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Dynamical creation of entangled bosonic states in a double well

I. INTRODUCTION

Recent experiments on ultracold gases in optical potentials [1][2][3] and experiments on photons in microwave cavities [4,5] have demonstrated that it is possible to prepare a Fock state as a pure state in a finite-dimensional system. After the preparation of the Fock state, the parameters of the system can suddenly be changed (performing a "quench") such that the Fock state is not an eigenstate of the new system Hamiltonian H. Then the evolution of the many-body state due to the evolution operator exp(-iHt) will lead to a random walk inside the available Hilbert space. The visited states include other Fock states as well as superpositions of Fock states. Typical questions in this context are: what is the probability for visiting different states and how is this affected by the interaction of the particles? A natural quantity for measuring this probability is the spectral density function of the Hamiltonian H with respect to the initial Fock state [6][7][8].

A classical candidate for modeling the evolution of a Fock state is the Hubbard model [9,10]. The corresponding discrete Hamiltonian describes the tunneling of a particle between neighboring potential wells and a local particle-particle interaction. The Hubbard model for bosons (Bose-Hubbard model) was realized as an atomic system in an optical lattice [11]. A possible realization of the Bose-Hubbard model by photons in coupled microwave cavities was proposed recently by Hartmann et al. [12]. An anharmonicity of the microwave cavities plays the role of the photon-photon interaction [8].

The simplest system for discussing the evolution of a Fock state within the Hubbard model is a double well, where particles can tunnel between the two wells. For N bosons the underlying Hilbert space is spanned by the (N + 1)-dimensional Fock base {|0, N , |1, N -1 , ..., |N, 0 }, where l bosons are in one well and N -l in the other well [13][14][15][16]. The initial state is prepared as a Fock state, where all the bosons are in one of the two wells (i.e. |0, N or |N, 0 ), while the tunneling between the wells is turned off. To start the evolution, a "quench" is provided by switching on the tunneling between the two wells. This is realized by a sudden reduction the potential barrier between the wells in an atomic system [1] or by connecting the two microwave cavities with an optical fiber [8,12,17]. A similar experiment was performed with two atomic clouds, subject to weak interaction and separated by an adjustable potential barrier [18,19].

On the theoretical side, mean-field descriptions of the Bose-Hubbard model, such as a Hartree approximation or the Gross-Pitaevskii equation, may work well for clouds with many bosons and weak boson-boson interaction [14]. However, they provide a rather poor approximation for the dynamics of small many-body systems (cf. Ref. [13]). This was also observed in a recent study by Streltsov et al. who compared the results of a simple Hartree (Gross-Pitaevskii) approximation with a sophisticated (multiconfigurational time-dependent) Hartree approximation for bosons [20]. The latter reveals that the bosonic clouds are related to superpositions of Fock states in the form of N00N states

|N 00N = 1 √ 2 |0, N + e iφN |N, 0 . (1) 
In the following we will study the Hubbard dynamics of bosons in a double well in more detail. In particular, we are interested in the connection of spectral properties and the formation of N00N states, Confidential: not for distribution. Submitted to IOP Publishing for peer review 7 June 2011 based on a Fock state with all the particles in one well as the initial state. To avoid problems with uncontrolled approximations, we will rely on a full quantum calculation. An exact solution is available in a Fock-state base, as described previously in Refs. [6,8]. The paper is organized as follows: In Sect. II the model, based on the Bose-Hubbard Hamiltonian, is defined and in Sect. II A the dynamics of an isolated quantum system is explained. Then we discuss the dynamics of a noninteracting Bose gas in Sect. III and the dynamics of an interacting Bose gas in Sect. IV. The latter is divided into a study of a symmetric double well (Sect. IV A) and of a double well with mixed interaction, where one well has attractive the other repulsive interaction (Sect. IV B). Finally, we summarize the results of our calculation in Sect. V and discuss them in Sect. VI.

II. MODEL

The many-body Hamiltonian Ĥ of N bosons with mass m reads

Ĥ = N j=1 p 2 j 2m + V (r j ) + N j,k=1 U (r j , r k ) , (2) 
where p j is the momentum of a boson, V (r j ) is the one-body potential of the double well and U r j , r k ) is the two-body interaction potential. For the latter we assume that it decays very quickly with the distance |r jr k | of the particles. This implies that particles located in different wells do not interact with each other. In a general situation, the two-body interaction can be attractive in one and repulsive in the other well. Then the many-body Hamiltonian is expressed in Fock-state representation as

• • • N -k, k|r 1 , r 2 , ..., r N r 1 , r 2 , ..., r N | Ĥ|r 1 , r 2 , ..., r N |r 1 , r 2 , ..., r N |N -k , k d 3 r 1 • • • d 3 r N = N -k, k|H|N -k , k . (3) 
For the new Hamiltonian H, which acts in the Hilbert space spanned by the Fock base, we can use a generalized Bose-Hubbard Hamiltonian with different local interaction parameters U 1 , U 2 in the corresponding wells as a reasonable approximation

H = J(a † 1 a 2 + a † 2 a 1 ) + U 1 (a † 1 a 1 ) 2 + U 2 (a † 2 a 2 ) 2 , (4) 
where a † j (a j ) are creation (annihilation) operators for bosons in the Fock states. H, which describes tunneling between the two wells and the local interaction inside the well with interaction strength U j , gives us a complete quantum description of the different Fock states and their superpositions. In particular, we can employ it to study the evolution of a Fock state to a N00N state of Eq. ( 1). This will be used subsequently for two special cases. The first case is a symmetric double well, where U 1 = U 2 . The second case has opposite signs of interactions U 1 = -U 2 which describes an attractive interaction in one well and a repulsive interaction in the other well.

A. Evolution of isolated systems

We consider a system which is isolated from the environment. Furthermore, we assume that the system lives in an (N +1)-dimensional Hilbert space. With the initial state |Ψ 0 we can get for the time evolution of the state

|Ψ t = e -iHt |Ψ 0 (5)
or the evolution of the return probability | Ψ 0 |Ψ t | 2 with the amplitude

Ψ 0 |Ψ t = Ψ 0 |e -iHt |Ψ 0 . (6) 
In general, the amplitude Ψ 1 |Ψ t can be expressed via an integral transformation of the resolvent as

Ψ 1 |Ψ t = Ψ 1 |e -iHt |Ψ 0 = Γ Ψ 1 |(z -H) -1 |Ψ 0 e -izt dz , (7) 
where the contour Γ encloses all the eigenvalues E j (j = 0, 1, ..., N) of H. With the corresponding eigenstates |E j the spectral representation of the resolvent is a rational function:

Ψ 1 |(z -H) -1 |Ψ 0 = N j=0 Ψ 1 |E j E j |Ψ 0 z -E j = P N (z) Q N +1 (z) , (8) 
where P N (z), Q N +1 (z) are polynomials in z of order N , N +1, respectively, with the common denominator

Q N +1 (z) = N j=0 (z -E j ) .
These polynomials are readily evaluated by the recursive projection method (RPM) [6].

The expression in Eq. ( 8) for |Ψ 1 = |Ψ 0 can be interpreted as the bosonic spectral density ρ (E) with respect to the state |Ψ 0 :

ρ (E) = 1 π Im Ψ 0 |(E -i -H) -1 |Ψ 0 = π N j=0 | Ψ 0 |E j | 2 2 + (E -E j ) 2 . ( 9 
)
The amplitude of the return probability then reads as the Fourier transform of the spectral density

Ψ 0 |Ψ t = lim →0 ρ (E)e -iEt dE . (10) 
Analogously, the overlap Ψ 1 |Ψ t reads in terms of the resolvent

Ψ 1 |Ψ t = 1 π lim →0 Im Ψ 1 |(E -i -H) -1 |Ψ 0 e -iEt dE (11) 
with

lim →0 Im Ψ 1 |(E -i -H) -1 |Ψ 0 = π j Ψ 1 |E j E j |Ψ 0 δ(E -E j ) , (12) 
provided that the matrix elements are symmetric. The latter is the case for the Hubbard Hamiltonian.

The purpose of the subsequent calculation is to determine the evolution of the Fock state under the influence of the Bose-Hubbard Hamiltonian of Eq. ( 4). In general, this is expressed in the Fock base as

|Ψ t = N j=0 c j (t)|N -j, j (13) 
with coefficients c j (t) = N -j, j|Ψ t . For the N00N state we only need to focus on the coefficients c 0 (t) and c N (t). Although we do not anticipate that the other coefficients vanish, for the existence of a N00N state it is sufficient to have simultaneously c 0 (t), c N (t) = 0. Moreover, the resulting entangled state may in general not have c 0 (t) = c N (t) but is still called a N00N state.

Comparing the result in Eq. ( 13) with the expressions in Eqs. ( 10), ( 11), (12), it turns out that the Fourier transform of c 0 (t) and c N (t) are just the imaginary parts of the matrix elements of the resolvent

c0 (E) = 1 π lim →0 Im N, 0|(E -i -H) -1 |N, 0 = j N, 0|E j E j |N, 0 δ(E -E j ) ( 1 4 ) 
and

cN (E) = 1 π lim →0 Im 0, N|(E -i -H) -1 |N, 0 = j 0, N|E j E j |N, 0 δ(E -E j ) . (15) 
These two expressions will be called spectral coefficients, where c0 (E) measures the relative weight | N, 0|E j | 2 . Integration over the energy E gives 1 for this coefficient. The coefficient cN (E) measures the correlation between |N, 0 and |0, N due to the product 0, N|E j E j |N, 0 . The latter is real for a symmetric Hamiltonian. Integration over the energy E gives 0 for this coefficient.

III. DOUBLE WELL: NONINTERACTING BOSE GAS

The Bose-Hubbard Hamiltonian has two simple limits: The local limit J = 0 and the noninteracting limit U 1 = U 2 = 0. In the local limit for a symmetric double well with

U 1 = U 2 pairs Fock states |N -k, k , |k, N -k are doubly degenerate eigenstates with energy E k = U [(N -k) 2 + k 2 ].
A perturbation by a small tunneling term will break the degeneracy. This effect is stronger at lower energies because the parabolic spectrum is denser there. This agrees with a numerical study [13]. The fact that the states |N, 0 and |0, N are very close in energy may support the formation of a N00N state.

In the absence of particle-particle interaction the Bose-Hubbard Hamiltonian H t (i.e. the Hamiltonian in Eq. ( 4) with U 1 = U 2 = 0) describes only tunneling. A straightforward calculation shows that the eigenstate |N -k; k of H t with H t |N -k; k = J(N -2k)|N -k; k has an overlap with the Fock states |N, 0 and |0, N as

N, 0|N -k; k = 2 -N/2 N k , 0, N|N -k; k = (-1) k 2 -N/2 N k . ( 16 
)
This implies that the spectral coefficients of Eqs. ( 14) and ( 15) have a binomial form

c0 (E) = 2 -N N k=0 N k δ(E + J(2k -N )) (17) cN (E) = 2 -N N k=0 N k (-1) k δ(E + J(2k -N )) . (18) 
A Fourier transformation reveals a periodic behavior of the evolutionary coefficients as

c 0 (t) = N, 0|e -iHt |N, 0 = cos N (Jt), c N (t) = 0, N|e -iHt |N, 0 = (-i) N sin N (Jt) . (19) 
Thus the evolution of the Fock state leads to a N00N state with a probability that decays exponentially with N . This is a consequence of the fact that for an increasing N the particles disappear in the (N + 1)dimensional Hilbert space because there is no constraint due to interaction.

IV. DOUBLE WELL: INTERACTING BOSE GAS

The double well with the two Fock states |N, 0 , |0, N as possible initial states can be treated within the RPM. This method is based on a systematic expansion of the resolvent Ψ 1 |(z -H) -1 |Ψ 0 , starting from the initial base {|N, 0 , |0, N }. The method can also be understood as a directed random walk in Hilbert space. This means that in comparison with the conventional random walk the directed random walk of the RPM visits a subspace H 2j only once and never returns to it. In terms of N bosons, distributed over the double well, the subspace H 2j is spanned by the base {|N -j, j , |j, N -j }. A step from H 2j to H 2j+2 is given by the Hamiltonian H in such a way that H 2j+2 is created by acting H on H 2j (cf. App. A). This step is provided by the tunneling of a single boson. Thus, the directed random walk follows a path with increasing numbers j. The directed random walk is the main advantage of the RPM which allows us to calculate the matrix elements

Ψ 0 |(z -H) -1 |Ψ 0 , Ψ 1 |(z -H) -1 |Ψ 0 of
the resolvent on a (N + 1)-dimensional Hilbert space exactly.

A. Symmetric double well

Now we choose U 1 = U 2 ≡ U for the Bose-Hubbard Hamiltonian. Assuming that N is even, all projected spaces H 2j are two-dimensional and spanned by {|N -j, j , |j, N -j } (j = 0, ..., N/2). This leads to a recurrence relation in the base of the two Fock states (|N, 0 , |0, N ) as initial states. The recurrence relation reads (App. A)

g k+1 = a k+1 b k+1 b k+1 a k+1 , g 0 = 1 z -UN 2 /2 1 0 0 1 (k = 0, 1, ..., N/2 -1) (20) 
with coefficients

a k+1 = z -fk+1 -J 2 a k (N/2 + k + 1)(N/2 -k) z -fk+1 -J 2 a k (N/2 + k + 1)(N/2 -k) 2 -J 4 b 2 k (N/2 + k + 1) 2 (N/2 -k) 2 (21) b k+1 = J 2 b k (N/2 + k + 1)(N/2 -k) z -fk+1 -J 2 a k (N/2 + k + 1)(N/2 -k) 2 -J 4 b 2 k (N/2 + k + 1) 2 (N/2 -k) 2 (22) 
and

fk+1 = U (N/2 + k + 1) 2 + U (N/2 -k -1) 2 .
The iteration terminates after N/2 steps with

g N/2 = a N/2 b N/2 b N/2 a N/2 , ( 23 
)
where

a N/2 = N, 0|(z -H) -1 |N, 0 = 0, N|(z -H) -1 |0, N , (24) 
and

b N/2 = 0, N|(z -H) -1 |N, 0 = N, 0|(z -H) -1 |0, N . (25) 
There exists an invariance of the recurrence relation under the following simultaneous sign changes in Eqs. ( 21) and ( 22)

z → -z, U → -U, a j → -a j , b j → -b j . (26) 
This implies that a change from a repulsive to an attractive Hubbard interaction results in a mirror image with respect to energy of the spectral coefficients

c0 (E, U ) = c0 (-E, -U ), cN (E, U ) = cN (-E, -U ) . (27) 

B. Double well with mixed interaction

In the case U 1 = -U 2 ≡ U we have one more variable, namely a k , b k and c k with the following recurrence relations (App. A)

g k+1 = a k+1 c k+1 c k+1 b k+1 , g 0 = 1 z 1 0 0 1 (k = 0, 1, ..., N/2 -1) (28) 
with matrix elements (n = N/2):

a k+1 = z + 4Un(k + 1) -J 2 (n + k + 1)(n -k)b k D k+1 (29) b k+1 = z -4Un(k + 1) -J 2 (n + k + 1)(n -k)a k D k+1 (30) 
c k+1 = - J 2 (n + k + 1)(n -k)c k D k+1 (31) 
and with

D k+1 = [z -4Un(k + 1) -J 2 a k (n + k + 1)(n -k)][z + 4Un(k + 1) -J 2 b k (n + k + 1)(n -k)] -J 4 c 2 k (n + k + 1) 2 (n -k) 2 .
The final result of the iteration is

g N/2 = a N/2 b N/2 b N/2 c N/2 , (32) 
with

a N/2 = N, 0|(z -H) -1 |N, 0 , b N/2 = 0, N|(z -H) -1 |0, N , (33) 
c N/2 = N, 0|(z -H) -1 |0, N = 0, N|(z -H) -1 |N, 0 . (34) 
V. RESULTS

The iteration of Eqs. ( 21), ( 22) for a symmetric double well and the iteration of Eqs. ( 29)-(31) for a double well with mixed interaction gives us, according to Eqs. ( 24), ( 25) and ( 33), (34), the following four matrix elements of the resolvent

N, 0|(z -H) -1 |N, 0 , 0, N|(z -H) -1 |0, N , 0, N|(z -H) -1 |N, 0 = N, 0|(z -H) -1 |0, N .
These are rational functions of z, as shown in Eq. (7). For N bosons these are lengthy expressions with N + 1 poles. Therefore, it is convenient to present the results as plots with respect to energy. Examples of the spectral coefficients c0 (E) and cN (E) are shown for a symmetric double well with 100 bosons in Fig. 1 and with 20 bosons in Fig. 2, and for a double well with mixed interaction for 100 bosons in Fig. 3. A larger number of bosons shows a richer spectral structure. The diagonal coefficient c0 (E) in the case of 100 bosons is remarkably different from the off-diagonal coefficient cN (E) because the latter does not have spectral weight from eigenstates whose energy E j is larger than the energy of the initial Fock state Ē = UN 2 . The reason for this feature is the double degeneracy of the eigenvalues mentioned in Sect. III: The signs of the product 0, N|E j E j |N, 0 for adjacent eigenvalues are opposite to each other. Since the eigenvalues get closer pairwise as we increase their energy, the contribution of the two levels cancel each other for each pair inside the sum of Eq. ( 15). This interaction effect is also visible for 20 bosons (Fig. 2), although the cancellation is incomplete then due to a larger level distance. This can be considered as an effect of spectral fragmentation, where the spectrum has a nondegenerate low-energy and a degenerate high-energy part, caused by the competition of tunneling and interaction.

The contribution of the two Fock states |0, N , |N, 0 to the evolution in Eq. ( 13) is given by the coefficients c 0 (t) = N, 0|Ψ t , c N (t) = 0, N|Ψ t . In Fig. 4 For a double well with interaction strength ±U the spectrum is different because of the absence of double degeneracy of the eigenvalues (cf. Fig. 3). There are two "bands", one around E = UN 2 , the other around E = -UN 2 , where the widths of the bands is characterized by the tunneling rate J. Moreover, the off-diagonal part cN (E) appears closer to zero energy and its values are very small. This indicates that the off-diagonal part has overlaps with energy levels which are different from those of the diagonal part c0 (E) . For the evolution only the latter contribute substantially, preventing the system to create a N00N state.

VI. DISCUSSION AND CONCLUSIONS

In order to understand the evolution of an isolated many-body bosonic system, we start with noninteracting bosons (i.e. U 1 = U 2 = 0) of Sect. III. The spectral properties are characterized by (i) equidistant energy levels with distance J and (ii) a binomial weight distribution of the energy levels. The evolution of a Fock state is characterized by a periodic behavior with a single frequency ω = J/2π as a direct consequence of the equidistant energy levels. The amplitudes for visiting the initial Fock state |N, 0 or the complimentary Fock state |0, N vary with cos N (Jt) or (-i) N sin N (Jt), respectively. This implies for a large number N of bosons that (i) these states are visited only for a very short period of time and (ii) the two Fock states are visited at different times. Thus the formation of a N00N state is very unlikely for noninteracting bosons.

A simple qualitative picture for the general evolution of the Fock state is the random walk in Hilbert space. In case of noninteracting bosons the particles can walk independently of each other which enables them to explore the entire Hilbert space spanned by the Fock states without restriction. A simultaneous overlap of |Ψ t with both Fock states |N, 0 and |0, N is very unlikely then, as discussed above. Once we have turned on the boson-boson interaction the particles experience a mutual influence which restricts their individual random walks. This is related to the fact that the system stays much longer in the energetically (almost) degenerate Fock states |N, 0 and |0, N than it would for noninteracting bosons (cf. Fig. 5) and, what is even more important here, they can have a simultaneous overlap with both Fock states, such that they create a N00N state. In terms of the spectral properties the interaction modifies (i) the energy levels, which are not equally spaced, and (ii) the weight distribution of the levels, which are not binomial any longer (cf. Figs. 123). This, of course, affects also the evolution of the Fock state which is more complex now, since many different frequencies are involved. A particular feature is the spectral fragmentation (cf. Fig. 1), where only a part of the spectrum contributes to the off-diagonal coefficient cN (E). This is a kind of Hilbert-space localization, where transitions to the high-energy part of the Hilbert space are completely suppressed, similar to the self-trapping found in the Hartree approximation of the Bose-Hubbard model [13]. It should be noticed, however, that spectral fragmentation appears at a much weaker interaction strength than the self-trapping effect. For U ≈ J, which is the threshold for self-trapping [13], there is only one eigenvalue with significant weight | N, 0|E j | 2 [6]. Thus it is unlikely that the two effects are directly connected.

For the double well with mixed interaction the situation is different due to the existence of two "bands" and the absence of the double degeneracy. The main consequence is the absence of a support for the formation of N00N states because the off-diagonal coefficient c N (t) is strongly suppressed. From this observation we can conclude that the evolutionary entanglement is much more favorable in the symmetric double well. This is in qualitative agreement with the results of a multiconfigurational Hartree calculation for a one-dimensional Bose gas with Gaussian barrier in Ref. [20].

In conclusion, we have studied the evolution of a bosonic Fock state |N, 0 in a double well and found that a local particle-particle interaction supports the formation of a N00N state, provided that the interaction is not too strong. This is accompanied by a fragmentation of the spectrum. The latter is characterized by the fact that only eigenstates with energies less than the energy of the initial Fock state can be reached in the evolution. This interaction effect causes a Hilbert-space localization and prevents the evolution of the Fock state to disappear in the depth of the Hilbert space. This is the main reason for a favorable creation of a N00N state. The appearance of a N00N state is suppressed though for strong interaction because then the restriction of the Hilbert space is too severe and does not allow to reach the complementary Fock state |0, N . 14) and ( 15) for 100 bosons with U/J ≈ 0.023 and = 0.01. The energy of the initial Fock state is Ē = 1000. The spectral fragmentation appears around E ≈ 970, where the levels are nondegenerate at lower energies but almost degenerate for higher energies. This is a consequence of the competition between tunneling and interaction, which the latter wins at higher energies.

+ U 1 (N/2 -k) 2 + U 2 (N/2 + k) 2 |N/2 -k, N/2 + k N/2 -k, N/2 + k| .
The off-diagonal terms of the effective Hamiltonian in Eq. (A4) read

P 2(n-k) HP 2(n-k+1) = P 2N -2k HP N -2k+2 = -J N/2 + k N/2 -k + 1 (|N/2 + k, N/2 -k N/2 + k -1, N/2 -k + 1| + |N/2 -k, N/2 + k N/2 -k + 1, N/2 + k -1|) .
This leads for U 1 = U 2 to Eqs. (21), ( 22) and for U 1 = -U 2 to Eqs. (29), (30) and (31). 
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 515 the real parts of these coefficients are plotted for 100 bosons. Their evolution indicates a collapse and revival behavior. The latter is mainly due to a rapidly changing phase factor, since |c 0 (t)|, |c N (t)| has a much smoother behavior. This allows us to plot the evolution of the two-dimensional vector (|c 0 (t)|, |c N (t)|) to characterize the dynamics of the N00N state. Examples of the complex dynamical behavior are shown for 100 bosons and for 20 bosons in Fig. These results suggest a statistical description with a probability P (|c 0 (t)|, |c N (t)|) that measures how often certain values of |c 0 (t)|, |c N (t)| are visited during the evolution in a period of time. The result for 20 bosons is plotted in Fig. 6 for U = 0.1, J = It indicates that there is a strong correlation between the coefficients, where the most favored values are |c 0 (t)| ≈ |c N (t)| ≈ 0.35.

FIG. 1 :

 1 FIG.1: Spectral coefficients of Eqs. (14) and(15) for 100 bosons with U/J ≈ 0.023 and = 0.01. The energy of the initial Fock state is Ē = 1000. The spectral fragmentation appears around E ≈ 970, where the levels are nondegenerate at lower energies but almost degenerate for higher energies. This is a consequence of the competition between tunneling and interaction, which the latter wins at higher energies.
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 2345 FIG.2: Spectral coefficients for 20 bosons with U/J ≈ 0.1 and = 0.01. The energy of the initial Fock state is Ē = 40. The almost degenerate states appear above 42.

FIG. 6 :

 6 FIG. 6: DistributionP (|c0(t)|, |cN (t)|) of |c0(t)|, cN (t)|over a time period of 0.4h/U for 20 bosons with U/J ≈ 0.026. The axes are scaled by a factor 100 and the vertical axis is in arbitrary units. This plot indicates a strong correlation between the two spectral coefficients, supporting the formation of a N00N state.
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APPENDIX A: RECURSIVE PROJECTION METHOD

Given is a sequence of projectors P j (n ≥ j ≥ 0), defined by the recurrence relation

with initial conditions P -1 = 1, P 0 and by the Hamiltonian H through the properties

The projection of the resolvent (z -H) -1 defines

where (...)

-1

2(n-k) is the inverse on the P 2(n-k) -projected Hilbert space. Then g k satisfies the recurrence relation

Of interest is here only the case k = n, where we have from Eq. (A2)

For the specific case of the double well we choose n = N/2 and the projectors

With the Hubbard Hamiltonian of Eq. ( 4) the diagonal terms of the effective Hamiltonian in Eq. (A4) read