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Schrödinger operator in the limit of shrinking
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Abstract

Motivated by the method of self-similar variables for the study of the large time be-
haviour of the heat equation in twisted wave-guides, we consider a harmonic-oscillator-
type operator in hard-wall three-dimensional wave-guides whose non-circular cross-
section and the support of twisting diminishing simultaneously to zero.

Since in this limit the strength of the twisting increases to infinity and its support
shrinks to the point, we show that the corresponding Schrödinger operator converges in
a suitable norm-resolvent sense to a one-dimensional harmonic-oscillator operator on
the reference line of the wave-guide, subject to some extra Dirichlet boundary condition
at the twisting point support.
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1 Introduction

While the effect of bending in quantum wave-guides has been studying since a long
time, see e.g. [5], [7], [3], that of twisting has been observed only recently [6]. It is
well known that the curvature of the reference curve leads to some kind of attractive
interaction, which gives rise to geometrically induced bound states. On the other
hand, the recent results show that local non-trivial rotations θ of the wave-guide with
non-circular cross-section (twisting, see Figure 1) generate Hardy-type estimates for
energy spectrum, which in particular exclude the existence of bound states. Therefore,
one deals with an interesting spectral-geometric interplay in simultaneously bent and
twisted tubes – see [14] for a review and references.

Figure 1: A twisted waveguide with non circular cross section

Another important consequence of the Hardy-type inequalities has been studied
recently in [17] in the context of the heat equation. The authors show that the heat
semigroup acquires an extra decay rate due to twisting, as compared to the straight
(untwisted) wave-guide. The robustness of this effect of twisting has been subsequently
demonstrated on other related models, such as planar wave-guides with twisted bound-
ary conditions [12], [18], and strip-like negatively curved manifolds [13], [11].

The approach of [17] is based on the method of self-similar variables and weighted
Sobolev spaces, which reduce the problem of large-time behaviour of solutions to
the heat equation to the study of the convergence of the family of singularly scaled
Schrödinger-type operators

Hε = −(∂1 − σε ∂τ )
2 +

x21
16

− 1

ε2
∆ω

D − 1

ε2
E1 in L2(Ω0), (1.1)

subject to Dirichlet boundary conditions, as the singular parameter ε (playing the role
of inverse exponential of the self-similar time) tends to zero. Here Ω0 := R × ω is
a straight tube (to which the twisted wave-guide can be mapped by using suitable
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curvilinear coordinates) of cross-section ω ⊂ R2, −∆ω
D and ∂τ denote the Laplacian

and angular derivative in ω, respectively, E1 is the first eigenvalue of the Dirichlet
Laplacian in L2(ω) and σε is the singularly scaled twisting:

σε(x) :=
1

ε
θ̇
(x1
ε

)
. (1.2)

Note that the appearance of ε in (1.1) is such as if the tube were shrinking to the
reference line as ε→ 0, while the velocity of the twisting angle θ in (1.2) grows and its
support diminishes in the limit. The overall feature of (1.1) is therefore very singular
in the limit ε→ 0.

As the main ingredient in the proof of the extra decay rate of the heat semigroup,
the authors of [17] prove a strong-resolvent convergence of Hε as ε → 0 to the one-
dimensional harmonic-oscillator operator

hD = − d2

dx21
+
x21
16

in L2(R) , (1.3)

subject to a supplementary Dirichlet condition at x1 = 0 if and only if the tube is
non-trivially twisted. It is in fact this decoupling condition which is responsible for the
faster decay rate of solutions to the heat equation in twisted tubes, since the lowest
eigenvalue of (1.3) determines the decay rate and the former is three times greater if
the supplementary Dirichlet condition is present.

In this paper we show that the convergence of Hε to hD as ε→ 0 actually holds in a
(suitable) norm-resolvent sense (taking into account the fact that the operators act on
different Hilbert spaces). Our approach (different from that of [17]) essentially uses the
technique of [2] and, apart from giving the operator convergence in a better topology,
it enables us to establish the rate of convergence. We also note that the question of the
validity of the norm-resolvent convergence was explicitly raised in [15] by one of the
authors of [17]. On the negative side, contrary to [17], we need to impose the additional
hypothesis that the second derivative θ̈ exists and is bounded. However, it seems that
one could get rid of this technical assumption by adapting an approximation technique
recently proposed in [20], [16]. While preparing this paper we learned about a recent
result [20], where the norm-resolvent convergence in the limit of thin quantum wave-
guides is proved under certain ”mild” regularity conditions. The key step is different
to our method and is based on the Steklov approximation.

The paper is organized as follows. In the next Section 2 we recall the origin of the
operator (1.1) in more details and formulate our main Theorem. The proof essentially
consists of three steps and is correspondingly presented in Section 3. The paper is
concluded in Section 4 by mentioning a more general model.

2 Set up and the main Theorem

Let Ω0 := R×ω be a straight tube with the main axis R and a non-circular cross section,
which is a bounded connected open set ω ⊂ R2. Let Ωθ denote the corresponding
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locally twisted tube with the same main axis. This means that we allow ω to rotate
with variation of the coordinate x1 along the main axis R on (non-constant) angle
θ : x1 7→ θ(x1), and we assume that this twisting is smooth and local, i.e. the derivative
θ̇(x1) is a C

1-smooth function with compact support in R, see Figure 1. With our choice
of the main axis, for x := (x1, x2, x3) ∈ R3 we refer to x1 as the “ longitudinal” and to
x′ = (x2, x3) as the “ transverse” coordinates in the tubes Ω0 and Ωθ. Then transition
from the straight to the twisted tube is the mapping Lθ : Ω0 → Ωθ defined explicitly
by the function

Lθ(x) := (x1, x2 cos θ(x1) + x3 sin θ(x1),−x2 sin θ(x1) + x3 cos θ(x1)) .

We consider in Ω0 and in Ωθ, i.e. in the spaces L2(Ω0) and L
2(Ωθ), the (minus) Dirichlet

Laplacians. We denote them respectively by −∆Ω0

D and −∆Ωθ

D .
For the case of the straight tube twisting Lθ there is an x1-dependent local rotation

of coordinates that maps the twisted tube Ωθ into the straight one Ω0. Let Vθ :
L2(Ωθ) → L2(Ω0) denote the unitary representation of this mapping: Vθψ := ψ ◦ Lθ.
Then the corresponding unitary transformation of the twisted Dirichlet Laplacians
−∆Ωθ

D takes the form [14], [17]:

Hθ := Vθ(−∆Ωθ

D )V −1
θ = −(∂1 − θ̇∂τ )

2 −∆ω
D , with dom(Hθ) ⊂ L2(Ω0) . (2.1)

The quadratic form associated to self-adjoint operator Hθ is

Qθ[ψ] := ||∂1ψ − θ̇∂τψ||2L2(Ω0)
+ ||∇′ψ||2L2(Ω0)

, (2.2)

with domain dom(Qθ) = W 1,2
0 (Ω0), which is Sobolev space in L2(Ω0). Here we denote

by ∇′ := (∂2, ∂3) the transverse gradient in ω, i.e. ∆ω
D := (∂22 + ∂23)D stays for Dirich-

let Laplacian operator in the space L2(ω), corresponding to cross-section ω, and the
operator

∂τ := τ · ∇′ = x3∂2 − x2∂3 , for vector τ = (x3,−x2) ,
is the angular-derivative in R2 ⊃ ω.

To describe the limit of (2.1) for simultaneous wave-guide diameter and twisting
supports shrinking, we use instead of the self-similar parametrization (see [17], Ch.1.2,
IV) the following family of scaled operators.

We denote by Uε the unitary transformation acting as (Uεψ)(x) :=
√
ε ψ(ε x1, x2, x3),

for ε > 0, and we introduce the family of scaled operators Ĥε,θ:

Ĥε,θ = ε2U∗
εHθUε = −(∂1 − σε∂τ )

2 − 1

ε2
∆ω

D , in L2(Ω0). (2.3)

Here Ĥε,θ is associated with the quadratic form

Q̂ε,θ[ψ] := ||∂1ψ − σε∂τψ||2L2(Ω0)
+

1

ε2
||∇′ψ||2L2(Ω0)

, (2.4)

with domain dom(Q̂ε,θ) = W 1,2
0 (Ω0). Here σε(·) := ε−1 θ̇(·/ε), i.e. support of twisting

decreases, when ε → 0, and σε(·) becomes singular in cross-section {x1 = 0} × ω. To
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appreciate this singularity notice that in distributional sense limε→0 σε(·) exists and
coincides with (θ(+∞) − θ(−∞)) δ0(·), where δ0(·) is the Dirac symbol with support
at x1 = 0. Below we are dealing with even stronger singularity due to σ2

ε(·).
Let E1 > 0 denote the first eigenvalue of the operator (−∆ω

D) in the cross-section ω.
Then by virtue of (2.4) the value E1/ε

2 is the lower bound (and the spectral infimum)
of the operator (2.3). This bound increases for ε → 0 with the rate corresponding to
geometrical shrinking of the cross-section.

Following the strategy of [15]-[18] the next step is to investigate the operator
(2.1) in a ”natural” weighted Sobolev space W 1,2

0 (Ω0, K(x)dx) corresponding to Hk :=
L2(Ω0, K

k(x)dx) for k = 1, where K(x) = exp(x21/4), see [17] Ch.5.3. The advantage
of this approach is that in the space H1 (instead of H0) the corresponding operator
(2.3) has a compact resolvent. Indeed, let the transformation UK : H1 → H0 is defined
by

(UKφ)(x) := (K1/2φ)(x) = ex
2

1
/8 φ(x1, x2, x3) ,

and let Hε,θ := UK Ĥε,θ U−1
K . Then operator (2.3) is unitary equivalent to

Hε,θ = −(∂1 − σε∂τ )
2 − 1

ε2
∆ω

D +
x21
16
, in H0 = L2(Ω0) , (2.5)

which is self-adjoint operator associated to the quadratic form

Qε,θ[ψ] := ||∂1ψ − σε∂τψ||2L2(Ω0)
+

1

ε2
||∇′ψ||2L2(Ω0)

+
1

16
||x1ψ||2L2(Ω0)

(2.6)

with domain in the weighted space W 1,2
0 (Ω0, K(x)dx). Therefore, the harmonic po-

tential in direction x1, together with Dirichlet Laplacian ∆ω
D in cross-section ω with

the discrete spectrum Sp(−∆ω
D) = {E1 < E2 ≤ E3 ≤ . . .}, make the total spectrum

Sp(Hε,θ) of the operator (2.5) pure point and increasing to infinity. This bolsters the
claim that the resolvent of (2.5) is compact.

Notice that shrinking (ε → 0) of the cross-section implies via transversal operator
(−∆ω

D/ε
2) the shift of En/ε

2 → ∞ and of the whole spectrum Sp(Hε,θ) to infinity.
Hence, to make a sense of a resolvent limit for (2.5) one has to study the shifted
resolvent

R(E1/ε2−1)(Hε,θ) := (Hε,θ − E1/ε
2 + 1)−1 , (2.7)

which is well-defined since by (2.6) one has Hε,θ −E1/ε
2 + 1 > 1 uniformly in ε > 0.

To proceed to formulation of our main result we single out from (2.5) the one-
dimensional harmonic oscillator operator h0 > 0:

h0 := − d2

dx21
+
x21
16

, in L2(R) , (2.8)

and introduce the operator hD0 ≥ h0 defined as h0, but with Dirichlet boundary condi-
tion at x1 = 0:

dom((hD0 )
1/2) := {u ∈ dom((h0)

1/2) : u(x1 = 0) = 0} . (2.9)
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The aim of the present paper is to compare the shifted operator Hε,θ − E1/ε
2

and hD0 in the norm-resolvent sense. This makes a difference between our result and
[15]-[18], where the convergence of these operators for ε → 0 was established in the
strong-resolvent sense.

Since operators Hε,θ − E1/ε
2 and hD0 act in different spaces we have to elucidate

the above statement decomposing H0 = L2(Ω0) into orthogonal sum:

H0 = H1 ⊕ H
⊥
1 . (2.10)

Here H1 := {u⊗ J1 : u(x1) ∈ L2(R), J1(x
′) : (−∆ω

D)J1 = E1J1 , x
′ = (x2, x3)}. With

this decomposition we obtain

(Hε,θ −E1/ε
2 + 1) u⊗J1 = (2.11)

[−(∂1 ⊗ I − σε ⊗ ∂τ )
2 − I ⊗ 1

ε2
(∆ω

D + E1 − 1) +
x21
16

⊗ I] u⊗ J1 =

[−(∂1 ⊗ I − σε ⊗ ∂τ )
2 + (x21/16 + 1)⊗ I] u⊗ J1 ,

and the estimate on H⊥
1 from below:

(v ⊗ Jn>1, ((En − E1)/ε
2 + 1) v ⊗Jn>1)H⊥

1

≤ (2.12)

(v ⊗ Jn>1, (Hε,θ − E1/ε
2 + 1) v ⊗Jn>1)H⊥

1

.

This decomposition allows us also to construct a suitable extension of the resolvent
R̂(z=−1)(h

D
0 ) := (hD0 +1)−1 (originally defined on L2(R)) to the whole space H0. Below

we denote this extension by Rz(h
D
0 ).

To this end notice that operator (hD0 + 1) ⊗ I is invertible in H1. Hence, we can
extend this inversion by zero operator 0⊥ on H⊥

1 and define :

R(z=−1)(h
D
0 ) := (hD0 + 1)−1 ⊗ I ⊕ 0⊥ . (2.13)

This extension is evidently motivated by (2.10) and (2.12) saying that for ε → 0 the
resolvent (2.7) converges to the zero operator 0⊥ on H⊥

1 .
Now we are in position to formulate our main result.

Theorem 2.1. Let Ωθ be a twisted tube with θ̇ ∈ C1
0 (R) and with a bounded θ̈. Then,

lim
ε→0

||(Hε,θ −E1/ε
2 + 1)−1 −

[
(hD0 + 1)−1 ⊗ I ⊕ 0⊥

]
|| = 0 , (2.14)

in the operator norm of the space H0 = L2(Ω0).

Remark 2.2. Using decomposition (2.10) we split the proof of the Theorem into several
steps. To this end we introduce in H0 = H1 ⊕ H⊥

1 the intermediate operator:

Hε
0 := [−(∂21 +

x21
16

+ Cωσ
2
ε)⊗ I + I ⊗ (−∆ω

D)/ε
2]

=: hε ⊗ I + I ⊗ 1

ε2

∞⊕

n=1

En Pn , (2.15)
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where Cω := ||∂τJ1||2L2(ω) and Pn := (Jn, ·)L2(ω) Jn are orthogonal projectors on the

transversal modes Jn, n = 1, 2, 3, . . . . We denote by Rz(H
ε
0) := (Hε

0 − z I ⊗ I)−1 its
resolvent at the point z in the resolvent set and we denote by Qε

0 the sesquilinear form
associated with Hε

0 .

Remark 2.3. Since operator (hε + 1)⊗ I is invertible in H1, then similarly to (2.13)
we define the resolvent:

R(z=−1)(hε) := (hε + 1)−1 ⊗ I ⊕ 0⊥ . (2.16)

Notice that by (2.11) and (2.15) the difference of resolvents:

R(E1/ε2−1)(Hε,θ)−R(E1/ε2−1)(H
ε
0) = R(E1/ε2−1)(Hε,θ) (H

ε
0−Hε,θ) R(E1/ε2−1)(H

ε
0) , (2.17)

is finite on H1 and tends to zero (for ε → 0) on H⊥
1 , cf (2.12). Hence, the first step is

to compare the operators (2.5) and (2.15).
Since similar to (2.12) the resolvent R(E1/ε2−1)(H

ε
0) converges for ε → 0 to the

zero operator 0⊥ on H⊥
1 , our second step is to compare (in the proper sense) the total

operator (2.15) with operator hε ⊗ I acting in H1 and defined by the resolvent (2.16)
as ”infinity” in the complement subspace H⊥

1 .
The third step is to prove the norm-resolvent convergence of operators hε and hD0 ,

which is reduced to analysis in L2(R) and to technique due to [2].

3 Proofs

As it is mentioned at the end of Section 2, the proof of Theorem 2.1 is divided into three
steps and to prove this theorem, we use the intermediate operator (2.15) and the oper-
ator hε⊗ I via definition (2.16). We insert the corresponding resolvents R(E1/ε2−1)(H

ε
0)

and R(z=−1)(hε) into the limit (2.14) in the following way:

||R(E1/ε2−1)(Hε,θ)− R(E1/ε2−1)(H
ε
0) +R(E1/ε2−1)(H

ε
0)−R(z=−1)(hε) +

R(z=−1)(hε)− R(z=−1)(h
D
0 )||

Hence the operator norm of the resolvent difference in (2.14) is bounded by the three
terms:

||R(E1/ε2−1)(Hε,θ)− R(E1/ε2−1)(H
ε
0)||+ ||R(E1/ε2−1)(H

ε
0)− R(z=−1)(hε)||+

‖R(z=−1)(hε) − R(z=−1)(h
D
0 )||. (3.1)

We estimate them separately in the following three steps below.

3.1 Step one

First we estimate the operator norm of the difference (2.17). To this end we compare the
quadratic forms Qε,θ (see (2.6)) and Qε

0 and to show that the difference mε := Qε
0−Qε,θ
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goes to zero as ε goes to zero. This would mean that the problem of approximation is
reduced now to analysis of the intermediate operator (2.15) or the form Qε

0.
For this purpose we denote by φ, ψ ∈ H0 = L2(Ω0) the solutions of equations:

F = (Hε,θ −E1/ε
2 + 1)φ, G = (Hε

0 − E1/ε
2 + 1)ψ, F,G ∈ H0 . (3.2)

Then we obtain for the difference (2.17) the representation:

(F,
(
R(E1/ε2−1)(Hε,θ)− R(E1/ε2−1)(H

ε
0)
)
G) = Qε

0 −Qε,θ = mε(φ, ψ) , (3.3)

where, the sesquilinear form mε(φ, ψ) is explicitly given by

mε(φ, ψ) = (φ, Cωσ
2
εψ) + (∂1φ, σε∂τψ) + (σε∂τφ, ∂1ψ)− (∂τφ, σ

2
ε∂τψ). (3.4)

Lemma 3.1. For ε→ 0 the sesquilinear form (3.4) can be estimated as:

|mε(φ, ψ)| ≤ ε Cm ||F ||H0
||G||H0

, F, G ∈ H0 , (3.5)

for a certain constant Cm > 0 and for solutions φ, ψ of (3.2).

Proof. Following decomposition (2.10) we represent the functions ψ, φ ∈ H0 as ψ =
ψ1 ⊕ ψ⊥

1 and φ = φ1 ⊕ φ⊥
1 , where ψ1, φ1 ∈ H1 and ψ⊥

1 , φ
⊥
1 ∈ H⊥

1 . Then we obtain

mε(φ, ψ) = mε(φ1, ψ1) +mε(φ
⊥
1 , ψ

⊥
1 ) +mε(φ1, ψ

⊥
1 ) +mε(φ

⊥
1 , ψ1). (3.6)

First, we show that mε(φ1, ψ1) = O(ε) and mε(φ
⊥
1 , ψ

⊥
1 ) = O(ε). To this end, we

use (3.4) to write explicitly

mε(φ1, ψ1) = (φ1, Cωσ
2
εψ1)− (∂τφ1, σ

2
ε∂τψ1) + (∂1φ1, σε∂τψ1) + (σε∂τφ1, ∂1ψ1) . (3.7)

To compute the first two terms in the right-hand side of (3.7) we use definition of Cω

and the fact that φ1 = u(x1)⊗J1(x
′) and ψ1 = v(x1)⊗J1(x

′), where J1 is normalized
to one. Then one gets that these terms vanish:

(φ1, Cωσ
2
εψ1)− (∂τφ1, σ

2
ε∂τψ1) =

Cω

∫

R

σ2
ε (x1)u(x1)v(x1)dx1

∫

ω

|J1(x
′)|2dx′ −

∫

R

σ2
ε (x1)u(x1)v(x1)dx1 ||∂τJ1||2L2(ω) .

(3.8)

To estimate the last two terms in the right-hand side of (3.7) we use equations (3.2).
In particular they imply that σ2

ε (x1)u(x1) ∈ L2(R), or :

∫

R

1

ε4
(θ̇(x1/ε))

4|u(x1)|2dx1 =
1

ε3

∫

R

(θ̇(y))4|u(εy)|2dy < Cu . (3.9)

By conditions on θ̇ this means that solutions of equations (3.2) have asymptotic

u(εy) = O(ε3/2) for ε → 0 and y ∈ K , (3.10)
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for any compact K ⊂ R. Then to estimate the third term in the right-hand side of
(3.7) we use (3.10). This gives:

|(∂1φ1, σε∂τψ1)| =
∣∣∣∣
∫

R

∂1u(x1)
1

ε
θ̇(x1/ε) v(x1)dx1

∫

ω

J1(x
′)∂τJ1(x

′)dx′
∣∣∣∣ ≤ (3.11)

Cω‖∂1u‖L2(R)

{∫

R

1

ε
(θ̇(y))2|v(εy)|2dy

}1/2

≤ O(ε) Cω‖∂1u‖L2(R)

{∫

R

(θ̇(y))2dy

}1/2

.

Since by (3.2) ∂1u ∈ L2(R), the inequality (3.11) implies the estimate |(∂1φ1, σε∂τψ1)| =
O(ε). Similarly one obtain the estimate (σε∂τφ1, ∂1ψ1) = O(ε), that yieldsmε(φ1, ψ1) =
O(ε).

We can show that mε(φ
⊥
1 , ψ

⊥
1 ) = O(ε) by similar calculations. Indeed, we have

representation:

mε(φ
⊥
1 , ψ

⊥
1 ) = (φ⊥

1 , Cωσ
2
εψ

⊥
1 )− (∂τφ

⊥
1 , σ

2
ε∂τψ

⊥
1 ) + (∂1φ

⊥
1 , σε∂τψ

⊥
1 ) + (σε∂τφ

⊥
1 , ∂1ψ

⊥
1 ).

Then in a complete similarity with (3.7) one obtains that the terms |(∂1φ⊥
1 , σε∂τψ

⊥
1 )|

and |(σε∂τφ⊥
1 , ∂1ψ

⊥
1 )| are of order ε and that

(φ⊥
1 , Cωσ

2
εψ

⊥
1 )− (∂τφ

⊥
1 , σ

2
ε∂τψ

⊥
1 ) = 0 .

Now let us estimate the term

mε(φ1, ψ
⊥
1 ) = (σε∂τφ1, ∂1ψ

⊥
1 )−(∂τφ1, σ

2
ε∂τψ

⊥
1 )+(∂1φ1, σε∂τψ

⊥
1 )+(Cωσ

2
εφ1, ψ

⊥
1 ). (3.12)

Since φ1 = u ⊗ J1 and ψ⊥
1 belongs to the linear envelope of {v ⊗ Jn}∞n=2, to estimate

the first term in (3.12) we consider:

(σε∂τφ1, ∂1ψ
⊥
1 ) =

∫

R

1

ε
θ̇(x1/ε) u(x1)∂1v(x1)dx1

∫

ω

∂τJ1(x
′){Jn}∞n=2(x

′)dx′ . (3.13)

Notice that integral (3.13) coincides (up to simple modifications) with the integral in
(3.11). Therefore, it has the same estimate O(ε). Similarly we obtain for the third
term in (3.12) the representation:

(∂1φ1, σε∂τψ
⊥
1 ) =

∫

R

∂1u(x1)
1

ε
θ̇(x1/ε)v(x1)dx1

∫

ω

J1(x
′)∂τ{Jn}∞n=2(x

′)dx′ , (3.14)

which implies that this term is also of the orderO(ε). To estimate the term (∂τφ1, σ
2
ε∂τψ

⊥
1 ),

we use the following inequalities:

|(∂τφ1, σ
2
ε∂τψ

⊥
1 )| =

∣∣∣∣
∫

R

u(x1)
1

ε2
(θ̇(x1/ε))

2 v1(x1)dx1

∫

ω

∂τJ1(x
′)∂τJs>1(x

′) dx′
∣∣∣∣

≤ Cω

{∫

R

1

ε2
(θ̇(x1/ε))

2 |u(x1)|2dx1
}1/2 {∫

R

1

ε2
(θ̇(x1/ε))

2 |v(x1)|2dx1
}1/2

= Cω

{∫

R

1

ε
(θ̇(y))2 |u(εy)|2dy

}1/2{∫

R

1

ε
(θ̇(y))2 |v(εy)|2dy

}1/2

≤ O(ε2) Cω , (3.15)
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where the last asymptotic follows from (3.9) and (3.10). Finally, since φ1 and ψ⊥
1

belong to orthogonal subspaces we obtain for the last term (Cωσ
2
εφ1, ψ

⊥
1 ) = 0.

Note that the estimate of the term m(φ⊥
1 , ψ1) is identical to m(φ1, ψ

⊥
1 ). Therefore,

summarizing (3.11), (3.13), (3.14), and (3.15), we obtain the estimate of the form (3.6)
for solutions of (3.2) by O(ε). Since equations (3.2) yield the estimate of φ, ψ by norms
||F ||H0

, ||G||H0
, one gets (3.5). So, the proof of Lemma 3.1 is completed.

Remark 3.2. By (3.3) and (3.5) we obtain the rate of the operator-norm convergence
for the difference of resolvents (2.17):

‖R(E1/ε2−1)(Hε,θ)−R(E1/ε2−1)(H
ε
0)‖ ≤ ε Cm . (3.16)

3.2 Step two

By virtue of definitions (2.15) and (2.16) we obtain

Λε := R(E1/ε2−1)(H
ε
0)−R(z=−1)(hε) = (3.17)

[(hε + 1)⊗ I + I ⊗ 1

ε2

∞⊕

n=2

(En − E1)Pn]
−1 − [(hε + 1)−1 ⊗ I ⊕ 0⊥] .

Since Pn>1 : H1 → 0, one gets Λεφ = 0 for φ ∈ H1. On the hand for φ⊥ ∈ H⊥
1 we have:

Λε φ
⊥ = [I ⊗ 1

ε2

∞⊕

n=2

(En −E1)Pn]
−1 φ⊥ . (3.18)

Therefore, for the second term in (3.1) we obtain the estimate

||R(E1/ε2−1)(H
ε
0)−R(z=−1)(hε)|| ≤ ε2/(E2 −E1) . (3.19)

3.3 Step three

Recall the definition (2.15) of the intermediate operator

hε = −∂21 +
x21
16

+ Cωσ
2
ε

and recall that the operator h0 is the operator −∂21+
x2

1

16
define on L2(R) while hD0 is the

analoguous operator plus a Dirichlet boundary condition at the origin. Let us denote

Rk2(hε) := (hε − k2)−1, rk2(h
D
0 ) := (hD0 − k2)−1, k2 /∈ σ(hε)

The third step consists in showing the following lemma:

Lemma 3.3. Let hε h0 and hD0 being the operators on L2(R) described as above (see
(2.8)). Let us denote R(h0) := (hε − k2)−1, R(hD0 ) := (hD0 − k2)−1. Then we get

lim
ε→0

||Rk2(hε)− Rk2(h
D
0 )|| = 0,

10



3.3.1 Preliminary lemma

Let us introduce the Green functions associated to the resolvents Rk2(h0) and Rk2(h
D
0 ).

There are the kernels R(h0)(x, y, k
2) and R(hD0 )(x, y, k

2) respectively. To prove the
lemma 3.3 we need the following lemma:

Lemma 3.4. Let v be a vector normalized to 1 and P and Q two projectors such that

P = (., v)v, Q = 1− P, v ∈ L2(R), sup
p∈R

V̂ (p) <∞ (3.20)

Let τ be the trace operator (and τ ⋆ its adjoint) acting as follow

τf(x, y) = f(0, y)

Then
(i)

lim
ε→0

||r0U⋆
ε

v√
ε
P
v√
ε
Uεr0 − r0τ

⋆τr0|| = 0

(ii)

lim
ε→0

||r0U⋆
ε v

1√
ε

1√
ε
vUεr0 − r0τ

⋆τr0|| = 0

(iii)

||r0U⋆
ε

v√
ε
Q|| = o(ε)

Proof : to prove this lemma, we use the properties of the Fourier transforms of the
terms r0U

⋆
ε

v√
ε
P v√

ε
Uεr0, r0U

⋆
ε v

1√
ε

1√
ε
vUεr0 and r0τ

⋆τr0. Let us denote the Fourier trans-

form F and its inverse F−1 and recall

(Fϕ)(p) = ϕ̂(p) =
1√
2π

∫

R

e−ipxϕ(x)dx, (F−1ϕ)(x) =
1√
2π

∫

R

eipxϕ(p)dp

Let us do some useful calculations:

(Uεϕ)(x) =
1√
ε
ϕ(
x

ε
) =

1√
ε

∫

R

δ(
x

ε
− y)ϕ(y)dy

The Fourier transform of a kernel X is expressed as follow

(FXF−1ϕ)(p) =
1√
2π

∫

R

dx e−ipx

∫

R

dyX(x, y)
1√
2π

∫

R

eiqyϕ(q)dq.

Then, denoting Û⋆
ε (p, q) =

√
2πδ(εq − p) we get

(FU⋆
εF

−1)(p) =

∫

R

√
ε√
2π
δ(εq − p)dq =:

∫

R

Û⋆
ε (p, q)dq. (3.21)

11



Inserting the identity FF−1 between the operators U⋆
ε and V , we obtain

FU⋆
ε V F

−1 =

√
ε√
2π
V̂ (εq) (3.22)

Actually, we use the unitarity of the Fourier transforn F and we insert the iden-
tity FF−1 on the terms listed above, we use (3.21) and (3.22), and the fact that∫
R
V̂ (εs)ds = 1 =

√
2πV̂ (0). Then, we get the following unitary equivalences

||r0U⋆
ε

v√
ε
P
v√
ε
Uεr0|| = ||(.r̂0,

V̂ (εq)√
2π

)r̂0
V̂ (εq)√

2π
||, ||r0τ ⋆τr0|| = ||(.r̂0, V̂0)r̂0V̂0||, (3.23)

where we denote r̂0 the Fourier transform of the resolvent r0. and the fact that
∫
R
V̂ (εs)ds =

1 =
√
2πV̂ (0).

Proof of (i). We only have to show, see (3.23) that limε→0 || 1√
2π
r̂0V̂ (εq)− r̂0V̂0|| = 0.

Given that V̂ (εq) converges pointwise to V̂0. From the condition (3.20) and because

the resolvent r0 is compact we deduce that |r̂0(q)(V̂ (εq)− V̂0)| is integrable in q. Then

|r̂0(q)(V̂ (εq)− V̂0)|2 is bounded by an integrable function in q. The proof of (i) ended
using the Lebesgues dominated convergence, that is to say,

lim
ε→0

∫

R

dq|r̂0(q)(V̂ (εq)− V̂0)|2 = 0. (3.24)

Proof of (ii). First we rewrite ||r0U⋆
ε v

1√
ε

1√
ε
vUεr0|| as ||r̂0FU⋆

ε
V
ε
UεF

−1r̂0||. Using the

Fourier transform of (FV F−1ϕ)(p) given by 1√
2π

∫
R
dq ϕ(q)V̂ (p− q) and a straightfor-

ward computation we get FU⋆
ε
V
ε
F−1 =

∫
R
V̂ (ε(s− q))dq, so that the kernel Û⋆

ε V (p, q)

is ε−1/2Û⋆
ε V (p, q) = V̂ (ε(p− q)). Then we have to prove the following convergence

lim
ε→0

|r̂0(p)
(
V̂ (ε(p− q))− V̂0

)
r̂0(p)| = 0

V̂ (ε(p− q)) converge point wise to V̂0 and |r̂0(p)
(
V̂ (ε(p− q))− V̂0

)
r̂0(p)| is bounded

an integrable function. As above, we use the Lebesgue dominated convergence and we
are done.
Proof of (iii). Let us use again the unitarity of the Fourier transform and equal-
ity (3.23). We get the unitarity equivalence between ||r0U⋆

ε
v√
ε
(1 − P ) v√

ε
Uεr0|| and

||r̂0FU⋆
ε

v√
ε
(1−P ) v√

ε
UεF

−1r̂0||.We have to show that this term is o(ε2).With the same
tools, we compute:

(Û⋆
ε V Uεϕ)(p, q) =

∫

R

V̂ (ε(p−q))ϕ(εq)dq, and (Π̂εϕ)(p) =
1

2π

∫

R

V̂ (εp)V̂ (−εq)ϕ(q)dq

So, the kernel (FΠεF
−1)(p, q) is given by V̂ (εp)V̂ (−εq). From the hypothesis on V we

knows that xV (x) ∈ L1(R). We need to show

(a) lim
ε→0

| V̂ (εp)V̂ (−εq)− V̂0V̂ (ε(p− q))

ε
| = 0 almost everywhere

(b)r̂0
2(p)(

Π̂ε(p, q)− V̂0V̂ (ε(p− q))

ε
)|2r̂02(q) bounded by an integrable function in p and q

12



To check the point (a) we apply the mean value theorem, that is to say, since V̂ (εp) =

V̂ (0) + εp V̂ ′(θεp), ∀θ ∈ (0, 1), then

V̂ (εp)V̂ (−εq)− V̂0V̂ (ε(p− q)) =

= (V̂0 + εp V̂ ′(θεp))(V̂0 − εq V̂ ′(θεq))− (V̂0 + ε(p− q) V̂ ′(θε(p− q)))V̂0

= ε(p− q)
(
V̂ ′(θεp)V̂ ′(θεq)− V̂ ′(θε(p− q))V̂0

)
. (3.25)

Inserting this result (3.25) in the limit (a), then we are done. V
′

(p) is integrable in
p and r̂0

2(p)(pαqβ)r̂0
2(q) for 0 ≤ α, β ≤ 2 is integrable in p and q so the point (b) is

satisfied.

3.3.2 Proof of the lemma 3.3

Proof. Recall the Green functions associated to the resolvents Rk2(h0) and Rk2(h
D
0 )

as the kernels R(h0)(x, y, k
2) and R(hD0 )(x, y, k

2) respectively. Using the resolvent
equation, R(hD0 )(x, y, k

2) is computed as follow:

R(hD0 )(x, y, k
2) = R(h0)(x, y, k

2)−CkR(h0)(x, 0, k
2)R(h0)(0, y, k

2), Ck := 1/r0(0, 0, k
2).

The Green function r0(x, y, k
2) expresses as

R(h0)(x, y, k
2) =

∑

n

λ−1
n ψn(x)ψn(y), λn = α(n+

1

2
), (3.26)

and denoting Hn(x) the n-th Hermite polynomials,

ψn(x) =

√
1√
π2nn!

e−x2/32Hn(x). (3.27)

Thanks to the symmetrized resolvent equation, we compute R(hε) as

R(hε) = R(h0)−
1

ε2
R(h0)U

⋆
ε

√
V T (εk)

√
V UεR(h0), (3.28)

where we denote T (εk) the following kernel

T (εk) =

(
1 +

1

ε2

√
V UεR(h0)(k)U

⋆
ε

√
V

)−1

. (3.29)

We note that by a change of variable, we get the equality

ε−2UεRk2(h0)U
⋆
ε f =

∫

R2

R(h0)(εx, εy, k
2)f(y)dx dy. (3.30)

First, we show that we can decompose the kernel (3.29) as the sum of two terms, t0
and εt1 defined below, plus t(2), which are terms of order greater than or equal to ε2.
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The most important part of the proof lies in the fact that the Fourier transforms of
ε−1/2R(h0)U

⋆
ε t

1/2
i , i = 0, 1, (2) is o(ε) so that t1 and t(2) does not contribute in the limit

ε goes to zero. Actually, formally we get

∫

R2

1

ε
R(h0)(x, y, k

2)U⋆
ε f(y, z)dydz =

∫

R2

R(h0)(εx, εy, k
2)f(y, z)dydz

which goes to
∫
R2 R(h0)(x, 0, k

2)f(y, z)dydz as ε goes to zero, and
√
V t

1/2
0 goes to a

constant. So first, let us deal with T (εk) and show that it is invertible., More precisely
we rewrite the kernel 1/ε2U⋆

εR(h0)(x, y, k
2) using equation:

R(h0)(x, y; k
2) = R(h0)(0, 0, k

2) + ~x.~∇R(h0)(0, 0, k2) + ~x.∇2R(h0)(0, 0, k
2).~x+O(|x|3).

Thanks to the definition of the green function, see for example [10], we compute

~∇R(h0)(x, y, k2) =
{

−∂xR(h0)(x, y, k2) + ∂yR(h0)(x,−y, k2) if y ≤ x
−∂xR(h0)(−x, y, k2) + ∂yR(h0)(x, y, k

2) if y > x

So we get

~x.~∇R(h0)(0, 0, k2) =
(
∂yR(h0)(0, 0, k

2) + ∂xR(h0)(0, 0, k
2)
)
|x− y|.

This term does not have any singularity for k2 close to zero thanks to the properties
of (3.27). Since we get R(h0)(x, y, k

2) = a+ b|x− y|+O(|x2|), a, b ∈ R. then

√
V R(h0)(εx, εy, k

2)
√
V = cP + εM1(x, y) +M(2)(x, y),

where

P :=
(.,

√
V )

√
V

||V || , c := a||V ||, M1(x, y) = b
√
V |x− y|

√
V ,

andM(2)(x, y, k) :=
√
V R(h0)(εx, εy, k

2)
√
V − cP −M1 = O(|ε2x2|).We also note that

εM1(x, y) =M1(εx, εy).
Using the Taylor Young formula, and the expression of the green function see (3.26)
and (3.27) we get

M1(εx, εy) =
√
V R(h0)(εx, εy, k

2)
√
V − cP = o(1).

The term 1
ε2

√
V UεR(h0)(k)U

⋆
ε

√
V in (3.29) is O(1) in ε and so is T (εk). Indeed,

(1 +
√
V R(h0)(εx, εy, k

2)
√
V )−1 = (1 + cP )−1

(
1− εM1(1 + cP )−1 −M(2)(1 + cP )−1

)

Rewriting (1 + cP )−1 as the sum
∑∞

k=0(−cP )k, a straightforward calculation gives
(1 + cP )−1 = Q+ c−1P. Then we get the decomposition of T (εk) as the sum

T (εk) = t0 + εt1 +O(ε2), t0 = Q+
1

c
P, t1 = (Q+

1

c
P )M1(Q+

1

c
P ). (3.31)
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The next step consists in showing the two following convergences as ε goes to zero

1

ε2
R(h0)U

⋆
ε

√
V t0

√
V UεR(h0) → CR(h0)(x, 0, k

2)R(h0)(0, y, k
2)

1

ε
R(h0)U

2
ε

√
V t1

√
V UεR(h0) → 0. (3.32)

Going back to (3.28) and (3.31) we get

R(Hε) = R(h0)−
1

ε2
R(h0)U

⋆
ε

√
V
(
t0(k) + εt1(k) +O(ε2k2)

)√
V UεR(h0)

= R(h0)−
1

ε2
R(h0)U

⋆
ε

√
V

(
Q+

P

c
+ ε(Q+

P

c
)M1(Q+

P

c
) +O(ε2k2)

)√
V UεR(h0)

Then,

lim
ε→0

||R(Hε)−R(h0)|| = lim
ε→0

|| 1
ε2
R(h0)U

⋆
ε

√
V
P

c

√
V UεR(h0)||

1

R(h0)(0, 0, k2)
R(h0)τ

⋆τR(h0).

Using the point (iii) of the lemma 3.4 and the fact that M1 is bounded we get that
||ε−2R(h0)U

⋆
ε

√
V Q

√
V UεR(h0)||, ||ε−1R(h0)U

⋆
ε

√
V QM1Q

√
V UεR(h0)|| and

||ε−1R(h0)U
⋆
ε

√
V QM1

P
c

√
V UεR(h0)|| go to zero as ε goes to zero. From the point (i)

we show ||R(h0)− ε−2R(h0)U
⋆
ε

√
V P/c

√
V UεR(h0)|| goes to zero and we are done.

4 Concluding remarks

Figure 2: An example of twisted and bent waveguide

In this paper we addressed to the question of operator-norm resolvent convergence
of the one-particle Hamiltonian in the limit of shrinking wave-guide and scaled twisting.
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The question of the validity of the norm-resolvent convergence and the idea of this
paper are due to Pierre Duclos and David Krejčǐŕık. This problem was explicitly raised
in [15] and then treated in the context of thin quantum wave-guides in [16],[20], under
regularity conditions different then ours.

The three-step strategy of the proof we proposed in Section 3 gives the O(ε) rate
for convergence to the limiting operator. Apparently this is not an optimal estimate.
Therefore, one of the open question is relaxing the conditions of our main Theorem
versus optimality of the rate. Another aspect is to compare our strategy and conditions
with those of [16],[20].

Twisting versus bending in the limit of thin quantum wave-guides, see for example
Fig.2, is an open question that definitely merits special attention. A progress in this
direction due to the Hardy inequality technique [14] is apparently a good basis to study
this problem.
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[12] H. Kovař́ık and D. Krejčǐŕık, A Hardy inequality in a twisted Dirichlet-Neumann
waveguide, Math. Nachr. 281 (2008), 1159–1168.
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