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Abstract.

Nuclear alpha decay may induce the emission of electrons originally bound to the

nucleus. If the ejected electron initially resides in a state with j > 1/2, the residual ion

may be aligned. In this article, such an alignment is examined for the LIII ionisation of

heavy atoms. This work pays particular attention to the effects of shake-off, recoil and

nuclear potential screening. To illustrate these effects, we have performed calculations

for the decay of the nuclei of neutral Polonium and Thorium atoms over a range of

commonly encountered alpha particle kinetic energies (εα ∼ O(10 MeV)).
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1. Introduction

The alpha decay of heavy nuclei and its effects on bound electrons has had a long

tradition of study over the course of the last forty years [1, 2, 3, 4]. Within this field,

attention has been paid predominantly to cross sections of inner shell electron ionisation.

In contrast to the properties of the emitted electron, less focus has been given to the

subject of the state of the residual atom. Information about the subsequent state can be

gained by analysing the characteristic photon emission. The angular and polarisation

properties thereof are related to the alignment of the holes produced in the inner atomic

shells, i.e. the population of the sub-states |jmj〉 where j > 1/2.

To date the only study of alignment resulting from the alpha decay of heavy

atoms was that conducted by Kabachnik [5]. In that work, the semi-classical

approximation together with non-relativistic perturbation theory [6] was employed to

estimate probabilities for the ionisation of Polonium where an electron, initially bound

to the the 2p3/2 state, is excited into the continuum. However, a more accurate

investigation of alignment may require an expansion of the theory applied in [5] to

include relativistic wavefunctions, recoil and shake-off effects and the interaction of the

neighbouring electrons. Apart from the effects of these phenomena, the realistic motion

of the alpha particle should also be accounted for.

In this work we present a study of the alignment of the residual hole created by

the alpha-decay induced ionisation of heavy atoms. We have implemented the effects

of recoil, shake-off and potential screening and used relativistic wavefunctions in all

calculations. To address the issue of alpha particle motion, we shall consider the atomic

system using two ansatzes. The first of these approaches corresponds to that used in

[7, 8], where the alpha particle appears at the co-ordinate origin and attains its final

velocity suddenly. The second approach presented will make use of a realistic picture of

alpha particle motion. In such a picture, after having tunnelled through the potential

barrier, the alpha particle appears at a particular distance outside of the nucleus and

moves away under Coulombic repulsion.

Within the context of these two types of alpha particle motion, we have chosen

to adhere to the following structure in this article. In the next section the theoretical

prerequisites for performing alignment calculations will be presented. From there a

comparison will be made with the previous calculations performed in [5]. Furthermore,

a comparison between the two scenarios of alpha particle motion will also be given.

The theoretical approach presented is applicable to all heavy atom systems that are

susceptible to alpha decay. We have chosen Polonium and Thorium as test cases in order

to firstly compare with previous calculations conducted on Polonium, and secondly to

illustrate any alignment dependence on the charge of the parent nucleus. All formulas

are shown in natural units (~ = c = me = 1, α = e2).
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2. Theory of atomic ionisation in alpha decay

2.1. Transition amplitudes

The analysis of alpha decay induced atomic ionisation can be performed in the semi-

classical approximation with first order perturbation theory. Under the semi-classical

approximation, one treats the alpha particle as a classical particle moving along a

straight trajectory, and the electron as a quantum particle, whose wavefunctions here

are Dirac eigenfunctions. Under these assumptions, the transition amplitude afi of the

ionisation of an atom by electron emission is given by

afi =

∫ ∞
−∞

ei(Ef−Ei)t 〈ψf |H1 |ψi〉 dt, (1)

where Ef , |ψf〉 and Ei, |ψi〉 are the energies and many-electron wavefunctions of the

final and initial states before and after ionisation respectively. The evaluation of the

amplitude (1) using many-electron wavefunctions is highly non-trivial, therefore we make

use of the single active electron approximation. This is well justified for the description

of inner-shell atomic processes if |ψi〉 and |ψf〉 are taken to be the bound and continuum

state solutions of the Dirac equation for a screened potential. Further elaborating on

equation (1), the final state wavefunction can be written as

|ψf〉 = |kµs〉 (2)

=
∑
κ,µ

i`
(
`, µ − µs,

1

2
, µs

∣∣∣, µ) e−i∆κY
µ−µs∗
` (k̂) |Efκµ〉 ,

where k is the momentum vector of the emitted electron. An expansion for |Efκµ〉
and the initial state wavefunction |ψi〉 ≡ |nκmj〉 in the analytic unscreened potential

representation may be found in [9].

By adopting the alpha particle trajectory as the quantisation axis, we can write H1

in the form [1, 2]

H1(t) = Θ(t)

[
−Z1α(1− βα3)

|r−Rα(t)|
+
Z1α

r
+
iµω

M2

dRα(t)

dt
· r
]
, (3)

where Z1 is the charge of the alpha particle, M2 the mass of the daughter nucleus,

ω = Ef − Ei, α3 the third of the Dirac matrices, β the velocity of the alpha particle

relative to c, µ = M1M2/(M1 +M2) is the reduced mass of the alpha particle, Θ(t) the

Heaviside function, and r and Rα are the distances of the electron and alpha particle

relative to the daughter nucleus respectively. The presence of the Heaviside function in

(3) is necessary as we define t = 0 to be the moment when the alpha particle appears,

and the perturbations are “switched on”.

As can be seen from equation (3), the Hamiltonian consists of three terms. The

terms represent (i) the operator for the Coulombic interaction between the emerging

alpha particle and the electron, (ii) the shake-off term arising as a result of the parent



4

nucleus donating a charge of 2 to the escaping alpha particle and (iii) the recoiling

motion of the nucleus from the escaping alpha particle [4, 10].

Inspection of the Hamiltonian (3) reveals that further evaluation of amplitude

(1) demands making a choice as to the particular time dependency of Rα(t). We

consider here two scenarios of alpha particle motion, i.e. instantaneous attainment

of its final velocity and realistic Coulombic repulsion. For the first scenario we set

Rα(0) = d2Rα(0)/dt2 = 0, dRα(0)/dt = v, the “sudden” approximation as per [7, 8],

and rewrite amplitude (1) in the form

afi = −
∫ ∞

0

eiωt
〈
ψf

∣∣∣∣Z1α(1− βα3)

|r−Rα(t)|

∣∣∣∣ψi〉 dt

+
1

ω

〈
ψf

∣∣∣∣Z1α

r

∣∣∣∣ψi〉
+ i

〈
ψf

∣∣∣∣µv · rM2

∣∣∣∣ψi〉 . (4)

Alternatively, one may make the more physically accurate assumption that the alpha

particle, instead of reaching its final velocity instantaneously at t = 0, appears at

a particular distance outside of the nucleus (having tunnelled through the potential

barrier) and achieves its final velocity as a result of Coulombic repulsion from the

daughter nucleus. The equation of motion used to describe this situation is [2]

�
Rα (t) =

√
−2Z1Z2α

µRα(t)
+ vf , Rα(0) =

2Z1Z2α

µv2
f

, (5)

where vf is the velocity of the ejected alpha particle at t = ∞ and Z2 is the charge

of the daughter nucleus. The initial condition on Rα reflects the fact that high energy

alpha particles, escaping from the nucleus will not have to tunnel as far as lower energy

particles to overcome the potential barrier. For this reason there is an inverse final

velocity dependence of the initial condition on Rα in equation (5).

By inserting equation (5) into the Hamiltonian, we may write amplitude (1) as:

afi = −
∫ ∞

0

eiωt
〈
ψf

∣∣∣∣Z1α(1− βα3)

|r−Rα(t)|

∣∣∣∣ψi〉 dt

+
1

ω

〈
ψf

∣∣∣∣Z1α

r

∣∣∣∣ψi〉
+ i

∫ ∞
0

eiωt
〈
ψf

∣∣∣∣ µM2

d2Rα(t)

dt2
· r
∣∣∣∣ψi〉 dt, (6)

.
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2.2. Evaluation of the matrix elements: Instantaneous attainment of alpha particle

velocity

We have shown in the previous section how one obtains the transition amplitude (4)

under the “sudden” approximation of alpha particle motion. We will discuss now the

further evaluation and simplification of the two terms therein.

The first matrix element of equation (4) is best treated by taking the Fourier

transform of 〈ψf |Z1α(1− βα3)/|r−Rα(t)||ψi〉 immediately [11]

a1
kµs,nκmj

=

∫ ∞
−∞

ei(Ef−Ei)tΘ(t)

〈
ψf

∣∣∣∣Z1α(1− βα3)

|r−Rα(t)|

∣∣∣∣ψi〉 dt
= 8πZ1α

∑
L,M,κ

iL−M
∫ ∞

0

s

s2 − (∆E)2β

×
〈
ψf
∣∣(1− βα3)jL(sr)Y M

L (r)
∣∣ψi〉B(L, s, β, ω) ds, (7)

where B(L, s, β, ω) may be expressed as

B(L, s, β, ω) = − 1

πω

[
(−i)L−12−L−2s

√
(2L+ 1)Γ(L+ 1)

(
−s

2β2

ω2

)L/2
×2 F̃1

(
L+ 1

2
,
L+ 2

2
;L+

3

2
;
s2β2

ω2

)]
. (8)

The further computation of the matrix element
〈
ψf
∣∣(1− βα3)jL(sr)Y M

L (r)
∣∣ψi〉 has been

discussed in [11] in equations (7)-(9). The presence of the time dependent Heaviside

function as part of the subject of the Fourier transform accounts for the different

appearance of B in comparison to that shown elsewhere [11, 12].

The matrix element of the shake-off operator in equation (4) has a simpler

representation

a2
kµs,nκmj

= αZ1i
l+1

(
l,mj − µs,

1

2
, µs

∣∣∣j,mj

)
e−i∆κY

mj−µs∗
l (k̂)δmj ,µ

×
∫ ∞

0

gE,κ(r)gn,κ(r) r dr +

∫ ∞
0

fE,κ(r)fn,κ(r) r dr

, (9)

where fn,κ(r), gn,κ(r) and fE,κ(r), gE,κ(r) represent the small and large radial

components of |ψi〉 and |ψf〉 respectively. The spherical symmetry of the shake-off

perturbation restricts the excitation of the electron into a continuum state where κi = κf
solely for this perturbation, hence the equivalence of the final and initial quantum state

variables in equation (9).

The third term in equation (4), the recoil interaction, may be given by

a3
kµs,nκmj

=
∑
κ,µ

i`
(
`, µ − µs,

1

2
, µs

∣∣∣, µ) e−i∆κY
µ−µs∗
` (k̂)
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× µv

M2

a
3,κ,mj
GGFF , (10)

where a
3,κ,mj
GGFF can be found in the appendix.

2.3. Evaluation of the matrix elements: Alpha particle motion under Coulombic

repulsion

In section 2.2 we have treated the transition amplitude under the “sudden”

approximation of alpha particle motion. In this section, we will discuss the simplification

of the elements of the transition amplitude (6) for the realistic motion of the alpha

particle. In this construct, it becomes impossible to express the transition amplitude

analytically and is therefore necessary to use numerical techniques within the co-ordinate

space representation. In this case, the multipole decomposition of 1/|r−Rα(t)| in the

treatment of the electron–alpha particle Coulombic interaction is required and is given

by

1

|r−Rα(t)|
=
∑
L,M

4π

2L+ 1

ρL<(t)

ρL+1
> (t)

Y M∗
L (0, 0)Y M

L (r̂)δM,0, (11)

where ρL<(t)/ρL+1
> (t) = Min[r,Rα(t)]L/Max[r,Rα(t)]L+1. Using this decomposition, the

representation of the first term of equation (6), the electron–alpha particle Coulombic

interaction a1
kµs,nκmj

, can be written in coordinate space as

a1
kµs,nκmj

= −
∑
κµjL

∫ ∞
0

dt ei∆EtZ1α

× i`
(
`, µ − µs,

1

2
, µs

∣∣∣, µ) e−i∆κY
µ−µs∗
` (k̂) (12)

×
(
a

1,κ,L,mj
GGFF (t) + a

1,κ,L,mj
GF (t) + a

1,κ,L,mj
FG (t)

)
,

where the formulas for a
1,κ,L,mj
GGFF (t), a

1,κ,L,mj
GF (t), a

1,κ,L,mj
FG (t) may be found in the appendix.

The second part of equation (6), the shake-off term, has exactly the same form as that

shown in equation (9). Finally, the recoil term of equation (6) may be given by

a3
kµs,nκmj

=
∑
κ,µ

∫ ∞
0

dt ei∆Eti`
(
`, µ − µs,

1

2
, µs

∣∣∣, µ) e−i∆κY
µ−µs∗
` (k̂)

× µ

M2

d2Rα(t)

dt2
a

3,κ,mj
GGFF , (13)

where again a
3,κ,mj
GGFF can be found in the appendix.
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2.4. Cross sections and alignment

In sections 2.2 and 2.3, we have discussed the evaluation of the transition amplitude (1)

using the realistic motion of the alpha particle accounting for the Coulombic repulsion

from the daughter nucleus and the “sudden” approximation thereof. In both of these

scenarios, the cross section for the excitation of an electron from the 2p3/2 initial state

into the continuum is given by

σmj =

1/2∑
µs=−1/2

∫ ∞
0

dEf

(∫
dΩ |afi|2

)
. (14)

This partial cross section is found upon integration of the modulus squared of either

amplitude (4) or (6) over all electronic final state energies and emission angles

and summed over final spin states as we assume that the emitted electron remains

unobserved. Moreover, no summation is conducted over the initial mj sub-states in

order to obtain a partial ionisation cross section from a particular sub-shell.

The partial ionisation cross sections are related to the alignment of the residual

hole in the 2p3/2 state. Once the cross sections have been calculated, the alignment of

the residual hole in the 2p3/2 state can be written as

A20 =
σ 3

2
− σ 1

2

σ 3
2

+ σ 1
2

. (15)

The alignment, A20 is a measure of the relative population of mj sub-states of the 2p3/2

state of the residual atom.

With the help of equations (14) and (15) we can calculate the relativistic forms

for the cross sections and alignment of alpha decay induced atomic ionisation. In

the following section, we proceed to show our results for the calculation of A20 for

the ionisation process whereby an electron is ejected out of the 2p3/2 bound state of

Polonium and Thorium nuclei.

3. Results and discussion

Having discussed the theoretical background in the previous section, we can now proceed

to the calculation of the alignment of atomic inner shells following the alpha-decay of

heavy atoms. We have chosen to calculate alignment (15) for Polonium and Thorium

atoms. The choice of Polonium has been made as there exists an extensive body of

experimental and theoretical research on this element [13, 1, 14, 15, 16]. Thorium

was chosen in order to examine the dependence of the alignment on the charge of the

alpha particle emitter. In order to obtain the cross sections (14) necessary to calculate

alignment (15), a particular representation of the electronic wavefunctions and model

of the alpha particle motion must be selected. For the wavefunctions, we make use of

single particle Dirac wavefunctions generated using a screened potential [17] to account

for the dominant part of the electron-electron interaction effects. Screening effects also
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Figure 1. Alignment (15) of the hole created due to ejection of an electron from

the 2p3/2 shell of Polonium for realistic alpha particle motion (right-panel) and the

“sudden” approximation thereof (left-panel). Calculations have been performed using

relativistic wavefunctions as generated for screened (solid line) and Dirac Coulomb

(dashed line) potentials. Moreover, calculations using screened wavefunctions have

been performed excluding shake-off and recoil interactions (dot-dashed line).

cause an energy shift in bound atomic states. This energy shift must be taken into

account in the choice of a proper Ei in equation (1). The binding energies of the 2p3/2

states for neutral Polonium and Thorium are Ei = −13813.8eV and Ei = −16300.3eV

respectively [18].

In figure 1 we present for both the realistic and “sudden” models of alpha particle

motion, our calculations for the alignment of the residual hole created by alpha decay

induced excitation of an electron from the 2p3/2 state into the continuum of Polonium.

These calculations have been performed using screened wavefunctions (solid line) for

both models of alpha particle motion. One can see from figure 1 that the alignment

(15) is negative and that |A20| increases slightly with increasing alpha particle velocity.

This negative value is a result of certain restrictions placed on the electronic transitions.

Namely, from equations (7) and (11) one can see that, given this is a zero impact

parameter problem, the total angular momentum projection mj must be conserved

during the ionisation process, i.e. mj = µ. This means that an electron initially bound

in a state with |mj| = 3/2, cannot be excited into either of the
∣∣Ef s1/2

〉
or
∣∣Ef p1/2

〉
states. These continuum states constitute a non-negligible contribution to the partial

wave summation over κ in equations (7), (10), (12) and (13) and their omission when

mj = 3/2 results in a reduction in σ3/2.

After discussing the general characteristics of the alignment shown in figure 1 we are

ready now to consider the other effects visible therein. We shall first discuss the effects

of screening. In order to demonstrate its importance, we have calculated alignment

using wavefunctions generated for both a Dirac Coulomb potential (dashed line) and a

screened potential (solid line). As seen from figure 1, screening plays a large role in both

the “sudden” and realistic models of alpha particle motion, leading to an overall increase

in |A20|. For example, screening effects account for a 43.0% and 36.6% increase in the
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magnitude of alignment at alpha particle energies of 6 MeV and 12 MeV respectively

in the “sudden” approximation. The reason for this is that the contribution of the

electron–alpha particle perturbation to the transition amplitude (1) is more dominant

when unscreened wavefunctions are used in its evaluation. The result of this increased

contribution from this term is to shift the alignment profile closer to the alignment

generated exclusively for the electron–alpha particle perturbation (dot-dashed line).

Apart from the screening effects, a comparison of the left and right panels of figure

1 reveals that calculations for realistic alpha particle motion reduce the modulus of

the alignment even further. For instance, the value of A20 calculated using screened

wavefunctions for realistic alpha particle motion is approxiomately 20% less over the

given spectrum of alpha particle energies than its “sudden” counterpart. This difference

may be understood given the fact that higher alpha particle velocities precipitate larger

absolute values of alignment. In the “sudden” approximation, the alpha particle attains

a constant velocity at t = 0. For the realistic model however, the alpha particle reaches

its final velocity only at t = ∞. The velocity of the alpha particle modelled using

realistic motion, for equal energies, is always less than in the “sudden” approximation,

thus producing the attenuation in alignment shown in the right panel of figure 1.

Having elucidated the role played by screening and alpha particle motion on the

alignment (15), it is of interest to understand the interplay between the electron–

alpha particle interaction and the higher order terms (shake-off and recoil) in the

determination of cross sections and hence alignment. Neglecting the comparatively

minor contribution of the recoil term, we pursue this discussion with respect to the

shake-off and electron–alpha particle interaction perturbations. One can see in figure 1

that the curve representing the alignment calculated neglecting the shake-off and recoil

terms (dot-dashed line) suggests weaker alignment than the calculations including all

perturbations (solid line). One may expect the opposite, since the shake-off term itself

leads to zero alignment. It is known however [4] that inclusion of shake-off in the

full transition amplitude (4) or (6) reduces the sum σ3/2 + σ1/2 while the difference in

partial cross sections σ3/2 − σ1/2 remains relatively untouched. Therefore the reduction

in magnitude of the denominator in equation (15) leads to an increase of the absolute

value of alignment as observed in figure 1.

After clarifying the role played by screening, higher order corrections and model

dependencies on the alignment of the 2p3/2 hole, we can proceed further with a

comparison of previous calculations. We have accomplished this in figure 2 where

we present our calculations of alignment performed within the “sudden”(dashed line)

and realistic (thick solid line) models of alpha particle motion with the predictions of

reference [5]. It is evident from this figure that a significant discrepancy exists with the

calculations of [5] (thin solid line in figure 2). To reconcile this difference we must discuss

the model used in [5]. The results therein were obtained from [6], a study devoted to

inner shell ionisation in non-relativistic ion-atom collisions. Disregarding for the moment

relativistic shake-off and recoil effects, the transition amplitude in [6] is similar to afi
from equation (1), except that in the current work afi contains an additional Heaviside
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Figure 2. Alignment (15) of the 2p3/2 hole calculated by reference [5] (thin solid

line) and our replication thereof using relativistic wavefunctions (dot-dashed line).

The alignment calculation as shown in figure 1 using screened wavefunctions for the

“sudden” (dashed line) and realistic models (solid line) of alpha particle motion for

Polonium is presented for comparison.

function. the Heaviside function ensures that unlike in the case of ion-atom collisions,

the alpha decay system remains unperturbed before t = 0, and hence that the integral

is conducted over the interval 0 ≤ t < ∞ instead of −∞ < t < ∞. To illustrate

the role of a proper choice of temporal integration contour, let us restrict ourselves to

the dominant time dependent term in equation (1), which for the sake of simplicity is

written in the “sudden” approximation as the electron–alpha particle interaction matrix

element f(t) = 〈ψf |Z1α(1− βα3)/|r−Rα(t)||ψi〉. By adopting this notation we can

regard equation (1) as the Fourier transform of a product

Fω[f(t) � g(t)] = f̂(ω) ∗ ĝ(ω) =
1

2π

∫ ∞
−∞

f̂(ω′)ĝ(ω − ω′) dω′, (16)

where f̂ and ĝ are the Fourier transforms of f and g respectively. Taking g(t) = Θ(t)

and its Fourier transform ĝ(ω) = π(δ(ω)− i/πω), equation (16) simplifies to

Fω[f(t) � Θ(t)] =
1

2
f̂(ω)− i

2π

∫ ∞
−∞

f̂(ω′)

(ω − ω′)
dω′. (17)

As seen from equation (17), the amplitude for alpha decay induced electronic excitation

can be written as half the amplitude of its conventional ion-atom collision equivalent plus

a convolution term. In reference [5], only the first term of equation (17) was accounted

for. This comprises the vast bulk of the difference between the line of [5] and our work

within figure 2. Nonetheless, a replication of the calculations by [5] has been made

(dot-dashed line in figure 2), albeit using relativistic wavefunctions.

By way of comparison of our results with the source data from [6] used for the

alignment presented in [5], we have included in table 1 a list of total cross sections.
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Table 1. Comparison of electron ejection cross sections due to 5.403 MeV alpha

decay of Polonium as determined in [6], [2] and the present work. Rearrangement of

equation 8 of [6] elicits the values displayed here. Values are total cross sections, not

partial cross-sections of different total angular momentum projections. Cross sections

in column 4 were determined using the technique outlined in section 2.2. All values

are to the order of ×10−4

Atomic-shell Ref. [6] Comparison to [6] Current work Ref. [2] Exp.[13]

LII+LIII 6.32 8.54 3.04 1.01 6.03

LI - - 2.43 1.73 3.05

LII - - 1.14 0.25 2.83

LIII - - 1.90 0.76 3.20

L - - 5.48 2.74 9.08

Moreover, table 1 also displays the total cross sections in comparison with previously

obtained values and experiment, against which our results compare favourably. The

value in table 1 on the first line of column 3 was determined using the transition

amplitude (7) where B has been modified to account for the necessary collision

framework.

Up to this point, only the results of the alignment of the residual 2p3/2 hole following

alpha decay induced ionisation of a Polonium atom have been scrutinised. It would

be instructive to show the alignment dependence on the charge of the alpha emitter.

Such a calculation is presented in figure 3 for that of Thorium and compared to the

alignment obtained for the Polonium atom. As can be seen in this figure, the alignment

for a Thorium emitter is less than that of a Polonium emitter over the indicated alpha

particle energy range. The change in alignment of a Polonium emitter compared with

a Thorium emitter shifts from -0.426 to -0.342 at 6 MeV and from -0.420 to -0.360

and 12 MeV. Such a charge dependence is a consequence of the fact that the alpha

particle, in the course of decay, appears at a larger distance and with less velocity

in the case of Thorium in comparison to Polonium. Moreover, recognising that using

screened wavefunctions or changing the source charge are quasi-analagous processes, one

could consider the alignment profile of Polonium in figure 3 as an exaggerated screening

type calculation for Thorium and thus expect that the alignment profile for Polonium

would suffer less attenuation than that of Thorium. As mentioned before, calculations

of alignment using unscreened wavefunctions impart a more dominant contribution to

the transition amplitude (1) from the electron–alpha particle interaction, thus shifting

the alignment profile toward zero. These properties, a lower instantaneous velocity, an

increased Rα(0) in equation (5) and a more dominant electron–alpha interaction term

result in the attenuation of the alignment profile for Thorium compared with Polonium

as seen in figure 3.
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Figure 3. Dependence of the alignment (15) of the 2p3/2 hole on the charge of the

alpha emitter. The dashed line is the calculation using screened wavefunctions for

alignment under the realistic model of alpha particle motion for Thorium and the solid

line is its Polonium counterpart.

4. Summary and conclusion

In this work we have investigated the excitation into the continuum of electrons of atomic

inner shells caused by nuclear alpha decay. Particular attention has been given to the

subject of the alignment of the residual hole created by the ejection of an electron

from the 2p3/2 state of a heavy atom. To understand this process, a full theoretical

treatment has been given in section 2 that accounts for shake-off and recoil effects,

screened relativistic wavefunctions and the real motion of the alpha particle. We have

applied this theory by way of equation (14) to determine alignment values (15) for the

process of emission of an electron from 2p3/2 shell of Polonium and Thorium atoms.

These results have been compared to those presented in [5].

With regard to possible refinements we note that in our theoretical treatment of

the escaping alpha particle, we have assumed that it behaves as a classical particle,

appearing at a particular distance from the coordinate origin (centred on the daughter

nucleus) before moving away from the daughter nucleus under Coulombic repulsion.

This neglects the effect the alpha particle has on the atomic shells as it tunnels through

the potential barrier confining it originally within the parent nucleus. To compensate

for this, one would treat the alpha particle quantum mechanically as per [1]. Further

work in this direction is currently underway and will be reported in the near future.
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Appendix A. Expansion of matrix elements in co-ordinate space

Shown in this appendix are the full forms of the matrix elements mentioned in equations

(12), (10) and (13). The expanded forms of a
1,κ,L,mj
GGFF (t), a

1,κ,L,mj
GF (t) and a

1,κ,L,mj
FG (t)

present in equation (12) are

a
1,κ,L,mj
GGFF (t) = W (κ, κ, L, µ,mj)

 1

R(t)L+1

∫ R(t)

0

r2+L (gE,κ(r)gn,κ(r) + fE,κ(r)fn,κ) dr

+R(t)L
∫ ∞
R(t)

r1−L (gE,κ(r)gn,κ(r) + fE,κ(r)fn,κ) dr

, (A.1)

a
1,κ,L,mj
GF (t) = W †(κ,−κ, L, µ,mj)

 1

R(t)L+1

∫ R(t)

0

r2+L (gE,κ(r)fn,κ(r)) dr

+R(t)L
∫ ∞
R(t)

r1−L (gE,κ(r)fn,κ(r)) dr

, (A.2)

a
1,κ,L,mj
FG (t) = −W †(−κ, κ, L, µ,mj)

 1

R(t)L+1

∫ R(t)

0

r2+L (fE,κ(r)gn,κ(r)) dr

+R(t)L
∫ ∞
R(t)

r1−L (fE,κ(r)gn,κ(r)) dr

, (A.3)

where

W (κ, κ, L, µ,mj) =

√
(2`+ 1)(2l + 1)

2L+ 1

(
l, 0, `, 0

∣∣∣L, 0) (A.4)

×
1
2∑

µ=− 1
2

(−1)µ−µ
(
l,mj + µ, `, µ− µ

∣∣∣L, 0)
×
(
`, µ − µ,

1

2
, µ
∣∣∣, µ)(l,mj − µ,

1

2
, µ
∣∣∣j,mj

)
,

and

W †(κ, κ, L, µ,mj) = β

√
(2`+ 1)(2l + 1)

2L+ 1

(
l, 0, `, 0

∣∣∣L, 0) (A.5)

×
1
2∑

µ=− 1
2

(−1)µ−µ2µ
(
l,mj + µ, `, µ− µ

∣∣∣L, 0)
×
(
`, µ − µ,

1

2
, µ
∣∣∣, µ)(l,mj − µ,

1

2
, µ
∣∣∣j,mj

)
,
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the presence of 2µ in equation (A.5) is due to the fact that χ†µ′σ̂3χµ = 2µδµ′µ.

Furthermore, the expansion of a
3,κ,mj
GGFF from equation (10) and equation (13) is given

by

a
3,κ,mj
GGFF = 2

√
π

3

W (κ, κ, 1, µ,mj)

∫ ∞
0

gE,κ(r)gn,κ(r)r
3dr

+W (−κ,−κ, 1, µ,mj)

∫ ∞
0

fE,κ(r)fn,κ(r)r
3dr

, (A.6)
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