle decomposition of πprηq consists of two pn� iq{4-cycles (resp. one pn� iq{2-
cycle) if n� i is divisible (resp. is not divisible) by 4, plus pn� iq{2 fixed points. If either
i � 0 and n ¥ 6 or if i � 2 and n ¥ 8 then the cycle decomposition of πprηq contains a
cycle of length at least two, plus at least three fixed points, and so rη is of infinite order
by Theorem 1. Let us deal with the three remaining cases, which are given by n � 4
and i P t0, 2u, and n � 6 and i � 2.

(i) i � 0 and n � 4. Using the presentation of equation (61), we haverη � σ1σ3σ1σ2σ3σ�1
3 σ�1

1 σ1σ2σ3 � σ2
1 σ3σ2

2 σ3 � A1,2A2,4A3,4 � A1,2A�1
1,4 ,

which may be interpreted as an element of π1pS2z tx2, x3, x4u , x1q for which a basis istA1,2, A1,4u.
(ii) i � 2 and n � 4. In this case, rη � σ2

2 σ4
3 � A2,3A2

3,4 belongs to the free group
π1pS2z tx1, x2, x4u , x3q for which a basis is tA2,3, A3,4u.
(iii) i � 2 and n � 6. Then by equation (3),rη � σ2σ4. σ2σ3σ4σ2

5 . σ�1
4 σ�1

2 . σ2σ3σ4σ2
5 � σ2σ4. σ�2

1 σ�1
2 σ�1

3 σ�1
4 . σ�1

4 σ3σ4σ2
5� σ2σ�2

1 σ�1
2 . σ4σ�1

3 σ�2
4 σ3σ4σ2

5 � σ2σ�2
1 σ�1

2 . σ2
4 σ�2

3 σ2
5 � A�1

1,3 A4,5A�1
3,4 A5,6. (66)

Projecting rη onto P4pS2q by forgetting the 4th and 5th strings yields A�1
1,3 , which is of

infinite order.

In all three cases, we conclude that rη is of infinite order, and this completes the proof of
the case m � 1.
2nd case: m ¥ 2. Let G1 � A

ξiα
1m
i ξ�1

i

E
and G2 � �

α12m
i , ∆n

D
, where ξi is as defined in

equation (64). Then G1 � Z4q and G2 � Dic4q, so G1 � G2. Since ξi commutes with
α12m

i , we have G1 X G2 � �
α12m

i

D � Z2q. By Proposition 23, to prove that the group H �xG1 Y G2y is isomorphic to Z4q �Z2q Dic4q, it suffices to show that it contains an element
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of infinite order. Consider the element η � ξiα
1m
i ξ�1

i . ∆n of H. Using equation (10), we
have that

η2 � ξiα
1m
i ξ�1

i ∆n. ξiα
1m
i ξ�1

i ∆
�1
n ∆

2
n � ξiα

1m
i ξ�1

i ξ1iα1�m
i ξ1�1

i ∆
2
n,

where
ξ1i � ∆nξi∆

�1
n � σ2m�1� i

2
σ4m�1� i

2
� � � σn�2m�1� i

2
σn�1� i

2
. (67)

All of the generators appearing in equations (64) and (67) commute pairwise, so ξi
commutes with ξ1i. Since ∆

2
n is central and of order 2, η is of infinite order if and only if

η2
∆
�2
n is. We now distinguish three subcases.

1st subcase: m � 2. In this case, 4q � n� i,

ξi � σ1� i
2
σ5� i

2
� � � σn�3� i

2
and ξ1i � σ3� i

2
σ7� i

2
� � � σn�5� i

2
σn�1� i

2
,

and hence α12i ξiα
1�2
i � ξ1i by equation (23). Since ξi commutes with α14i , this implies that

α12i ξ1iα1�2
i � ξi, and thus

η2
∆
�2
n � ξiα

12
i ξ�1

i ξ1iα1�2
i ξ1�1

i � ξiξ
1�1
i ξiξ

1�1
i � ξ2

i ξ1�2
i .

Now n ¥ 8 since q ¥ 2, and projecting η2
∆
�2
n onto B4pS2q by forgetting all but the�

1� i
2

	th
,
�

2� i
2

	th
,
�

5� i
2

	th
and

�
6� i

2

	th
strings yields the braid σ2

1 σ2
3 of P4pS2q,

which by equation (45) is the element δ2
2,0. But this element is of infinite order by

Lemma 51(c), and we conclude that η is also of infinite order.
2nd subcase: m � 3. Since q ¥ 2, we have n ¥ 12� i and ξi � σ1� i

2
σ7� i

2
� � � σn�5� i

2
. So

πpηq ��
1� i

2 , 2� i
2

	�
7� i

2 , 8� i
2

	 � � ��n� 5� i
2 , n� 4� i

2

	
.�

1� i
2 , n� 2� i

2 , n� 5� i
2 , . . . , 4� i

2

	
.�

2� i
2 , n� 1� i

2 , n� 4� i
2 , . . . , 5� i

2

	
.�

3� i
2 , n� i

2 , n� 3� i
2 , . . . , 6� i

2

	
.
�

1� i
2 , 2� i

2

	�
7� i

2 , 8� i
2

	 � � ��
n� 5� i

2 , n� 4� i
2

	
.
�

1, n
	 �

2, n� 1
	 � � ��n

2 , n
2 � 1

	
.

If i � 0 (resp. i � 2), the cycle decomposition of πpηq contains the two cycles p1, 2, 3q
and p4, n� 1, 6, n� 2, 5, nq (resp. p1, nq and p2, 3, 4q), and we deduce from Theorem 1 that
η is of infinite order.
3rd subcase: m ¥ 4. Since q ¥ 2, we have n ¥ 16. Using equations (23) and (24), we have
that

α1mi σn�1� i
2
α1�m

i � α
i{2
0 αm

i α
�i{2
0 σn�1� i

2
α

i{2
0 α�m

i α
�i{2
0 � α

i{2
0 αm

i σn�1�iα
�m
i α

�i{2
0� α

i{2
0 αm�2

i σ1α
�pm�2q
i α

�i{2
0 � σm�1� i

2
,
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from which one may see that

α1mi ξiα
1�m
i � σm�1� i

2
σ3m�1� i

2
� � � σn�3m�1� i

2
σn�m�1� i

2
, and (68)

α1mi ξ1iα1�m
i � σm�1� i

2
σ3m�1� i

2
� � � σn�3m�1� i

2
σn�m�1� i

2
. (69)

The terms in each of the expressions (64), (67), (68) and (69) commute pairwise, and
since m ¥ 4, ξi, ξ1i, α1mi ξiα

1�m
i and α1mi ξ1iα1�m

i also commute pairwise. So:

η2
∆
�2
n � ξi . α1mi ξ�1

i α1�m
i . α1mi ξ1iα1�m

i . ξ1�1
i� σ1� i

2
σm�1� i

2
σ�1

m�1� i
2
σ�1

2m�1� i
2
� � � σn�2m�1� i

2
σn�m�1� i

2
σ�1

n�m�1� i
2
σ�1

n�1� i
2
,

and all of the terms in this expression commute pairwise. Projecting η2
∆
�2
n onto B4pS2q

by forgetting all but the strings numbered 1� i
2 , 2� i

2 , m� 1� i
2 and m� i

2 yields the
braid σ1σ3, which we know to be of infinite order from the case m � 2. So η and H are
also of infinite order. This completes the proof of the realisation of Z4q �Z2q Dic4q as a
subgroup of BnpS2q for all q ¥ 2 dividing pn� iq{2.

(c) Let q ¥ 2 be a strict divisor of n � i, where i P t0, 2u, and let m � pn � iq{q. Then
m ¥ 2. We distinguish the cases m � 2 and m ¥ 3.

1st case: m � 2. Then 2q � n� i, and n is even. Let G1 � �
α12i , α1i∆n

D
and G2 � ξiG1ξ�1

i ,

where ξi � α
i{2
0 δ2,iα

�i{2
0 . Then G1, G2 � Dic2pn�iq � Dic4q. As we saw in the case m � 1

of part (b) above, ξi commutes with α12i , and so G1 XG2 � F, where F � �
α12i D � Z2q. Let

H � xG1 YG2y. To complete the construction, it suffices once more by Proposition 23
to show that H contains an element of infinite order. Consider the following element of
H:

ξiα
1
i∆nξ�1

i . α1i∆n. α12i � ξiα
1
iξ
�1
i α1i∆2

n � rη∆
2
n,

using equation (10) and the fact that ∆n commutes with ξi, and where rη is as defined in
equation (65). But we saw there that rη is of infinite order, so rη∆

2
n is too, and thus H is

infinite.
2nd case: m ¥ 3. Then n ¥ 6 � i. Set G1 � �

α1mi , ∆n
D

and G2 � ξiG1ξ�1
i , where ξi �

α
i{2
0 δm,iα

�i{2
0 , and since δm,i commutes with αm

i by Lemma 51(c), ξi commutes with α1mi .
Thus G2 � �

α1mi , ξi∆nξ�1
D

, and G1 XG2 � �
α1mi D � Z2q. To complete the construction, it

suffices to show that H � xG1 YG2y contains an element of infinite order. Consider the
element rξi, ∆ns � ξi∆nξ�1

i . ∆
�1
n P H. Then:rξi, ∆ns �ξi . ∆nξ�1

i ∆
�1
n � σ1� i

2
σm�1� i

2
� � � σn�m�1� i

2
.

σ�1
m�1� i

2
σ�1

2m�1� i
2
� � � σ�1

n�m�1� i
2
σ�1

n�1� i
2��

σ1� i
2
σ�1

m�1� i
2


�
σm�1� i

2
σ�1

2m�1� i
2


 � � ��σn�m�1� i
2
σ�1

n�1� i
2



,

where the bracketed terms commute pairwise. If m � 3 then after having projectedrξi, ∆ns3 into P4pS2q by forgetting all but the first four strings, we carry out a calculation
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similar to that of equation (63). If m ¥ 4, we project rξi, ∆ns into B4pS2q by forgetting all
but the strings numbered 1� i

2 , 2� i
2 , m� 1� i

2 and m� 2� i
2 , which yields the braid

σ1σ3 of infinite order. In both cases, we conclude that rξi, ∆ns is of infinite order. Thus
H is of infinite order, and it follows from Proposition 23 that H � Dic4q �Z2q Dic4q.

(d) Let q ¥ 4 be an even divisor of n � i, and set m � pn � iq{q, G1 � �
α1mi , ∆n

D
and

G2 � λiG1λ�1
i , where

λi � pq�2q{2¹
j�0

σmp1�2jq� i
2
� σm� i

2
σ3m� i

2
� � � σn�3m� i

2
σn�m� i

2
. (70)

Then both G1 and G2 are isomorphic to Dic4q, and:

∆nλi∆
�1
n � ∆nσm� i

2
σ3m� i

2
� � � σn�3m� i

2
σn�m� i

2
∆
�1
n� σn�m� i

2
σn�3m� i

2
� � � σ3m� i

2
σm� i

2
� λi (71)

by equation (7). Further, by equations (23) and (24), we have

α12m
i σn�m� i

2
α1�2m

2 � α
i{2
0 α2m

i α
�i{2
0 σn�m� i

2
α

i{2
0 α�2m

i α
�i{2
0 � α

i{2
0 α2m

i σn�m�iα
�2m
i α

�i{2
0� α

i{2
0 αm�1

i σn�i�1α
�pm�1q
i α

�i{2
0 � α

i{2
0 αm�1

i σ1α
�pm�1q
i α

�i{2
0 � σm� i

2
,

and from this and equation (70) it follows that λi also commutes with α12m
i . This fact and

equation (71) imply that G1 X G2 � �
α12m

i , ∆n
D � Dic2q. To complete the construction,

it suffices to show that the subgroup H � xG1 YG2y is infinite, or equivalently, that
it contains an element of infinite order. We consider the two cases m � 1 and m ¥ 2
separately.
1st case: m � 1. Then q � n� i ¥ 4, n is even and G1 � G2 � Dic4pn�iq. If the element
λiα

1
iλ
�1
i of G2 belonged also to G1, since it is of order 2pn� iq ¥ 8, it would be an element

of the subgroup
�

α1iD of G1, and so λi would belong to the normaliser of
�

α1iD in BnpS2q.
Proposition 8 then implies that λi is of finite order. However, λi � α

i{2
0 δ2,iα

�i{2
0 is of

infinite order by Lemma 51(c), which yields a contradiction, and so we conclude that
G1 � G2. If Dic4pn�iq is maximal finite in BnpS2q then H must then be infinite, which
gives the result. So suppose that Dic4pn�iq is not maximal. By Theorem 2, we have n � 6
and i � 2, in which case λ2 � σ2σ4 and α12 � σ2σ3σ4σ2

5 . Equation (66) implies that the
element λ2α12λ�1

2 . α12 of H is of infinite order as required.
2nd case: m ¥ 2. Consider the element ρi � α1mi . λiα

1�m
i λ�1

i of H. Then

ρi �α
1pm�1q
i . α1iσm� i

2
σ3m� i

2
� � � σn�3m� i

2
σn�m� i

2
α1�1

i .

α
1�pm�1q
i σ�1

n�m� i
2
σ�1

n�3m� i
2
� � � σ�1

3m� i
2
σ�1

m� i
2
α
1pm�1q
i . α

1�pm�1q
i�α

1pm�1q
i σm�1� i

2
σ3m�1� i

2
� � � σn�3m�1� i

2
σn�m�1� i

2
.

σ�1
n�2m�1� i

2
σ�1

n�4m�1� i
2
� � � σ�1

2m�1� i
2
σ�1

1� i
2
α
1�pm�1q
i�α

1pm�1q
i σ�1

1� i
2
σm�1� i

2
σ�1

2m�1� i
2
σ3m�1� i

2
� � � σ�1

n�2m�1� i
2
σn�m�1� i

2
α
1�pm�1q
i ,
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using equations (23) and (24), the fact that m ¥ 2, as well as the relations:

α1iσn�m� i
2
α1�1

i � α
i{2
0 αiσn�m�iα

�1
i α

�i{2
0� α

i{2
0 σn�m�i�1α

�i{2
0 by equation (23) as n�m� i � 1 ¤ n� i � 1� σn�m�1� i

2
by equation (23) since n�m� 1� i

2
¤ n� 1,

and

α
1pm�1q
i σn�2m�1� i

2
α
1�pm�1q
i �α

i{2
0 αm�1

i σn�2m�1�iα
�pm�1q
i α

�i{2
0�α

i{2
0 σn�m�iα

�i{2
0 by equation (23) as n�m� i ¤ n� i� 1�σn�m� i

2
.

So ρi is conjugate to

σ�1
1� i

2
σm�1� i

2
σ�1

2m�1� i
2
σ3m�1� i

2
� � � σ�1

n�2m�1� i
2
σn�m�1� i

2
,

which under the projection onto B4pS2q that is obtained by forgetting all but the strings
numbered 1� i

2 , 2� i
2 , 2m� 1� i

2 and 2m� 2� i
2 yields the element σ�1

1 σ�1
3 , which we

know to be of infinite order in B4pS2q, so H is also of infinite order. This completes the
proof of the realisation of Dic4q �Dic2q Dic4q as a subgroup of BnpS2q, as well as that of
Theorem 70.

6.2 Realisation of O� �T� O� in BnpS2q
For the realisation of the Type II subgroups of BnpS2q described in Definition 4(2), there
is just one outstanding case not covered by Theorem 70 to be dealt with, that of O��T�
O�. We start by making some general comments. From Theorem 2, there is no finite
subgroup of BnpS2q that contains two copies of O�. In particular, any subgroup of BnpS2q
generated by two distinct copies G1, G2 of O� is necessarily infinite. If further G1XG2 �
T� then it follows from Proposition 23 that xG1 Y G2y � O� �T� O�, from which we
also obtain a subgroup isomorphic to T� � Z for one of the two actions of Z on T� of
Definition 4(1)(f) and (g). Notice also that in this case, [GG5, Proposition 1.5] implies
that G1 and G2 are conjugate by an element that belongs to the normaliser of G1 X G2
since O� contains a unique subgroup isomorphic to T�. Conversely, if ξ is an element
of BnpS2q that belongs to the normaliser of a subgroup K of BnpS2q isomorphic to T�,
and if n � 4 mod 6 then K is contained in a subgroup G1 of BnpS2q isomorphic to O� by
Theorem 2. Either ξG1ξ�1 � G1, in which case ξ belongs to the normaliser of G1, or else
G1 � ξG1ξ�1, in which case

�
G1 Y ξG1ξ�1

D � O��T� O� in light of the above remarks.
We now prove the realisation of O��T� O� in BnpS2q in the following cases.

PROPOSITION 71. Let n � 0, 2 mod 6, and suppose that n � 36 or n ¥ 42. Then BnpS2q
possesses a subgroup that is isomorphic to O��T� O�.
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REMARK 72. It follows from Theorem 5(2)(e) and Proposition 71 that the condition
given in Definition 4(2)(e) for the existence of O� �T� O� as a subgroup of BnpS2q is
necessary and sufficient, unless n belongs to t6, 8, 12, 14, 18, 20, 24, 26, 30, 32, 38u. For
these values of n, which are those of Remark 6(i), it is an open question as to whether
O��T� O� is realised as a subgroup of BnpS2q.
Proof of Proposition 71. In order to obtain a subgroup of BnpS2q that is isomorphic to
O� �T� O�, we shall construct a copy of S4 �A4 S4 in MCGpS2, nq, and then take its
inverse image by the homomorphism ϕ of equation (11). Let n � 0, 2 mod 6, and set
n � 12m � 6ε1 � 8ε2, where m P N and ε1, ε2 P t0, 1u. Since n � 36 or n ¥ 42, we
have that m ¥ 3. We use the notation of the proof of Proposition 62, taking ∆ to be a
cube with m (resp. ε1, ε2) marked points lying on each edge (resp. at the centre of each
face, at each vertex). As in that proof, we consider the group of rotations Γ � S4 of
∆ to be a subgroup of Homeo�pS2, Xq, and we set rΓ � ΨpΓq, which is a subgroup of
MCGpS2, nq isomorphic to S4. Choose an edge e of ∆, fix an orientation of e, and denote
the marked points lying on e by p1, . . . , pm; these points are numbered coherently with
the orientation of e (see Figure 9). Let h be the unique element of Γ different from the
identity and fixing e setwise (so h reverses the orientation of e).

C1

hpC1q
e

∆

p1

pm

prm�1
2 s

Figure 9: The construction of S4 �A4 S4 in BmpS2q, m � 36.

The group Γ possesses a unique subgroup Ω � t f1, . . . , f12u isomorphic to A4, where
we take f1 � Id. For i � 1, . . . , 12, let ei � fipeq, whose orientation is that induced by
e � e1. For any two edges e1 and e2 of ∆, there are precisely two elements of Γ that
send e1 to e2 (as non-oriented edges). One of these elements respects the orientation,
and belongs to Ω, and the other reverses the orientation, and belongs to ΓzΩ. Thus
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h P ΓzΩ and Γ � Ω
²

hΩ since rΓ : Ωs � 2. Let C1 be a simple closed curve bounding
a disc that is a small neighbourhood of the subsegment rp1, prm�1

2 ss of the edge e. Let

g1 be the positive Dehn twist along C1. For i � 1, . . . , 12, let gi � fi � g1 � f�1
i (resp.

g1i � fi � h � g1 � h�1 � f�1
i ) be the positive Dehn twist along the simple closed curve fipC1q

(resp. fi � hpC1q). Since the stabiliser of the edge e in Γ is xhy, which is isomorphic to Z2,
the condition on C1 implies that the fipC1q (resp. the fi � hpC1q) are pairwise disjoint,
and that fipC1q and f j � hpC1q are disjoint if i � j. We conclude that the gi (resp. the g1i)
commute pairwise, and that gi and g1j commute if i � j.

Let g � g1 � � � � � g12. If j P t1, . . . , 12u, conjugation of g by f j permutes the gi, which
commute pairwise, so g and f j commute, and thus g belongs to the centraliser of Ω. Let
Γ
1 � gΓg�1. By construction, Γ � Γ

1 � S4 and Γ X Γ
1 � Ω. Let rΓ � ΨpΓq, rΓ1 � ΨpΓ1q

and rΩ � ΨpΩq. Then rΓ � rΓ1 � S4, rΩ � rΓ X rΓ1 and rΩ � A4. Let us show that H �ArΓY rΓ1E � S4 �A4 S4. To do so, by Proposition 23 it suffices to prove that H is infinite,

and in light of the maximality of S4 as a finite subgroup of MCGpS2, nq [St], this comes
down to showing that rΓ � rΓ1. It is enough to prove that rh1 R rΓ, where rh1 � Ψph1q P rΓ1,
and h1 � ghg�1. To achieve this, suppose on the contrary that rh1 P rΓ. Let rg � Ψpgq andrh � Ψphq. Since rh P rΓ, we have rh1rh�1 � rγ P rΓ, where rγ � Ψpγq and γ � rg, hs. On the
other hand, g is the product of Dehn twists, so rg P PMCGpS2, nq, thus rγ P PMCGpS2, nq
by normality of PMCGpS2, nq in MCGpS2, nq, which implies that rγ P rΓXPMCGpS2, nq.
As we mentioned in the Introduction, PMCGpS2, nq is torsion free, and the finiteness
of rΓ forces rγ � 1. In particular, if α : PMCGpS2, nq ÝÑ PMCGpS2, 4q is the projection
induced by forgetting all of the marked points with the exception of p1, prm�1

2 s, pm and

f2pp1q (for example) then αprγq � 1.
In order to reach a contradiction, we now analyse γ more closely. Since Ω � Γ,

there exists a permutation λ P S12 satisfying λp1q � 1 such that for all i P t1, . . . , 12u,
fi � h � h � fλpiq. Then

h � gλpiq � h�1 � h � fλpiq � g1 � f�1
λpiq � h�1 � fi � h � g1 � h�1 � f�1

i � g1i. (72)

Hence

γ � g. hg�1h�1 � g1 � � � � � g12 � �h
�

g�1
12 � � � � � g�1

1

	
h�1

	� g1 � � � � � g12 � �h
�

g�1
λp1q � � � � � g�1

λp12q	 h�1
	

since the gj commute pairwise� g1 � � � � � g12 � g1�1
1 � � � � � g1�1

12 by equation (72)� pg1 � g1�1
1 q � � � � � pg12 � g1�1

12 q by the commutativity relations on gi and g1j.
Now for i � 1, . . . , 12, the Dehn twists gi and g1i are along curves contained in a small
neighbourhood of the subsegment r fipp1q, fippmqs of the edge ei of ∆, and since the ho-
momorphism α forgets all of the marked points lying outside e with the exception of
f2pp1q, we see that α � Ψpgiq and α � Ψpg1iq are trivial for all i � 2, . . . , 12. In particu-
lar, αprγq � α � Ψpγq � pα � Ψpg1qq � pα � Ψpg1�1

1 qq. Taking the four marked points of
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PMCGpS2, 4q in the given order, α � Ψpg1q (resp. α � Ψpg1�1
1 q) is a positive (resp. neg-

ative) Dehn twist along a curve that bounds a disc containing the first two (resp. the
second and third) points, and so a preimage of αprγq in P4pS2q under the homomorph-
ism ϕ of equation (11) is given by A1,2A�1

2,3 , where the Ai,j are defined by equation (62).
But this element belongs to the free subgroup π1pS2z tx1, x3, x4u , x2q of P4pS2q of rank
two, for which a basis is tA1,2, A2,3u. Thus A1,2A�1

2,3 is an element of P4pS2q of infin-
ite order, and taking into account equation (11), we deduce that αprγq � ϕpA1,2A�1

2,3q
is also of infinite order, which contradicts the conclusion of the previous paragraph.
Thus rh1 R rΓ, and from the above arguments, we see that H � S4 �A4 S4. Taking
G � BnpS2q, x � ∆

2
n and p � ϕ, ϕ being as in the short exact sequence (11), in Propos-

ition 26(b)(ii), we deduce that ϕ�1
�rΓ �rΩ rΓ1	 is an infinite virtually cyclic subgroup of

BnpS2q of Type II isomorphic to ϕ�1prΓq�
ϕ�1prΩq ϕ�1prΓ1q. But ϕ�1prΓq � ϕ�1prΓ1q � O� and

ϕ�1prΓq X ϕ�1prΓ1q � ϕ�1prΩq � T�, so this subgroup is indeed isomorphic to O��T� O�,
which proves the proposition.

7 Proof of the realisation of elements of V2pnq in BnpS2q
In this section, we bring together the results of Section 6 in order to prove Proposi-
tion 73. This will enable us to complete the proof of Theorem 5.

PROPOSITION 73. Let n ¥ 4. The following Type II virtually cyclic groups are realised as
subgroups of BnpS2q:
(a) Z4q �Z2q Z4q, where q divides pn� iq{2 for some i P t0, 1, 2u.
(b) Z4q �Z2q Dic4q, where q ¥ 2 divides pn� iq{2 for some i P t0, 2u.
(c) Dic4q �Z2q Dic4q, where q ¥ 2 divides n� i strictly for some i P t0, 2u.
(d) Dic4q �Dic2q Dic4q, where q ¥ 4 is even and divides n� i for some i P t0, 2u.
(e) O��T� O�, where n � 0, 2 mod 6 and n � 36 or n ¥ 42.

Proof. Parts (a)–(d) follow directly from Theorem 70, while part (e) follows from Pro-
position 71.

Proof of Theorem 5. Theorem 5(1) was proved in Propositions 45 and 48 for virtually cyc-
lic subgroups of Types I and II respectively. Theorem 5(2) was proved in Propositions 68
and 73 for virtually cyclic subgroups of Types I and II respectively. Finally, as we men-
tioned in Remarks 63(b), the proof of Theorem 5(3) is an immediate consequence of
Proposition 62(d).

8 Isomorphism classes of virtually cyclic subgroups of

BnpS2q of Type II

By Theorem 5, we know which elements of V2pnq are realised as subgroups of BnpS2q.
Such subgroups are of one of the following forms:
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(a) Z4q �Z2q Z4q, where q P N.
(b) Z4q �Z2q Dic4q, where q ¥ 2.
(c) Dic4q �Z2q Dic4q, where q ¥ 2.
(d) Dic4q �Dic2q Dic4q, where q ¥ 4 is even.
(e) O��T� O�.

There are of course additional constraints on q imposed by the value of n. The aim of
this section is to study the isomorphism classes of these amalgamated products. As we
shall see in Proposition 11, there is a single such class, with the exception of Q16 �Q8

Q16, for which there are two possible classes. In Corollary 76, we will also show that
with one exception (that occurs for one of the two isomorphism classes Q16 �Q8 Q16),
each of the above amalgamated products of the form G �H G is isomorphic to a semi-
direct product Z� G. We stress that Proposition 11 and Corollary 76 are consequences
of the groups considered abstractly, and do not depend on the fact that they are realised
as subgroups of BnpS2q.

Let G be a group and H a normal subgroup. Let AutH pGq denote the subgroup of
Aut pGqwhose elements induce an automorphism of H. In some cases (if H is character-
istic, for example), the two groups Aut pGq and AutH pGq coincide. We will concentrate
our attention on the cases where G is either cyclic of order a multiple of 4, dicyclic, or
equal to O�. These are precisely the groups that appear as factors in the above list.

LEMMA 74.

(a) Let G be isomorphic to Z4q, q ¥ 1, or to Dic4q, q ¥ 3. Then G possesses a unique subgroup
H that is isomorphic to Z2q, which is characteristic. Further, the homomorphism Aut pGq ÝÑ
Aut pHq given by restriction is surjective.
(b) Let G be isomorphic to O�. Then G possesses a unique subgroup H isomorphic to T�, which
is characteristic. Further, the homomorphism Aut pGq ÝÑ Aut pHq given by restriction is
surjective.
(c) Let G be isomorphic to Q8. Then G possesses three subgroups H1, H2, H3 that are iso-
morphic to Z4. Further, there is an automorphism of Q8 that sends Hi to Hj for all i, j � 1, 2, 3.
For i � 1, 2, 3, the homomorphism AutHi pGq ÝÑ Aut pHiq given by restriction is surjective.
(d) Let G be isomorphic to Dic4q, where q ¥ 4 is even. Then G possesses two subgroups H1, H2
that are isomorphic to Dic2q, and there exists an automorphism of G that sends H1 to H2.
Further, if q ¥ 6, for i � 1, 2, the homomorphism AutHi pGq ÝÑ Aut pHiq given by restriction
is surjective.

Proof.

(a) If G is cyclic then the uniqueness of H is clear. Now let G � Dic4q, q ¥ 3. If q is even
(resp. odd) then G possesses three subgroups (resp. one subgroup) of index 2 because
the Abelianisation of Dic4q is isomorphic to Z2 ` Z2 (resp. Z2), and exactly one is iso-
morphic to Z2q. In both the cyclic and dicyclic cases, the uniqueness of H implies that
it is characteristic. The surjectivity of the given homomorphism Aut pGq ÝÑ Aut pHq
is a consequence of the isomorphisms Aut

�
Z4q

� � Z
�
4q, the group of units of Z4q, and

Aut
�
Dic4q

� � Z2q �Z
�
2q (if Dic4q is described by the presentation (9) then the elements

of Aut
�
Dic4q

�
are given by automorphisms of the form x ÞÝÑ xi, y ÞÝÑ xjy, where
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1 ¤ i ¤ 2q � 1 is coprime with 2q, and 1 ¤ j ¤ 2q, see [GoG3, Example 1.4] for more
details).
(b) Let G � O� be given by the presentation (28), and let H � xP, Q, Xy � T�. Then
G{H � Z2 is the Abelianisation of G, generated by the H-coset of R, and so Γ2pGq � H.
If K is a subgroup of G isomorphic to T� then the canonical projection G ÝÑ G{K factors
through the canonical projection G ÝÑ G{H, from which it follows that G possesses a
unique subgroup isomorphic to T�. The surjectivity of Aut pGq ÝÑ Aut pHqwas proved
in [GoG3, Proposition 4.1].
(c) The first part is clear. Note that the automorphism αp1q of Q8 given in Defini-
tion 4(e)(ii) may be used to permute the Hi. If i P t1, 2, 3u then the non-trivial element
of Aut pHiq � Z2 is the restriction to Hi of conjugation on G by any element of GzHi.
(d) Let G be isomorphic to Dic4q, where q ¥ 4 is even, and let G have the presentation
given by equation (9). From part (a), G possesses exactly two subgroups isomorphic
to Dic2q, Hk � �

x2, xk�1y
D

for k � 1, 2. The automorphism of G given by x ÞÝÑ x and
y ÞÝÑ xy sends H1 to H2. Suppose further that q ¥ 6, and let f P Aut pHkq. Using
the description of Aut

�
Dic2q

�
given in the proof of part (a), there exist 1 ¤ i ¤ q � 1,

gcdpi, qq � 1, and 1 ¤ j ¤ q such that f px2q � x2i and f pxk�1yq � x2j. xk�1y. Since q
is even, i is odd, so gcdpi, 2qq � 1, and f is the restriction to H of the automorphism
x ÞÝÑ xi, y ÞÝÑ xp1�iqpk�1q�2jy of G. Hence the homomorphism AutHi pGq ÝÑ Aut pHiq
is surjective.

REMARKS 75.
(a) In the case q � 4 of Lemma 74(d), Aut pQ16q � Z4 �Z

�
4 , while Aut pQ8q � S4, so the

homomorphism AutQ8 pQ16q ÝÑ Aut pQ8q clearly cannot be surjective.
(b) Note that Proposition 11 depends only on the amalgamated products considered in
an abstract sense, and does not use the fact that the groups are realised as subgroups of
BnpS2q.

We now come to the proof of Proposition 11.

Proof of Proposition 11. First suppose that G1 �F G2 is one of the amalgamated products
(a)–(e) appearing in the above list, with the exception of the group Q16 �Q8 Q16. Then
for k � 1, 2, there exist embeddings ik : F ÝÑ Gk that give rise to the amalgamated
product G1 �F G2. Suppose that there exists another amalgamated product G1 �1

F G2
involving the same groups, and for k � 1, 2, let jk : F ÝÑ Gk be the associated embed-
dings. Let i�1

k : ikpFq ÝÑ F denote the inverse of the restriction ik : F ÝÑ ikpFq. Then
jk � i�1

k : ikpFq ÝÑ jkpFq is an isomorphism of subgroups of Gk isomorphic to F, and so
by Lemma 74, there exists ρk P Aut pGkq whose restriction to jkpFq is sent to ikpFq, in
other words, the upper left hand ‘square’ of the diagram given in Figure 10 commutes,
where all of the arrows from ikpFq and jkpFq to Gk are inclusions. Thus ρk � jk � i�1

k is
an automorphism of ikpFq, and so once more by Lemma 74, there exists λk P Aut pGkq
whose restriction to ikpFq is equal to ρk � jk � i�1

k , in other words, the lower ‘square’ of
the diagram commutes. Hence ρ�1

k � λk P Aut pGkq, and the restriction of this auto-
morphism to ikpFq yields the isomorphism jk � i�1

k : ikpFq ÝÑ jkpFq. Taking θ � ρ�1
k � λk

and applying Proposition 27, we see that G1 �1
F G2 � G1 �F G2, which gives the result

in this case.
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Figure 10: The commutative diagram involving the embeddings ik and jk.

We now turn to the exceptional case of Q16 �Q8 Q16. We have already seen that
Q16 possesses two subgroups isomorphic to Q8, and that there exists an automorphism
of Q16 that sends one subgroup into the other. Applying Proposition 27 in a manner
similar to that of the previous paragraph, it thus suffices to restrict our attention to one
of these subgroups. It remains to understand the amalgamated products obtained by
considering all possible embeddings of Q8 whose image in each of the two copies of
Q16 is fixed. So let us consider the two copies of Q16 of the form

G1 � A
x, y

∣

∣

∣
x4 � y2, yxy�1 � x�1

E
and G2 � A

a, b
∣

∣

∣
a4 � b2, bab�1 � a�1

E
respectively, and let H1 � �

x2, y
D

and H2 � �
a2, b

D
be their respective fixed subgroups

isomorphic to Q8. Let F � �
P, Q

∣

∣ P2 � Q2, QPQ�1 � P�1
D

be an abstract copy of
Q8. Up to isomorphism, every amalgamated product of G1 and G2 along F is obtained
via an isomorphism between H1 and H2. This leads to twenty-four possibilities that
we identify with the elements of Aut pFq � S4 without further comment (see case (1)
of Section I.3). Let δ : F ÝÑ H1 be a fixed isomorphism, which we shall take to be
defined by δpPq � x2 and δpQq � y. Suppose that ϕ, ϕ1 : H1 ÝÑ H2 are isomorphisms
that differ by the inner automorphism ιh of H2, where h P H2, and let G1 �F G2 and
G1 �1

F G2 denote the respective amalgamated products. Then ϕ1 � ιh � ϕ, and we have
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the following commutative diagram:

G1

zzuuuuuuuuu
G1

$$I
IIIIIIIII

G1 �1
F G2 F

δ

ffLLLLLLLLLLLLL
δ

99rrrrrrrrrrrrr

ϕ1�δ

xxrrrrrrrrrrrrr
ϕ�δ

&&LLLLLLLLLLLLL G1 �F G2,

G2

ddIIIIIIIII

G2ιh
oo

::uuuuuuuuuu

(73)

where we also denote the extension of ιh to G2 by ιh. Taking θ1 � IdG1 and θ2 � ιh in
Proposition 27 leads to the conclusion that G1 �F G2 � G1 �1

F G2 if ϕ and ϕ1, considered
as elements of Aut pFq, project to the same element of Out pFq. So it suffices to con-
sider the six following coset representatives of Out pFq in Aut pFq (recall from case (1)
of Section I.3, that Out pQ8q � S3):

ϕ1 : x2 ÞÝÑ a2, y ÞÝÑ b, x2y ÞÝÑ a2b, ϕ2 : x2 ÞÝÑ b, y ÞÝÑ a2b, x2y ÞÝÑ a2,

ϕ3 : x2 ÞÝÑ a2b, y ÞÝÑ a2, x2y ÞÝÑ b, ϕ4 : x2 ÞÝÑ a2, y ÞÝÑ a2b, x2y ÞÝÑ b�1,

ϕ5 : x2 ÞÝÑ a2b, y ÞÝÑ b�1, x2y ÞÝÑ a2, ϕ6 : x2 ÞÝÑ b, y ÞÝÑ a�2, x2y ÞÝÑ a2b.

(74)

Let ψ P Aut pG2q be defined by a ÞÝÑ a, b ÞÝÑ a2b. Then ϕ4 � ψ � ϕ1 (resp. ϕ5 � ψ � ϕ2).
Consider the above diagram (73), and replace ϕ by ϕ1 (resp. ϕ2), ϕ1 by ϕ4 (resp. ϕ5),
and ιh by the automorphism of G2 given by a ÞÝÑ a, b ÞÝÑ a2b. Applying Proposi-
tion 27 implies that the two automorphisms ϕ1 (resp. ϕ2) and ϕ4 (resp. ϕ5) give rise to
isomorphic amalgamated products. If ψ1 P Aut pG2q is defined by a ÞÝÑ a�1, b ÞÝÑ a2b,
then ϕ6 � ψ1 � ϕ3, and a similar argument shows that ϕ3 and ϕ6 also give rise to iso-
morphic amalgamated products. Now let G1 �F G2 and G1 �1

F G2 be the amalgamated
products associated with ϕ2 and ϕ3 respectively. Let δ1 : F ÝÑ H1 be the isomorphism
defined by δ1pPq � x�2 and δ1pQq � x2y, let θ1 P Aut pG1q be defined by x ÞÝÑ x�1,
y ÞÝÑ x2y, and let θ2 P Aut pG2q be defined by a ÞÝÑ a, b ÞÝÑ a2b�1. Then the following
diagram commutes:

G1

zzuuuuuuuuu
G1

θ1�oo

$$I
IIIIIIIII

G1 �1
F G2 F

δ1ffLLLLLLLLLLLLL
δ

99rrrrrrrrrrrrr

ϕ3�δ1
xxrrrrrrrrrrrrr

ϕ2�δ

&&LLLLLLLLLLLLL G1 �F G2.

G2

ddIIIIIIIII

G2θ2

�oo

::uuuuuuuuuu

So ϕ2 and ϕ3 give rise to isomorphic amalgamated products by Proposition 27. We
conclude that there are at most two non-isomorphic amalgamated products of the form
Ki � G1 �F G2, defined by the automorphism ϕi, where i P t1, 2u.

To complete the proof, we now prove that K1 � K2. We start by showing that K1 �
Z�Q16, where the action shall be defined presently. By definition,

K1 � A
x, y, a, b

∣

∣

∣
x4 � y2, a4 � b2, yxy�1 � x�1, bab�1 � a�1, x2 � a2, y � b

E
. (75)
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Let N be the infinite cyclic subgroup of K1 generated by t � xa�1. Using the presenta-
tion (75), one may check that

vtv�1 � #
t�1 if v P tx, au
t if v P ty, bu,

so N is normal in K1. A presentation of the quotient K1{N is obtained by adjoining the
relation x � a to that of K1, from which it follows that

K1{N � A
a, b

∣

∣

∣
a4 � b2, bab�1 � a�1

E � Q16.

Considered as a subgroup of K1, G2 � xa, by is isomorphic to Q16, which implies that
the short exact sequence

1 ÝÑ N ÝÑ K1 ÝÑ K1{N ÝÑ 1

splits, and so K1 � Z�Q16. The action of K1{N on N is defined as follows:

wtw�1 � #
t�1 if w P G2z �a2, b

D
t if w P �a2, b

D
.

(76)

To see that K1 � K2, let us suppose on the contrary that K1 � K2 and argue for a
contradiction. By definition,

K2 � A
x, y, a, b

∣

∣

∣
x4 � y2, a4 � b2, yxy�1 � x�1, bab�1 � a�1, x2 � b, y � a2b

E
. (77)

From this presentation, we obtain:

ax. x2. x�1a�1 � ax2a�1 � aba�1 � a2b � y,

ax. y. x�1a�1 � ax2ya�1 � aba2ba�1 � a2 � x2y

ax. x2y. x�1a�1 � yx2y � x2.

So K2 possesses a copy
�

x2, y
D

of Q8 and an element ax such that conjugation by ax
permutes the subgroups

�
x2
D

, xyy and
�

x2y
D

cyclically. Since K1 � K2 by hypothesis,
K1 thus possesses a subgroup H isomorphic to Q8 and an element z (of infinite order)
such that zLz�1 � L for every subgroup L of H of order 4. We take K1 to be described by
the semi-direct product Z�G2, where the action is given by equation (76). In particular,
K1 � xa, b, ty, and there exist s, λ, µ P Z such that z � tsaλbµ. Consider the projection
p : Z�G2 ÝÑ G2 onto the second factor. Since Ker ppq � Z is torsion free, ppHq is
isomorphic to Q8, and thus must be equal to one of the two subgroups of G2 isomorphic
to Q8. These two subgroups both contain a2, so there exists u P H of order 4 such that
ppuq � a2. Now ppa2q � a2, hence there exists m P Z such that u � tma2. But t commutes
with a2 by equation (76), and since u and a2 are of finite order, and t is of infinite order,
it follows that m � 0, u � a2 and:

zuz�1 � tsaλbµa2b�mua�λt�s � tsaλa2εa�λt�s � a2ε,

where ε is equal to 1 (resp. �1) if µ is even (resp. odd), and so z xuy z�1 � xuy. This
contradicts the fact that zLz�1 � L for every subgroup L of H of order 4, and completes
the proof of the fact that K1 � K2.
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Combining Proposition 20 and Lemma 74 yields an alternative description of most
of the amalgamated products of the form G �H G appearing in Proposition 73 as semi-
direct products of Z by G.

COROLLARY 76. Let Γ � G �H G be an amalgamated product, where G and H satisfy one of
the following conditions:

(a) G is isomorphic to Z4q or Dic4q and H is isomorphic to Z2q.
(b) G is isomorphic to Dic4q, q ¥ 6 is even and H is isomorphic to Dic2q.
(c) q � 4, G � Q16, H � Q8 and Γ is isomorphic to K1.
(d) G is isomorphic to O� and H is isomorphic to T�.

Then Γ � Z� G, where

gtg�1 � #
t if g P H
t�1 if g P GzH,

t being a generator of the Z-factor.

Proof. First let G and H satisfy one of the conditions (a), (b) or (d). If i1, i2 are the
embeddings of H into each of the G-factors of Γ then i2 � i�1

1 is an automorphism of
H that extends to an automorphism of G by Lemma 74. The result then follows from
Proposition 20. Now suppose that G and H satisfy condition (c). Since Γ is isomorphic
to K1, using the presentation (75), we see that the isomorphism

�
x2, y

D ÝÑ �
a2, b

D
of

the amalgamating subgroup of K2 isomorphic to Q8 that given by x2 ÞÝÑ a2 and y ÞÝÑ b
extends to an isomorphism xx, yy ÝÑ xa, by of the factors that are isomorphic to Q16,
where the extension is given by x ÞÝÑ a and y ÞÝÑ b. Once more, Proposition 20 yields
the result.

The following two results will imply the existence of subgroups of BnpS2q isomorphic
to K1 and K2 for all but a finite number of even values of n. The first proposition holds
in general, while the second makes use of the structure of BnpS2q.
PROPOSITION 77. Let G be a group that is isomorphic to O� �T� O�. Then G possesses a
subgroup that is isomorphic to K2.

Proof. Suppose that G is isomorphic to O� �T� O�. Let G1, G2 be subgroups of G iso-
morphic to O� such that F � G1 X G2 � T� and G � xG1 Y G2y � O� �T� O�. Let Q
be the unique subgroup of F � Q8 � Z3 that is isomorphic to Q8. By Lemma 74(b), F
is the unique subgroup of Gi isomorphic to T� for i � 1, 2. From the proof of Proposi-
tion 85(b), if i P t1, 2u, the Sylow 2-subgroups of Gi consist of three conjugate subgroups
isomorphic to Q16 that contain Q. Let H1 be one of the Sylow 2-subgroups of G1 with
presentation

H1 � A
a, b

∣

∣

∣
a4 � b2, bab�1 � a�1

E
.

Since the subgroups of H1 isomorphic to Q8 are of the form
�

a2, aεb
D

, ε P t0, 1u, by
replacing b by ab if necessary in the presentation of H1, we may suppose that Q ��

a2, b
D

. Now let H2 be a subgroup of G2 that is isomorphic to Q16. Since for i P t1, 2u,
Hi � F, it follows that H1 X H2 � Q and that Hi contains elements of GizF, whence H �
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xH1 Y H2y � Q16 �Q8 Q16. The proof of Proposition 11 implies that H is isomorphic
to one of K1 and K2. If H � K2 then we are done. So suppose that H � K1. Then by
equation (75), there exist generators x, y of H2 such that x4 � y2, yxy�1 � x�1, x2 � a2,
y � b and Q � �

x2, y
D

. Since Q is the unique subgroup of F that is isomorphic to Q8,
there exists t P F such that tx2t�1 � y and tyt�1 � x2y corresponding to the action of
Z3 on Q8. Now F � G2, so tG2t�1 � G2. Let H1

2 � tH2t�1 � G2. Then x1 � txt�1

and y1 � tyt�1 are generators of H1
2 satisfying x14 � y12 and y1x1y1�1 � x1�1. Now

x12 � tx2t�1 � y � b and y1 � tyt�1 � x2y � a2b, and since H1 X H1
2 � Q, it follows

from equation (77) that
�

H1 Y H1
2

D � K2 as required.

PROPOSITION 78. Let n ¥ 4 be even.
(a) There exists a subgroup of BnpS2q isomorphic to K1.
(b) Suppose that either n � 0 mod 4 or n � 10 mod 12. There exists a subgroup of BnpS2q
isomorphic to K2.

REMARK 79. Let n ¥ 4 be even. Propositions 71, 77 and 78 imply that BnpS2q pos-
sesses subgroups isomorphic to K1 and K2 with the possible exception of K2 when
n P t6, 14, 18, 26, 30, 38u.
Proof of Proposition 78.
(a) Suppose that n ¥ 4 is even, let i P t0, 2u be such that 4 � n� i, and let m � pn� iq{4.
In the construction of Q16 �Q8 Q16 in BnpS2q given in part (d) of the proof of Theorem 70,
we have that G1 � xx, yy and G2 � xa, by, where x � α1mi , a � λiα

1m
i λ�1

i and y � b � ∆n,
where λi � σm� i

2
σ3m� i

2
. Since λi commutes with α12m

i , we have also that x2 � a2. SoxG1 Y G2y is isomorphic to K1 by equation (75).
(b) We consider the two cases separately.

(1) n � 0 mod 4. Set G1 � xa, by, where a � α
n{4
0 and b � ∆n, let G2 � νG1ν�1, where

ν � α
n{4
0 Ω2 is as in the proof of Proposition 60(a), and let x � νaν�1 and y � νb�1ν�1

be generators of G2. Then G1 � G2 � Q16, and F � �
a2, b

D
is isomorphic to Q8. Since

νFν�1 � F by Proposition 60(a), it follows that G1 XG2 � F. Suppose that x P G1. Since

x is of order 8, there exists j P t1, 3, 5, 7u such that x � aj, and so x2 P !
α

n{2
0 , α

�n{2
0

)
. On

the other hand, using Lemma 59(f) and equation (10), we have:

x2 � α
n{4
0 Ω2α

n{2
0 Ω

�1
2 α

�n{4
0 � α

n{4
0 ∆nα

�n{4
0 � α

n{2
0 ∆n � a2b, (78)

and so x2 does not belong to
!

α
n{2
0 , α

�n{2
0

)
, which gives a contradiction. We thus con-

clude that x R G1, and so G1 X G2 � F. Let K � xG1 YG2y. By equation (60), we have

y � νb�1ν�1 � ν∆
�1
n ν�1 � α

n{2
0 � a2. (79)

Equations (78) and (79) correspond to the automorphism ϕ3 of equation (74), which
using the proof of Proposition 11, will imply that K � K2 provided that K is indeed
isomorphic to Q16 �Q8 Q16. By Proposition 23, it thus suffices to show that K is infinite.
To see this, we consider the following three cases.
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(i) n � 4. Since the maximal finite subgroups of B4pS2q are isomorphic to Q16 and T�
by Theorem 2, the fact that G1 � G2 implies that K is infinite.
(ii) n � 8. Let γ � a�2νaν�1a P K. Then

γ � α�2
0 Ω2α2

0Ω
�1
2 � σ3σ4σ5σ3σ4σ3σ�1

5 σ�1
6 σ�1

5 σ�1
7 σ�1

6 σ�1
5� σ5pσ3σ4σ5σ3σ4σ�1

5 σ�1
6 σ�1

5 σ�1
7 σ�1

6 qσ�1
5� σ5pσ4σ3σ5σ4σ�1

6 σ�1
5 σ�1

7 σ�1
6 qσ�1

5 .

by equations (23) and (51). The braid pγ � σ4σ3σ5σ4σ�1
6 σ�1

5 σ�1
7 σ�1

6 is conjugate to γ, and
its geometric representation is given in Figure 11. Forgetting the 2nd, 4th, 6th and 8th

Figure 11: The braid pγ in B8pS2q.
strings of pγ yields the braid σ2σ�1

3 of B4pS2q, which may be seen to be of infinite order
using an argument similar to that of equation (63). Hence pγ and γ are of infinite order,
and so K is infinite.
(iii) n ¥ 12. Consider the element γ1 � νaν. a�1 � α

n{4
0 Ω2α

n{4
0 Ω

�1
2 α

�n{2
0 P K, and let

n{2� 1 ¤ t ¤ 3n{4. Then πpαn{4
0 qptq � t � n{4, πpΩ2qpt� n{4q � t � n{4 since t� n{4 ¤

n{2, πpαn{4
0 qpt� n{4q � t � n{2, and πpΩ�1

2 α
�n{2
0 qpt� n{2q � t, so πpγ1qptq � t. Further,

πpγ1qp1q � n. Thus the cycle decomposition of πpγ1q has at least n{4 ¥ 3 fixed points,
and at least one non-trivial cycle. Theorem 1 then implies that γ1 is of infinite order,
and so K is infinite.
(2) n � 10 mod 12. Then 4 divides n � 2, and we may write n � 2 � 2rs, where r ¥ 2
and s P N is odd. Since n is even, BnpS2q possesses a subgroup L isomorphic to
T� � Q8 � Z3 by Theorem 2. The fact that the action by conjugation of the gen-
erator of Z3 permutes cyclically the elements i, j and k of the subgroup Q of L iso-
morphic to Q8 implies that these elements are pairwise conjugate in L. On the other
hand, by [GG5, Proposition 1.5],

�
α1s2 , ∆n

D
represents the unique conjugacy class of the

group Q2r�2 in BnpS2q, and it possesses two subgroups
�

α12s
2 , ∆n

D
and

�
α12s

2 , α1s2 ∆n
D

iso-

morphic to Q2r�1 that contain respectively Γ0 � A
α12r�1s

2 , ∆n

E
and Γ1 � A

α12r�1s
2 , α1s2 ∆n

E
which are subgroups isomorphic to Q8. The fact that n{2 and s are odd implies that
πp∆nq � πpα1s2 q � n� 1 mod 2pn� 1q. In particular, α12r�1s

2 and ∆n are not conjugate, so
Γ0 is neither conjugate to Γ1 nor to Q, and since BnpS2q possesses two conjugacy classes
of subgroups isomorphic to Q8 [GG5, Proposition 1.5], we deduce that Γ1 and Q are
conjugate. Set G1 � xa, by, where a � α12r�2s

2 and b � α1s2 ∆n. Then G1 is isomorphic to
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Q16, and it contains Γ1 � �
a2, b

D
. Since BnpS2q possesses two isomorphism classes of

subgroups isomorphic to Q8, we deduce that Γ1 and Q are conjugate, and using the fact
that Q is a subgroup of L, there exists an element z P BnpS2q conjugate to an element of
LzQ for which za2z�1 � b, zbz�1 � a2b and za2bz�1 � a2. Let G2 � zG1z�1. From the
action by conjugation of z on Γ1, we have that G1 X G2 � Γ1. Suppose that G1 � G2.
Then zaz�1 P G2, which is of order 8, would be equal to an element of order 8 of G1,
and so would be of the form aj, j P t1, 3, 5, 7u. Thus za2z�1 P  

a2, a�2
(

, which is not
possible. This implies that G1 � G2, and thus G1 X G2 � Γ1. Let K � xG1 Y G2y. To see
that K � Q16 �Q8 Q16, by Proposition 23 it suffices to prove that K is infinite. Suppose
on the contrary that K is finite, and let M be a finite maximal subgroup of BnpS2q that
contains K. Since K contains copies of Q16, M cannot be cyclic, nor can it be isomorphic
to T� or I� by Proposition 85. By the hypothesis on n, O� is not realised as a subgroup
of BnpS2q by Theorem 2, so M � O�, and thus M � Dic4pn�2q. Let u P M be an element
of order 2pn � 2q. Since G1 and G2 are subgroups of M isomorphic to Q16, they both

contain the unique cyclic subgroup
A

upn�2q{4E of M of order 8, but this contradicts the
fact that G1 X G2 � Γ1. So M � Dic4pn�2q, and thus K is infinite by Theorem 2. Propos-
ition 23 then implies that K � Q16 �Q8 Q16. It remains to show that K � K2. This may
be seen as follows. To see this, let x � zaz�1 and y � zbz�1 be generators of G2. Then
x4 � y2, yxy�1 � x�1, x2 � za2z�1 � za2z�1 � b and y � zbz�1 � a2b. Equation (77)
implies that K � K2 as required.

9 Classification of the virtually cyclic subgroups of the

mapping class group MCGpS2, nq
We apply Theorem 5 and Proposition 12 to deduce Theorem 14, which up to a fi-
nite number of exceptions, yields the classification of the virtually cyclic subgroups
of MCGpS2, nq.
Proof of Theorem 14. Let n ¥ 4. The homomorphism ϕ of the short exact sequence (11)
satisfies the hypothesis of Proposition 12 with x � ∆

2
n. Theorem 5 and Proposition 12

then imply the result, using the fact that if a finite subgroup F of BnpS2q is isomorphic
to Zq (resp. Dic4m,Q8, T�, O�, I�) then ϕpFq is isomorphic to Zq{2 if q is even and to Zq
if q is odd (resp. is isomorphic to Dih2m, Z2 ` Z2, A4, S4, A5). Note that the only cases
where the conditions given in Definition 4 on the order q of F differ from those on the
order q1 of ϕpFq given by Definition 13 is when F is cyclic, and correspond to cases (a)
and (b) of these definitions. To see that one does indeed obtain the given conditions in
parts (a) and (b) of Definition 13, suppose that q satisfies the corresponding conditions
given in parts (a) and (b) of Definition 4. In particular, q is a strict divisor of 2pn � iq,
and q � n� i if n� i is odd. If q is even then q1 � q{2, and q1 is a strict divisor of n� i.
So suppose that q is odd, in which case q1 � q and q1 divides n � i. Clearly, if n � i is
even then q1 � n � i. On the other hand, if n� i is odd then q � n� i. In both cases it
follows once more that q1 is a strict divisor of n � i, which yields the condition on the
order of the finite cyclic factor in parts (a) and (b) of Definition 13.
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One may ask a similar question to that of Section II.8 concerning the isomorphism
classes of the amalgamated products that are realised as subgroups of MCGpS2, nq.
From Definition 13 and Theorem 14, these subgroups are of the form:

(a) Z2q �Zq Z2q, where q divides pn� iq{2 for some i P t0, 1, 2u.
(b) Z2q �Zq Dih2q, where q ¥ 2 divides pn� iq{2 for some i P t0, 2u.
(c) Dih2q �Zq Dih2q, where q ¥ 2 divides n� i strictly for some i P t0, 2u.
(d) Dih2q �Dihq Dih2q, where q ¥ 4 is even and divides n� i for some i P t0, 2u.
(e) S4 �A4 S4, where n � 0, 2 mod 6.

A key element in the analysis of the isomorphism classes of the amalgamated products
that are realised as subgroups of BnpS2q was the use of Lemma 74. This may be gener-
alised as follows to the groups that appear as factors in the above list.

LEMMA 80. Let G1 be a group isomorphic to Z2q, q ¥ 1 (resp. to Dih2q, q ¥ 2, to S4), let G
be a group isomorphic to Z4q, q ¥ 1 (resp. to Dic4q, q ¥ 2, to O�), and let ϕ : G ÝÑ G1 be the
canonical homomorphism, where we identify G1 with the quotient of G by its unique subgroup
K of order 2. Let H1 be a subgroup of G1 of index 2, non isomorphic to Z2 `Z2 if G1 � Dih8.
Then the homomorphism AutH1 pG1q ÝÑ Aut pH1q given by restriction is surjective.

Proof. Let H � ϕ�1pH1q. Then H is of index 2 in G, and if G � Q16 then H � Q8. Let
α1 P Aut pH1q. We must show that there exists an automorphism of G1 that leaves H1
invariant, and whose restriction to H1 is equal to α1. Note that:

(a) if G1 � Z2q, q ¥ 1, then G � Z4q, H1 � Zq and H � Z2q.
(b) if G1 � Dih2q, q ¥ 2 then G � Dic4q. If q is odd then H1 � Zq and H � Z2q. If q
is even then H1 is isomorphic to Zq or to Dihq, and H is isomorphic to Z2q or to Dic2q
respectively.
(c) if G � O� then G1 � S4, H1 � A4 and H � T�.

The kernel of ϕ |H : H ÝÑ H1 is that of ϕ, equal to K. Since K is characteristic in G
(resp. H), for each automorphism f P Aut pGq (resp. f P Aut pHq), there exists a unique
automorphism f 1 P Aut pG1q (resp. f 1 P Aut pH1q) such that ϕ � f � f 1 � ϕ, and the
correspondence f ÞÝÑ f 1 gives rise to a homomorphism rΦ : Aut pGq ÝÑ Aut pG1q (resp.
Φ : Aut pHq ÝÑ Aut pH1q) satisfying rΦp f q � ϕ � ϕ � f (resp. Φp f q � ϕ � ϕ � f ).

Let r and r1 denote the restriction homomorphisms AutH pGq ÝÑ Aut pHq and
AutH1 pG1q ÝÑ Aut pH1q respectively, and let ι and ι1 denote the inclusions AutH pGq ÝÑ
Aut pGq and AutH1 pG1q ÝÑ Aut pG1q respectively. Then we have the following commut-
ative diagram:

Aut pGqrΦ
��

AutH pGqιoo r //rΦ|AutHpGq
��

Aut pHq
Φ

��
Aut pG1q AutH1 pG1qι1oo r1 // Aut pH1q (80)

Note that the restriction of rΦ to AutH pGq is well defined. Indeed, let f P AutH pGq, and
let h1 P H1. Then there exists h P H such that ϕphq � h1, and

Φp f qph1q � Φp f q � ϕphq � ϕ � f phq P H, since f phq P H.
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We claim that for the groups H, H1 described in (a)–(c) above, Φ is surjective. If H � Z2q,
which covers case (a) above and part of case (b), Aut pHq � Z

�
2q, Aut pH1q � Z�q , and if

α1 P Aut pH1q is given by multiplication by j, where 1 ¤ j ¤ q � 1, gcd pj, qq � 1, then
Φpαq � α1, where α P Aut pHq is given by multiplication by j � εq, where ε � 0 if j is
odd, and ε � 1 if j is even. Let us now consider the remaining part of case (b) where q
is even, H � Dic2q and H1 � Dihq. Let H admit the presentation

H � A
x, y

∣

∣

∣
xq{2 � y2, yxy�1 � x�1

E
,

and let x � ϕpxq and y � ϕpyq, so that

H1 � A
x, y

∣

∣

∣
xq{2 � y2 � 1, y x y�1 � x�1

E
.

Any automorphism α1 of H1 is given by x ÞÝÑ xj, y ÞÝÑ xk y, where 1 ¤ j ¤ q{2 � 1,
gcd pj, q{2q � 1 and 0 ¤ k ¤ q{2 � 1. The presentation of H implies that the map
α : H ÝÑ H given by x ÞÝÑ xj�εq{2, y ÞÝÑ xky, where ε � 0 if j is odd, and ε � 1 if j
is even, is an automorphism. Further, Φpαqpxq � ϕpαpxqq � xj � α1pxq, and Φpαqpyq �
ϕpαpyqq � xky � α1pyq, which proves the surjectivity of Φ in this case. Finally, in case (c),
the result is a consequence of [GoG3, Theorem 3.3]

It just remains to show that r1 is surjective. By the commutative diagram (80), this
follows from the surjectivity of Φ, and that of r, which is a consequence of Lemma 74.

In principle, if we are given finite groups H, G1, G2, where H is an index 2 subgroup
of both G1 and G2, there may be various non-isomorphic amalgamated products of the
form G1 �H G2. As for BnpS2q, such a situation occurs exceptionally in MCGpS2, nq, and
we obtain a similar result to that of Proposition 11 for the virtually cyclic subgroups of
MCGpS2, nq of Type II.

PROPOSITION 81. Let n ¥ 4 be even.
(a) Let H1

1, H1
2 be subgroups of MCGpS2, nq that are both isomorphic to one of the amalgamated

products given in (a)–(e) above, with the exception of Dih8 �Dih4
Dih8. Then H1

1 � H1
2.

(b) Let H1 be a subgroup of MCGpS2, nq that is isomorphic to an amalgamated product of the
form Dih8 �Dih4

Dih8. Then H1 is isomorphic to exactly one of the following two groups:

K1
1 � A

x, y, a, b
∣

∣

∣
x4 � y2 � a4 � b2 � 1, yxy�1 � x�1, bab�1 � a�1, x2 � a2, y � b

E
,

(81)
and

K1
2 � A

x, y, a, b
∣

∣

∣
x4 � y2 � a4 � b2 � 1, yxy�1 � x�1, bab�1 � a�1, x2 � b, y � a2b

E
.

(82)

REMARK 82. One may mimic the proof of Proposition 11 to obtain an analogous res-
ult for the amalgamated products given in (a)–(e) above, that is, abstractly there is a
single isomorphism class, with the exception of Dih8 �Dih4

Dih8, for which there are
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two isomorphism classes, for which K1
1 and K1

2 are representatives. However, using
Proposition 11, we shall give an alternative proof in the case that interests us, where the
groups in question are realised as subgroups of MCGpS2, nq.
Proof of Proposition 81. Consider one of the amalgamated products given in the list (a)–
(e) above, and suppose that n ¥ 4 is such that this amalgamated product is realised
as a subgroup G1

1 �F1 G1
2 of MCGpS2, nq, where G1

1, G1
2 and F1 are finite subgroups of

MCGpS2, nq, and rG1
i : F1s � 2 for i � 1, 2. Taking G � BnpS2q, G1 � MCGpS2, nq,

x � ∆
2
n and p � ϕ in the statement of Proposition 26, where ϕ is the homomorph-

ism of equation (11), we have that ϕ�1pG1
1q�ϕ�1pF1q ϕ�1pG1

2q is a subgroup of BnpS2q
by part (b)(ii) of that proposition. We claim that the number of isomorphism classes
of subgroups of BnpS2q that are isomorphic to an amalgamated product of the form
ϕ�1pG1

1q�ϕ�1pF1q ϕ�1pG1
2q (which are the amalgamated products (a)–(e) that appear at

the beginning of Section II.8) is greater than or equal to the number of isomorphism
classes of subgroups of MCGpS2, nq that are isomorphic to an amalgamated product of
the form G1

1 �F1 G1
2. To prove the claim, let H1

1, H1
2 be subgroups of MCGpS2, nq that may

be written in the form G1
1 �F1 G1

2, and for i � 1, 2, let Hi � ϕ�1pH1
iq. From above, H1 and

H2 are subgroups of BnpS2q that may be written in the form ϕ�1pG1
1q�ϕ�1pF1q ϕ�1pG1

2q.
If they are isomorphic then H1

1 � ppH1q and H1
2 � ppH2q are isomorphic by Proposi-

tion 26(c), which proves the claim. If G1
1 �F1 G1

2 � Dih8 �Dih4
Dih8 then ϕ�1pG1

1q�ϕ�1pF1q
ϕ�1pG1

2q � Q16 �Q8 Q16, and combining the claim with Proposition 11 implies that
MCGpS2, nq possesses a single isomorphism class of subgroups that are isomorphic to
amalgamated products of the form G1

1 �F1 G1
2, which proves part (a) of the proposition.

Similarly, if G1
1 �F1 G1

2 � Dih8 �Dih4 Dih8 then ϕ�1pG1
1q�ϕ�1pF1q ϕ�1pG1

2q � Q16 �Q8 Q16,
and MCGpS2, nq possesses at most two isomorphism class of subgroups that are iso-
morphic to amalgamated products of the form Dih8 �Dih4

Dih8, and these isomorphism
classes are represented by subgroups of MCGpS2, nq that are isomorphic to K1

1 and K1
2.

To complete the proof of part (b) of the proposition, it thus suffices to show that K1
1 � K1

2.
Taking K1

1 and K1
2 to be presented by equations (81) and (82) respectively, following the

proof of Proposition 11 from equation (75) onwards, and letting N1 be the infinite cyclic
subgroup of K1

1 generated by t � xa�1, we see that N1 is normal in K1
1,

K1
1{N1 � A

a, b
∣

∣

∣
a4 � b2 � 1, bab�1 � a�1

E � Dih8,

and K1
1 � xty�Dih8, where the action of K1

1{N1 on N1 is given by equation (76), G2 being
in this case the subgroup xa, by of K1

1. The rest of the proof of Proposition 11 then goes
through, where Q8 is replaced by Z2 `Z2, and the subgroups L of H are now of order
2. We conclude that K1

1 � K1
2 as required.
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We thus obtain the following result on the existence of subgroups of MCGpS2, nq
isomorphic to K1

1 and K1
2.

PROPOSITION 83. Let n ¥ 4 be even.
(a) There exists a subgroup of MCGpS2, nq isomorphic to K1

1.
(b) Suppose that either n � 0 mod 4 or n � 10 mod 12 and n R t6, 14, 18, 26, 30, 38u. There
exists a subgroup of MCGpS2, nq isomorphic to K1

2.

Proof. Let n be even, and let ϕ be the homomorphism of equation (11). If n ¥ 4 (resp.
n � 4 mod 12 and n R t6, 14, 18, 26, 30, 38u) then Proposition 78 and Remark 79 imply
that BnpS2q possesses a subgroup H that is isomorphic to K1 (resp. K2). The present-
ations of K1 and K1

1 (resp. K2 and K1
2) given by equations (75) and (81) (resp. equa-

tions (77) and (82)) imply that ϕpHq is isomorphic to K1
1 (resp. to K1

2).

REMARK 84. As in the case of BnpS2q, we do not know whether MCGpS2, nq possesses
a subgroup isomorphic to K1

2 if n P t6, 14, 18, 26, 30, 38u.
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Appendix: The subgroups of the
binary polyhedral groups

In this Appendix, we derive the structure of the subgroups of the binary polyhedral
groups T�, O�, I� that we refer to in the main body of the manuscript. More information
on these groups may be found in [AM, Cox, CM, ThC].

PROPOSITION 85.

(a) The proper subgroups of the binary tetrahedral group T� are teu, Z2, Z3, Z4, Z6 and Q8. Its
maximal subgroups are isomorphic to Z6 or Q8, its maximal cyclic subgroups are isomorphic to
Z4 or Z6, and its non-trivial normal subgroups are isomorphic to Z2 or Q8.
(b) The proper subgroups of the binary octahedral group O� are isomorphic to teu, Z2, Z3, Z4,
Z6, Z8, Q8, Dic12, Q16 or T�. Its maximal subgroups are isomorphic to Dic12, Q16 or T�, its
maximal cyclic subgroups are isomorphic to Z4, Z6 or Z8, and its non-trivial normal subgroups
are isomorphic to Z2, Q8 or T�.
(c) The proper subgroups of the binary icosahedral group I� are isomorphic to teu, Z2, Z3, Z4,
Z5, Z6, Q8, Z10, Dic12, Dic20 or T�, its maximal subgroups are isomorphic to Dic12, Dic20 or
T�, its maximal cyclic subgroups are isomorphic to Z4, Z6 or Z10, and it has a unique non-trivial
normal subgroup, isomorphic to Z2.

Proof. Recall first that if G is a binary polyhedral group, it is periodic [AM] and has
a unique element of order 2 that generates ZpGq. By periodicity, the group G satisfies
the p2–condition (if p is prime and divides the order of G then G has no subgroup
isomorphic to Zp � Zp), which implies that every Sylow p–subgroup of G is cyclic or
generalised quaternion, as well as the 2p–condition (each subgroup of order 2p is cyc-
lic).

(a) Consider first the binary tetrahedral group T�. It is isomorphic to Q8 � Z3. Using
the presentation given by equation (13), one may check that T�zQ8 consists of the eight
elements of !

S�jX j
∣

∣

∣
j P t�1, 1u and S P t1, P, Q, PQu) ,

and of the eight elements of order 6 which are obtained from those of order 3 by mul-
tiplying by the unique (central) element P2 of order 2. The proper non-trivial subgroups
of T� are isomorphic to Z2, Z3, Z4, Z6 and Q8. The fact that T� has a unique element
of order 2 rules out the existence of subgroups isomorphic to S3. Since Q8 is a Sylow
2-subgroup of T�, Z8 cannot be a subgroup of T�. Further, since T�{ZpT�q � A4, the
quotient by ZpT�q of any order 12 subgroup of T� would be a subgroup of A4 of order 6,
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which is impossible. Also, any copy of Z3 (resp. Z4) is contained in a copy of Z6 (resp.
Q8). The maximal subgroups of T� are thus isomorphic to Z6 or Q8, and its maximal
cyclic subgroups are isomorphic to Z4 or Z6. Among these possible subgroups, it is
straightforward to check that the normal non-trivial subgroups are those isomorphic to
Z2 or Q8.
(b) Consider the binary octahedral group O�, with presentation given by equation (28).
Recall from Lemma 74(b) that xP, Q, Xy is the unique subgroup of O� isomorphic to T�.
The twenty-four elements of O�zT� are comprised of twelve elements of order 4 and
twelve of order 8. Under the canonical projection onto O�{ZpO�q � S4, these elements
are sent to the six transpositions and the six 4-cycles of S4 respectively. The squares of
the elements of order 8 are the elements of T� of order 4. Consequently, the elements
of O�zT� of order 4 generate maximal cyclic subgroups. Thus O� has three subgroups
isomorphic to Z8. The Sylow 2-subgroups are copies of Q16, and since each copy of
Z8 is contained in a copy of Q16 and each copy of Q16 contains a unique copy of Z8,
it follows from Sylow’s Theorems that O� possesses exactly three (maximal and non-
normal) copies of Q16, and that the subgroups of O� of order 8 are isomorphic to Z8 or
Q8.

It remains to determine the subgroups of order 12. Under the projection onto the
quotient O�{ZpO�q, such a subgroup would be sent to a subgroup of S4 of order 6, so
is the inverse image under this projection of a copy of S3, isomorphic to Dic12. It is not
normal because the subgroups of S4 isomorphic to S3 are not normal. Further it cannot
be a subgroup of xP, Q, Xy since projection onto O�{ZpO�q would imply that the image
of xP, Q, Xy, which is isomorphic to A4, would have a subgroup of order 6, which is
impossible. We thus obtain the isomorphism classes of the subgroups of O� given in
the statement, as well as the isomorphism classes of the maximal and maximal cyclic
subgroups.

We now determine the normal subgroups of O�. As we already mentioned, the
subgroups of O� isomorphic to Dic12 or Q16 are not normal, and the fact that each of
the three cyclic subgroups of order 8 belongs to a single copy of Q16 implies that these
subgroups are not normal in O�. Clearly ZpO�q � Z2 and xP, Q, Xy � T� are normal
in O�. Since T� is normal in O� and possesses a unique copy xP, Qy of Q8, this copy of
Q8 is normal in O�. The subgroups isomorphic to Z3 or Z6 are not normal because they
are contained in xP, Q, Xy and are not normal there. The same is true for the subgroups
isomorphic to Z4 and lying in xP, Q, Xy. Finally, under the canonical projection onto
O�{ZpO�q, any subgroup of order 4 generated by an element O�zT� is sent to subgroup
of S4 generated by a transposition, so cannot be normal in O�. This yields the list of
isomorphism classes of normal subgroups of O�.
(c) Finally, consider the binary icosahedral group I� of order 120. It is well known
that I� admits the presentation

�
S, T

∣

∣ pSTq2 � S3 � T5
D

, is isomorphic to the group
SL2pF5q, and I�{ZpI�q � A5. The group I� has thirty elements of order 4 (which project
to the fifteen elements of A5 of order 2), twenty elements each of order 3 and 6 (which
project to the twenty 3-cycles of A5), and twenty-four elements each of order 5 and 10
(which project to the twenty-four 5-cycles of A5). Its proper subgroups of order less
than or equal to 10 are Z2, Z3, Z4, Z5, Z6, Q8 and Z10. The only difficulty here is the
case of order 8 subgroups: I� has no element of order 8 since under the projection onto
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I�{ZpI�q, such an element would project onto an element of A5 of order 4, which is not
possible. Since I� possesses a unique element of order 2, the Sylow 2-subgroups of I�,
which are of order 8, are isomorphic to Q8. Any subgroup of order 15 or 30 (resp. 60)
would project to a subgroup of A5 of order 15 (resp. 30), which is not possible either.
Note that I� has no element of order 12 (resp. 20) since such an element would project to
one of order 6 (resp. 10) in A5. Since I� has a unique element of order 2, any subgroup of
order 12 (resp. 20) must thus be isomorphic to Dic12 (resp. Dic20) using the classification
of the groups of these orders up to isomorphism. Such a subgroup exists by taking the
inverse image of the projection of any subgroup of A5 isomorphic to Dih6 (resp. Dih10).

Any subgroup of I� of order 24 projects to a subgroup of A5 of order 12, which must
be a copy of A4. Hence any subgroup of A5 of order 12, which is isomorphic to A4, lifts
to a subgroup of I� isomorphic to T�. So any subgroup of I� of order 24 is isomorphic
to T�, and such a subgroup exists.

Let G be a subgroup of I� of order 40, and let G1 be its projection in I�{ZpI�q. Then
G1 is of order 20, and the Sylow 5-subgroup K of G1 is normal. Now G1 has no element
of order 4 since I� has no element of order 8, so G1{K � Z2 `Z2. We thus have a short
exact sequence:

1 ÝÑ Z5 ÝÑ G1 ÝÑ Z2 `Z2 ÝÑ 1

which splits since the kernel and the quotient have coprime orders [McL, Theorem 10.5].
Since AutpZ5q � Z4, the action of any non-trivial element of Z2 `Z2 on Z5 must be mul-
tiplication by�1 (it could not be the identity, for otherwise A5 would have an element of
order 10, which is impossible), but this is not compatible with the structure of Z2 `Z2.
Hence I� has no subgroup of order 40. We thus obtain the list of subgroups of I� given
in the statement. The cyclic subgroups of order 3 and 5 of I� are contained in the cyclic
subgroups of order 6 and 10 respectively obtained by multiplying a generator by the
central element of order 2. Thus the maximal cyclic subgroups of I� are isomorphic to
Z4, Z6 or Z10.

We now consider the maximal subgroups. Clearly, any subgroup of I� isomorphic
to Dic12 or T� is maximal. Further, since T� has no subgroup of order 12, any subgroup
of I� isomorphic to Dic12 is also maximal. The subgroups of I� isomorphic to Q8 are
its Sylow 2-subgroups, so are conjugate, and since one of these subgroups is contained
in a copy of T�, the same is true for any such subgroup. Thus the subgroups of I�
isomorphic to Q8 are not maximal. Replacing Q8 by Z3 (resp. Q8 by Z5 and T� by
Dic20) and applying a similar argument shows that the subgroups of I� isomorphic to
Z6 (resp. Z10) are not maximal either. This yields the list of the isomorphism classes
of the maximal subgroups of I� given in the statement. Finally, since A5 is simple, the
only non-trivial normal subgroup of I� is its unique subgroup of order 2.
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[GoG3] M. Golasiński and D. L. Gonçalves, Automorphism groups of generalized (binary) icosahedral,
tetrahedral and octahedral groups, Algebra Colloquium 18 (2011), 385–396.

[GG1] D. L. Gonçalves and J. Guaschi, The roots of the full twist for surface braid groups, Math. Proc.
Camb. Phil. Soc. 137 (2004), 307–320.

[GG2] D. L. Gonçalves and J. Guaschi, The braid groups of the projective plane, Algebraic and Geomet-
ric Topology 4 (2004), 757–780.

[GG3] D. L. Gonçalves and J. Guaschi, The braid group Bn,mpS2q and the generalised Fadell-Neuwirth
short exact sequence, J. Knot Theory Ramifications 14 (2005), 375–403.

[GG4] D. L. Gonçalves and J. Guaschi, The quaternion group as a subgroup of the sphere braid
groups, Bull. London Math. Soc. 39 (2007), 232–234.

[GG5] D. L. Gonçalves and J. Guaschi, The classification and the conjugacy classes of the finite sub-
groups of the sphere braid groups, Algebraic and Geometric Topology 8 (2008), 757–785.

[GG6] D. L. Gonçalves and J. Guaschi, The lower central and derived series of the braid groups of the
sphere, Trans. Amer. Math. Soc. 361 (2009), 3375–3399.

90



[GG7] D. L. Gonçalves and J. Guaschi, The lower central and derived series of the braid groups of the
finitely-punctured sphere, J. Knot Theory Ramifications 18 (2009), 651–704.

[GG8] D. L. Gonçalves and J. Guaschi, Classification of the virtually cyclic subgroups of the pure
braid groups of the projective plane, J. Group Theory 13 (2010), 277–294.

[GG9] D. L. Gonçalves and J. Guaschi, Surface braid groups and coverings, J. London Math. Soc., to
appear.

[GG10] D. L. Gonçalves and J. Guaschi, Classification of the virtually cyclic subgroups of the braid
groups of the projective plane, work in progress.

[GW] J. González-Meneses and B. Wiest, On the structure of the centralizer of a braid, Ann. Sci. École
Norm. Sup. 37 (2004), 729–757.

[GJM] J. Guaschi, D. Juan-Pineda and S. Millán-López, Lower algebraic K-theory of the braid groups
of the sphere, work in progress.

[Hn] V. L. Hansen, Braids and Coverings: Selected topics, London Math. Society Student Text 18, Cam-
bridge University Press, 1989.

[Ho] L. Hodgkin, K-theory of mapping class groups: general p-adic K-theory for punctured spheres,
Math. Z. 218 (1995), 611–634.

[Je] M. de Jesus Soares, Ph.D thesis, Açoes de p–grupos sobre produtos de esferas, cohomologia
dos grupos virtualmente cíclicos pZa �Zbq �Z e pZa � pZb �Q2iqq �Z e cohomologia de Tate,
ICMC – USP São Carlos, Brazil, September 2008.

[JP] D. Juan-Pineda, On the lower algebraic K-theory of virtually cyclic groups, in High-
dimensional manifold topology, World Sci. Publ., River Edge, NJ, 2003, 301–314.

[JM1] D. Juan-Pineda and S. Millán-López, Invariants associated to the pure braid group of the
sphere, Bol. Soc. Mat. Mexicana 12 (2006), 27–32.

[JM2] D. Juan-Pineda and S. Millán-López, The braid groups of RP2 satisfy the Fibered Isomorphism
Conjecture, in Cohomology of groups and algebraic K-theory, Adv. Lect. Math. 12, 187–195, Int.
Press, Somerville, MA, 2010.

[JM3] D. Juan-Pineda and S. Millán-López, The Whitehead group and the lower algebraic K-theory
of braid groups on S2 and RP2, Algebraic and Geometric Topology 10 (2010), 1887–1903.

[McH] C. Maclachlan and W. J. Harvey, On mapping-class groups and Teichmüller spaces, Proc. Lon-
don Math. Soc. 30 (1975), 496–512.

[McL] S. Mac Lane, Homology, Classics in Mathematics, Reprint of the 1975 edition, Springer-Verlag,
Berlin, 1995.

[MKS] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, reprint of the 1976 second
edition, Dover Publications, Inc., Mineola, NY, 2004.

[ML] S. Millán-Vossler, The lower algebraic K-theory of braid groups on S2 and RP2, VDM Verlag,
2008.

[Mu] K. Murasugi, Seifert fibre spaces and braid groups, Proc. London Math. Soc. 44 (1982), 71–84.

[MK] K. Murasugi and B. I. Kurpita, A study of braids, Mathematics and its Applications 484,
Kluwer Academic Publishers, Dordrecht, 1999.

91



[N] M. H. A. Newman, On a string problem of Dirac, J. London Math. Soc. 17 (1942), 173–177.

[St] M. Stukow, Conjugacy classes of finite subgroups of certain mapping class groups, Seifert fibre
spaces and braid groups, Turkish J. Math. 2 (2004), 101–110.

[ThC] C. B. Thomas, Elliptic structures on 3-manifolds, Lecture Notes in Mathematics, University of
Chicago Department of Mathematics, Chicago, IL, 1983.

[ThJ] J. G. Thompson, Note on Hp4q, Comm. Algebra 22 (1994), 5683–5687.

[VB] J. Van Buskirk, Braid groups of compact 2-manifolds with elements of finite order, Trans. Amer.
Math. Soc. 122 (1966), 81–97.

[Wa] C. T. C. Wall, Poincaré complexes I, Ann. Math. 86 (1967), 213–245.

[Wo] J. A. Wolf, Spaces of constant curvature, Fifth edition, Publish or Perish Inc., Houston, TX,
1984.

92


