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Schrödinger operator in the limit of shrinking wave-guide cross-section and singularly scaled twisting

Motivated by the method of self-similar variables for the study of the large time behaviour of the heat equation in twisted wave-guides, we consider a harmonic-oscillatortype operator in hard-wall three-dimensional wave-guides whose non-circular crosssection and the support of twisting diminishing simultaneously to zero.

Since in this limit the strength of the twisting increases to infinity and its support shrinks to the point, we show that the corresponding Schrödinger operator converges in a suitable norm-resolvent sense to a one-dimensional harmonic-oscillator operator on the reference line of the wave-guide, subject to some extra Dirichlet boundary condition at the twisting point support.

Introduction

While the effect of bending in quantum wave-guides has been studying since a long time, see e.g. [START_REF] Duclos | Curvature-induced bound states in quantum waveguides in two and three dimensions[END_REF], [START_REF] Exner | Bound states in a curved wave guide[END_REF], [START_REF] Chenaud | Geometrically induced discrete spectrum in curved tubes[END_REF], that of twisting has been observed only recently [START_REF] Ekholm | A Hardy inequality in twisted waveguides[END_REF]. It is well known that the curvature of the reference curve leads to some kind of attractive interaction, which gives rise to geometrically induced bound states. On the other hand, the recent results show that local non-trivial rotations θ of the wave-guide with non-circular cross-section (twisting, see Figure 1) generate Hardy-type estimates for energy spectrum, which in particular exclude the existence of bound states. Therefore, one deals with an interesting spectral-geometric interplay in simultaneously bent and twisted tubes -see [START_REF] Krejčiřík | Twisting versus bending in quantum waveguides, Analysis on Graphs and its Applications[END_REF] for a review and references. Figure 1: A twisted waveguide with non circular cross section Another important consequence of the Hardy-type inequalities has been studied recently in [START_REF] Krejčiřík | The Hardy inequality and the heat equation in twisted tubes[END_REF] in the context of the heat equation. The authors show that the heat semigroup acquires an extra decay rate due to twisting, as compared to the straight (untwisted) wave-guide. The robustness of this effect of twisting has been subsequently demonstrated on other related models, such as planar wave-guides with twisted boundary conditions [START_REF] Kovařík | A Hardy inequality in a twisted Dirichlet-Neumann waveguide[END_REF], [START_REF] Krejčiřík | The asymptotic behabiour of the heat equation in a Dirichlet-Neumann waveguide[END_REF], and strip-like negatively curved manifolds [START_REF] Krejčiřík | Hardy inequalities in strips on ruled surfaces[END_REF], [START_REF] Kolb | The Brownian traveller on manifolds[END_REF].

The approach of [START_REF] Krejčiřík | The Hardy inequality and the heat equation in twisted tubes[END_REF] is based on the method of self-similar variables and weighted Sobolev spaces, which reduce the problem of large-time behaviour of solutions to the heat equation to the study of the convergence of the family of singularly scaled Schrödinger-type operators

H ε = -(∂ 1 -σ ε ∂ τ ) 2 + x 2 1 16 - 1 ε 2 ∆ ω D - 1 ε 2 E 1 in L 2 (Ω 0 ), (1.1) 
subject to Dirichlet boundary conditions, as the singular parameter ε (playing the role of inverse exponential of the self-similar time) tends to zero. Here Ω 0 := R × ω is a straight tube (to which the twisted wave-guide can be mapped by using suitable curvilinear coordinates) of cross-section ω ⊂ R 2 , -∆ ω D and ∂ τ denote the Laplacian and angular derivative in ω, respectively, E 1 is the first eigenvalue of the Dirichlet Laplacian in L 2 (ω) and σ ε is the singularly scaled twisting:

σ ε (x) := 1 ε θ x 1 ε . (1.2)
Note that the appearance of ε in (1.1) is such as if the tube were shrinking to the reference line as ε → 0, while the velocity of the twisting angle θ in (1.2) grows and its support diminishes in the limit. The overall feature of (1.1) is therefore very singular in the limit ε → 0.

As the main ingredient in the proof of the extra decay rate of the heat semigroup, the authors of [START_REF] Krejčiřík | The Hardy inequality and the heat equation in twisted tubes[END_REF] prove a strong-resolvent convergence of H ε as ε → 0 to the onedimensional harmonic-oscillator operator

h D = - d 2 dx 2 1 + x 2 1 16 in L 2 (R) , (1.3) 
subject to a supplementary Dirichlet condition at x 1 = 0 if and only if the tube is non-trivially twisted. It is in fact this decoupling condition which is responsible for the faster decay rate of solutions to the heat equation in twisted tubes, since the lowest eigenvalue of (1.3) determines the decay rate and the former is three times greater if the supplementary Dirichlet condition is present.

In this paper we show that the convergence of H ε to h D as ε → 0 actually holds in a (suitable) norm-resolvent sense (taking into account the fact that the operators act on different Hilbert spaces). Our approach (different from that of [START_REF] Krejčiřík | The Hardy inequality and the heat equation in twisted tubes[END_REF]) essentially uses the technique of [START_REF] Bollé | A complete treatment of low-energy scattering in one dimension[END_REF] and, apart from giving the operator convergence in a better topology, it enables us to establish the rate of convergence. We also note that the question of the validity of the norm-resolvent convergence was explicitly raised in [START_REF] Krejčiřík | The Hardy inequality and the asymptotic behaviour of the heat equation in twisted waveguides[END_REF] by one of the authors of [START_REF] Krejčiřík | The Hardy inequality and the heat equation in twisted tubes[END_REF]. On the negative side, contrary to [START_REF] Krejčiřík | The Hardy inequality and the heat equation in twisted tubes[END_REF], we need to impose the additional hypothesis that the second derivative θ exists and is bounded. However, it seems that one could get rid of this technical assumption by adapting an approximation technique recently proposed in [START_REF] Šediváková | Quantum Waveguides under Mild Regularity Assumptions[END_REF], [START_REF] Krejčiřík | The effective Hamiltonian in curved quantum waveguides under mild regularity assumptions[END_REF]. While preparing this paper we learned about a recent result [START_REF] Šediváková | Quantum Waveguides under Mild Regularity Assumptions[END_REF], where the norm-resolvent convergence in the limit of thin quantum waveguides is proved under certain "mild" regularity conditions. The key step is different to our method and is based on the Steklov approximation.

The paper is organized as follows. In the next Section 2 we recall the origin of the operator (1.1) in more details and formulate our main Theorem. The proof essentially consists of three steps and is correspondingly presented in Section 3. The paper is concluded in Section 4 by mentioning a more general model.

Set up and the main Theorem

Let Ω 0 := R×ω be a straight tube with the main axis R and a non-circular cross section, which is a bounded connected open set ω ⊂ R 2 . Let Ω θ denote the corresponding locally twisted tube with the same main axis. This means that we allow ω to rotate with variation of the coordinate x 1 along the main axis R on (non-constant) angle θ : x 1 → θ(x 1 ), and we assume that this twisting is smooth and local, i.e. the derivative θ(x 1 ) is a C 1 -smooth function with compact support in R, see Figure 1. With our choice of the main axis, for x := (x 1 , x 2 , x 3 ) ∈ R 3 we refer to x 1 as the " longitudinal" and to x ′ = (x 2 , x 3 ) as the " transverse" coordinates in the tubes Ω 0 and Ω θ . Then transition from the straight to the twisted tube is the mapping L θ : Ω 0 → Ω θ defined explicitly by the function L θ (x) := (x 1 , x 2 cos θ(x 1 ) + x 3 sin θ(x 1 ), -x 2 sin θ(x 1 ) + x 3 cos θ(x 1 )) .

We consider in Ω 0 and in Ω θ , i.e. in the spaces L 2 (Ω 0 ) and L 2 (Ω θ ), the (minus) Dirichlet Laplacians. We denote them respectively by -∆ Ω 0 D and -∆ Ω θ D . For the case of the straight tube twisting L θ there is an x 1 -dependent local rotation of coordinates that maps the twisted tube Ω θ into the straight one Ω 0 . Let V θ : L 2 (Ω θ ) → L 2 (Ω 0 ) denote the unitary representation of this mapping:

V θ ψ := ψ • L θ .
Then the corresponding unitary transformation of the twisted Dirichlet Laplacians -∆ Ω θ D takes the form [START_REF] Krejčiřík | Twisting versus bending in quantum waveguides, Analysis on Graphs and its Applications[END_REF], [START_REF] Krejčiřík | The Hardy inequality and the heat equation in twisted tubes[END_REF]:

H θ := V θ (-∆ Ω θ D )V -1 θ = -(∂ 1 -θ∂ τ ) 2 -∆ ω D , with dom(H θ ) ⊂ L 2 (Ω 0 ) . (2.1) 
The quadratic form associated to self-adjoint operator H θ is

Q θ [ψ] := ||∂ 1 ψ -θ∂ τ ψ|| 2 L 2 (Ω 0 ) + ||∇ ′ ψ|| 2 L 2 (Ω 0 ) , (2.2) 
with domain dom(Q θ ) = W 1,2 0 (Ω 0 ), which is Sobolev space in L 2 (Ω 0 ). Here we denote by ∇ ′ := (∂ 2 , ∂ 3 ) the transverse gradient in ω, i.e. ∆ ω D := (∂ 2 2 + ∂ 2 3 ) D stays for Dirichlet Laplacian operator in the space L 2 (ω), corresponding to cross-section ω, and the operator

∂ τ := τ • ∇ ′ = x 3 ∂ 2 -x 2 ∂ 3 , for vector τ = (x 3 , -x 2 ) ,
is the angular-derivative in R 2 ⊃ ω.

To describe the limit of (2.1) for simultaneous wave-guide diameter and twisting supports shrinking, we use instead of the self-similar parametrization (see [START_REF] Krejčiřík | The Hardy inequality and the heat equation in twisted tubes[END_REF], Ch.1.2, IV) the following family of scaled operators.

We denote by U ε the unitary transformation acting as (U ε ψ)(x) := √ ε ψ(ε x 1 , x 2 , x 3 ), for ε > 0, and we introduce the family of scaled operators Ĥε,θ :

Ĥε,θ = ε 2 U * ε H θ U ε = -(∂ 1 -σ ε ∂ τ ) 2 - 1 ε 2 ∆ ω D , in L 2 (Ω 0 ). (2.3)
Here Ĥε,θ is associated with the quadratic form

Q ε,θ [ψ] := ||∂ 1 ψ -σ ε ∂ τ ψ|| 2 L 2 (Ω 0 ) + 1 ε 2 ||∇ ′ ψ|| 2 L 2 (Ω 0 ) , (2.4) 
with domain dom( Q ε,θ ) = W 1,2 0 (Ω 0 ). Here σ ε (•) := ε -1 θ(•/ε), i.e. support of twisting decreases, when ε → 0, and σ ε (•) becomes singular in cross-section {x 1 = 0} × ω. To appreciate this singularity notice that in distributional sense lim ε→0 σ ε (•) exists and coincides with (θ(+∞) -θ(-∞)) δ 0 (•), where δ 0 (•) is the Dirac symbol with support at x 1 = 0. Below we are dealing with even stronger singularity due to σ 2 ε (•). Let E 1 > 0 denote the first eigenvalue of the operator (-∆ ω D ) in the cross-section ω. Then by virtue of (2.4) the value E 1 /ε 2 is the lower bound (and the spectral infimum) of the operator (2.3). This bound increases for ε → 0 with the rate corresponding to geometrical shrinking of the cross-section.

Following the strategy of [START_REF] Krejčiřík | The Hardy inequality and the asymptotic behaviour of the heat equation in twisted waveguides[END_REF]- [START_REF] Krejčiřík | The asymptotic behabiour of the heat equation in a Dirichlet-Neumann waveguide[END_REF] the next step is to investigate the operator (2.1) in a "natural" weighted Sobolev space W 1,2 0 (Ω 0 , K(x)dx) corresponding to

H k := L 2 (Ω 0 , K k (x)dx) for k = 1, where K(x) = exp(x 2 1 /4), see [17] Ch.5.
3. The advantage of this approach is that in the space H 1 (instead of H 0 ) the corresponding operator (2.3) has a compact resolvent. Indeed, let the transformation

U K : H 1 → H 0 is defined by (U K φ)(x) := (K 1/2 φ)(x) = e x 2 1 /8 φ(x 1 , x 2 , x 3 ) ,
and let

H ε,θ := U K Ĥε,θ U -1 K . Then operator (2.3) is unitary equivalent to H ε,θ = -(∂ 1 -σ ε ∂ τ ) 2 - 1 ε 2 ∆ ω D + x 2 1 16 , in H 0 = L 2 (Ω 0 ) , (2.5) 
which is self-adjoint operator associated to the quadratic form

Q ε,θ [ψ] := ||∂ 1 ψ -σ ε ∂ τ ψ|| 2 L 2 (Ω 0 ) + 1 ε 2 ||∇ ′ ψ|| 2 L 2 (Ω 0 ) + 1 16 ||x 1 ψ|| 2 L 2 (Ω 0 ) (2.6) 
with domain in the weighted space W 1,2 0 (Ω 0 , K(x)dx). Therefore, the harmonic potential in direction x 1 , together with Dirichlet Laplacian ∆ ω D in cross-section ω with the discrete spectrum Sp(-∆ ω D ) = {E 1 < E 2 ≤ E 3 ≤ . . .}, make the total spectrum Sp(H ε,θ ) of the operator (2.5) pure point and increasing to infinity. This bolsters the claim that the resolvent of (2.5) is compact.

Notice that shrinking (ε → 0) of the cross-section implies via transversal operator (-∆ ω D /ε 2 ) the shift of E n /ε 2 → ∞ and of the whole spectrum Sp(H ε,θ ) to infinity. Hence, to make a sense of a resolvent limit for (2.5) one has to study the shifted resolvent

R (E 1 /ε 2 -1) (H ε,θ ) := (H ε,θ -E 1 /ε 2 + 1) -1 , (2.7) 
which is well-defined since by (2.6) one has

H ε,θ -E 1 /ε 2 + 1 > 1 uniformly in ε > 0.
To proceed to formulation of our main result we single out from (2.5) the onedimensional harmonic oscillator operator h 0 > 0:

h 0 := - d 2 dx 2 1 + x 2 1 16 , in L 2 (R) , (2.8) 
and introduce the operator h D 0 ≥ h 0 defined as h 0 , but with Dirichlet boundary condition at x 1 = 0:

dom((h D 0 ) 1/2 ) := {u ∈ dom((h 0 ) 1/2 ) : u(x 1 = 0) = 0} . (2.9)
The aim of the present paper is to compare the shifted operator H ε,θ -E 1 /ε 2 and h D 0 in the norm-resolvent sense. This makes a difference between our result and [15]- [START_REF] Krejčiřík | The asymptotic behabiour of the heat equation in a Dirichlet-Neumann waveguide[END_REF], where the convergence of these operators for ε → 0 was established in the strong-resolvent sense.

Since operators H ε,θ -E 1 /ε 2 and h D 0 act in different spaces we have to elucidate the above statement decomposing H 0 = L 2 (Ω 0 ) into orthogonal sum:

H 0 = H 1 ⊕ H ⊥ 1 .
(2.10)

Here

H 1 := {u ⊗ J 1 : u(x 1 ) ∈ L 2 (R), J 1 (x ′ ) : (-∆ ω D )J 1 = E 1 J 1 , x ′ = (x 2 , x 3 )}. With this decomposition we obtain (H ε,θ -E 1 /ε 2 + 1) u ⊗ J 1 = (2.11) [-(∂ 1 ⊗ I -σ ε ⊗ ∂ τ ) 2 -I ⊗ 1 ε 2 (∆ ω D + E 1 -1) + x 2 1 16 ⊗ I] u ⊗ J 1 = [-(∂ 1 ⊗ I -σ ε ⊗ ∂ τ ) 2 + (x 2 1 /16 + 1) ⊗ I] u ⊗ J 1 ,
and the estimate on H ⊥ 1 from below:

(v ⊗ J n>1 , ((E n -E 1 )/ε 2 + 1) v ⊗ J n>1 ) H ⊥ 1 ≤ (2.12) (v ⊗ J n>1 , (H ε,θ -E 1 /ε 2 + 1) v ⊗ J n>1 ) H ⊥ 1 .
This decomposition allows us also to construct a suitable extension of the resolvent R (z=-1) (h D 0 ) := (h D 0 + 1) -1 (originally defined on L 2 (R)) to the whole space H 0 . Below we denote this extension by R z (h D 0 ). To this end notice that operator (h D 0 + 1) ⊗ I is invertible in H 1 . Hence, we can extend this inversion by zero operator 0 ⊥ on H ⊥ 1 and define :

R (z=-1) (h D 0 ) := (h D 0 + 1) -1 ⊗ I ⊕ 0 ⊥ . (2.13)
This extension is evidently motivated by (2.10) and (2.12) saying that for ε → 0 the resolvent (2.7) converges to the zero operator 0 ⊥ on H ⊥ 1 . Now we are in position to formulate our main result.

Theorem 2.1. Let Ω θ be a twisted tube with θ ∈ C 1 0 (R) and with a bounded θ. Then,

lim ε→0 ||(H ε,θ -E 1 /ε 2 + 1) -1 -(h D 0 + 1) -1 ⊗ I ⊕ 0 ⊥ || = 0 , (2.14)
in the operator norm of the space

H 0 = L 2 (Ω 0 ).
Remark 2.2. Using decomposition (2.10) we split the proof of the Theorem into several steps. To this end we introduce in H 0 = H 1 ⊕ H ⊥ 1 the intermediate operator:

H ε 0 := [-(∂ 2 1 + x 2 1 16 + C ω σ 2 ε ) ⊗ I + I ⊗ (-∆ ω D )/ε 2 ] =: h ε ⊗ I + I ⊗ 1 ε 2 ∞ n=1 E n P n , (2.15) 
where

C ω := ||∂ τ J 1 || 2 L 2 (ω) and P n := (J n , •) L 2 (ω)
J n are orthogonal projectors on the transversal modes J n , n = 1, 2, 3, . . . . We denote by R z (H ε 0 ) := (H ε 0 -z I ⊗ I) -1 its resolvent at the point z in the resolvent set and we denote by Q ε 0 the sesquilinear form associated with H ε 0 .

Remark 2.3. Since operator (h ε + 1) ⊗ I is invertible in H 1 , then similarly to (2.13) we define the resolvent:

R (z=-1) (h ε ) := (h ε + 1) -1 ⊗ I ⊕ 0 ⊥ . (2.16)
Notice that by (2.11) and (2.15) the difference of resolvents:

R (E 1 /ε 2 -1) (H ε,θ )-R (E 1 /ε 2 -1) (H ε 0 ) = R (E 1 /ε 2 -1) (H ε,θ ) (H ε 0 -H ε,θ ) R (E 1 /ε 2 -1) (H ε 0 ) , (2.17)
is finite on H 1 and tends to zero (for ε → 0) on H ⊥ 1 , cf (2.12). Hence, the first step is to compare the operators (2.5) and (2.15).

Since similar to (2.12) the resolvent R (E 1 /ε 2 -1) (H ε 0 ) converges for ε → 0 to the zero operator 0 ⊥ on H ⊥ 1 , our second step is to compare (in the proper sense) the total operator (2.15) with operator h ε ⊗ I acting in H 1 and defined by the resolvent (2.16) as "infinity" in the complement subspace H ⊥ 1 . The third step is to prove the norm-resolvent convergence of operators h ε and h D 0 , which is reduced to analysis in L 2 (R) and to technique due to [START_REF] Bollé | A complete treatment of low-energy scattering in one dimension[END_REF].

Proofs

As it is mentioned at the end of Section 2, the proof of Theorem 2.1 is divided into three steps and to prove this theorem, we use the intermediate operator (2.15) and the operator h ε ⊗ I via definition (2.16). We insert the corresponding resolvents R (E 1 /ε 2 -1) (H ε 0 ) and R (z=-1) (h ε ) into the limit (2.14) in the following way:

||R (E 1 /ε 2 -1) (H ε,θ ) -R (E 1 /ε 2 -1) (H ε 0 ) + R (E 1 /ε 2 -1) (H ε 0 ) -R (z=-1) (h ε ) + R (z=-1) (h ε ) -R (z=-1) (h D 0 )||
Hence the operator norm of the resolvent difference in (2.14) is bounded by the three terms:

||R (E 1 /ε 2 -1) (H ε,θ ) -R (E 1 /ε 2 -1) (H ε 0 )|| + ||R (E 1 /ε 2 -1) (H ε 0 ) -R (z=-1) (h ε )|| + R (z=-1)(hε) -R (z=-1) (h D 0 )||. (3.1)
We estimate them separately in the following three steps below.

Step one

First we estimate the operator norm of the difference (2.17). To this end we compare the quadratic forms Q ε,θ (see (2.6)) and Q ε 0 and to show that the difference

m ε := Q ε 0 -Q ε,θ
goes to zero as ε goes to zero. This would mean that the problem of approximation is reduced now to analysis of the intermediate operator (2.15) or the form Q ε 0 . For this purpose we denote by φ, ψ ∈ H 0 = L 2 (Ω 0 ) the solutions of equations:

F = (H ε,θ -E 1 /ε 2 + 1)φ, G = (H ε 0 -E 1 /ε 2 + 1)ψ, F, G ∈ H 0 . (3.2) 
Then we obtain for the difference (2.17) the representation:

(F, R (E 1 /ε 2 -1) (H ε,θ ) -R (E 1 /ε 2 -1) (H ε 0 ) G) = Q ε 0 -Q ε,θ = m ε (φ, ψ) , (3.3) 
where, the sesquilinear form m ε (φ, ψ) is explicitly given by

m ε (φ, ψ) = (φ, C ω σ 2 ε ψ) + (∂ 1 φ, σ ε ∂ τ ψ) + (σ ε ∂ τ φ, ∂ 1 ψ) -(∂ τ φ, σ 2 ε ∂ τ ψ). (3.4) 
Lemma 3.1. For ε → 0 the sesquilinear form (3.4) can be estimated as:

|m ε (φ, ψ)| ≤ ε C m ||F || H 0 ||G|| H 0 , F, G ∈ H 0 , (3.5) 
for a certain constant C m > 0 and for solutions φ, ψ of (3.2).

Proof. Following decomposition (2.10) we represent the functions ψ, φ ∈ H 0 as ψ =

ψ 1 ⊕ ψ ⊥ 1 and φ = φ 1 ⊕ φ ⊥ 1 , where ψ 1 , φ 1 ∈ H 1 and ψ ⊥ 1 , φ ⊥ 1 ∈ H ⊥ 1 .
Then we obtain

m ε (φ, ψ) = m ε (φ 1 , ψ 1 ) + m ε (φ ⊥ 1 , ψ ⊥ 1 ) + m ε (φ 1 , ψ ⊥ 1 ) + m ε (φ ⊥ 1 , ψ 1 ). (3.6) 
First, we show that m ε (φ 1 , ψ 1 ) = O(ε) and m ε (φ ⊥ 1 , ψ ⊥ 1 ) = O(ε). To this end, we use (3.4) to write explicitly

m ε (φ 1 , ψ 1 ) = (φ 1 , C ω σ 2 ε ψ 1 ) -(∂ τ φ 1 , σ 2 ε ∂ τ ψ 1 ) + (∂ 1 φ 1 , σ ε ∂ τ ψ 1 ) + (σ ε ∂ τ φ 1 , ∂ 1 ψ 1 ) . (3.7)
To compute the first two terms in the right-hand side of (3.7) we use definition of C ω and the fact that φ 1 = u(x 1 ) ⊗ J 1 (x ′ ) and ψ 1 = v(x 1 ) ⊗ J 1 (x ′ ), where J 1 is normalized to one. Then one gets that these terms vanish:

(φ 1 , C ω σ 2 ε ψ 1 ) -(∂ τ φ 1 , σ 2 ε ∂ τ ψ 1 ) = C ω R σ 2 ε (x 1 )u(x 1 )v(x 1 )dx 1 ω |J 1 (x ′ )| 2 dx ′ - R σ 2 ε (x 1 )u(x 1 )v(x 1 )dx 1 ||∂ τ J 1 || 2 L 2 (ω) . (3.8) 
To estimate the last two terms in the right-hand side of (3.7) we use equations (3.2).

In particular they imply that σ 2 ε (x 1 )u(x 1 ) ∈ L 2 (R), or :

R 1 ε 4 ( θ(x 1 /ε)) 4 |u(x 1 )| 2 dx 1 = 1 ε 3 R ( θ(y)) 4 |u(εy)| 2 dy < C u . (3.9) 
By conditions on θ this means that solutions of equations (3.2) have asymptotic

u(εy) = O(ε 3/2 ) for ε → 0 and y ∈ K , (3.10) 
for any compact K ⊂ R. Then to estimate the third term in the right-hand side of (3.7) we use (3.10). This gives:

|(∂ 1 φ 1 , σ ε ∂ τ ψ 1 )| = R ∂ 1 u(x 1 ) 1 ε θ(x 1 /ε) v(x 1 )dx 1 ω J 1 (x ′ )∂ τ J 1 (x ′ )dx ′ ≤ (3.11) C ω ∂ 1 u L 2 (R) R 1 ε ( θ(y)) 2 |v(εy)| 2 dy 1/2 ≤ O(ε) C ω ∂ 1 u L 2 (R) R ( θ(y)) 2 dy 1/2 . Since by (3.2) ∂ 1 u ∈ L 2 (R), the inequality (3.11) implies the estimate |(∂ 1 φ 1 , σ ε ∂ τ ψ 1 )| = O(ε). Similarly one obtain the estimate (σ ε ∂ τ φ 1 , ∂ 1 ψ 1 ) = O(ε), that yields m ε (φ 1 , ψ 1 ) = O(ε).
We can show that m ε (φ ⊥ 1 , ψ ⊥ 1 ) = O(ε) by similar calculations. Indeed, we have representation:

m ε (φ ⊥ 1 , ψ ⊥ 1 ) = (φ ⊥ 1 , C ω σ 2 ε ψ ⊥ 1 ) -(∂ τ φ ⊥ 1 , σ 2 ε ∂ τ ψ ⊥ 1 ) + (∂ 1 φ ⊥ 1 , σ ε ∂ τ ψ ⊥ 1 ) + (σ ε ∂ τ φ ⊥ 1 , ∂ 1 ψ ⊥ 1 )
. Then in a complete similarity with (3.7) one obtains that the terms

|(∂ 1 φ ⊥ 1 , σ ε ∂ τ ψ ⊥ 1 )| and |(σ ε ∂ τ φ ⊥ 1 , ∂ 1 ψ ⊥ 1 )| are of order ε and that (φ ⊥ 1 , C ω σ 2 ε ψ ⊥ 1 ) -(∂ τ φ ⊥ 1 , σ 2 ε ∂ τ ψ ⊥ 1 ) = 0 . Now let us estimate the term m ε (φ 1 , ψ ⊥ 1 ) = (σ ε ∂ τ φ 1 , ∂ 1 ψ ⊥ 1 )-(∂ τ φ 1 , σ 2 ε ∂ τ ψ ⊥ 1 )+(∂ 1 φ 1 , σ ε ∂ τ ψ ⊥ 1 )+(C ω σ 2 ε φ 1 , ψ ⊥ 1
). (3.12) Since φ 1 = u ⊗ J 1 and ψ ⊥ 1 belongs to the linear envelope of {v ⊗ J n } ∞ n=2 , to estimate the first term in (3.12) we consider:

(σ ε ∂ τ φ 1 , ∂ 1 ψ ⊥ 1 ) = R 1 ε θ(x 1 /ε) u(x 1 )∂ 1 v(x 1 )dx 1 ω ∂ τ J 1 (x ′ ){J n } ∞ n=2 (x ′ )dx ′ . (3.13)
Notice that integral (3.13) coincides (up to simple modifications) with the integral in (3.11). Therefore, it has the same estimate O(ε). Similarly we obtain for the third term in (3.12) the representation:

(∂ 1 φ 1 , σ ε ∂ τ ψ ⊥ 1 ) = R ∂ 1 u(x 1 ) 1 ε θ(x 1 /ε)v(x 1 )dx 1 ω J 1 (x ′ )∂ τ {J n } ∞ n=2 (x ′ )dx ′ , (3.14)
which implies that this term is also of the order O(ε). To estimate the term (∂ τ φ 1 , σ 2 ε ∂ τ ψ ⊥ 1 ), we use the following inequalities:

|(∂ τ φ 1 , σ 2 ε ∂ τ ψ ⊥ 1 )| = R u(x 1 ) 1 ε 2 ( θ(x 1 /ε)) 2 v 1 (x 1 )dx 1 ω ∂ τ J 1 (x ′ )∂ τ J s>1 (x ′ ) dx ′ ≤ C ω R 1 ε 2 ( θ(x 1 /ε)) 2 |u(x 1 )| 2 dx 1 1/2 R 1 ε 2 ( θ(x 1 /ε)) 2 |v(x 1 )| 2 dx 1 1/2 = C ω R 1 ε ( θ(y)) 2 |u(εy)| 2 dy 1/2 R 1 ε ( θ(y)) 2 |v(εy)| 2 dy 1/2 ≤ O(ε 2 ) C ω , (3.15) 
where the last asymptotic follows from (3.9) and (3.10). Finally, since φ 1 and ψ ⊥ 1 belong to orthogonal subspaces we obtain for the last term (C ω σ 2 ε φ 1 , ψ ⊥ 1 ) = 0. Note that the estimate of the term m(φ ⊥ 1 , ψ 1 ) is identical to m(φ 1 , ψ ⊥ 1 ). Therefore, summarizing (3.11), (3.13), (3.14), and (3.15), we obtain the estimate of the form (3.6) for solutions of (3.2) by O(ε). Since equations (3.2) yield the estimate of φ, ψ by norms ||F || H 0 , ||G|| H 0 , one gets (3.5). So, the proof of Lemma 3.1 is completed. Remark 3.2. By (3.3) and (3.5) we obtain the rate of the operator-norm convergence for the difference of resolvents (2.17):

R (E 1 /ε 2 -1) (H ε,θ ) -R (E 1 /ε 2 -1) (H ε 0 ) ≤ ε C m . (3.16)

Step two

By virtue of definitions (2.15) and (2.16) we obtain

Λ ε := R (E 1 /ε 2 -1) (H ε 0 ) -R (z=-1) (h ε ) = (3.17) [(h ε + 1) ⊗ I + I ⊗ 1 ε 2 ∞ n=2 (E n -E 1 ) P n ] -1 -[(h ε + 1) -1 ⊗ I ⊕ 0 ⊥ ] .
Since P n>1 : H 1 → 0, one gets Λ ε φ = 0 for φ ∈ H 1 . On the hand for φ ⊥ ∈ H ⊥ 1 we have:

Λ ε φ ⊥ = [I ⊗ 1 ε 2 ∞ n=2 (E n -E 1 ) P n ] -1 φ ⊥ . (3.18) 
Therefore, for the second term in (3.1) we obtain the estimate

||R (E 1 /ε 2 -1) (H ε 0 ) -R (z=-1) (h ε )|| ≤ ε 2 /(E 2 -E 1 ) . (3.19) 

Step three

Recall the definition (2.15) of the intermediate operator

h ε = -∂ 2 1 + x 2 1 16 + C ω σ 2 ε
and recall that the operator h 0 is the operator -∂ 2 1 +

x 2 1 16 define on L 2 (R) while h D 0 is the analoguous operator plus a Dirichlet boundary condition at the origin. Let us denote

R k 2 (h ε ) := (h ε -k 2 ) -1 , r k 2 (h D 0 ) := (h D 0 -k 2 ) -1 , k 2 / ∈ σ(h ε )
The third step consists in showing the following lemma:

Lemma 3.3. Let h ε h 0 and h D 0 being the operators on L 2 (R) described as above (see

(2.8)). Let us denote R(h 0 ) := (h ε -k 2 ) -1 , R(h D 0 ) := (h D 0 -k 2 ) -1 . Then we get lim ε→0 ||R k 2 (h ε ) -R k 2 (h D 0 )|| = 0,

Preliminary lemma

Let us introduce the Green functions associated to the resolvents R k 2 (h 0 ) and R k 2 (h D 0 ). There are the kernels R(h 0 )(x, y, k 2 ) and R(h D 0 )(x, y, k 2 ) respectively. To prove the lemma 3.3 we need the following lemma: Lemma 3.4. Let v be a vector normalized to 1 and P and Q two projectors such that

P = (., v)v, Q = 1 -P, v ∈ L 2 (R), sup p∈R V (p) < ∞ (3.20)
Let τ be the trace operator (and τ ⋆ its adjoint) acting as follow τ f (x, y) = f (0, y)

Then (i) lim ε→0 ||r 0 U ⋆ ε v √ ε P v √ ε U ε r 0 -r 0 τ ⋆ τ r 0 || = 0 (ii) lim ε→0 ||r 0 U ⋆ ε v 1 √ ε 1 √ ε vU ε r 0 -r 0 τ ⋆ τ r 0 || = 0 (iii) ||r 0 U ⋆ ε v √ ε Q|| = o(ε)
Proof: to prove this lemma, we use the properties of the Fourier transforms of the terms

r 0 U ⋆ ε v √ ε P v √ ε U ε r 0 , r 0 U ⋆ ε v 1 √ ε 1
√ ε vU ε r 0 and r 0 τ ⋆ τ r 0 . Let us denote the Fourier transform F and its inverse F -1 and recall

(F ϕ)(p) = ϕ(p) = 1 √ 2π R e -ipx ϕ(x)dx, (F -1 ϕ)(x) = 1 √ 2π R e ipx ϕ(p)dp
Let us do some useful calculations:

(U ε ϕ)(x) = 1 √ ε ϕ( x ε ) = 1 √ ε R δ( x ε -y)ϕ(y)dy
The Fourier transform of a kernel X is expressed as follow

(F XF -1 ϕ)(p) = 1 √ 2π R dx e -ipx R dy X(x, y) 1 √ 2π R e iqy ϕ(q)dq. Then, denoting U ⋆ ε (p, q) = √ 2πδ(εq -p) we get (F U ⋆ ε F -1 )(p) = R √ ε √ 2π δ(εq -p)dq =: R U ⋆ ε (p, q)dq. (3.21) 
Inserting the identity F F -1 between the operators U ⋆ ε and V , we obtain

F U ⋆ ε V F -1 = √ ε √ 2π V (εq) (3.22)
Actually, we use the unitarity of the Fourier transforn F and we insert the identity F F -1 on the terms listed above, we use (3.21) and (3.22), and the fact that R V (εs)ds = 1 = √ 2π V (0). Then, we get the following unitary equivalences

||r 0 U ⋆ ε v √ ε P v √ ε U ε r 0 || = ||(. r 0 , V (εq) √ 2π ) r 0 V (εq) √ 2π ||, ||r 0 τ ⋆ τ r 0 || = ||(. r 0 , V 0 ) r 0 V 0 ||, (3.23)
where we denote r 0 the Fourier transform of the resolvent r 0 . and the fact that R V (εs)ds = 1 = √ 2π V (0). Proof of (i). We only have to show, see (3.23

) that lim ε→0 || 1 √ 2π r 0 V (εq) -r 0 V 0 || = 0.
Given that V (εq) converges pointwise to V 0 . From the condition (3.20) and because the resolvent r 0 is compact we deduce that | r 0 (q)( V (εq) -V 0 )| is integrable in q. Then | r 0 (q)( V (εq) -V 0 )| 2 is bounded by an integrable function in q. The proof of (i) ended using the Lebesgues dominated convergence, that is to say,

lim ε→0 R dq| r 0 (q)( V (εq) -V 0 )| 2 = 0. (3.24)
Proof of (ii). First we rewrite

||r 0 U ⋆ ε v 1 √ ε 1 √ ε vU ε r 0 || as || r 0 F U ⋆ ε V ε U ε F -1 r 0 ||.
Using the Fourier transform of (F V F -1 ϕ)(p) given by 1 √ 2π R dq ϕ(q) V (p -q) and a straightforward computation we get

F U ⋆ ε V ε F -1 = R V (ε(s -q))dq, so that the kernel U ⋆ ε V (p, q) is ε -1/2 U ⋆ ε V (p, q) = V (ε(p -q)
). Then we have to prove the following convergence lim ε→0 | r 0 (p) V (ε(p -q)) -V 0 r 0 (p)| = 0

V (ε(p -q)) converge point wise to V 0 and | r 0 (p) V (ε(p -q)) -V 0 r 0 (p)| is bounded an integrable function. As above, we use the Lebesgue dominated convergence and we are done.

Proof of (iii). Let us use again the unitarity of the Fourier transform and equality (3.23). We get the unitarity equivalence between

||r 0 U ⋆ ε v √ ε (1 -P ) v √ ε U ε r 0 || and || r 0 F U ⋆ ε v √ ε (1 -P ) v √ ε U ε F -1 r 0 ||.
We have to show that this term is o(ε 2 ). With the same tools, we compute:

( U ⋆ ε V U ε ϕ)(p, q) = R V (ε(p-q))ϕ(εq)dq, and ( Π ε ϕ)(p) = 1 2π R V (εp) V (-εq)ϕ(q)dq
So, the kernel (F Π ε F -1 )(p, q) is given by V (εp) V (-εq). From the hypothesis on V we knows that xV (x) ∈ L 1 (R). We need to show

(a) lim ε→0 | V (εp) V (-εq) -V 0 V (ε(p -q)) ε | = 0 almost everywhere (b) r 0 2 (p)( Π ε (p, q) -V 0 V (ε(p -q)) ε )| 2 r 0 2 ( 
q) bounded by an integrable function in p and q

To check the point (a) we apply the mean value theorem, that is to say, since V (εp) = V (0) + εp V ′ (θεp), ∀θ ∈ (0, 1), then

V (εp) V (-εq) -V 0 V (ε(p -q)) = = ( V 0 + εp V ′ (θεp))( V 0 -εq V ′ (θεq)) -( V 0 + ε(p -q) V ′ (θε(p -q))) V 0 = ε(p -q) V ′ (θεp) V ′ (θεq) -V ′ (θε(p -q)) V 0 . (3.25)
Inserting this result (3.25) in the limit (a), then we are done. V ′ (p) is integrable in p and r 0 2 (p)(p α q β ) r 0 2 (q) for 0 ≤ α, β ≤ 2 is integrable in p and q so the point (b) is satisfied.

Proof of the lemma 3.3

Proof. Recall the Green functions associated to the resolvents R k 2 (h 0 ) and R k 2 (h D 0 ) as the kernels R(h 0 )(x, y, k 2 ) and R(h D 0 )(x, y, k 2 ) respectively. Using the resolvent equation, R(h D 0 )(x, y, k 2 ) is computed as follow:

R(h D 0 )(x, y, k 2 ) = R(h 0 )(x, y, k 2 )-C k R(h 0 )(x, 0, k 2 )R(h 0 )(0, y, k 2 ), C k := 1/r 0 (0, 0, k 2 ).
The Green function r 0 (x, y, k 2 ) expresses as

R(h 0 )(x, y, k 2 ) = n λ -1 n ψ n (x)ψ n (y), λ n = α(n + 1 2 ), (3.26) 
and denoting H n (x) the n-th Hermite polynomials,

ψ n (x) = 1 √ π2 n n! e -x 2 /32 H n (x). ( 3 

.27)

Thanks to the symmetrized resolvent equation, we compute R(h ε ) as

R(h ε ) = R(h 0 ) - 1 ε 2 R(h 0 )U ⋆ ε √ V T (εk) √ V U ε R(h 0 ), (3.28) 
where we denote T (εk) the following kernel

T (εk) = 1 + 1 ε 2 √ V U ε R(h 0 )(k)U ⋆ ε √ V -1 . ( 3 

.29)

We note that by a change of variable, we get the equality

ε -2 U ε R k 2 (h 0 )U ⋆ ε f = R 2 R(h 0 )(εx, εy, k 2 )f (y)dx dy. (3.30)
First, we show that we can decompose the kernel (3.29) as the sum of two terms, t 0 and εt 1 defined below, plus t (2) , which are terms of order greater than or equal to ε 2 .

The next step consists in showing the two following convergences as ε goes to zero 

1 ε 2 R(h 0 )U ⋆ ε √ V t 0 √ V U ε R(h 0 ) → CR(h 0 )(x, 0, k 2 )R(h 0 )(0, y, k 2 ) 1 ε R(h 0 )U 2 ε √ V t 1 √ V U ε R(h 0 ) → 0. ( 3 
R(H ε ) = R(h 0 ) - 1 ε 2 R(h 0 )U ⋆ ε √ V t 0 (k) + εt 1 (k) + O(ε 2 k 2 ) √ V U ε R(h 0 ) = R(h 0 ) - 1 ε 2 R(h 0 )U ⋆ ε √ V Q + P c + ε(Q + P c )M 1 (Q + P c ) + O(ε 2 k 2 ) √ V U ε R(h 0 ) Then, lim ε→0 ||R(H ε )-R(h 0 )|| = lim ε→0 || 1 ε 2 R(h 0 )U ⋆ ε √ V P c √ V U ε R(h 0 )|| 1 R(h 0 )(0, 0, k 2 ) R(h 0 )τ ⋆ τ R(h 0 ).
Using the point (iii) of the lemma 3.4 and the fact that M 1 is bounded we get that In this paper we addressed to the question of operator-norm resolvent convergence of the one-particle Hamiltonian in the limit of shrinking wave-guide and scaled twisting.

||ε -2 R(h 0 )U ⋆ ε √ V Q √ V U ε R(h 0 )||, ||ε -1 R(h 0 )U ⋆ ε √ V QM 1 Q √ V U ε R(h 0 )|| and ||ε -1 R(h 0 )U ⋆ ε √ V QM 1 P c √ V U ε R(
The question of the validity of the norm-resolvent convergence and the idea of this paper are due to Pierre Duclos and David Krejčiřík. This problem was explicitly raised in [START_REF] Krejčiřík | The Hardy inequality and the asymptotic behaviour of the heat equation in twisted waveguides[END_REF] and then treated in the context of thin quantum wave-guides in [START_REF] Krejčiřík | The effective Hamiltonian in curved quantum waveguides under mild regularity assumptions[END_REF], [START_REF] Šediváková | Quantum Waveguides under Mild Regularity Assumptions[END_REF], under regularity conditions different then ours.

The three-step strategy of the proof we proposed in Section 3 gives the O(ε) rate for convergence to the limiting operator. Apparently this is not an optimal estimate. Therefore, one of the open question is relaxing the conditions of our main Theorem versus optimality of the rate. Another aspect is to compare our strategy and conditions with those of [START_REF] Krejčiřík | The effective Hamiltonian in curved quantum waveguides under mild regularity assumptions[END_REF], [START_REF] Šediváková | Quantum Waveguides under Mild Regularity Assumptions[END_REF].

Twisting versus bending in the limit of thin quantum wave-guides, see for example Fig. 2, is an open question that definitely merits special attention. A progress in this direction due to the Hardy inequality technique [START_REF] Krejčiřík | Twisting versus bending in quantum waveguides, Analysis on Graphs and its Applications[END_REF] is apparently a good basis to study this problem.
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  h 0 )|| go to zero as ε goes to zero. From the point (i)we show ||R(h 0 ) -ε -2 R(h 0 )U ⋆ ε √ V P/c √ V U ε R(h 0 )|| goes to zero and we are done.4 Concluding remarks
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 2 Figure 2: An example of twisted and bent waveguide
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The most important part of the proof lies in the fact that the Fourier transforms of ε -1/2 R(h 0 )U ⋆ ε t 1/2 i , i = 0, 1, (2) is o(ε) so that t 1 and t (2) does not contribute in the limit ε goes to zero. Actually, formally we get

which goes to R 2 R(h 0 )(x, 0, k 2 )f (y, z)dydz as ε goes to zero, and

goes to a constant. So first, let us deal with T (εk) and show that it is invertible., More precisely we rewrite the kernel 1/ε 2 U ⋆ ε R(h 0 )(x, y, k 2 ) using equation:

Thanks to the definition of the green function, see for example [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], we compute

This term does not have any singularity for k 2 close to zero thanks to the properties of (3.27). Since we get R(h

where

and

We also note that εM 1 (x, y) = M 1 (εx, εy). Using the Taylor Young formula, and the expression of the green function see (3.26) and (3.27) we get

The term 1

in ε and so is T (εk). Indeed,

Rewriting (1 + cP ) -1 as the sum ∞ k=0 (-cP ) k , a straightforward calculation gives (1 + cP ) -1 = Q + c -1 P. Then we get the decomposition of T (εk) as the sum .31)