
HAL Id: hal-00636638
https://hal.science/hal-00636638

Submitted on 28 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Koopmans’ theorem in the statistical HartreeFock
theory

Jean-Christophe Pain

To cite this version:
Jean-Christophe Pain. Koopmans’ theorem in the statistical HartreeFock theory. Journal of Physics B:
Atomic, Molecular and Optical Physics, 2011, 44 (14), pp.145001. �10.1088/0953-4075/44/14/145001�.
�hal-00636638�

https://hal.science/hal-00636638
https://hal.archives-ouvertes.fr


Koopmans’ theorem in statistical Hartree-Fock

theory

Jean-Christophe Pain

CEA, DAM, DIF, F-91297 Arpajon, France

E-mail: jean-christophe.pain@cea.fr

Abstract. In this short paper, the validity of Koopmans’ theorem in the Hartree-
Fock theory at non-zero temperature (Hartree-Fock statistical theory) is investigated.
It is shown that Koopmans’ theorem does not apply in the grand-canonical ensemble,
due to a missing contribution to the energy proportional to the interaction between
two electrons belonging to the same orbital. Hartree-Fock statistical theory has also
been applied in the canonical ensemble [Blenski et al., Phys. Rev. E 55, R4889 (1997)]
for the purpose of photo-absorption calculations. In that case, the Hartree-Fock self-
consistent-field equations are derived in the super-configuration approximation. It is
shown that Koopmans’ theorem does not hold in the canonical ensemble, but that
a restricted version of the theorem can be obtained, by assuming that a particular
quantity multiplying the interaction matrix element in the expression of the energy
does not change during the removal of an electron.
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1. Introduction

In atomic physics of hot dense plasmas, the Hartree-Fock (HF) theory is applied to

model self-consistent potentials of atoms and ions. Another interest of HF theory is to

use HF one-electron states in order to calculate the average configuration energies. As

shown by Mermin [1], the HF theory at non-zero temperature is equivalent to minimizing

the grand thermodynamic potential in a restricted class of statistical operators. In the

following, such a theory will be refered to as “grand-canonical statistical HF theory”.

A few years ago, Blenski et al. [2, 3] generalized the statistical Hartree-Fock

approach to atoms in plasmas at finite temperature in the framework of the super-

configuration approximation successfully applied in the STA (Super Transition Array)

method [4]. In the following, such a theory will be refered to as “canonical statistical

HF theory”.

Koopmans’ theorem [5, 6, 7] states that, when the number of electrons qi in a given

orbital i is greater than 1, the interaction within the group is generally much smaller than

the energy difference resulting from the removal of an electron. Therefore, εi represents

roughly the average theoretical ionization potential for a single electron during the

removal of the group. Koopmans [5] identified the physically meaningful solutions as

those for which εi was still an approximation to the ionization potential when qi = 1,

and an approximation to the average ionization potential otherwise. An important

point is that Koopmans’ theorem is valid only if the one-electron wavefunctions in the

N -electron and the (N±1)-electron Slater determinants are the same.

The purpose of this short paper is to check whether Koopmans’ theorem is valid in

the framework of statistical HF theory in the grand-canonical ensemble [1] and in the

canonical ensemble [2, 3]. For that purpose, the energy of the system with qi electrons

in orbital i is compared to the one with qi − 1 electrons in orbital i. The difference is

related to the value of the energy of orbital i.

2. Grand-canonical ensemble

2.1. Average energies

The total energy of a configuration with N orbitals (n1l1), (n2l2), · · · , (nN lN) is [8]

E =
N∑

i=1

qi Ii +
1

2

N∑

i,j=1

qi (qj − δi,j)Vij (1)

where qi is the population (number of electrons) of orbital i and, in the non-

relativistic case (Schrödinger equation), the one-electron energy Ii reads (atomic units

are used throughout the article):

Ii =
∫ ∞

0
Pi(r)

(
−1

2

[
d2

dr2
− l(l + 1)

r2

]
− Z

r

)
Pi(r) dr, (2)
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where Pi(r) is the radial part of the wavefunction multiplied by r. The interaction

matrix elements are

Vii = F (0)(ii) − 2li + 1

4li + 1

∑

k 6=0

(
li k li
0 0 0

)2

F (k)(ii) (3)

and for i 6= j,

Vij = F (0)(ij) − 1

2

∑

k 6=0

(
li k lj
0 0 0

)2

G(k)(ii), (4)

where F (k) and G(k) are the direct and exchange Slater integrals respectively [9].

The quantity

(
j1 j2 j3

m1 m2 m3

)
represents a 3j-symbol [10]. The average energy of the

configuration is

〈E〉 =
1

Z

g1∑

q1=0

g2∑

q2=0

g3∑

q3=0

· · ·
gN∑

qN=0




N∑

i=1

qi Ii +
1

2

N∑

i,j=1

qi (qj − δi,j)Vij




×
N∏

k=1

(
gk

qk

)
e−β(εk−µ) qk (5)

where

(
a

b

)
= a!/(b!(a − b)!) is the binomial coefficient, µ the chemical potential

and Z the partition function of the system:

Z =
g1∑

q1=0

g2∑

q2=0

g3∑

q3=0

· · ·
gN∑

qN=0

N∏

k=1

(
gk

qk

)
e−β(εk−µ) qk . (6)

One finds that the average energy (5) can be written

〈E〉 = =
N∑

i=1

〈qi〉Ii +
1

2

N∑

i,j=1

〈qi〉
(
〈qj〉 −

〈qi〉
gi

δi,j

)
Vij

=
N∑

i=1

〈qi〉Ii +
1

2

N∑

i,j=1

〈qi〉 (〈qj〉 − pi δi,j) Vij, (7)

with

〈qi〉 = gi pi =
gi

1 + e−β(εi−µ)
. (8)

The energy required in order to remove one electron from orbital i is defined by

∆E(i) = E ({qk − δik, k = 1, N}) − E({qk, k = 1, N}) , (9)

where δik denotes Kronecker’s symbol. The notation {qk−δik, k = 1, N} means that

the population of orbital i is reduced by 1, the other populations remaining unchanged.

Therefore, one obtains

∆E(i) = −Ii −
(
〈qi〉 −

1

2

)(
1 − 1

gi

)
Vii −

∑

j 6=i

〈qj〉Vij. (10)
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2.2. Expression of orbital energies

The Hartree-Fock equations read [6]
(
−1

2

[
d2

dr2
− l(l + 1)

r2

]
− Z

r
+ V (r) + δVi(r) − εi

)
Pi(r) + gi(r) = 0, (11)

with

V (r) =
N∑

j=1

〈qj〉
∫ ∞

0
Pj(r

′)
1

r>

Pj(r
′) dr′. (12)

The correction δVi is given by

δVi(r) = −piV
(0)(i, i) − 2li + 1

4li + 1

∑

k 6=0

(
li k li
0 0 0

)2

V (k)(ii) (〈qi〉 − pi) , (13)

where

V (k)(ij) =
∫ ∞

0
Pj(r

′)
rk
<

rk+1
>

Pi(r
′) dr′ (14)

and

gi(r) = −
∑

j 6=i

〈qj〉
2

∑

k

(
li k lj
0 0 0

)2

V (k)(ij) Pj(r). (15)

Multiplying equation (11) by Pj(r) and integrating from 0 to ∞ leads to

εi = Ii + 〈qi〉
(

1 − 1

gi

)
Vii +

∑

j 6=i

〈qj〉Vij. (16)

Therefore, one has

∆E(i) = −εi +
1

2

(
1 − 1

gi

)
Vii 6= −εi, (17)

which means that Koopmans’ theorem is not verified in that case, because of the

remaining term (1− 1/gi)Vii/2. Each orbital is shifted from that quantity, which is the

signature of the competition between the diagonal term of the interaction matrix and

the degeneracy. We can see in table 1, in the case of a carbon plasma at T=30 eV

and ρ=0.01 g/cm3, that the difference between the energy difference ∆E(i) and εi can

reach 25 %. The shift is more pronounced for the higher-energy orbitals, which can be

explained by the fact that the electrons in such orbitals are very sensitive to electron-

electron interactions, unlike electrons in the lower orbitals which are more subject to

the attraction of the nucleus‡.

‡ However, it is worth mentioning that Janak’s theorem [11, 18] holds in that case, i.e.

∂〈E〉
∂〈qi〉

= εi. (18)
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Orbital gi Energy εi (eV) Vii (1 − 1/gi)Vii/2 ∆E(i) (eV) Shift (%)

1s 2 -383.376 44.892 11.223 394.599 2.93

2s 2 -57.101 9.212 2.303 59.404 4.03

2p 6 -48.905 15.994 6.664 55.569 13.63

3s 2 -17.519 3.791 0.948 18.467 5.41

3p 6 -16.996 6.312 2.630 19.626 15.47

3d 10 -16.188 8.088 3.640 19.828 22.48

4s 2 -6.934 2.062 0.515 7.449 7.43

4p 6 -6.154 3.749 1.562 7.716 25.38

Table 1. Energies (in eV) of orbitals 1s to 4p for a carbon plasma at T=30 eV and
ρ=0.01 g/cm3. The chemical potential is µ=-186.702 eV.

3. Canonical ensemble

The formalism presented in the preceeding section allows non-integer populations for the

different orbitals. Therefore, it provides the average (in the sense of the most probable)

configuration of the plasma. From this average configuration, the real configurations can

be built, by rounding the population values to the closest integer. The problem is that, in

hot plasmas, the number of configurations can be really huge. The super-configuration

method [4] has been invented in order to remedy this problem. A configuration is made

of orbitals with integer populations; in the same way, a super-configuration is made

of super-orbitals with integer populations, a super-orbital being a group of orbitals

which energies are close to each other. For instance, (1s2s2p)3(3s3p)4(3d)7 is a super-

configuration made of 3 super-orbitals populated respectively with 3, 4 and 7 electrons.

The super-configuration approximation enables one to calculate the equation of

state beyond the average-atom model [12, 13, 14]. The idea is to study the influence of

the population fluctuations on the thermodynamic quantities. For instance, the pressure

of the plasma is given by

P =
∑

Ξ

WΞ PΞ, (19)

where WΞ and PΞ represent respectively the probability and the pressure of

super-configuration Ξ. In the particular case where a super-configuration is an

ordinary configuration, the equations reduce to the standard HF equations. The

finite-temperature HF method was derived in the framework of the super-configuration

approximation by Blenski et al. [2, 3]. The average shell populations and interaction

matrices, which are averages of the corresponding quantities for configurations, are given

in terms of partition functions [15, 16, 17]. This allows one to avoid problems stemming

from non-integer population numbers in other thermal HF theories [18].
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3.1. Expression of the average energy of a Q-electron configuration

The Hartree-Fock equations read [2, 3]:

(
−1

2

[
d2

dr2
− l(l + 1)

r2

]
− Z

r
+ V (r) + δVi(r) − εi

)
Pi(r) + hi(r)

=
N∑

k=1,k 6=i

εi,k 〈qk〉Q δli,lk Pk(r). (20)

The different terms in the left-hand-side of Eq. (11) are

δVi(r) =
N∑

s,k=1

{δi,s (gi − 1) [gi (Si − pi) δk,0 − Si]

+ (1 − δi,s) 〈qs〉Q (gs − 1)His δk,0}Y (k)
s,s (r), (21)

and

hi(r) = −
N∑

s=1,s6=i

〈qs〉Q [His + 1]Ps(r)
N∑

k=1

Y
(k)
s,i (r), (22)

with

Y
(k)
s,i (r) =

gi

2(gi − δs,i)

(
li k ls
0 0 0

)2 ∫ ∞

0

rk
<

rk+1
>

Ps(r
′)Pi(r

′) dr′. (23)

There is a small typographical error in Ref. [2]: a factor (gs−1) is missing in Eq.

(6c). However, in Eq. (7c) of Ref. [3], the expression is correct. Multiplying equation

(20) by Pj(r) and integrating over r from 0 to infinity leads to the orbital energy

εi = Ii + Si (gi − 1) Vii +
∑

s6=i

[1 + His] Vis〈qs〉Q. (24)

Let us consider the following super-configuration with N orbitals and Q electrons:

(n1l1 n2l2 · · · nN lN )Q. (25)

Its average energy reads

〈E〉Q =
N∑

i=1

〈qi〉Q Ii +
1

2

N∑

i,j=1

〈qi〉Q (〈qj〉Q − pi δi,j)Wij Vij, (26)

where

〈qi〉Q = gi pi = −gi

Q∑

n=1

(−Xi)
n UQ−n(g)

UQ(g)
(27)

is the average population of orbital i, Xi = e−β(εi−µ), and

UQ(g) =
g1∑

q1=0

g2∑

q2=0

g3∑

q3=0

· · ·
gN∑

qN=0︸ ︷︷ ︸∑N

j=1
qj=Q

N∏

k=1

(
gk

qk

)
Xqk

k . (28)
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One has also

Wrs = 1 + δr,s

[
Sr (gr − 1)

〈qr〉Q − 1
− 1

]
+ (1 − δr,s)Hrs, (29)

where

Si =
1

pi

Q∑

n=1

(n − 1) (−Xi)
n UQ−n(g)

UQ(g)
(30)

and

Hrs =
1

Xs − Xr

[
gs Xs

〈qs〉Q
− gr Xr

〈qr〉Q

]
− 1. (31)

The energy required in order to remove one electron from orbital i is

∆〈E(i)〉Q = E ({〈qk〉Q − δik, k = 1, N})−E ({〈qk〉Q, k = 1, N}) 6= −εi,(32)

which means that Koopmans’ theorem does not hold in the statistical Hartree-Fock

theory for the canonical thermodynamic description of the system. If Wij did not change

during the removal of an electron belonging to orbital i, one would have

∆E(i)− = Ii − Si (gi − 1) Vii −
∑

s6=i

[1 + His]Vis〈qs〉Q = −εi, (33)

but this is not true in general.

4. Conclusion

Koopmans’ theorem does not apply in the statistical Hartree-Fock theory neither in

the canonial ensemble, nor in the grand-canonical ensemble. In the grand-canonical

ensemble, an additional term exists in the energy variation due to the removal of an

electron from orbital i. It represents a shift of the orbital energy depending on its

degeneracy and on the diagonal matrix element describing the interaction between two

electrons in that orbital. In the canonical ensemble, one finds, in the framework of

the super-configuration method, that Koopmans’ theorem does not hold stricto sensu,

unless a particular quantity is ensured to be unchanged when the number of electrons

is decreased by one.
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