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The Bragg regime of the two-particle

Kapitza-Dirac effect

Pedro Sancho

Centro de Láseres Pulsados, CLPU, E-37008, Salamanca, Spain

Abstract

We analyze the Bragg regime of the two-particle Kapitza-Dirac ar-

rangement, completing the basic theory of this effect. We provide a

detailed evaluation of the detection probabilities for multi-mode states,

showing that a complete description must include the interaction time

in addition to the usual dimensionless parameter w. The arrangement

can be used as a massive two-particle beam splitter. In this respect, we

present a comparison with Hong-Ou-Mandel-type experiments in quan-

tum optics. The analysis reveals the presence of dips for massive bosons

and a differentiated behavior of distinguishable and identical particles in

an unexplored scenario. We suggest that the arrangement can provide the

basis for symmetrization verification schemes.
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1 Introduction

The Kapitza-Dirac proposal [1] provides a beautiful demonstration of the diffrac-

tion of massive particles by standing light waves. The proposal has been realized

experimentally for atoms and electrons [2, 3, 4, 5, 6].

More recently, it has been suggested that additional effects could be present

when we move from one- to two-particle massive systems interacting with the

optical diffraction grating [7]. In this type of arrangement two different dynamics

take place simultaneously. On the one hand, the particles interact with the

optical wave generating diffraction patterns. On the other hand, if the two

particles are identical, the exchange effects must also be taken into account.

The resultant joint dynamics shows a much richer behavior.

As it is well-known [8], there are two regimes in the Kapitza-Dirac effect,

diffraction and Bragg scattering. In [7] the first one was studied for two-particle

systems. Here, we complete the basic analysis of the two-particle Kapitza-Dirac

effect by considering two-particle Bragg scattering.

As we did in [7], we consider separately single- and multi-mode states. In

contrast with [7], where we only gave a qualitative description of the second

ones, we present here a simple model of the problem that allows for a detailed

quantitative evaluation of the detection probabilities in the multi-mode case.

Our model takes into account the dependence of the width of the window of

modes that can be scattered on the duration of the interaction [9, 10]. Because

of this dependence, the probabilities of transmission and reflection of multi-
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mode states must be expressed in terms of the interaction time, in addition to

the dimensionless parameter w, which is the only parameter present in the case

of single-mode states.

Although the Bragg scattering of massive particles has been extensively stud-

ied, specially in BEC, there are some aspects of the two-particle problem that

still deserve attention. In particular, the behavior of massive particles in Hong-

Ou-Mandel (HOM)-type experiments [11] remains rather unexplored. As these

experiments have played an important role in quantum optics it seems nec-

essary to analyze its massive counterpart. In this respect, it has been many

times suggested in the literature the possibility of using the Bragg regime of

the Kapitza-Dirac effect as a basis for massive beam splitters [10, 12]. This is a

natural choice because it generates two possible exit paths for the particles, just

as a beam splitter. As a simple extension of these ideas, it is natural to think of

the two-particle Bragg scattering as a serious candidate for the implementation

of massive two-particle beam splitters.

Several results emerge from our analysis: (i) We show that, just as for pho-

tons, one can observe dips in the case of massive bosons. (ii) We have, as in

quantum optics [13, 14], that the behavior of distinguishable and identical parti-

cles is the same if the parallel momenta of the two particles are equal. However,

if the two particles are in different multi-mode states we can observe different be-

haviors. This is a previously not considered scenario, which deserves attention.

(iii) Finally, we shall propose a possible application of the arrangement. The
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two-particle Bragg scattering could be used to test the (anti)symmetrization of

the wave functions of pairs of identical particles.

The plan of the paper is as follows. In Sect. 2 we briefly review the fun-

damentals of the Bragg regime in the Kapitza-Dirac effect, and we discuss the

different situations present in its two-particle extension. We devote Sects. 3

and 4 to the evaluation of the detection probabilities for, respectively, single-

and multi-mode states. The possibility of using the two-particle Kapitza-Dirac

arrangement as a massive two-particle beam splitter is presented in the Dis-

cussion where, in addition to recapitulate on the main results of the paper, we

compare our approach with HOM-type experiments.

2 General considerations

The Bragg scattering is the relevant process for thick standing waves with weak

associated potentials. When these two conditions are fulfilled the diffraction

can only take place for some particular angles, the Bragg angles. This behavior

contrasts with that observed for thin waves, where diffraction occurs for any

angle of incidence and many different diffraction orders can be reached. On the

other hand, if the potential is strong, we have coherent channeling.

The theory of one-particle Bragg scattering by a standing light wave can be

found in [8]. In this reference there is also an excellent discussion of the physical

and mathematical differences between the Bragg and diffraction regimes. We
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denote by kL the wave number of the optical grating, usually a laser beam.

When the particle is incident on the grating at the Bragg angle, h̄kL/p with p

the total momentum of the particle, the energy and momentum are conserved.

In addition, the particles incident exactly at the first order of the grating (the

momentum parallel to the grating equal to h̄kL) can be scattered into the −1st

order with a momentum change 2h̄kL. Moreover, the transitions to other orders

are forbidden.

From a more mathematical point of view, the (first-order) Bragg angle θ is

given by the expression λ = dL sin θ, where λ is the de Broglie wavelength of the

particles and dL = λL/2 is the periodicity of the light beam. The interaction

of the particle with the grating is ruled by the potential V = V0 cos2 kLx, with

x denoting the coordinate parallel to the grating. As usual, the solution of the

quantum equation of evolution is obtained by introducing wave functions of the

form ψ(x,X) =
∑

n cn exp(i(nkLx+KX)), withX the coordinate perpendicular

to the grating andK the initial wave number in that axis (which does not change

because the interaction along it is null). In the Bragg regime, being the incident

wave function in the state n = 1, the final state of the particle can only be

n = ±1 with coefficients [8]:

c+ = e−iετ cosw ; c− = −ie−iετ sinw ; w =
V0τ

4h̄
(1)

where τ denotes the duration of the interaction, ε = h̄k2
L/2m, and c+ = c1 and

c− = c−1. The above equation shows an oscillatory behavior of the probabilities

of finding the particle in each of the orders n = ±1 as a function of V0τ .
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Note that although the incident x-component of the momentum of the par-

ticle is fixed to h̄kL, varying K we can have different Bragg’s angles.

When we have two incident particles we have a wider range of possibilities.

They are depicted in Fig. 1:

K,k

K’,k

K,-k

K’,-k

K’,k

K,k

K’,-k

K,-k

K’,-k

K’,k

K,k K,k

(I) (II)

X,Y;K

x,y;k

Figure 1: Two particles incident on a standing light wave. The full and dashed

lines represent, respectively, particles with momenta perpendicular to the light

wave K and K ′. The parallel momenta ±k are ±kL (or values very close to

them, see the multi-mode section).

The part (I) of the figure corresponds to the case in which both particles

arrive to the grating with the same momentum in the direction parallel to the

light beam, kL (in the multi-mode realm we must also consider values of k very

close but not equal to kL, see Sect. 4). As signaled before, taking different
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momenta in the perpendicular axis we can have different Bragg’s angles (the

angle between the path and the normal to the grating). On the other hand, the

part (II) of the figure represents the situation where the parallel momenta of

the two particles are opposite.

In the case (I) the wave functions of the two particles after the interaction

are

ψkL,K(x,X) = c+e
i(kLx+KX) + c−e

i(−kLx+KX) (2)

and

ψkL,K′(y, Y ) = c+e
i(kLy+K′Y ) + c−e

i(−kLy+K′Y ) (3)

where y and Y denote the coordinates of the other particle.

From these expressions one can derive, as in [7], the wave functions in

momentum space. Instead, we move to the more concise brackets formal-

ism, where we have |kL,K >1= c+|kL >1 |K >1 +c−| − kL >1 |K >1 and

|kL,K
′ >2= c+|kL >2 |K ′ >2 +c−| − kL >2 |K ′ >2, with the subscripts 1 and

2 denoting the two particles.

When the two particles are distinguishable the complete states are |I >dis=

|kL,K >1 |kL,K
′ >2 and |II >dis= |kL,K >1 | − kL,K

′ >2 (where now

| − kL,K
′ >2= c+| − kL >2 |K ′ >2 +c−|kL >2 |K ′ >2). In contrast, if

the particles are identical the wave function must be (anti)symmetrized, that

is, |I >= N |kL,K >1 |kL,K
′ >2 ±N |kL,K

′ >1 |kL,K >2 and |II >=

N |kL,K >1 | − kL,K
′ >2 ±N | − kL,K

′ >1 |kL,K >2, where the upper sign

holds for bosons and the lower one for fermions. N is the normalization coeffi-
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cient, which will be determined later.

We assume that the particles are in the same (or symmetric) spin and elec-

tronic states. Thus, as done above, the spatial part of the wave function must be

symmetric for bosons and antisymmetric for fermions. By simplicity, the spin

and electronic variables can be dropped from all the expressions. The extension

to antisymmetric spin or electronic states is straightforward.

3 Single-mode states

This section is devoted to the simple case of single-mode states. With this

simplification it is easy to illustrate the properties of the system. Later, in the

next section, we move to the more realistic case of multi-mode states.

3.1 Distinguishable particles

In order to later compare with identical particles, we assume both distinguish-

able particles to be characterized by the same c± coefficients (both masses to

be equal). Using the explicit expression for |I >dis, the probabilities are easily

evaluated

P(I)
dis(kL,K; kL,K

′) = |c+|4 ; P(I)
dis(kL,K;−kL,K

′) = |c+|2|c−|2

P(I)
dis(−kL,K;−kL,K

′) = |c−|4 ; P(I)
dis(−kL,K; kL,K

′) = |c−|2|c+|2 (4)

In a similar way, we obtain for the case (II):

P(II)
dis (kL,K;−kL,K

′) = |c+|4 ; P(II)
dis (kL,K; kL,K

′) = |c+|2|c−|2
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P(II)
dis (−kL,K; kL,K

′) = |c−|4 ; P(II)
dis (−kL,K;−kL,K

′) = |c−|2|c+|2 (5)

Note that the probabilities for double transmission (P(I)(kL; kL) and P(II)(kL;−kL)),

one scattering (P(I)(kL;−kL), P(I)(−kL; kL), P(II)(kL; kL) and P(II)(−kL;−kL))

and double scattering (P(I)(−kL;−kL) and P(II)(−kL; kL)) are equal in both

cases. The sum of the four terms in each equation adds to one.

3.2 Identical particles, case (I)

As the initial state can be factored into their perpendicular and parallel parts,

a product form remains after the interaction:

|I >= N(c+|kL >1 +c−| − kL >1) ×

(c+|kL >2 +c−| − kL >2)(|K >1 |K ′ >2 ±|K ′ >1 |K >2) (6)

The exchange effects correspond to the crossed terms in < I |I >. In Eq. (6)

only the transversal part (capital variables) can generate crossed effects. The

squared modulus of the transversal part gives 2±2Re(1< K|K ′ >12< K ′|K >2).

As < K|K ′ >= δ(K −K ′) there are only exchange effects when K = K ′. In

more physical terms, when K 6= K ′ the two particles can be distinguished and

the probabilities for identical and distinguishable particles are equal. In the case

(I) there are no exchange effects for fermions, because both should be in the

incident state (kL,K), a preparation forbidden by Pauli’s exclusion principle.

Now we consider the case K = K ′, only valid for bosons. Using also the
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longitudinal part (small letter variables) of Eq. (6) we have

P(I)(kL; kL) = 4N2|c+|4 ; P(I)(−kL;−kL) = 4N2|c−|4

P(I)(kL;−kL) ≡ P(I)(kL;−kL) + P(I)(−kL; kL) = 8N2|c+|2|c−|2 (7)

Now we can determine the normalization of the state. This is done by the condi-

tion that the sum of all the probabilities must be unit
∑

i,j=± P(I)(ikL; jkL) = 1.

To use this condition we assume that no particle is absorbed or deflected to other

momentum states; all the pairs of particles are detected in one of the four above

states. In other words, we restrict our considerations to the postselected set in

which the two particles are detected in these output beams, and the problem can

be described by a pure state. From the former condition easily follows N = 1/2.

Taking into account the normalization condition we see that the probabilities

for bosons and distinguishable particles (with K = K ′) are equal. We conclude

that in the case (I) the probabilities for identical and distinguishable particles

agree. Physically, this result can be easily understood. For K 6= K ′ the identical

particles can be distinguished. On the other hand, for K = K ′ (only bosons)

we have that the exchange term has the same form of the direct terms. There is

not a distinctive exchange effect, because the two terms of the state are equal,

|I >∼ |kL >1 |K >1 |kL >2 |K >2 +|kL >1 |K >1 |kL >2 |K >2. According to

the standard interpretation, different terms in the quantum state must represent

different alternatives for the system. However, in our case the two alternatives

are really the same, and the state reduces to that of distinguishable particles.
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This result resembles that reported for photons interacting at a beam splitter

[13, 14] (see the Discussion).

The probability distributions are represented in Fig. 2:

Figure 2: Probabilities of bosons or distinguishable particles detection (both

are equal) for K = K ′ in the scenario (I) versus w (in arbitrary units). The

continuous, dashed and dotted lines represent respectively the cases (kL; kL),

(−kL;−kL) and (kL;−kL).

A simple pattern can be observed. The probabilities of both particles leaving

the optical grating in the same parallel momentum state and equal to the initial

one (kL; kL) shows an oscillatory behavior. The probability of observing one

particle in each channel (kL;−kL) is also a periodic function, with large values

when those of the previous one are small. Finally, the probability of having the
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two particles in the channel opposite to the initial one is in general much smaller

than the previous ones (except around the crossing points cos4 w = sin4 w).

3.3 Identical particles, case (II)

The case (II) is very similar. As in the case (I) the particles can be distinguished

when K 6= K ′. Then we concentrate on the case K = K ′. The most important

difference between both situations is that now we must also consider fermions,

because the incident particles are in different states ((kL,K) and (−kL,K)) and

Pauli’s exclusion principle does not forbid the preparation of that state. The

state after the interaction can be written as

|II >K=K′= N |K >1 |K >2 [(c2+ ± c2−)(|kL >1 | − kL >2 ±| − kL >1 |kL >2) +

c+c−(1 ± 1)(|kL >1 |kL >2 +| − kL >1 | − kL >2)] (8)

The probabilities become

P(II)(kL;−kL)/N2 ≡ (P(II)(kL;−kL) + P(II)(−kL; kL))/N2 =

2|c2+ ± c2−|2 = 2(|c+|2 ∓ |c−|2)2 (9)

P(II)(kL; kL)/N2 = (1 ± 1)2|c+|2|c−|2 = P(II)(−kL;−kL)/N2

The normalization condition in this case is N = 1/
√

2.

The graphical representation is done in Fig. 3.
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Figure 3: The same as in Fig. 2 for the case (II). The continuous and dashed

lines represent respectively the cases (kL;−kL) and (kL; kL) for distinguishable

particles (black), bosons (red) and fermions (blue). The curves for (−kL;−kL)

are the same as for (kL; kL).

Now, for distinguishable particles the probability of leaving the interaction

region in different states is always larger than to do it in any of the other

channels. Initially, the two bosons are in different states, but after passing

through the optical grating the probability of the two particles to be in the same

state reaches the 2 sin2 w cos2 w value for any of the channels. The probability

of finding the outgoing bosons in the same state is always larger than that for

distinguishable particles. Moreover, for some values of w, the probability of

finding the two bosons in different exit channels vanishes, giving rise to the
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presence of a dip. This contrasts with the behavior of distinguishable particles,

for which that probability is never null. For fermions, the probability of being

the two in the same channel is forbidden by Pauli’s exclusion principle (also

K = K ′). The two fermions must always be found in different channels.

4 Multi-mode states

We move now to the more realistic case of multi-mode states. For the sake of

clarity in the presentation we consider first a single particle.

4.1 Single particle

In order to have an analytically solvable model we assume both mode distribu-

tions to be Gaussian functions before the interaction with the light grating:

f(k,K) = gk0(k)GK0(K) = Ng exp(−(k − k0)2/σ2)NG exp(−(K −K0)2/µ2)

(10)

where the normalization factors Ng and NG are determined from the conditions

∫
dk|g(k)|2 = 1 and

∫
dK|G(K)|2 = 1: Ng = (2/πσ2)1/4, · · ·. The central value

of the first distribution is k0 = ±kL. We shall only consider the case k0 = kL,

being the extension to k0 = −kL trivial.

After the interaction we consider first the small letter variables. The Bragg

scattering only takes place for modes whose momenta are very close to the

Bragg angle [6]. To be concrete, the spread in velocity of particles that can be
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diffracted, σv , depends on the interaction time with the grating: σv = 1/(τkL).

This relation can be easily derived from the time-energy uncertainty relation

[10]. This property has been used to study the velocity distribution of BEC’s

because the velocity selectivity of the previous condition [9]. In terms of wave

vectors, this condition can be rewritten as σk = m/(τh̄kL). Then the modes in

the interval [kL − 1
2σk , kL + 1

2σk] can be scattered, whereas the modes obeying

|k − kL| > σk/2 are always transmitted without possibility of scattering. The

probability to be scattered of each mode in the interval |k− kL| ≤ σk/2 is given

by |c−|2. Then the probability of scattering in the full beam is given by NR|c−|2,

where NR is the fraction of modes in the beam that can be scattered:

NR =
∫ kL+ 1

2 σk

kL− 1
2 σk

|f(k)|2dk = erf

(
σk√
2σ

)
(11)

with erf the error function, erf(ξ) = 2π−1/2
∫ ξ

0 exp(−u2)du.

On the other hand, the probability of transmission is the sum of two contri-

butions, (a) that of the modes outside the interval |k−kL| ≤ σk/2, which cannot

be scattered, and (b) another corresponding to the probability of modes in the

interval to be transmitted without scattering, NR|c+|2. Adding both contribu-

tions we have NT +NR|c+|2, where NT is the fraction of modes in the interval

that cannot be scattered. Clearly, we have NT = erfc(σk/(
√

2σ)) = 1 −NR.

After the interaction we have two beams, one transmitted and the other

scattered, which we represent by the kets |kL >MM and | − kL >MM . As

the overlapping between these beams is negligible they can be considered or-

thonormal. Then although now we are in the multi-mode regime, we can use a
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description for the longitudinal variables with only two relevant kets because the

detection process can only discriminate between the alternatives represented by

these kets. If we would have used a mode-selective detection scheme the descrip-

tion would be inadequate. The coefficients of the kets are different from those

associated with the single-mode case, containing information about the multi-

mode structure (σ) and the effective window of scattering (σk). The expression

c+|kL > +c−| − kL > must be replaced by d+|kL >MM +d−| − kL >MM , with

d+ = e−iετ (NT + NR|c+|2)1/2 ; d− = N 1/2
R c− (12)

where we have assumed that the relative phase between the reflected and trans-

mitted components is the same that in the case of single-mode states (this is

true for each mode). Clearly, we have |d+|2 + |d−|2 = 1.

The relation between σ and σk gives the criterion for the validity of the

single-mode approximation. When σ � σk, we have that erf(σk/(
√

2σ)) → 1

and, consequently NR ≈ 1 and NT ≈ 0. In this case, d± ≈ c± and it makes

sense to use the single-mode approximation.

Concerning the capital variables, the state can be expressed as |K >MM
GK0

=

∫
dKGK0(K)|K >. Thus, the complete state can be expressed after the inter-

action as

|f(k,K) >= |K >MM
GK0

(d+|kL >MM +d−| − kL >MM ) (13)

From this expression it follows that the probability of detecting, for instance, a

transmitted particle with transversal momentum K is |GK0(K)d+|2. If we do
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not measure the perpendicular momenta, as it is usually the case, the probabil-

ity of having a transmitted particle is the sum over K of all these probabilities:

∫
|GK0(K)d+|2dK = |d+|2, because of the normalization condition. This ex-

pression shows the same form obtained in the single-mode case with the only

change of c± → d±. This change can modify the dependence on w, in addition

to introduce the parameter τ (or the dimensionless spread σk/σ).
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Figure 4: Scattering probability |d−|2 versus the dimensionless spread σ/σk for

w = π/4. The dotted line represents the single-mode scattering probability

|c−|2 = 1/2.

We represent |d−|2 and |c−|2 in Fig. 4. For small values of σ/σk the scatter-

ing probabilities are very similar for single- and multi-mode states. In contrast,

when the value of the ratio of spreads increases the multi-mode probability

sharply decreases with respect to the single-mode one.
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4.2 Two distinguishable particles

In the case of two incident particles the central values of g(k) are equal (case

(I)) or opposite (case (II)). On the other hand, for G we assume both widths to

be equal (µ) but the mean values can be different (GK0(K) and GK′
0
(K)). The

state of the two-particle system can be expressed as |f(k,K) >1 |f ′(k′,K ′) >2,

with f ′(k,K) = gk′
0
(k)GK′

0
(K). As in the previous example we assume that

the final perpendicular momenta are not observed. Using D+ = e−iετ (MT +

MR|c+|2)1/2 and D− = M1/2
R c− with MT +MR = 1, for the coefficients of the

second particle, we obtain

Pdis(I)
MM (k; k) = |d+|2|D+|2 ; Pdis(I)

MM (−k;−k) = |d−|2|D−|2

Pdis(I)
MM (−k; k) = |d−|2|D+|2 ; Pdis(I)

MM (k;−k) = |d+|2|D−|2 (14)

and

Pdis(II)
MM (−k;−k) = |d−|2|D+|2 ; Pdis(II)

MM (k; k) = |d+|2|D−|2

Pdis(II)
MM (k;−k) = |d+|2|D+|2 ; Pdis(II)

MM (−k; k) = |d−|2|D−|2 (15)

As |d+|2 + |d−|2 = 1 and |D+|2 + |D−|2 = 1 it is simple to see that all

these probabilities are correctly normalized. All the probabilities are inde-

pendent of the distributions GK0 as a natural consequence of not observing

the final momenta. The dependence of these probabilities on w clearly dif-

fers from that on the case of single mode states. For instance, Pdis(I)
MM (k; k) =

NTMT + (NRMT + NTMR) cos2 w + NRMR cos4 w. In addition we have the

dependence on τ (or σk/σ). We shall later represent them in Fig. 5.
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4.3 Two identical particles

The final state is N(|f(k,K) >1 |f ′(k′,K ′) >2 ±|f ′(k,K) >1 |f(k′,K ′) >2).

We have, for instance, Nd+D+|kL >MM
1 |kL >MM

2 (|K >MM
1,GK0

|K ′ >MM
2,GK′

0

±|K >MM
1,GK′

0

|K ′ >MM
2,GK0

) for the two particles in the channel (k; k) in the case

(I). The probability associated with the perpendicular variables has the form

2 ± 2I, with

I = Re(MM
GK0 ,1< K|K >MM

1,GK′
0

MM
GK′

0
,2 < K ′|K ′ >MM

2,GK0
) =

∫
dK

∫
dK ′GK0(K)GK′

0
(K ′)GK0(K

′)GK′
0
(K) (16)

The total probabilities become in the case (I)

P(I)
MM (k; k) = 2N2(1 ± I)|d+|2|D+|2 ; P(I)

MM (−k;−k) = 2N2(1 ± I)|d−|2|D−|2

P(I)
MM (k;−k) ≡ P(I)

MM (k;−k) + P(I)
MM (−k; k) =

2N2(|d+|2|D−|2 + |D+|2|d−|2 ± 2IRe(d∗+d−D+D
∗
−)) (17)

As usual, the normalization is obtained from the condition of the sum of all the

probabilities to be 1, which reads 2N2(1 ± I(|d+||D+| + |d−||D−|)2) = 1.

A specially simple situation is obtained when the two distributions gk0(k)

are equal (this condition implies σ = σ′), where we have d± = D± and the

normalization condition is N = 1/
√

2(1± I). In this situation the probability

distributions for bosons, fermions and distinguishable particles are equal. This

result agrees with our previous discussion for single-mode states. When the

initial particles are in the same state of the parallel variables the two alternatives
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in the expression for the state of identical particles are actually redundant and

do not lead to distinctive exchange effects.

Figure 5: As Fig. 2 for multi-mode states. Bosons, fermions and distinguishable

particles are represented by red, blue and black lines. We represent the case

µ = 2, K0 = 1, K ′
0 = 2, NT = 0.01 and MT = 0.8.

We represent the above results in figure 5. We consider the simpler case,

in which NT and NT are constant (we must have a different spread of the

multi-mode distribution for each w and τ). We take into account that I =

exp(−(K0 −K ′
0)

2/µ2). At variance with the single-mode case we have that the

curves for bosons, and distinguishable particles (and now also for fermions) are

different. Moreover, the analytical form for the case (−k;−k) only shows a peak,

whereas for the single-state there were two separated ones. When the values
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of NT and MT become close we recover the behavior observed for single-mode

states with curves almost similar in all the cases and two peaks for (−k;−k).

In the case (II), in a similar way, we have

P(II)
MM (k;−k)/2N2 ≡ (P(II)

MM (k;−k) + P(II)
MM (−k; k))/2N2 =

|d+|2|D+|2 + |d−|2|D−|2 ± 2IRe(d∗+D−D
∗
+d−) (18)

P(II)
MM (k; k)/2N2 = (1 ± I)|d+|2|D−|2 ; P(II)

MM (−k;−k)/2N2 = (1 ± I)|d−|2|D+|2

The normalization condition is given by the expression 2N2(1 ± I(|d+||D−| −

|d−||D+|)2) = 1.

In the particular case d± = D± (N = 1/
√

2) the above expressions simplify

to P(II)eq
MM (k;−k) = |d+|4+|d−|4∓2I|d+|2|d−|2, P(II)eq

MM (k; k) = (1±I)|d+|2|d−|2

and P(II)eq
MM (−k;−k) = (1 ± I)|d−|2|d+|2. We represent them in Fig. 6.

The curves resemble those obtained in the single-mode case. The most im-

portant difference is that for fermions the possibility of observing simultaneously

two of them in the same output arm is not null. This is due to the fact that

now the perpendicular components of the momentum are different, precluding

the action of the exclusion principle. It must also be noted that the visibility

of the bosonic (k;−k) curve is slightly reduced. In the single-mode scenario it

was 1, whereas now it does not reach that value (P(II)eq
max,MM (k;−k) = 1, but

P(II)eq
min,MM (k;−k) 6= 0).
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Figure 6: The same as in Fig. 3 for multi-mode states with d± = D± and using

the values K0 = 1, K ′
0 = 2, NT = 0.1 and µ = 2.

5 Discussion: HOM-like experiments

In this paper we have extended the theory of the two-particle Kapitza-Dirac

effect to the Bragg regime. With this extension we complete the basic theory of

the effect. We have derived the detection probabilities for all the possible com-

binations of scattering and transmission processes of the two particles. We have

developed a simple model based on some reasonable assumptions to describe

multi-mode states. Using this model we can quantify the differences between

single- and multi-mode states. In the case of single-mode states all these prob-

abilities can be expressed in terms of the parameter w, whereas for multi-mode
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ones one also needs to consider the duration of the interaction (or the dimen-

sionless spread). In the single-mode case we only have exchange effects for equal

perpendicular momenta, a restriction not present for multi-mode states.

We have not discussed the possibility of carrying out experimental tests of the

results here derived. We refer to [7] for a brief presentation of the aspects related

to the two-particle nature of the arrangement, and [6, 8] for the peculiarities

associated with the Bragg regime.

Bragg’s scattering has been extensively studied for one-particle systems. In

the many-particle scenario one can also find in the literature many analysis on

the subject, mainly in the field of BEC (see, for instance [10]). However, there

are still aspects of the problem that deserve attention. In this paper we focus on

the aspects related to HOM-type experiments, which have played an important

role in quantum optics, triggering a lot of activity in the field of two-photon

interference experiments with beam splitters. We explore if the same relevance

could be expected for massive systems, taking into account that the arrangement

discussed in this paper could be used as a two-particle beam splitter.

The first point to be noted is that the coefficients c+ and c− play the same

role of the transmission and reflection coefficients in a beam splitter. The co-

efficients c± can be expressed in terms of a single parameter w. In the optical

case the coefficients are complex variables that depend on the optical frequency.

In the massive case they are also complex, but depend on the energy of the

particle e−iετ and the potential strength V0 and the duration of the interaction
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τ via the dimensionless parameter w.

Two interesting results emerge directly from our analysis. The first result

concerns to particles incident on the same arm of the beam splitter. We have

shown that when the particles are in single-mode states or have the same multi-

mode parallel distribution there are not distinctive exchange effects and the

behavior of distinguishable and identical particles becomes equal. In quantum

optics we have a similar behavior. If two photons in the same state are incident

in the same input arm of the beam splitter, the probabilities of finding the

two photons in the different possible combinations in the output arms are the

same of two classical or distinguishable particles (binomial distribution), without

showing any quantum interference effect [13, 14]. Our analysis gives an intuitive

explanation for the absence of distinctive exchange effects, only based on the

physical meaning of the different terms of the state vector. At variance with

[13, 14], we have demonstrated that exchange effects can be present in the

multi-mode case, giving rise to some differences between distinguishable and

identical particles. Up to our knowledge, this behavior has not been previously

described in the literature. Modifying the multi-mode distributions we can

modulate the differences between distinguishable and identical particles. This

is an unexplored scenario where some new physical effects could emerge.

Our second result refers to the presence of dips in the case (II). In quantum

optics the HOM dip takes place for a perfect temporal overlapping of the two

photons arriving on different arms of the beam splitter: the two photons are
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always found in the same output arm. In the massive case, Fig. 3 shows dips in

the boson curve for some values of w. At these values there are not coincidence

detections in the two exit paths. Thus, one of the most characteristic signatures

of HOM interferometry is also present in the bosonic massive case, reinforcing

the analogy between massless and massive bosons. Note a difference between

the massless and massive cases. In the first one the parameters of the beam

splitter (transmissivity and reflectivity) are fixed and the temporal overlapping

between the photons varies. In the second one, the perfect overlapping between

the two particles is assumed and one must vary w, the beam splitter parameter.

Finally, we shall propose a potential application of the two-particle mas-

sive beam splitter, a scheme for the verification of (anti)symmetrization. The

HOM arrangement was originally conceived for precision measurements of time

intervals between the arrivals of photons. Similarly, we could use our arrange-

ment to determine if the overlapping between the wave functions of the two

identical particles is large or not. If one wants to prepare identical particles in

(anti)symmetrized states for some physical task, one must have some method

to test that the particles are actually in that state. This can be done via dou-

ble Bragg’s scattering. When the overlapping is large, the two wave functions

must be (anti)symmetrized and the results derived in the previous sections for

identical particles hold. In contrast, with a lower degree of overlapping the be-

havior of the particles becomes increasingly similar to that of distinguishable

particles. These properties can be used to quantitatively measuring the degree
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of overlapping between the two identical particles.
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