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Indirect controllability of locally coupled wave-type systems and

applications

Fatiha Alabau-Boussouira∗, Matthieu Léautaud†‡

Abstract

We consider symmetric systems of two wave-type equations only one of them being controlled.
The two equations are coupled by zero order terms, localized in part of the domain. We prove an
internal and a boundary null-controllability result in any space dimension, provided that both the
coupling and the control regions satisfy the Geometric Control Condition. We deduce similar null-
controllability results in any positive time for parabolic systems and Schrödinger-type systems under
the same geometric conditions on the coupling and the control regions. This includes several examples
in which these two regions have an empty intersection.
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1 Introduction

1.1 Motivation

During the last decade, the controllability properties of coupled parabolic equations like














∂tu1 − ∆cu1 + au1 + pu2 = bf in (0, T ) × Ω,
∂tu2 − ∆cu2 + au2 + pu1 = 0 in (0, T ) × Ω,
u1 = u2 = 0 on (0, T ) × ∂Ω,
(u1, u2)|t=0 = (u0

1, u
0
2) in Ω,

(1.1)

have been intensively studied. Here, the coefficients p and b are smooth non-negative functions on the
bounded domain Ω and −∆c is a second order selfadjoint elliptic operator. The null-controllability problem
under view is the following: given a time T > 0 and initial data, is it possible to find a control function f so
that the state (u1, u2) is driven to zero in time T? It has been proved in [dT00, AKBD06, GBPG06, Léa10]
with different methods that System (1.1) is null-controllable as soon as {p > 0} ∩ {b > 0} 6= ∅. In these
works, the case {p > 0} ∩ {b > 0} = ∅ has been left as an open problem. However, Kavian and de Teresa
[KdT10] have proved for a cascade system (i.e. without the term pu2 in the first equation of (1.1)) that
approximate controllability holds. The natural question is then whether or not null-controllability (which
is a stronger property) still holds in the case {p > 0} ∩ {b > 0} = ∅:

Question 1: is System (1.1) null-controllable in the case {p > 0} ∩ {b > 0} = ∅?
The second Problem under interest here is the boundary controllability of systems like















∂tu1 − ∆cu1 + au1 + pu2 = 0 in (0, T ) × Ω,
∂tu2 − ∆cu2 + au2 + pu1 = 0 in (0, T ) × Ω,
u1 = b∂f, u2 = 0 on (0, T ) × ∂Ω,
(u1, u2)|t=0 = (u0

1, u
0
2) in Ω,

(1.2)

where b∂ is a smooth function on ∂Ω. The recent work [FCGBdT10] studies such systems in one space
dimension and with constant coupling coefficients. The cases of higher space dimensions and varying
coupling coefficients (and in particular when the coefficients vanish in a neighborhood of the boundary)
are to our knowledge completely open. The second question under interest is then:

Question 2: is System (1.2) null-controllable for non-constant coupling coefficients p? Is System (1.2)
null-controllable if the dimension of Ω is larger than one?

Concerning these two open problems, it seems that the parabolic theory and associated tools encounter
for the moment some essential difficulties.

On the other hand, it is known from [Rus73] that controllability properties can be transferred from
hyperbolic equations to parabolic ones. And it seems, at least for boundary control problems, that the
theory for coupled hyperbolic equations of the type















∂2
t u1 − ∆cu1 + au1 + pu2 = bf in (0, T ) × Ω,
∂2

t u2 − ∆cu2 + au2 + pu1 = 0 in (0, T ) × Ω,
u1 = u2 = 0 on (0, T ) × ∂Ω,
(u1, u2, ∂tu1, ∂tu2)|t=0 = (u0

1, u
0
2, u

1
1, u

1
2) in Ω,

(1.3)

and














∂2
t u1 − ∆cu1 + au1 + pu2 = 0 in (0, T ) × Ω,
∂2

t u2 − ∆cu2 + au2 + pu1 = 0 in (0, T ) × Ω,
u1 = b∂f , u2 = 0 on (0, T ) × ∂Ω,
(u1, u2, ∂tu1, ∂tu2)|t=0 = (u0

1, u
0
2, u

1
1, u

1
2) in Ω,

(1.4)
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is better understood (see [AB01, AB03]), even less studied. In the case of varying coefficients and sev-
eral space-dimensions, the associated stabilization problem is addressed in [AB99, AB02, ABL11b]. In
particular in [ABL11b], a polynomial stability result is proved for solutions of the system







∂2
t u1 − ∆cu1 + au1 + pu2 + b∂tu1 = 0 in R

+ × Ω,
∂2

t u2 − ∆cu2 + au2 + pu1 = 0 in R
+ × Ω,

u1 = u2 = 0 on R
+ × ∂Ω,

(1.5)

in some cases where {p > 0} ∩ {b > 0} = ∅. This gives hope to prove some null-controllability results
for (1.3) in the same situations.

In the present work, we answer Questions 1 and 2 for hyperbolic problems (like (1.3) and (1.4)),
improving the results of [AB03, ABL11b]. Then, we deduce a (partial) solution to the two open questions
raised above for parabolic systems. Indeed, we prove that Systems (1.1)-(1.3) are null-controllable (in
appropriate spaces) as soon as {p > 0} and {b > 0} both satisfy the Geometric Control Condition
(recalled below) and ‖p‖L∞(Ω) satisfies a smallness assumption. This contains several examples with
{p > 0} ∩ {b > 0} = ∅, and partially answer to the first question. We prove as well that similar
controllability results hold for the boundary control problems (1.2) and (1.4), which partially answers to
the second question. Of course, the geometric conditions needed here are essential (and even sharp) for
coupled waves, but inappropriate for parabolic equation. However, this is a first step towards a better
understanding of these types of systems. In one space dimension in particular, the geometric conditions
are reduced to a non-emptiness condition and are hence optimal for parabolic systems as well.

In the end of the present introduction, we state our main results for wave/heat/Shrödinger-type Sys-
tems. In Section 2, we introduce an abstract setting adapted to second order (in time) control problems.
Then, in Section 3, we present the tools used in the proof of the main theorem, together with a key lemma:
an observability inequality for an equation with a right hand-side (for which we give another proof in Ap-
pendix 7). Section 4 is devoted to the proof the observability of hyperbolic systems in the abstract setting,
and controllability is deduced in Section 5. Finally, in Section 6, we come back to the applications to
wave/heat/Shrödinger-type Systems. The results of this paper were announced in [ABL11a].

Acknowledgements. The authors want to thank B. Dehman for discussions on the article [BLR92],
S. Ervedoza for having pointed out the papers [Mil05, Mil06], and L. Miller for discussions on these two
articles. The first author would like to thank the Fondation des Sciences Mathématiques de Paris, the
organizers of the IHP trimester on control of PDE’s and the Laboratoire MAPMO for their support.
The second author wishes to thank O. Glass and J. Le Rousseau for very fruitful discussions and en-
couragements. Both authors were partially supported by l’Agence Nationale de la Recherche under grant
ANR-07-JCJC-0139-01 and the GDRE CONEDP (CNRS/INDAM/UP).

1.2 Main results

Let Ω be a bounded domain in R
n with smooth (say C∞) boundary (or a smooth connected compact

Riemannian manifold with or without boundary) and ∆c = div(c∇) a (negative) elliptic operator (or the
Laplace Beltrami operator with respect to the Riemannian metric) on Ω. Here, c denotes a smooth (say
C∞) positive symmetric matrix i.e. in particular C−1

0 |ξ|2 ≤ c(x)ξ · ξ ≤ C0|ξ|2 for some C0 > 0, for all
x ∈ Ω, ξ ∈ R

n. We consider the more general first order (in time) control problem















eiθ∂tu1 − ∆cu1 + au1 + pu2 = bf in (0, T ) × Ω,
eiθ∂tu2 − ∆cu2 + au2 + pu1 = 0 in (0, T ) × Ω,
u1 = u2 = 0 on (0, T ) × ∂Ω,
(u1, u2)|t=0 = (u0

1, u
0
2) in Ω,

(1.6)

with θ ∈ [−π/2, π/2], including Schrödinger-type systems for θ = ±π/2 and diffusion-type systems for
θ ∈ (−π/2, π/2). In particular we recover System (1.1) when taking (1.6) for θ = 0. We also consider
System (1.3), consisting in a wave-type system, with only one control force. In these systems, a = a(x),
p = p(x) and b = b(x) are smooth real-valued functions on Ω and f is the control function, that can act
on the system.
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We shall also consider the same systems controlled from the boundary through the (smooth) real-valued
function b∂ :















eiθ∂tu1 − ∆cu1 + au1 + pu2 = 0 in (0, T ) × Ω,
eiθ∂tu2 − ∆cu2 + au2 + pu1 = 0 in (0, T ) × Ω,
u1 = b∂f , u2 = 0 on (0, T ) × ∂Ω,
(u1, u2)|t=0 = (u0

1, u
0
2) in Ω,

(1.7)

which includes System (1.2) when θ = 0.

We first notice that, on the space
(

L2(Ω)
)2

endowed with the natural inner product

(U, V )L2(Ω)×L2(Ω) = (u1, v1)L2(Ω) + (u2, v2)L2(Ω), U = (u1, u2), V = (v1, v2),

the operator

Ap =

(

−∆c + a p
p −∆c + a

)

,

with domain D(Ap) =
(

H2(Ω) ∩ H1
0 (Ω)

)2
, is selfadjoint. As a consequence, for f ∈ L2((0, T ) × Ω), the

Cauchy problem (1.6), resp. (1.3), is well-posed in
(

L2(Ω)
)2

, resp.
(

H1
0 (Ω)

)2 ×
(

L2(Ω)
)2

, in the sense
of semigroup theory. Then, taking f ∈ L2((0, T ) × ∂Ω) the initial-boundary value problem (1.7), resp.

(1.4), is well-posed in
(

H−1(Ω)
)2

, resp.
(

L2(Ω)
)2 ×

(

H−1(Ω)
)2

, in the sense of transposition solution (see
[Lio88, TW09]).

The strategy we adopt here is to prove some controllability results for the hyperbolic systems (1.3)
and (1.4), extending the two-levels energy method introduced in [AB03]. Then, using transmutation
techniques, we deduce controllability properties of (1.6) and (1.7).

An important remark to make before addressing the controllability problem for the hyperbolic sys-
tems (1.3)-(1.4) is concerned with the regularity of solutions. If one takes for system (1.3) (resp. (1.4))
initial data (u0

1, u
0
2, u

1
1, u

1
2) ∈ H1

0 (Ω) ×
(

H2 ∩ H1
0 (Ω)

)

× L2(Ω) × H1
0 (Ω) (resp. (u0

1, u
0
2, u

1
1, u

1
2) ∈ L2(Ω) ×

H1
0 (Ω) × H−1(Ω) × L2(Ω)), and a control function f ∈ L2((0, T ) × Ω) (resp. f ∈ L2((0, T ) × ∂Ω)),

then the state (u1, u2, ∂tu1, ∂tu2) remains in the space H1
0 (Ω) ×

(

H2 ∩ H1
0 (Ω)

)

× L2(Ω) × H1
0 (Ω) (resp.

L2(Ω) × H1
0 (Ω) × H−1(Ω) × L2(Ω)) for all time. We recall that for Systems (1.3) and (1.4), the null-

controllability is equivalent to the exact controllability. As a consequence, it is not possible, taking for

instance zero as initial data to reach any target state in
(

H1
0 (Ω)

)2×
(

L2(Ω)
)2

(resp.
(

L2(Ω)
)2×

(

H−1(Ω)
)2

).
The controllability question for (1.3)-(1.4) hence becomes: starting from rest at time t = 0, is it possible
to reach all H1

0 (Ω) ×
(

H2 ∩H1
0 (Ω)

)

× L2(Ω) ×H1
0 (Ω) (resp. L2(Ω) ×H1

0 (Ω) ×H−1(Ω) × L2(Ω)) in time
t = T sufficiently large?

To state our results, we recall the classical Geometric Control Conditions GCC (resp. GCC∂). We
recall that GCC was introduced in [RT74] for manifolds without boundaries, in [BLR88] for domains with
boundaries and that GCC∂ was introduced in [BLR92]. From these works, it is known that, making the
generic assumption that ∂Ω has no contact of infinite order with its tangents, GCC (resp. GCC∂) is a
necessary and sufficient condition for the internal (resp. boundary) observability and controllability of one
wave equation (see also [BG97]).

Definition 1.1 (GCC (resp. GCC∂)). Let ω ⊂ Ω (resp. Γ ⊂ ∂Ω) and T > 0. We say that the couple
(ω, T ) satisfies GCC (resp. (Γ, T ) satisfies GCC∂) if every generalized geodesic (i.e. ray of geometric optics)
traveling at speed one in Ω meets ω (resp. meets Γ on a non-diffractive point) in a time t < T . We say
that ω satisfies GCC (resp. Γ satisfies GCC∂) if there exists T > 0 such that (ω, T ) satisfies GCC (resp.
(Γ, T ) satisfies GCC∂).

We shall make the following key assumptions.

Assumption 1.2. (i) We have
(

(−∆c + a)u, u
)

L2(Ω)
≥ λ0‖u‖2

L2(Ω), for some λ0 > 0, for all u ∈
(

H2(Ω) ∩H1
0 (Ω)

)

.

(ii) We have p ≥ 0 on Ω, {p > 0} ⊃ ωp for some open subset ωp ⊂ Ω and we set p+ := ‖p‖L∞(Ω).
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(iii) We have b ≥ 0 on Ω, {b > 0} ⊃ ωb (resp. b∂ ≥ 0 on ∂Ω and {b∂ > 0} ⊃ Γb) for some open subset
ωb ⊂ Ω (resp. Γb ⊂ ∂Ω).

Note that in the case where c = Id and a = 0, the best constant λ0 is the smallest eigenvalue of the
Laplace operator on Ω with Dirichlet boundary conditions. We also have the identity λ0 = 1/C2

P , where
CP is the Poincaré’s constant of Ω.

We shall also require that the operator Ap satisfies, for some constant C > 0,

(

Ap(v1, v2), (v1, v2)
)

L2(Ω)×L2(Ω)
≥ C

(

‖v1‖2
H1

0
(Ω) + ‖v2‖2

H1
0
(Ω)

)

for all (v1, v2) ∈ D(Ap). This is the case when assuming p+ < λ0.

In the case of coupled wave equations, our main result can be formulated as follows.

Theorem 1.3 (Wave-type systems). Suppose that (i) holds, that ωp satisfies GCC and that ωb (resp. Γb)
satisfies GCC (resp. GCC∂). Then, for all b (resp. b∂) satisfying (iii), there exists a constant p∗ > 0
(depending only on the geometry of Ω and on b, resp. b∂) such that for all p+ < p∗, there exists a time
T∗ > 0 such that for all T > T∗, all p satisfying (ii), and all initial data (u0

1, u
0
2, u

1
1, u

1
2) ∈ H1

0 (Ω) ×
(

H2 ∩
H1

0 (Ω)
)

×L2(Ω)×H1
0 (Ω) (resp. (u0

1, u
0
2, u

1
1, u

1
2) ∈ L2(Ω)×H1

0 (Ω)×H−1(Ω)×L2(Ω)), there exists a control
function f ∈ L2((0, T )×Ω) (resp. f ∈ L2((0, T )×∂Ω)) such that the solution of (1.3) (resp. (1.4)) satisfies
(u1, u2, ∂tu1, ∂tu2)|t=T = 0.

Another way to formulate this result is to say that, under the assumptions of Theorem 1.3, the reachable
set at time T > T∗ with zero initial data is exactly H1

0 (Ω) ×
(

H2 ∩H1
0 (Ω)

)

× L2(Ω) ×H1
0 (Ω) in the case

of L2 internal control and L2(Ω) ×H1
0 (Ω) ×H−1(Ω) × L2(Ω) in the case of L2 boundary control.

Some comments should be made about this result. First this is a generalization of the work [AB03]
where the coupling coefficients considered have to satisfy p(x) ≥ C > 0 for all x ∈ Ω. The geometric
situations covered by Theorem 1.3 are richer, and include in particular several examples of coupling and
control regions that do not intersect (see Figure 1). Second, we do not know if the coercivity assumption
(i) for −∆c + a and the smallness assumption on p+ are only technical and inherent to the method we
use here. Moreover, the control time T∗ we obtain depends on all the parameters of the system, and not
only the sets ωp, ωb and Γb (as it is the case for a single wave equation). This feature does not seem to be
very natural. Finally, the fact that we consider twice the same elliptic operator ∆c is a key point in our
proof and it is likely that this result does not hold for waves with different speeds (see [AB03] for results
with different speeds and different operators). Similarly, the fact that p ≥ 0 (see Assumption(ii)) is very
important here. It is possible that Theorem 1.3 does not work if the sign of p varies.

ω

O

(a)

ω

O

(b)

Figure 1: Examples of open sets (Ω, ω,O) such that ω and O both satisfy GCC in Ω, with ω ∩O = ∅: in
the case (a), Ω is the flat torus (or the square), in the case (b), Ω is the disk.
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As a consequence of Theorem 1.3 and using transmutation techniques (due to [Rus73, Mil05] for heat-
type equations and to [Phu01, Mil06] for Schrödinger-type equations), we can now state the associated
results for Systems (1.6) and (1.7).

Corollary 1.4 (Heat-type systems). Suppose that (i) holds, that ωp satisfies GCC and that ωb (resp. Γb)
satisfies GCC (resp. GCC∂). Then, for all b (resp. b∂) satisfying (iii), there exists a constant p∗ > 0
(depending only on the geometry of Ω and on b, resp. b∂) such that for all p+ < p∗, for all T > 0, θ ∈
(−π/2, π/2), for all p satisfying (ii) and all initial data (u0

1, u
0
2) ∈

(

L2(Ω)
)2

(resp. (u0
1, u

0
2) ∈

(

H−1(Ω)
)2

),
there exists a control function f ∈ L2((0, T ) × Ω) (resp. f ∈ L2((0, T ) × ∂Ω)) such that the solution of
(1.6) (resp. (1.7)) satisfies (u1, u2)|t=T = 0.

To our knowledge, this corollary gives the first controllability result for coupled parabolic symmetric
equations when the coupling region ωp and the control region ωb do not intersect. Moreover, this seems
to be also the first positive result for boundary control of parabolic symmetric systems in several space
dimensions or with variable coupling coefficients. A one-dimensional controllability result has been ob-
tained in [RdT11] by a different method [Dág06] for systems of two parabolic equations in cascade, that
is when the coupling term vanishes in the uncontrolled equation.

Note that the spaces for which the controllability result of Corollary 1.4 holds are symmetric. This is
due to the smoothing effect of parabolic equations. The proof of this result is given in Section 6.2.

The geometric conditions in this theorem are not sharp for parabolic equations. This leads us to think
that the same result still holds under the only conditions ωp 6= ∅ (i.e. p is not the null function) and ωb 6= ∅
(i.e. b is not the null function). This remains an open problem. Note that our control result holds for any
T > 0, which is natural for parabolic equations.

Concerning coupled Schrödinger equations, we have the following result.

Corollary 1.5 (Schrödinger-type systems). Suppose that (i) holds, that ωp satisfies GCC and that ωb

(resp. Γb) satisfies GCC (resp. GCC∂). Then, for all b (resp. b∂) satisfying (iii), there exists a constant
p∗ > 0 (depending only on the geometry of Ω and on b, resp. b∂) such that for all p+ < p∗, for all T > 0,
all p satisfying (iii) and all initial data (u0

1, u
0
2) ∈ L2(Ω)×H1

0 (Ω) (resp. (u0
1, u

0
2) ∈ H−1(Ω)×L2(Ω)), there

exists a control function f ∈ L2((0, T ) × Ω) (resp. f ∈ L2((0, T ) × ∂Ω)) such that the solution of (1.6)
(resp. (1.7)) with θ = ±π/2 satisfies (u1, u2)|t=T = 0.

The proof of this result is given in Section 6.3. Since there is no smoothing effect in this case, we
still obtain a controllability result in asymmetric spaces here: the uncontrolled variable u2 has to be more
regular than the other one. This shows that the attainable set from zero for a L2 internal control (resp.
L2 boundary control) contains L2(Ω) ×H1

0 (Ω) (resp. H−1(Ω) × L2(Ω)). Whether or not a general target

in
(

L2(Ω)
)2

(resp.
(

H−1(Ω)
)2

) is reachable for (1.6) (resp. (1.7)) with θ = ±π/2 remains open.
Note finally that the geometric conditions GCC and GCC∂ are not necessary in the case of Schrödinger

equations but are not far from being optimal. The most general control result for a single Schrödinger
equation [Leb92] is that GCC (resp. GCC∂) implies null-controllability in any positive time. However, in
some cases (see [Jaf90, BZ04]), these conditions are not necessary. Here, we do not recover these properties
(since our result is deduced from a controllability result for waves). It would be interesting to prove such
a result with weaker geometric conditions in particular situations (see [RdT11] in the case of a square).
Controllability results have been obtained in [RdT11] with a different method based on [Dág06] in the
periodic case for cascade systems of two Schrödinger equations. Note also that our control result holds for
any T > 0, which is natural for Schrödinger equations [Leb92] (and which is not the case in the results of
[RdT11]).

Remark 1.6. Different boundary conditions (like Neumann or Fourier boundary conditions) can also be
addressed with the same techniques since we use the observability inequality for a single wave equation as
a black box. In the work [BLR92], the authors prove this observability inequality with all these boundary
conditions (all compatible with the Melrose-Sjöstrand theorem of propagation of singularities).

Remark 1.7. Similarly, our results also hold (in the case of Dirichlet boundary conditions) for a boundary
∂Ω and a metric c having a limited smoothness (i.e. C 3 for ∂Ω and C 2 for c) according to the article
[Bur97]. Note as well that we supposed that the coefficients a, p and b are smooth. It is sufficient that a
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and p preserve the regularity of u1 and u2 and b (resp. b∂) that of the control function f . For instance,
one can take b ∈ L∞(Ω) (resp. b∂ ∈ L∞(∂Ω)) and a, p ∈W 2,∞(Ω).

Remark 1.8. We could also replace the operator Ap in all the systems studied here, by the operator

Aδ =

(

−∆c + a δp
p −∆c + a

)

,

for δ > 0. This is what we did in [ABL11a]. This operator is selfadjoint on
(

L2(Ω)
)2

endowed with the
inner product (U, V )δ = (u1, v1)L2(Ω) +δ(u2, v2)L2(Ω). The controllability results obtained in this case (for

all equations, as well as in the abstract setting) hold for all (δ, p+) such that
√
δp+ < p∗. Such results in

this setting seem more general since they allow to consider large p+ or large δ (provided that the other is
small enough). For these choices of δ, the systems obtained are “less symmetric” than the ones for δ = 1.

However, we can pass from the system with δ to the system without δ with a change of variables.
Suppose that (z1, z2) is the solution of the system















∂2
t z1 − ∆cz1 + az1 + δpz2 = bf in (0, T ) × Ω,
∂2

t z2 − ∆cz2 + az2 + pz1 = 0 in (0, T ) × Ω,
z1 = z2 = 0 on (0, T ) × ∂Ω,
(z1, z2, ∂tz1, ∂tz2)|t=0 = (z0

1 , z
0
2 , z

1
1 , z

1
2) in Ω,

then, setting u1 = z1 and u2 =
√
δz2, the new variable (u1, u2) satisfies the fully symmetric system















∂2
t u1 − ∆cu1 + au1 +

√
δpu2 = bf in (0, T ) × Ω,

∂2
t u2 − ∆cu2 + au2 +

√
δpu1 = 0 in (0, T ) × Ω,

u1 = u2 = 0 on (0, T ) × ∂Ω,

(u1, u2, ∂tu1, ∂tu2)|t=0 = (z0
1 ,
√
δz0

2 , z
1
1 ,
√
δz1

2) in Ω,

to which Theorem 1.3 applies (for
√
δp+ < p∗).

2 Abstract setting

In this section, we describe the abstract setting in which we prove Theorem 1.3 for Systems (1.3) and (1.4),
and define the appropriate spaces and operators. Let H be a Hilbert space and (A,D(A)) a selfadjoint
positive operator on H with compact resolvent. We denote by (·, ·)H the inner product on H and ‖·‖H the

associated norm. For k ∈ N, we set Hk = D(A
k
2 ) endowed with the inner product (·, ·)Hk

= (A
k
2 ·, A k

2 ·)H

and associated norm ‖ · ‖Hk
= ‖A k

2 · ‖H . We define H−k as the dual space of Hk with respect to the pivot

space H = H0. We write 〈·, ·〉Hk,H−k
= (A

k
2 ·, A− k

2 ·)H the duality product between Hk and H−k, and

‖ · ‖H−k
= ‖A− k

2 · ‖H is the norm on H−k. The operator A can be extended to an isomorphism from Hk

to Hk−2 for any k ≤ 1, still denoted by A. According to the properties of the operator A, the injection
Hk →֒ Hk−1 is dense and compact for any k ∈ Z.

We denote by λ0 > 0 the largest constant satisfying

‖v‖2
H1

≥ λ0‖v‖2
H for all v ∈ H1, (2.1)

that is, the smallest eigenvalue of the selfadjoint positive operator A. Note that we also have, for all α ≥ 0,

‖A−α‖L(H) = λ−α
0 .

In this abstract setting, we shall denote ϕ′ the derivative with respect to time of a function ϕ : R → Hk,
for some k ∈ Z. In the following, as in [AB03], we shall make use of the different energy levels

ek(ϕ(t)) =
1

2

(

‖ϕ(t)‖2
Hk

+ ‖ϕ′(t)‖2
Hk−1

)

, k ∈ Z
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which are all preserved through time if ϕ is a solution of ϕ′′+Aϕ = 0. Moreover, the coercivity assumption
(2.1) yields, for all k ∈ Z, v ∈ Hk,

‖v‖2
Hk

≥ λ0‖v‖2
Hk−1

and ek(v) ≥ λ0ek−1(v). (2.2)

We consider that the coupling operator P is bounded on H and denote by P ∗ is its adjoint, p+ :=
‖P‖L(H) = ‖P ∗‖L(H).

Before addressing the control problem, let us introduce the adjoint system






v′′1 +Av1 + Pv2 = 0,
v′′2 +Av2 + P ∗v1 = 0,
(v1, v2, v

′
1, v

′
2)|t=0 = (v0

1 , v
0
2 , v

1
1 , v

1
2),

(2.3)

which shall stand for our observation system. This system can be recast as a first order differential
equation

V ′ = APV, V(0) = V0, (2.4)

where

AP =

(

0 Id
−AP 0

)

, AP =

(

A P
P ∗ A

)

, V = (v1, v2), V = (V, V ′) = (v1, v2, v
′
1, v

′
2).

Note that the operator AP is selfadjoint on the space H×H endowed with the inner product
(

V, Ṽ
)

H×H
=

(v1, ṽ1)H + (v2, ṽ2)H . Using (2.2) with k = 1, we obtain

(

APV, V
)

H×H
= (Av1, v1)H + (Av2, v2)H + 2(Pv2, v1)H ≥

(

1 − p+

λ0

)

(

‖v1‖2
H1

+ ‖v2‖2
H1

)

. (2.5)

As a consequence, we shall suppose that p+ < λ0, so that AP is coercive. Under this assumption,
(

A
1
2

PV,A
1
2

P Ṽ
)

H×H
defines an inner product on (H1)

2, equivalent to the natural one. Assuming that

P, P ∗ ∈ L(Hk) and writing
Hk = (Hk)2 ×H2

k−1, k ∈ Z,

the operator AP is an isomorphism from Hk to Hk−1 and is skewadjoint on Hk, equipped with the inner
product

(

(U, V ), (Ũ , Ṽ )
)

Hk
= (A

k
2

PU,A
k
2

P Ũ)H×H + (A
k−1

2

P V,A
k−1

2

P Ṽ )H×H .

Note that this is an inner product according to the coercivity assumption for AP , which is equivalent
to the natural inner product of Hk. Hence, AP generates a group etAP on Hk, and the homogeneous
problem (2.3) is well-posed in these spaces. An important feature of solutions V(t) of System (2.3) is that
all energies

Ek(V(t)) = 1/2‖V(t)‖2
Hk
, k ∈ Z,

are positive and preserved through time.

2.1 Main results: admissibility, observability and controllability

For System (2.3), now studied in H1, we shall observe only the state of the first component, i.e. (u1, u
′
1),

and hence define an observation operator B∗ ∈ L(H2 × H,Y ), where Y is a Hilbert space, standing for
our observation space. This definition is sufficiently general to take into account both the boundary
observation problem (taking B∗ ∈ L(H2, Y )) and the internal observation problem (taking B∗ ∈ L(H,Y )).
We assume that B∗ is an admissible observation for one equation:











For all T > 0 there exists a constant C > 0,
such that all solutions ϕ of ϕ′′ +Aϕ = f ∈ L2(0, T ;H) satisfy

∫ T

0
‖B∗(ϕ,ϕ′)‖2

Y dt ≤ C
(

e1(ϕ(0)) + e1(ϕ(T )) +
∫ T

0
e1(ϕ(t))dt+

∫ T

0
‖f‖2

Hdt
)

.
(A1)

Under this assumption, we have the following lemma.
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Lemma 2.1 (Admissibility). The operator B∗ is an admissible observation for (2.3). More precisely, for
all p+ < λ0√

2
and all T > 0, there exists a constant C > 0, such that all the solutions of (2.3) satisfy

∫ T

0

‖B∗(v1, v
′
1)(t)‖2

Y dt ≤ C
{

e1(v1(0)) + e0(v2(0))
}

. (2.6)

Note that only the e0 energy level of the second component v2 is necessary in this admissibility estimate.
Hence, we cannot hope to observe the whole H1 energy of V and the best observability we can expect only
involves e0(v2). Our aim is now to prove this inverse inequality of (2.6). For this, we have to suppose
some additional assumptions on the operators P and B∗. Let us first precise Assumption (A2), related
with the operator P :

{

We have ‖Pv‖2
H ≤ p+(Pv, v)H and there exists an operator ΠP ∈ L(H), ‖ΠP ‖L(H) = 1,

and a number p− > 0 such that (Pv, v)H ≥ p−‖ΠP v‖2
H ∀v ∈ H.

(A2)

Note that p− ≤ p+ = ‖P‖L(H) and that (A2) implies that the operators P and P ∗ are non-negative.

Next, we shall suppose that a single equation is observable both by B∗ and by ΠP in sufficiently large
time:







There exist TB , TP > 0 such that all solutions ϕ of ϕ′′ +Aϕ = 0 satisfy

e1(ϕ(0)) ≤ CB(T )
∫ T

0
‖B∗(ϕ,ϕ′)‖2

Y for all T > TB ,

e1(ϕ(0)) ≤ CP (T )
∫ T

0
‖ΠPϕ

′‖2
Hdt for all T > TP .

(A3)

In the context of Theorem 1.3, these observability assumptions are satisfied as soon as ωp and ωb satisfy
GCC (resp. Γb satisfies GCC∂). We can now state our main result, i.e. an observability inequality.

Theorem 2.2 (Observability). Suppose that Assumptions (A1)-(A3) hold. Then there exists a constant
p∗ such that for all p+ < p∗, there exists a time T∗ such that for all T > T∗ there exists C > 0, such that
for all V0 ∈ H1, the solution V(t) = etAP V0 of (2.3) satisfies

e1(v1(0)) + e0(v2(0)) ≤ C

∫ T

0

‖B∗(v1, v
′
1)(t)‖2

Y dt. (2.7)

Note that the constants p∗ and T∗ can be given explicitely in terms of the different parameters of
the system. In particular, T∗ ≥ max{TB , TP }, and p∗ depends only on λ0, on the time TB and on the
observability constant CB(T ∗

B) (given in Assumption (A3)) for some T ∗
B > TB . See Proposition 4.7 and

Lemma 3.3 below for more precision.

Applying the Hilbert Uniqueness Method (HUM) of [Lio88], we deduce now controllability results for
the adjoint system. In this context, we have to define more precisely the observation operator. We shall
treat two cases: First, B∗(v1, v

′
1) = B∗v′1 with B∗ ∈ L(H,Y ), corresponding to internal observability (with

Y = L2(Ω)), and second B∗(v1, v
′
1) = B∗v1 with B∗ ∈ L(H2, Y ), corresponding to boundary observability

(with Y = L2(∂Ω)). In both cases, we define the control operator B as the adjoint of B∗, and the control
problem reads, for a control function f taking its values in Y ,







u′′1 +Au1 + Pu2 = Bf,
u′′2 +Au2 + P ∗u1 = 0,
(u1, u2, u

′
1, u

′
2)|t=0 = (u0

1, u
0
2, u

1
1, u

1
2).

(2.8)

This is an abstract version of (1.3)-(1.4). Note that under this form, System (2.8) not only contains
(1.3)-(1.4), but also locally coupled systems of plate equations, with a distributed or a boundary control.

First case: B∗(v1, v
′
1) = B∗v′1 with B∗ ∈ L(H,Y ). In this case, B ∈ L(Y,H) and the control problem

(2.8) is well-posed in H1 for f ∈ L2(0, T ;Y ). Note that, as in the concrete setting, it also preserves the
space H1 ×H2 ×H ×H1 through time as soon as P ∈ L(H1). There is thus no hope to control in whole
H1. In this setting, we first deduce from (2.7) the following other observability estimate for solutions W
of (2.3) in H0: e0(w1(0)) + e−1(w2(0)) ≤ C

∫ T

0
‖B∗w1(t)‖2

Y dt. The internal control result of Theorem 1.3
is then a direct consequence of the HUM since Assumptions (A1)-(A3) are satisfied in this application.
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Theorem 2.3 (Controllability). Suppose that Assumptions (A1)-(A3) hold. Then, there exists a constant
p∗ such that for all p+ < p∗, there exists a time T∗ such that for all T > T∗ and U0 ∈ H1 ×H2 ×H ×H1,
there exists a control function f ∈ L2(0, T ;Y ) such that the solution U(t) of (2.8) satisfies U(T ) = 0.

To prove this theorem, we first have to deduce from the observability estimate (2.7) the following
other observability estimate for all W = etAP W0 (solution of (2.3) in H0): e0(w1(0)) + e−1(w2(0)) ≤
C
∫ T

0
‖B∗w1(t)‖2

Y dt. Then, Theorem 2.3 is a direct consequence of the HUM.

Second case: B∗(v1, v
′
1) = B∗v1 with B∗ ∈ L(H2, Y ). As a consequence of the admissibility

inequality (2.6), System (2.8) is well-posed in H0 in the sense of transposition solutions. Moreover,
System (2.8) also preserves the space H × H1 × H−1 × H, and there is no hope to control in whole
H0. In this setting, the boundary control result of Theorem 1.3 is a direct consequence of the HUM and
Theorem 2.2 since Assumptions (A1)-(A3) are satisfied in this application.

Theorem 2.4 (Controllability). Suppose that Assumptions (A1)-(A3) hold. Then, there exists a constant
p∗ such that for all p+ < p∗, there exists a time T∗ such that for all T > T∗ and U0 ∈ H ×H1 ×H−1 ×H,
there exists a control function f ∈ L2(0, T ;Y ) such that the solution U(t) of (2.8) satisfies U(T ) = 0.

Theorem 1.3 is a consequence of Theorem 2.3 in the case of an internal control and of Theorem 2.4 in
the case of a boundary control since Assumptions (A1)-(A3) are satisfied in this application. Theorem 2.3
and 2.4 are proved in Section 5.

2.2 Some remarks

Let us make some remarks about these results and their proofs.

First notice that System (2.8) is reversible in time, so that the concepts of null-controllability and
controllability from zero are equivalent.

A consequence of Lemma 2.1 and Theorem 2.2 is that we here describe exactly the attainable set of
the control system (2.8) (this was not considered in [AB03]). More precisely, starting for zero initial data,
we prove that for T > T∗ the attainable set is H1 ×H2 ×H ×H1 in the first case and H ×H1 ×H−1 ×H
in the second case.

Let us briefly describe the method of the proof of Theorem 2.2 which is inspired by the “two energy
levels” method of [AB03]. Everything here is based on energy estimates, considering the H1 energy of v1
and the H0 energy of v2, and comes from multiplier methods. There are three main ingredients in our
proof.

Our first ingredient is an observability inequality for a single wave-type equation with a right hand-
side (see Lemma 3.3). Such observability inequality used to be proved with multiplier techniques [AB03,
ABL11b], and thus, under too strong (and not optimal) geometric conditions. Here, we prove such
inequalities as a consequence of usual observability inequalities. We also prove for wave equations that
such an observability inequality with optimal geometric conditions for an equation with a right hand-side
is very natural (see Appendix 7). This improvement can in fact be used in several works using multiplier
conditions, replacing them with optimal geometric conditions ; in particular, the stabilization results of
[ABL11b] now hold with GCC.

Our second main ingredient is the energy estimate obtained by multiplying the first line of (2.3) by v2
and the second one by v1 and taking the difference of the two equalities. This coupling inequality allows
us to estimate the “localized” energy of the unobserved componenent v2 by the energy of the observed
one v1 (see Lemma 4.1 below).

Finally to conclude the proof, we use in a crucial way the conservation of the Hk-energy of the solution
V. This implies roughly that the integral on (0, T ) of the energy is increasing linearly with respect to T ,
for T sufficiently large.
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If the operator B is bounded, we proved in [ABL11b] (under similar assumptions) a polynomial decay
result for the E1(U(t)) energy of the system







u′′1 +Au1 + Pu2 +BB∗u′1 = 0,
u′′2 +Au2 + P ∗u1 = 0,
(u1, u2, u

′
1, u

′
2)|t=0 = U0 ∈ H1 ×H1 ×H ×H.

The observability estimates for a single equation with a right hand-side we prove here (Lemma 3.3) also
improve the results of [ABL11b] in the case B bounded. Now, these results also hold under optimal
geometric conditions for waves. We have the following proposition, where −∆D denotes the Laplace
operator with Dirichlet boundary conditions.

Proposition 2.5. Suppose that Assumption 1.2 holds, and that ωb and ωp satisfy GCC. Then there exists
p∗ > 0 such that for all 0 < p+ < p∗, the solution U = (u1, u2, ∂tu1, ∂tu2) of (1.5) satisfies for n ∈ N, for

any initial data U0 = (u1, u2, ∂tu1, ∂tu2)|t=0 ∈ D
(

(−∆D)
n+1

2

)2 ×D
(

(−∆D)
n
2

)2
,

E1(U(t)) ≤ Cn

tn

n
∑

i=0

E1(U (i)(0)) ∀t > 0.

Besides, if U0 ∈ (H1
0 )2 × (L2)2, then E1(U(t)) converges to zero as t goes to infinity.

The method of energy estimates we use here has several advantages and drawbacks. The main advan-
tage is that it furnishes a systematic method for both internal and boundary controllability problems for
a large class of second order in time equations. We only have to check if an observability inequality is
known for a single equation, and the results can directly be transferred to systems.

However, we have here to make several assumptions: symmetry of the system, coercivity of the elliptic
operator, smallness of the coupling coefficients, large control time... We do not know precisely which
assumptions are really needed and which ones are unnecessary. We here provide a general a priori analysis
of such coupled models. A more precise analysis (for instance for wave systems) remains to be done.

Finally, note that these exact controllability results for abstract second order hyperbolic equations yield
null-controllability results for heat or Schrödinger type systems in the abstract setting as well. However,
for the sake of clarity, we do not state these results in an abstract setting but only for heat or Schrödinger
systems (see Sections 6.2 and 6.3).

3 Two energy levels and two key lemmata

3.1 Two energy levels

In the following sections, when proving Lemma 2.1 and Theorem 2.2, we shall use two different energy
levels. Let us consider V a H1 solution of (2.4). We regularize the state V once by setting

W = A−1
P V, i.e.















w′
1 = v1,

w′
2 = v2,

Aw1 + Pw2 = −v′1,
Aw2 + P ∗w1 = −v′2.

(3.1)

Note that this system has a unique solution (w1, w2), since the operator AP is coercive, that also satisfies
{

w′′
1 +Aw1 + Pw2 = 0,

w′′
2 +Aw2 + P ∗w1 = 0.

(3.2)

Now, the idea, is that, for p+/λ0 sufficiently small, the e0 energy of v2 is almost equivalent to the e1
energy of w2. And we shall see that the e1 energy level is more practical to handle. This is summarized in
the first three identities of the following proposition. The last two identities are technical estimates, used
at some points of the proof of the observability inequality.
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Proposition 3.1. We have the following energy estimates for all V = (v1, v2, v
′
1, v

′
2) in H1 and W =

(w1, w2, w
′
1, w

′
2) defined by (3.1):

(

1 − p+

λ0

)

[e1(v1) + e1(v2)] ≤ E1(V) ≤
(

1 +
p+

λ0

)

[e1(v1) + e1(v2)] , (3.3)

(

1 − p+

λ0

)

[e1(w1) + e1(w2)] ≤ E1(W) ≤
(

1 +
p+

λ0

)

[e1(w1) + e1(w2)] , (3.4)

(

1

2
−
(

p+

λ0

)2
)

(e1(w1) + e1(w2)) ≤ e0(v1) + e0(v2) ≤
(

2 + 2

(

p+

λ0

)2
)

(e1(w1) + e1(w2)) , (3.5)

e0(v2) ≤ 2

(

1 +
(p+)2

λ2
0

)2

e1(w2) + 2
(p+)2

λ2
0

e0(v1), (3.6)

e1(v1) ≥
λ0

2
e1(w1) −

(p+)2

λ0
e1(w2). (3.7)

As a consequence of this lemma, assuming that p+

λ0
< 1√

2
, we see that the energies e1(v1) + e1(v2),

e1(w1) + e1(w2) and e0(v1) + e0(v2) are almost preserved through time for (v1, v2) solutions of (2.3).

Proof. First recall that E1 is defined by

2E1(V) = ‖v′1‖2
H + ‖v′2‖2

H + (Av1, v1)H + (Av2, v2)H + 2(Pv2, v1)H .

Then, using the fact that 2|(Pv2, v1)H | ≤ p+

λ0

(

‖A 1
2 v1‖2

H + ‖A 1
2 v2‖2

H

)

, we have

2E1(V) ≥ ‖v′1‖2
H + ‖v′2‖2

H +

(

1 − p+

λ0

)

(

‖A 1
2 v1‖2

H + ‖A 1
2 v2‖2

H

)

≥ 2

(

1 − p+

λ0

)

(e1(v1) + e1(v2)) ,

together with

2E1(V) ≤ ‖v′1‖2
H + ‖v′2‖2

H +

(

1 +
p+

λ0

)

(

‖A 1
2 v1‖2

H + ‖A 1
2 v2‖2

H

)

≤ 2

(

1 +
p+

λ0

)

(e1(v1) + e1(v2)) ,

and (3.3) is proved. Since (3.3) holds for all V ∈ H1, it also holds for W, which gives (3.4).

Now, applying A− 1
2 to the last two lines of System (3.1) gives















w′
1 = v1,

w′
2 = v2,

A
1
2w1 +A− 1

2Pw2 = −A− 1
2 v′1,

A
1
2w2 +A− 1

2P ∗w1 = −A− 1
2 v′2.

(3.8)

Since we have ‖A− 1
2Pw2‖H ≤ p+

λ0
‖A 1

2w2‖H and ‖A− 1
2P ∗w1‖H ≤ p+

λ0
‖A 1

2w1‖H , System (3.8) yields

2 (e0(v1) + e0(v2)) = ‖v1‖2
H + ‖v2‖2

H + ‖A− 1
2 v′1‖2

H + ‖A− 1
2 v′2‖2

H

≤ ‖w′
1‖2

H + ‖w′
2‖2

H + 2‖A 1
2w1‖2

H + 2

(

p+

λ0

)2

‖A 1
2w2‖2

H

+ 2‖A 1
2w2‖2

H + 2

(

p+

λ0

)2

‖A 1
2w1‖2

H

≤
(

2 + 2

(

p+

λ0

)2
)

2 (e1(w1) + e1(w2)) ,
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together with

2 (e0(v1) + e0(v2)) ≥ ‖w′
1‖2

H + ‖w′
2‖2

H +
1

2
‖A 1

2w1‖2
H −

(

p+

λ0

)2

‖A 1
2w2‖2

H

+
1

2
‖A 1

2w2‖2
H −

(

p+

λ0

)2

‖A 1
2w1‖2

H

≥
(

1

2
−
(

p+

λ0

)2
)

2 (e1(w1) + e1(w2)) ,

and (3.5) is proved. To prove (3.6), we also use the last equation of (3.8), which gives

‖A− 1
2 v′2‖H ≤ p+

λ0
‖A 1

2w1‖H + ‖A 1
2w2‖H .

Using the third equation of (3.8) to eliminate A
1
2w1 in this estimate, we obtain

‖A− 1
2 v′2‖H ≤ p+

λ0
‖A− 1

2Pw2‖H +
p+

λ0
‖A− 1

2 v′1‖H + ‖A 1
2w2‖H

≤
(

1 +
(p+)2

λ2
0

)

‖A 1
2w2‖H +

p+

λ0
‖A− 1

2 v′1‖H .

Hence, with the second equation of (3.8), we have

‖A− 1
2 v′2‖2

H + ‖v2‖2
H ≤ 2

(

1 +
(p+)2

λ2
0

)2

‖A 1
2w2‖2

H + 2
(p+)2

λ2
0

‖A− 1
2 v′1‖2

H + ‖w′
2‖2

H ,

which concludes the proof of (3.6). To prove (3.7), we first notice that the third line of (3.8) gives

‖A 1
2w1‖2

H ≤ 2‖A− 1
2Pw2‖2

H + 2‖A− 1
2 v′1‖2

H ≤ 2λ−2
0 (p+)2‖A 1

2w2‖2
H + 2λ−1

0 ‖v′1‖2
H .

Hence, using the first line of (3.8), we obtain

2e1(v1) = ‖A 1
2w′

1‖2
H + ‖v′1‖2

H ≥ λ0‖w′
1‖2

H +
λ0

2
‖A 1

2w1‖2
H − (p+)2

λ0
‖A 1

2w2‖2
H

≥ λ0e1(w1) −
2(p+)2

λ0
e1(w2),

which yields (3.7), and concludes the proof of the lemma.

3.2 Two key lemmata

In this section, we prove Lemma 2.1 together with a key observability inequality for a classical “wave-type”
equation with a right hand-side. For both proofs, we shall use the classical well-posedness properties of
the equation ϕ′′ +Aϕ = f that we recall in the following lemma.

Lemma 3.2. For any k ∈ Z, there exists C > 0 such that for all (ϕ0, ϕ1) ∈ Hk × Hk−1 and f ∈
L1(R+;Hk−1) the equation ϕ′′ +Aϕ = f has a unique solution, satisfying for all T > 0,

ek(ϕ(T )) ≤ C
(

ek(ϕ(0)) + ‖f‖2
L1(0,T ;Hk−1)

)

. (3.9)

Note that in this energy inequality, the constant C does not depend on the time T .
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3.2.1 Proof of Lemma 2.1: admissibility

Here, we prove that Assumption (A1) implies the amissibility inequality (2.6) for the whole system.

Proof of Lemma 2.1. We suppose that (v1, v2) satisfies System (2.3). In particular, we have,

v′′1 +Av1 = −Pv2.

As a consequence of Assumption (A1), we have for all T > 0,

∫ T

0

‖B∗(v1, v
′
1)‖2

Y dt ≤ C(T )

(

e1(v1(0)) + e1(v1(T )) +

∫ T

0

e1(v1(t))dt+

∫ T

0

‖Pv2(t)‖2
Hdt

)

. (3.10)

Then, the energy estimate (3.9) for k = 1, the Cauchy-Schwarz inequality and the boundedness of P on
H yield

e1(v1(T )) ≤ C
(

e1(v1(0)) + ‖Pv2‖2
L1(0,T ;H)

)

≤ C
(

e1(v1(0)) + T (p+)2‖v2‖2
L2(0,T ;H)

)

, (3.11)

together with
∫ T

0

e1(v1(t))dt ≤ C
(

Te1(v1(0)) + T 2(p+)2‖v2‖2
L2(0,T ;H)

)

. (3.12)

Now, according to (3.1), (3.4) and since p+ < λ0, we note that ‖v2‖2
L2(0,T ;H) = ‖w′

2‖2
L2(0,T ;H) ≤

2
1−p+/λ0

∫ T

0
E1(W(t))dt. Since W is a solution of (3.2), its energy is preserved through time, so that

∫ T

0
E1(W(t))dt = TE1(W(0)). Using inequalities (3.4) and (3.5) (i.e. the equivalence of the different

energies), we obtain, for all p+ < λ0√
2
,

‖v2‖2
L2(0,T ;H) ≤ 2T

(

1 + p+

λ0

)

1 − p+

λ0

[e1(w1(0)) + e1(w2(0))]

≤ 2T

(

1 + p+

λ0

)

1 − p+

λ0

(

1

2
−
(

p+

λ0

)2
)−1

[e0(v1(0)) + e0(v2(0))] . (3.13)

We recall that (2.2) yields e0(v1(0)) ≤ λ−1
0 e1(v1(0)). Finally, combining (3.10)-(3.13), we obtain

∫ T

0

‖B∗(v1, v
′
1)‖2

Y dt ≤ C(T, λ0, p
+) (e1(v1(0)) + e0(v2(0))) ,

with C(T, λ0, p
+) = C(T )

{

1 +C(1 + T ) + max(1, 1/λ0)(p
+)2 2T (1 +CT +CT 2)

(

1+ p+

λ0

)

1− p+

λ0

(

1
2 −

(

p+

λ0

)2)−1}
,

and the admissibility of B∗ is proved.

3.2.2 Proof of an observability inequality with a right hand-side

Here, we prove the following lemma.

Lemma 3.3. Suppose that Assumptions (A1) and (A3) hold. Then, for all T ∗
B > TB and T ∗

P > TP , there
exist constants KB ,KP > 0 such that for any solution ϕ of ϕ′′ +Aϕ = f ∈ L2(0, T ;H), we have

∫ T

0

e1(ϕ(t))dt ≤ KB

(

∫ T

0

‖B∗(ϕ,ϕ′)‖2
Y +

∫ T

0

‖f(t)‖2
Hdt

)

for all T ≥ T ∗
B , (3.14)

and
∫ T

0

e1(ϕ(t))dt ≤ KP

(

∫ T

0

‖ΠPϕ
′‖2

Hdt+

∫ T

0

‖f(t)‖2
Hdt

)

for all T ≥ T ∗
P . (3.15)
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Note that the important feature is that the observability constants KB ,KP here do not depend on the
time T as T → +∞. This property is important for the sequel. It is linked to the invariance properties of
the system with respect to translation in time. More precisely, KB only depends on T ∗

B and on CB(T ∗
B)

for some T ∗
B > TB , where TB and CB are defined in Assumption (A3). Such observability inequalities are

proved with multiplier techniques for the wave equation or the plate equation in [AB02, AB03, ABL11a].
It is then often used to perform energy estimates. Here, proving (3.14) and (3.15) as a consequence
of the associated observability inequality for the free equation (Assumption (A3)) and an admissibility
assumption (A1) has several advantages. In particular, we can use as a black-box the different observability
inequalities obtained for the different equations (i.e. for instance [BLR88, BLR92] for waves) and we hence
obtain results with the optimal geometric conditions.

However, for the sake of completeness, we also prove Lemma 3.3 in a simple case for the wave equation
in a direct way in Appendix 7, with optimal geometric conditions. This shows that the norms used here
are the natural ones.

Proof of Lemma 3.3. We here only prove (3.14). The proof of (3.15) is simpler since the observation
operator ΠP is bounded (and we thus do not need an admissibility assumption).

To prove the first inequality of (3.14), we first split a solution of ϕ′′ + Aϕ = f into ϕ = φ+ ψ, where
φ and ψ satisfy

{

φ′′ +Aφ = f,
(φ(0), φ′(0)) = (0, 0),

and
{

ψ′′ +Aψ = 0,
(ψ(0), ψ′(0)) = (ϕ(0), ϕ(0)).

We have
∫ T

0

e1(ϕ(t))dt ≤ 2

∫ T

0

e1(φ(t))dt+ 2

∫ T

0

e1(ψ(t))dt, (3.16)

and we provide upper bounds for both integrals on the right hand-side. The energy estimate (3.9) applied
to φ gives, for all t > 0,

e1(φ(t)) ≤ C‖f‖2
L1(0,t;H) ≤ Ct‖f‖2

L2(0,t;H). (3.17)

Then, the observability Assumption (A3) can be applied to ψ, which gives, for all t > 0 and T > TB ,

e1(ψ(t)) = e1(ψ(0)) ≤ C(T )

∫ T

0

‖B∗(ψ,ψ′)‖2
Y dt. (3.18)

Integrating (3.17) and (3.18) for t ∈ (0, T ), and using (3.16), we now have, for all T > TB ,

∫ T

0

e1(ϕ(t))dt ≤ 2CT 2

∫ T

0

‖f‖2
Hdt+ 2C(T )T

∫ T

0

‖B∗(ψ,ψ′)‖2
Y dt. (3.19)

To obtain the observation on ϕ instead of ψ in the right hand-side, we write

∫ T

0

‖B∗(ψ,ψ′)‖2
Y dt ≤ 2

∫ T

0

‖B∗(ϕ,ϕ′)‖2
Y dt+ 2

∫ T

0

‖B∗(φ, φ′)‖2
Y dt. (3.20)

Then, using the admissibility Assumption (A1) for φ, we obtain

∫ T

0

‖B∗(φ, φ′)‖2
Y dt ≤ C(T )

(

e1(φ(T )) +

∫ T

0

e1(φ(t))dt+

∫ T

0

‖f‖2
Hdt

)

≤ C(T )
(

T + T 2 + 1
)

∫ T

0

‖f‖2
Hdt,

(3.21)

after having used (3.17). Combining (3.19), (3.20) and (3.21), we finally obtain for all T > TB the existence
of a constant D(T ) such that

∫ T

0

e1(ϕ(t))dt ≤ D(T )

(

∫ T

0

‖f‖2
Hdt+

∫ T

0

‖B∗(ϕ,ϕ′)‖2
Y dt

)

.
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Now, we explain how this constant can be uniformly bounded for large times. For all T ∗
B > TB , we set

D∗(T ) = supT∗

B
≤t≤T D(t), so that the application T → D∗(T ) is nondecreasing on [T ∗

B ,+∞). Since the

equation ϕ′′ +Aϕ = f is invariant under time translations, the last inequality yields, for all T2 ≥ T1 +T ∗
B ,

∫ T2

T1

e1(ϕ(t))dt ≤ D∗(T2 − T1)

(

∫ T2

T1

‖f‖2
Hdt+

∫ T2

T1

‖B∗(ϕ,ϕ′)‖2
Y dt

)

. (3.22)

For T ≥ T ∗
B , there exists an integer k0 ≥ 1 such that T ∈ [k0T

∗
B , (k0 + 1)T ∗

B). Assume first that k0 ≥ 2,
then we have,

∫ T

0

e1(ϕ(t))dt =

k0−2
∑

k=0

∫ (k+1)T∗

B

kT∗

B

e1(ϕ(t))dt+

∫ T

(k0−1)T∗

B

e1(ϕ(t))dt

In each of these integrals the time interval is larger than T ∗
B so that we can apply (3.22). This yields, for

all T ≥ 2T ∗
B

∫ T

0

e1(ϕ(t))dt ≤ D∗(T ∗
B)

k0−2
∑

k=0

∫ (k+1)T∗

B

kT∗

B

(

‖f‖2
H + ‖B∗(ϕ,ϕ′)‖2

Y

)

dt

+D∗(T − (k0 − 1)T ∗
B)

∫ T

(k0−1)T∗

B

(

‖f‖2
H + ‖B∗(ϕ,ϕ′)‖2

Y

)

dt

≤ D∗(2T ∗
B)

∫ T

0

(

‖f‖2
H + ‖B∗(ϕ,ϕ′)‖2

Y

)

dt,

since T ∈ [k0T
∗
B , (k0 + 1)T ∗

B) and D∗ is nondecreasing. This inequality is also true for T ∗
B ≤ T ≤ 2T ∗

B ,
that is in the case k0 = 1. This concludes the proof of (3.14), taking KB = D∗(2T ∗

B). The proof of (3.15)
is similar.

4 Proof of Theorem 2.2

In this section, we shall often use the notation A . B, meaning that there exists a universal numerical
constant C > 0 (depending on none of the parameters of the system) such that A ≤ CB.

4.1 The coupling Lemma

In this section, we give the link between v1 and v2 that we shall use in the sequel.

Lemma 4.1. Let V = (v1, v2, v
′
1, v

′
2) ∈ H1 be solution of (2.3) and W = (w1, w2, w

′
1, w

′
2) be defined by

(3.1). Then, for all T ≥ 0, we have

∫ T

0

(Pv2, v2)Hdt ≤
∫ T

0

(Pv1, v1)Hdt+ 2λ
1
2

0

(

1 +
(p+)2

λ2
0

)2

[e1(w2(T )) + e1(w2(0))]

+
1

λ
1
2

0

(

1 + 2
(p+)2

λ2
0

)

[e1(v1(T )) + e1(v1(0))] , (4.1)

and

∫ T

0

(Pw2, w2)Hdt ≤
∫ T

0

(Pw1, w1)Hdt+
1

λ
1
2

0

(

1 +
2(p+)2

λ2
0

)

[e1(w2(T )) + e1(w2(0))]

+
2

λ
3
2

0

[e1(v1(T )) + e1(v1(0))] . (4.2)
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Proof. Since V is a solution of (2.3), we have

∫ T

0

(v′′1 +Av1 + Pv2, v2)H − (v′′2 +Av2 + P ∗v1, v1)Hdt = 0. (4.3)

We first notice that (Av1, v2)H − (Av2, v1)H = 0 since A is selfadjoint, and
∣

∣

∣

∣

∣

∫ T

0

(v′′1 , v2)H − (v′′2 , v1)Hdt

∣

∣

∣

∣

∣

=
∣

∣

∣
[(v′1, v2)H − (v′2, v1)H ]

T
0

∣

∣

∣

≤1

2

[

1

ε
‖v2‖2

H + ε‖v′1‖2
H +

1

ε
‖v′2‖2

H−1
+ ε‖v1‖2

H1

]

(t = 0)

+
1

2

[

1

ε
‖v2‖2

H + ε‖v′1‖2
H +

1

ε
‖v′2‖2

H−1
+ ε‖v1‖2

H1

]

(t = T )

≤1

ε
[e0(v2(T )) + e0(v2(0))] + ε [e1(v1(T )) + e1(v1(0))] ,

for all ε > 0 and T ≥ 0. Once having isolated the term
∫ T

0
(Pv2, v2)Hdt in (4.3), this yields

∫ T

0

(Pv2, v2)Hdt ≤
∫ T

0

(Pv1, v1)Hdt+
1

ε
[e0(v2(T )) + e0(v2(0))] + ε [e1(v1(T )) + e1(v1(0))] .

Using (3.6) in this expression, we now have for all ε > 0 and T ≥ 0,

∫ T

0

(Pv2, v2)Hdt ≤
∫ T

0

(Pv1, v1)Hdt+
1

ε

[

2

(

1 +
(p+)2

λ2
0

)2

e1(w2(T )) + 2
(p+)2

λ2
0

e0(v1(T ))

+2

(

1 +
(p+)2

λ2
0

)2

e1(w2(0)) + 2
(p+)2

λ2
0

e0(v1(0))

]

+ ε [e1(v1(T )) + e1(v1(0))]

≤
∫ T

0

(Pv1, v1)Hdt+
2

ε

(

1 +
(p+)2

λ2
0

)2

[e1(w2(T )) + e1(w2(0))]

+

(

ε+ 2
(p+)2

ελ3
0

)

[e1(v1(T )) + e1(v1(0))] ,

since e0(v1) ≤ λ−1
0 e1(v1). We then set ε = λ

− 1
2

0 and Estimate (4.1) is proved.

Since W is a solution of (3.2), we also have

∫ T

0

(w′′
1 +Aw1 + Pw2, w2)H − (w′′

2 +Aw2 + P ∗w1, w1)Hdt = 0.

Following the same procedure, and recalling that w′
1 = v1, we obtain,

∫ T

0

(Pw2, w2)Hdt ≤
∫ T

0

(Pw1, w1)Hdt+

∣

∣

∣

∣

∣

∫ T

0

(w′′
1 , w2)H − (w′′

2 , w1)Hdt

∣

∣

∣

∣

∣

≤
∫ T

0

(Pw1, w1)Hdt+
∣

∣

∣
[(v1, w2)H − (w′

2, w1)H ]
T
0

∣

∣

∣
. (4.4)

Next, we estimate

|(v1, w2)H | + |(w′
2, w1)H | ≤ 1

2

[

1

ε
‖w2‖2

H + ε‖v1‖2
H + ε‖w′

2‖2
H +

1

ε
‖w1‖2

H

]

, (4.5)

and notice that System (3.1) yields w1 = −A−1v′1 −A−1Pw2, and hence

‖w1‖H ≤ λ−1
0 ‖v′1‖H + p+λ

− 3
2

0 ‖A 1
2w2‖H .
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This, together with (4.5) gives

|(v1, w2)H | + |(w′
2, w1)H | ≤ 1

2

[ 1

ελ0
‖A 1

2w2‖2
H +

ε

λ0
‖A 1

2 v1‖2
H + ε‖w′

2‖2
H

+
2

ελ2
0

‖v′1‖2
H +

2(p+)2

ελ3
0

‖A 1
2w2‖2

H

]

.

Taking ε = λ
− 1

2

0 , we obtain

|(v1, w2)H | + |(w′
2, w1)H | ≤ 1

λ
1
2

0

[

1 +
2(p+)2

λ2
0

]

e1(w2) +
2

λ
3
2

0

e1(v1),

which, together with (4.4) yields Estimate (4.2), and concludes the proof of the lemma.

4.2 A first series of estimates

Note that until now, we did not assume that p+/λ0 is small, except for the coercivity assumption on
AP and the equivalence of the different energies in (3.4)-(3.5) (used in the proof of the Admissibility
Lemma 2.1). Using the coupling relation (4.1), we now prove a first series of estimates, that will be made
more precise later.

Lemma 4.2. For all T ≥ 0, all (p+)2

λ2
0

≤ 1
2 , all V = (v1, v2, v

′
1, v

′
2) ∈ H1 solution of (2.3) and W =

(w1, w2, w
′
1, w

′
2) defined by (3.1), we have the following estimates

e1(w2(T )) + e1(w2(0)) . λ−1
0 e1(v1(0)) +

p+

λ
3
2

0

∫ T

0

e1(v1(t))dt+ e1(w2(0)) + p+λ
1
2

0

∫ T

0

‖w1‖2
Hdt, (4.6)

e1(v1(T )) + e1(v1(0)) . e1(v1(0)) +
p+

λ
1
2

0

∫ T

0

e1(v1(t))dt+ λ0e1(w2(0)) + p+λ
3
2

0

∫ T

0

‖w1‖2
Hdt, (4.7)

∫ T

0

(Pv2, v2)Hdt .
1

λ
1
2

0

e1(v1(0)) +
p+

λ0

∫ T

0

e1(v1(t))dt+ λ
1
2

0 e1(w2(0)) + p+λ0

∫ T

0

‖w1‖2
Hdt. (4.8)

Proof. Taking the inner product of the first equation of (2.3) by v′1, we obtain the following H1-dissipation
relation for v1:

d

dt
e1(v1) = −(Pv2, v

′
1)H

Integrated on the time interval (0, T ), this yields,

e1(v1(T )) + e1(v1(0)) = 2e1(v1(0)) −
∫ T

0

(Pv2, v
′
1)Hdt

≤ 2e1(v1(0)) +
p+

2ελ
1
2

0

∫ T

0

‖v′1‖2
Hdt+

ελ
1
2

0

2

∫ T

0

(Pv2, v2)Hdt,

after having used Assumption (A2) on P and the Young inequality. Using the coupling relation (4.1) of
Lemma 4.1 in this estimate gives

e1(v1(T )) + e1(v1(0)) ≤ 2e1(v1(0)) +
p+

2ελ
1
2

0

∫ T

0

‖v′1‖2
Hdt+

ελ
1
2

0 p
+

2

∫ T

0

‖v1‖2
Hdt

+ ελ0

(

1 +
(p+)2

λ2
0

)2

[e1(w2(T )) + e1(w2(0))]

+
ε

2

(

1 + 2
(p+)2

λ2
0

)

[e1(v1(T )) + e1(v1(0))] .
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We obtain for all (p+)2

λ2
0

≤ 1
2 and ε sufficiently small,

e1(v1(T )) + e1(v1(0)) . e1(v1(0)) +
p+

λ
1
2

0

∫ T

0

‖v′1‖2
Hdt+ λ

1
2

0 p
+

∫ T

0

‖v1‖2
Hdt

+ λ0 [e1(w2(T )) + e1(w2(0))] . (4.9)

Putting this back into (4.1), we also have for all (p+)2

λ2
0

≤ 1
2 ,

∫ T

0

(Pv2, v2)Hdt .

∫ T

0

(Pv1, v1)Hdt+ λ
1
2

0 [e1(w2(T )) + e1(w2(0))] +
1

λ
1
2

0

e1(v1(0))

+
p+

λ0

∫ T

0

‖v′1‖2
Hdt+ p+

∫ T

0

‖v1‖2
Hdt

.
1

λ
1
2

0

e1(v1(0)) +
p+

λ0

∫ T

0

e1(v1(t))dt+ λ
1
2

0 [e1(w2(T )) + e1(w2(0))] . (4.10)

Now, we take the inner product of the second equation of System (3.2) on W by w′
2 = v2. We obtain

the following H1-dissipation relation for w2:

d

dt
e1(w2) = −(P ∗w1, w

′
2)H = −(w1, Pv2)H

Integrated on the time interval (0, T ), this yields,

e1(w2(T )) + e1(w2(0)) = 2e1(w2(0)) −
∫ T

0

(w1, Pv2)Hdt

≤ 2e1(w2(0)) +
p+λ

1
2

0

2ε

∫ T

0

‖w1‖2
Hdt+

ε

2λ
1
2

0

∫ T

0

(Pv2, v2)Hdt,

for all ε > 0, after having used Assumption (A2) on P and the Young inequality. Using (4.10) in this last
inequality, we obtain, for all ε > 0,

e1(w2(T )) + e1(w2(0)) . e1(w2(0)) +
p+λ

1
2

0

ε

∫ T

0

‖w1‖2
Hdt+

ε

λ0
e1(v1(0))

+
p+ε

λ
3
2

0

∫ T

0

e1(v1(t))dt+ ε [e1(w2(T )) + e1(w2(0))] .

Taking ε sufficiently small, this yields

[e1(w2(T )) + e1(w2(0))] . e1(w2(0)) + p+λ
1
2

0

∫ T

0

‖w1‖2
Hdt+

1

λ0
e1(v1(0)) +

p+

λ
3
2

0

∫ T

0

e1(v1(t))dt.

When using this estimate in (4.9) and (4.10), we obtain

e1(v1(T )) + e1(v1(0)) . e1(v1(0)) +
p+

λ
1
2

0

∫ T

0

e1(v1(t))dt+ λ0e1(w2(0)) + p+λ
3
2

0

∫ T

0

‖w1‖2
Hdt,

and

∫ T

0

(Pv2, v2)Hdt .
1

λ
1
2

0

e1(v1(0)) +
p+

λ0

∫ T

0

e1(v1(t))dt+ λ
1
2

0 e1(w2(0)) + p+λ0

∫ T

0

‖w1‖2
Hdt.

These three inequalities yield the result of the lemma.
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4.3 A second series of estimates

Using the weak coupling relation (4.2), we now eliminate the terms with
∫ T

0
‖w1‖2

Hdt in Estimates (4.6)-
(4.8) of the previous section.

Lemma 4.3. There exists η > 0 such that for all T ≥ 0, all p+

λ0
≤ η, all V = (v1, v2, v

′
1, v

′
2) ∈ H1 solution

of (2.3) and W = (w1, w2, w
′
1, w

′
2) defined by (3.1), we have the estimates

∫ T

0

‖w1‖2
Hdt .

1

λ2
0

∫ T

0

e1(v1(t))dt+
p+

λ
7
2

0

e1(v1(0)) +
p+

λ
5
2

0

e1(w2(0)), (4.11)

and

∫ T

0

(Pv2, v2)Hdt .
1

λ
1
2

0

e1(v1(0)) +
p+

λ0

∫ T

0

e1(v1(t))dt+ λ
1
2

0 e1(w2(0)). (4.12)

Proof. Using Estimates (4.6) and (4.7) in relation (4.2), together with p+

λ0
≤ 1

2 , we have

∫ T

0

(Pw2, w2)Hdt . p+

∫ T

0

‖w1‖2
Hdt+

1

λ
1
2

0

(

1 +
2(p+)2

λ2
0

)

[ 1

λ0
e1(v1(0)) +

p+

λ
3
2

0

∫ T

0

e1(v1(t))dt

+ e1(w2(0)) + p+λ
1
2

0

∫ T

0

‖w1‖2
Hdt

]

+
1

λ
3
2

0

[

e1(v1(0))

+
p+

λ
1
2

0

∫ T

0

e1(v1(t))dt+ λ0e1(w2(0)) + p+λ
3
2

0

∫ T

0

‖w1‖2
Hdt

]

. p+

∫ T

0

‖w1‖2
Hdt+

1

λ
3
2

0

e1(v1(0)) +
p+

λ2
0

∫ T

0

e1(v1(t))dt+
1

λ
1
2

0

e1(w2(0)). (4.13)

Now, we want to eliminate the term with
∫ T

0
‖w1‖2

Hdt in these estimates. According to the third line
of (3.1), we have w1 = −A−1v′1 −A−1Pw2, so that

‖w1‖2
H ≤ 2‖A−1v′1‖2

H + 2‖A−1Pw2‖2
H ≤ 2λ−2

0 ‖v′1‖2
H + 2λ−2

0 p+(Pw2, w2)H

after having used Assumption (A2) on the operator P . Integrating this estimate on (0, T ) and using (4.13)
yields

∫ T

0

‖w1‖2
Hdt .

1

λ2
0

∫ T

0

‖v′1‖2
H +

(p+)2

λ2
0

∫ T

0

‖w1‖2
Hdt+

p+

λ
7
2

0

e1(v1(0))

+
(p+)2

λ4
0

∫ T

0

e1(v1(t))dt+
p+

λ
5
2

0

e1(w2(0)).

Now, we suppose that p+

λ0
≤ η, with η sufficiently small. This yields

∫ T

0

‖w1‖2
Hdt .

1

λ2
0

∫ T

0

‖v′1‖2
H +

p+

λ
7
2

0

e1(v1(0)) +
(p+)2

λ4
0

∫ T

0

e1(v1(t))dt+
p+

λ
5
2

0

e1(w2(0))

.
1

λ2
0

∫ T

0

e1(v1(t))dt+
p+

λ
7
2

0

e1(v1(0)) +
p+

λ
5
2

0

e1(w2(0)),
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which is exactly (4.11). Finally, using this inequality in (4.8), we obtain for all p+

λ0
≤ η,

∫ T

0

(Pv2, v2)Hdt .
1

λ
1
2

0

e1(v1(0)) +
p+

λ0

∫ T

0

e1(v1(t))dt+ λ
1
2

0 e1(w2(0))

+ p+λ0

[ 1

λ2
0

∫ T

0

e1(v1(t))dt+
p+

λ
7
2

0

e1(v1(0)) +
p+

λ
5
2

0

e1(w2(0))
]

.
1

λ
1
2

0

e1(v1(0)) +
p+

λ0

∫ T

0

e1(v1(t))dt+ λ
1
2

0 e1(w2(0)).

This yields (4.12), and concludes the proof of the lemma.

Using the two estimates of this lemma, together with the observability inequality with a right hand-side
for the operator ΠP , given in Lemma 3.3, we are now able to prove the following lemma.

Lemma 4.4. Assume the hypotheses of Lemma 3.3 and that (A2) holds. Then, there exists η > 0 such
that for all T ∗

P > TP , there exists a constant KP such that for all T > T ∗
P and p+/λ0 ≤ η, for all

V = (v1, v2, v
′
1, v

′
2) ∈ H1 solution of (2.3) and W = (w1, w2, w

′
1, w

′
2) defined by (3.1), we have

∫ T

0

e1(w2(t))dt . KP

( 1

p−
+ 1
)

(

1

λ
1
2

0

e1(v1(0)) +
p+

λ0

∫ T

0

e1(v1(t))dt+ λ
1
2

0 e1(w2(0))

)

. (4.14)

Proof. First, we Apply (3.15) to w2 for some T ∗
P > TP , which, according to (3.2), satisfies w′′

2 + Aw2 =
−P ∗w1. We have, for all T > T ∗

P ,

∫ T

0

e1(w2(t))dt ≤ KP

(

∫ T

0

‖ΠPw
′
2‖2

Hdt+

∫ T

0

‖P ∗w1‖2
Hdt

)

.

Using Assumption (A2) on P together with the fact that w′
2 = v2, this yields

∫ T

0

e1(w2(t))dt ≤ KP

(

1

p−

∫ T

0

(Pv2, v2)Hdt+ (p+)2
∫ T

0

‖w1‖2
Hdt

)

.

Combining this inequality with Estimates (4.11)-(4.12) of Lemma 4.3, we obtain, for all T > T ∗
P and

p+/λ0 ≤ η,

∫ T

0

e1(w2(t))dt . KP
1

p−

(

1

λ
1
2

0

e1(v1(0)) +
p+

λ0

∫ T

0

e1(v1(t))dt+ λ
1
2

0 e1(w2(0))

)

+KP (p+)2

(

1

λ2
0

∫ T

0

e1(v1(t))dt+
p+

λ
7
2

0

e1(v1(0)) +
p+

λ
5
2

0

e1(w2(0))

)

.
KP

λ
1
2

0

( 1

p−
+ 1
)

e1(v1(0)) +
KP p

+

λ0

( 1

p−
+ 1
)

∫ T

0

e1(v1(t))dt

+KPλ
1
2

0

( 1

p−
+ 1
)

e1(w2(0)),

which concludes the proof of the lemma.

Lemma 4.5 (Almost conservation of the energy). For all T ≥ 0, all p+

λ0
≤ 1√

2
, all V = (v1, v2, v

′
1, v

′
2) ∈ H1

solution of (2.3) and W = (w1, w2, w
′
1, w

′
2) defined by (3.1), we have

∫ T

0

[

λ−1
0 e1(v1(t)) + e1(w2(t))

]

dt ≥ T

2

(

1 +
p+

λ0

)−1(

1 − p+

λ0

)

[e1(w1(0)) + e1(w2(0))] . (4.15)
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Proof. First, as a consequence of (3.7) of Proposition 3.1, we have

λ−1
0 e1(v1) + e1(w2) ≥

1

2
e1(w1) +

(

1 − (p+)2

λ2
0

)

e1(w2) ≥
1

2

[

e1(w1) + e1(w2)
]

,

as soon as (p+)2

λ2
0

≤ 1
2 . Integrating this inequality on the interval (0, T ), and using Identity (3.4) together

with the the conservation of the energy E1(W), we obtain

∫ T

0

[

λ−1
0 e1(v1(t)) + e1(w2(t))

]

dt ≥ 1

2

∫ T

0

[

e1(w1(t)) + e1(w2(t))
]

dt ≥
(

1 +
p+

λ0

)−1
1

2

∫ T

0

E1(W(t))dt

≥
(

1 +
p+

λ0

)−1
T

2
E1(W(0))

≥ T

2

(

1 +
p+

λ0

)−1(

1 − p+

λ0

)

[e1(w1(0)) + e1(w2(0))] ,

which yields (4.15), and concludes the proof of the lemma.

Lemma 4.6 (Lower bound for
∫ T

0
e1(v1(t))dt). There exists C > 0 and η > 0 such that for all T ≥ 0, all

p+

λ0
≤ η, all V = (v1, v2, v

′
1, v

′
2) ∈ H1 solution of (2.3) and W = (w1, w2, w

′
1, w

′
2) defined by (3.1), we have

(

1 +
Tp+

λ
1
2

0

)

∫ T

0

e1(v1(t))dt & Te1(v1(0)) − Tλ0e1(w2(0)). (4.16)

Proof. Taking the inner product of the first equation of (2.3) with v′1 gives

d

dt
e1(v1) = −(Pv2, v

′
1)H .

For 0 < t < T , we integrate this identity on the interval (0, t) and obtain, for all ε > 0,

e1(v1(t)) ≥ e1(v1(0)) −
∫ t

0

‖Pv2‖H‖v′1‖Hds ≥ e1(v1(0)) − ε

2

∫ T

0

‖Pv2‖2
Hdt−

1

2ε

∫ T

0

‖v′1‖2
Hdt.

Using now Assumption (A2) and integrating the last inequality on the interval (0, T ), this gives, for all
ε > 0,

∫ T

0

e1(v1(t))dt ≥ Te1(v1(0)) − Tεp+

2

∫ T

0

(Pv2, v2)Hdt−
T

ε

∫ T

0

e1(v1(t))dt.

This, together with (4.12) yields, for some constant C > 0 and for all ε > 0,

∫ T

0

e1(v1(t))dt ≥ Te1(v1(0)) − CTεp+

λ
1
2

0

e1(v1(0))

−
(

CTε(p+)2

λ0
+
T

ε

)
∫ T

0

e1(v1(t))dt− CTεp+λ
1
2

0 e1(w2(0)).

Now we choose ε =
λ

1
2
0

2Cp+ , so that we have

∫ T

0

e1(v1(t))dt ≥
T

2
e1(v1(0)) − Tp+

λ
1
2

0

(

2C +
1

2

)

∫ T

0

e1(v1(t))dt−
Tλ0

2
e1(w2(0)),

and the lemma is proved.
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4.4 End of the proof of Theorem 2.2

In this section, we conclude the proof of Theorem 2.2. Using the key estimates of the preceding sections,
we prove in fact the following more precise proposition.

Proposition 4.7. Suppose that Assumptions (A1)-(A3) hold. Then, there exists η, γ > 0 such that for all

p+ < p∗ := min{ηλ0, γ
√

λ0

KB
}, there exists a time T∗ ≥ max{T ∗

B , T
∗
P } (depending on p+, p−, λ0,KB ,KP )

such that for all T > T∗ there exists C > 0, such that for all V0 ∈ H1, the solution V(t) = etAP V0 of (2.3)
satisfies

e1(v1(0)) + e0(v2(0)) ≤ C

∫ T

0

‖B∗(v1, v
′
1)(t)‖2

Y dt.

A numerical inspection of the proof shows that one can take for instance η = 1
5 and γ = 1

50 .

Proof. We proceed as in [AB03] and use balance of energies. First, we use the observability inequality for
a single equation with a right hand-side, given by Lemma 3.3. Since v1 is a solution of v′′1 +Av1 +Pv2 = 0
from (2.3), Assumptions (A1) and (A3) and Estimate (3.14) yield, for all T ≥ T ∗

B ,

∫ T

0

e1(v1(t))dt ≤ KB

(

∫ T

0

‖B∗(v1, v
′
1)‖2

Y dt+

∫ T

0

‖Pv2‖2
Hdt

)

.

According to Assumption (A2), this gives

KB

∫ T

0

‖B∗(v1, v
′
1)‖2

Y ≥
∫ T

0

e1(v1(t))dt−KBp
+

∫ T

0

(Pv2, v2)Hdt

≥ ε

∫ T

0

(

e1(v1(t)) + λ0e1(w2(t))
)

dt+ (1 − ε)

∫ T

0

e1(v1(t))dt

− ελ0

∫ T

0

e1(w2(t))dt−KBp
+

∫ T

0

(Pv2, v2)Hdt,

for some ε ∈ (0, 1), to be chosen later on. In this expression, we replace
∫ T

0
(Pv2, v2)Hdt by Estimate (4.12)

given in Lemma 4.3 and
∫ T

0
e1(w2(t))dt by Estimate (4.14) given in Lemma 4.4. We obtain, for some

constant C0 > 0 all T ≥ max{T ∗
B , T

∗
P },

KB

∫ T

0

‖B∗(v1, v
′
1)‖2

Y ≥ ε

∫ T

0

(

e1(v1(t)) + λ0e1(w2(t))
)

dt+ (1 − ε)

∫ T

0

e1(v1(t))dt

− ελ0C0KP

( 1

p−
+ 1
){ 1

λ
1
2

0

e1(v1(0)) +
p+

λ0

∫ T

0

e1(v1(t))dt

+ λ
1
2

0 e1(w2(0))
}

− C0

{KBp
+

λ
1
2

0

e1(v1(0))

+
KB(p+)2

λ0

∫ T

0

e1(v1(t))dt+KBp
+λ

1
2

0 e1(w2(0))
}

.

This can be rewritten under the form

KB

∫ T

0

‖B∗(v1, v
′
1)‖2

Y ≥ ε

∫ T

0

(

e1(v1(t)) + λ0e1(w2(t))
)

dt+ L1(ε)

∫ T

0

e1(v1(t))dt

− L2(ε)e1(v1(0)) − L3(ε)e1(w2(0)), (4.17)

with


















L1(ε) = 1 − ε− εC0KP p
+
(

1
p−

+ 1
)

− C0
KB(p+)2

λ0
,

L2(ε) = εC0KPλ
1
2

0

(

1
p−

+ 1
)

+ C0
KBp+

λ
1
2
0

,

L3(ε) = εC0KPλ
3
2

0

(

1
p−

+ 1
)

+ C0KBp
+λ

1
2

0 .
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Taking p+ such that C0
KB(p+)2

λ0
< 1 and ε sufficiently small, we obtain L1(ε) > 0.

In Inequality (4.17), we replace the two terms integrated on (0, T ) by their estimates (4.15) given in
Lemma 4.5 (almost conservation of the energy) and (4.16) of Lemma 4.6. We obtain, for some C1 > 0,

for p+

λ0
≤ η, (p+)2 < λ0

C0KB
,

KB

∫ T

0

‖B∗(v1, v
′
1)‖2

Y ≥ ελ0
T

3
[e1(w1(0)) + e1(w2(0))] − L2(ε)e1(v1(0)) − L3(ε)e1(w2(0))

+ C1L1(ε)

(

1 +
Tp+

λ
1
2

0

)−1

[Te1(v1(0)) − Tλ0e1(w2(0))] .

This yields

KB

∫ T

0

‖B∗(v1, v
′
1)‖2

Y ≥M1(ε)e1(v1(0)) +M2(ε)e1(w2(0)) + ελ0
T

3
e1(w1(0)), (4.18)

with


















M1(ε) = C1L1(ε)

(

1 + Tp+

λ
1
2
0

)−1

T − L2(ε),

M2(ε) = ελ0
T
3 − C1L1(ε)Tλ0

(

1 + Tp+

λ
1
2
0

)−1

− L3(ε).

Now, it remains to check that these coefficients are positive for a suitable choice of ε (small) and T (large).
The coefficients M1(ε) and M2(ε) are positive if and only if we have











T
{

C1L1(ε) − L2(ε)p
+

λ
1
2
0

}

− L2(ε) > 0,

T 2
(

ε
3λ

1
2

0 p
+
)

+ T
{

ελ0

3 − C1L1(ε)λ0 − L3(ε)p
+

λ
1
2
0

}

− L3(ε) > 0.
(4.19)

The first condition of (4.19) is satisfied for large T if

1 − ε− εC0

(

1 +
1

C1

)

KP p
+
( 1

p−
+ 1
)

− C0

(

1 +
1

C1

)KB(p+)2

λ0
> 0,

i.e. as soon as






C0

(

1 + 1
C1

)

KB(p+)2

λ0
< 1, and

ε
(

1 + C0

(

1 + 1
C1

)

KP p
+
(

1
p−

+ 1
))

< 1 − C0

(

1 + 1
C1

)

KB(p+)2

λ0
.

This is the case when taking p+ ≤ min{ηλ0, γ
√

λ0

KB
} for some constant γ > 0, and ε sufficiently small.

Then, the second condition of (4.19) is always satisfied for large T since ε > 0. Hence, for this choice of
p+, ε sufficiently small, and T sufficiently large, we obtain from (4.18) the existence of a constant C > 0
such that

C

∫ T

0

‖B∗(v1, v
′
1)‖2

Y ≥ e1(v1(0)) + e1(w2(0)).

This concludes the proof of Proposition 4.7 (and hence, that of Theorem 2.2), since e0(v2(0)) can be
estimated by e1(w2(0)) and e1(v1(0)) according to (3.6).

5 From observability to controllability

In this Section, we prove that the observability inequality of Theorem 2.2 (or equivalently Proposition 4.7)
implies the controllability results of Theorems 2.3 and 2.4. This is done classically with the use of the
Hilbert Uniqueness Method (see [Lio88]), that we shall follow here.
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5.1 First case: B∗(v1, v
′
1) = B∗v′

1 with B∗ ∈ L(H, Y ).

In this case, B ∈ L(Y,H) and the control problem (2.8) is well-posed in H1 for f ∈ L2(0, T ;Y ). Note
that, as in the concrete setting, it also preserves the space H1 × H2 × H × H1 through time as soon as
P ∈ L(H1). There is thus no hope to control in whole H1.

Note that a direct application of the HUM, at the H1 × H × H × H−1 energy level for the adjoint
variable V would yield a controllability result in H ×H−1 ×H1 ×H with a control Bf ∈ L2(0, T ;H−1)
(and we would have to suppose that B ∈ L(Y,H−1)). Since we want the control result to hold at a more
regular level, we study an adjoint problem in a less regular space.

Lemma 5.1. For any ZT = (zT
1 , z

T
2 , z̃

T
1 , z̃

T
2 ) ∈ H ×H−1 ×H−1 ×H−2 the system







z′′1 +Az1 + Pz2 = 0,
z′′2 +Az2 + P ∗z1 = 0,
(z1, z2, z

′
1, z

′
2)|t=T = (zT

1 , z
T
2 , z̃

T
1 , z̃

T
2 ).

(5.1)

is well-posed backward in time and the unique solution satisfies Z ∈ C 0([0, T ];H ×H−1 ×H−1 ×H−2).

Moreover suppose that Assumptions (A1)-(A3) hold and that p+ < p∗ = min{ηλ0, γ
√

λ0

KB
} (where η and

γ are given by Proposition 4.7). Then, for all T > T∗ (given by Proposition 4.7), the solution Z satisfies
for some constant C > 1 the estimates

C−1

∫ T

0

‖B∗z1(t)‖2
Y dt ≤ e0(z1(0)) + e−1(z2(0)) ≤ C

∫ T

0

‖B∗z1(t)‖2
Y dt. (5.2)

Of course, we prove this lemma as a consequence of (2.6) and (2.7) for more regular functions. We
thus regularize Z, setting V := A−1

P Z, end then apply to V the results of the previous sections.

Proof. First, we know that AP generates a group on H−1. Hence, for ZT ∈ H×H−1×H−1×H−2 ⊂ H−1,
System (5.1) has a unique solution Z in C 0([0, T ];H−1), and, in particular, z2 ∈ C 0([0, T ];H−1). Then, z1
is solution of the first line of (5.1) with final data inH×H−1 and a right hand side −Pz2 ∈ C 0([0, T ];H−1).
Hence, the solution (z1, z

′
1) (which is unique in H−1 × H−2) is in C 0([0, T ];H × H−1). Since Z in

C 0([0, T ];H−1), this concludes the first part of the lemma.
Second, we set (vT

1 , v
T
2 , ṽ

T
1 , ṽ

T
2 ) = VT := A−1

P ZT . We call V = e(T−t)AP VT = (v1, v2, v
′
1, v

′
2), which

satisfies
{

v′′1 +Av1 + Pv2 = 0,
v′′2 +Av2 + P ∗v1 = 0,

and we have, for all t ∈ (0, T ),














v′1 = z1,
v′2 = z2,
Av1 + Pv2 = −z′1,
Av2 + P ∗v1 = −z′2.

(5.3)

Now, let us only consider the smooth solutions, i.e. Z ∈ C 0([0, T ];H0), which yields V ∈ C 0([0, T ];H1).
For these solutions, Theorem 2.2 and Lemma 2.1 yield

C−1

∫ T

0

‖B∗v′1(t)‖2
Y dt ≤ e1(v1(0)) + e0(v2(0)) ≤ C

∫ T

0

‖B∗v′1(t)‖2
Y dt. (5.4)

We notice that B∗v′1 = B∗z1, so that in order to prove (5.2), it only remains to show the existence of a
constant C > 1 such that

C−1{e1(v1(0)) + λ0e0(v2(0))} ≤ e0(z1(0)) + λ0e−1(z2(0)) ≤ C{e1(v1(0)) + λ0e0(v2(0))}. (5.5)

25



According to (5.3), we have (skipping the time dependence)

2{e0(z1) + λ0e−1(z2)} = ‖A− 1
2 z′1‖2

H + ‖z1‖2
H + λ0‖A−1z′2‖2

H + λ0‖A− 1
2 z2‖2

H

= ‖A 1
2 v1 +A− 1

2Pv2‖2
H + ‖v′1‖2

H + λ0‖v2 +A−1P ∗v1‖2
H + λ0‖A− 1

2 v′2‖2
H

≤ 2‖A 1
2 v1‖2

H + 2‖A− 1
2Pv2‖2

H + ‖v′1‖2
H + 2λ0‖v2‖2

H

+ 2λ0‖A−1P ∗v1‖2
H + λ0‖A− 1

2 v′2‖2
H

≤ 2
(

1 + (p+)2λ−2
0

)

‖A 1
2 v1‖2

H + ‖v′1‖2
H + 2

(

λ0 + (p+)2λ−1
0

)

‖v2‖2
H

+ λ0‖A− 1
2 v′2‖2

H ≤ 2C{e1(v1) + λ0e0(v2)},

which proves the right inequality of (5.5). We also have

2{e1(v1) + λ0e0(v2)} = ‖v′1‖2
H + ‖A 1

2 v1‖2
H + λ0‖A− 1

2 v′2‖2
H + λ0‖v2‖2

H

= ‖z1‖2
H + ‖A− 1

2 z′1 +A− 1
2Pv2‖2

H + λ0‖A− 1
2 z2‖2

H + λ0‖A−1P ∗v1 +A−1z′2‖2
H

≤ ‖z1‖2
H + 2‖A− 1

2 z′1‖2
H + 2‖A− 1

2Pv2‖2
H + λ0‖A− 1

2 z2‖2
H

+ 2λ0‖A−1P ∗v1‖2
H + 2λ0‖A−1z′2‖2

H

≤ 4{e0(z1) + λ0e−1(z2)} + 2(p+)2λ−1
0 ‖v2‖2

H + 2(p+)2λ−2
0 ‖A 1

2 v1‖2
H .

For (p+)2λ−2
0 < 1/2, the last two terms in this inequality can be absorbed in the left hand side, yielding

e1(v1) + λ0e0(v2) ≤ C{e0(z1) + λ0e−1(z2)}

This proves (5.5) and concludes the proof of the lemma.

To prove Theorem 2.3 with the HUM, we shall also make use of the following lemma.

Lemma 5.2. Let (u1, u2, u
′
1, u

′
2) be the solution of (2.8) associated with (u0

1, u
0
2, u

1
1, u

1
2) ∈ H1×H2×H×H1

and f ∈ L2(0, T ;Y ) and (z1, z2, z
′
1, z

′
2) the solution of (5.1) associated with

(zT
1 , z

T
2 , z̃

T
1 , z̃

T
2 ) ∈ H ×H−1 ×H−1 ×H−2.

Then, we have

[

(u′1, z1)H − 〈u1, z
′
1〉H1,H−1

+ 〈u′2, z2〉H1,H−1
− 〈u2, z

′
2〉H2,H−2

]T

0
= (f,B∗z1)L2(0,T ;Y ) (5.6)

Proof. It suffices to prove (5.6) for regular data. The general case can be deduced with a density argument.
We take the inner product of the first line of (2.8) with z1 and the second line of (2.8) with z2 and integrate
on (0, T ). Summing the two identities, we obtain

∫ T

0

(Bf, z1)Hdt =

∫ T

0

(

(u′′1 +Au1 + Pu2), z1
)

H
dt+

∫ T

0

(

(u′′2 +Au2 + P ∗u1), z2
)

H
dt

After two integrations by parts, using the selfadjointness of A together with (5.1), we have

∫ T

0

(f,B∗z1)Y dt = [(u′1, z1)H − (u1, z
′
1)H + (u′2, z2)H − (u2, z

′
2)H ]

T
0 ,

which direcly yields (5.6) for smooth solutions. We conclude the proof of the lemma with a density
argument.

With Lemmata 5.1 and 5.2, we can now prove Theorem 2.3, following [Lio88].
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Proof of Theorem 2.3. Let us fix initial data (u0
1, u

0
2, u

1
1, u

1
2) ∈ H1 ×H2 ×H ×H1. On the Hilbert space

X := H ×H−1 ×H−1 ×H−2, we consider the bilinear form

a(ZT ,ZT ) =

∫ T

0

(B∗z1(t), B
∗z1(t))Y dt,

and the linear form

L(ZT ) = (u1
1, z1(0))H −

〈

u0
1, z

′
1(0)

〉

H1,H−1
+
〈

u1
2, z2(0)

〉

H1,H−1
−
〈

u0
2, z

′
2(0)

〉

H2,H−2
,

where Z = (z1, z2, z
′
1, z

′
2) (resp. Z = (z1, z2, z1

′, z2
′)) is the the solution of (5.1) associated with the final

data ZT = (zT
1 , z

T
2 , z̃

T
1 , z̃

T
2 ), (resp. ZT = (z1

T , z2
T , z̃1

T , z̃2
T )). The linear form L is continuous on X by

definition and, according to (5.2), the bilinear form a is both continuous and coercive on X × X as soon
as T > T∗. The Lax-Milgram theorem then yields for T > T∗ the existence (and uniqueness) of ZT such
that

a(ZT ,ZT ) = −L(ZT ), for all ZT ∈ X .
Now, choosing f = B∗z1 ∈ L2(0, T ;Y ) as a control function for the initial data (u0

1, u
0
2, u

1
1, u

1
2), we obtain

for all test function ZT ∈ X ,

(u1
1, z1(0))H −

〈

u0
1, z

′
1(0)

〉

H1,H−1
+
〈

u1
2, z2(0)

〉

H1,H−1
−
〈

u0
2, z

′
2(0)

〉

H2,H−2
= (f,B∗z1)L2(0,T ;Y ).

According to (5.6), this yields (u1(T ), u2(T ), u′1(T ), u′2(T )) = (0, 0, 0, 0), where (u1, u2, u
′
1, u

′
2) is the solu-

tion of (2.8) associated with (u0
1, u

0
2, u

1
1, u

1
2) and f . This concludes the proof of Theorem 2.3.

5.2 Second case: B∗(v1, v
′
1) = B∗v1 with B∗ ∈ L(H2, Y ).

In this setting, we directly apply the HUM in the space H ×H1 ×H−1 ×H for the control problem, and
thus in H1 ×H ×H ×H−1 for the observation problem. There is no need of regularizing our observation
system and observability inequality.

This means that the adjoint problem of the control problem (2.8) is directly System (2.3), for which
we proved the admissibility inequality (2.6) and the observability inequality (2.7). Recall that in this case,
the control operator B is in L(Y,H−2), which is not sufficient for (2.8) to be well-posed in the classical
sense in H0 for a control function f ∈ L2(0, T ;Y ). Nevertheless, as a consequence of the admissibility
inequality (2.6), System (2.8) is well-posed in H0 in the sense of transposition solutions (see [Lio88]).
Moreover, these solutions remain in H ×H1 ×H−1 ×H for all time if the initial data are in this space,
and there is no hope to control in whole H0.

In this setting, the boundary control result of Theorem 1.3 is a direct consequence of the HUM and
Theorem 2.2 since Assumptions (A1)-(A3) are satisfied in this application.

Lemma 5.3. Let (u1, u2, u
′
1, u

′
2) be the transposition solution of (2.8) associated with (u0

1, u
0
2, u

1
1, u

1
2) ∈

H ×H1 ×H−1 ×H and f ∈ L2(0, T ;Y ) and (v1, v2, v
′
1, v

′
2) the backward solution of (2.3) associated with

(vT
1 , v

T
2 , ṽ

T
1 , ṽ

T
2 ) ∈ H1 ×H ×H ×H−1. Then, we have

[

〈u′1, v1〉H−1,H1
− (u1, v

′
1)H + (u′2, v2)H − 〈u2, v

′
2〉H1,H−1

]T

0
= (f,B∗v1)L2(0,T ;Y ) (5.7)

The proof of this lemma is exactly the same as the one of Lemma 5.2. We can now sketch the proof
of Theorem 2.4, which follows that of Theorem 2.3.

Proof of Theorem 2.4. We fix initial data (u0
1, u

0
2, u

1
1, u

1
2) ∈ H × H1 × H−1 × H. On the Hilbert space

X := H1 ×H ×H ×H−1, we consider the bilinear form

a(VT ,VT ) =

∫ T

0

(B∗v1(t), B
∗v1(t))Y dt,

and the linear form

L(VT ) =
〈

u1
1, v1(0)

〉

H−1,H1
− (u0

1, v
′
1(0))H + (u1

2, v2(0))H −
〈

u0
2, v

′
2(0)

〉

H1,H−1
,
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where V = (v1, v2, v
′
1, v

′
2) (resp. V = (v1, v2, v1

′, v2
′)) is the the solution of (2.3) associated with the final

data VT = (vT
1 , v

T
2 , ṽ

T
1 , ṽ

T
2 ), (resp. VT = (v1

T , v2
T , ṽ1

T , ṽ2
T )). The linear form L is continuous on X and,

according to the admissibility inequality (2.6) and the observability inequality (2.7), the bilinear form
a is both continuous and coercive on X × X as soon as T > T∗. We conclude the proof as the one of
Theorem 2.3, using the Lax-Milgram Theorem.

6 Applications

In this section, we explain how Theorem 1.3 and Corollaries 1.4 and 1.5 can be deduced from the abstract
results.

6.1 Control of wave systems: Proof of Theorem 1.3

Here, we prove Theorem 1.3. We only have to explain how the situation of this theorem can be put in the
abstract setting. Here, H = L2(Ω) with usual inner product. For A, we take the operator −∆c + a with
domainH2(Ω)∩H1

0 (Ω), which, according to Assumption 1.2-(i) is coercive. Hence H1 = H1
0 (Ω) is endowed

with the inner product (u, v)H1
= (c∇u,∇v)L2(Ω)+(au, v)L2(Ω), H−1 = H−1(Ω) andH2 = H2(Ω)∩H1

0 (Ω).
For the operator P we take the multiplication in L2(Ω) by the bounded function p, and the operator ΠP

needed in Assumption (A2) is the multiplication in L2(Ω) by the characteristic function 1ωp
. According

to Assumption 1.2-(ii), ωp satisfies GCC, so that the observability inequality of [BLR88, BLR92] directly
implies the second part of Assumption (A3).

First case: internal control. The observation space here is Y = L2(Ω) and the observation operator
B∗ is the multiplication in L2(Ω) by the bounded (real) function b. In this case, the operator B∗ is
bounded and we have B = B∗. Since B∗ is bounded, the admissibility assumption (A1) is directly
satisfied. Finally, according to Assumption 1.2-(iii), ωb satisfies GCC, so that the observability inequality
of [BLR88, BLR92] directly implies the first part of Assumption (A3).

All the assumptions of Theorem 2.3 are then satisfied, so that it implies Theorem 1.3 in the internal
control case.

Second case: boundary control. The observation space here is Y = L2(∂Ω) and the observation
operator B∗ is defined on H2(Ω) ∩H1

0 (Ω) by

B∗v = b∂
∂v

∂n
,

where n denotes the outward normal to ∂Ω. Hence, in this case B∗ ∈ L(H2(Ω)∩H1
0 (Ω);L2(∂Ω)). The fact

that this observation is admissible is a well-known hidden regularity result, see [Lio88] or [TW09, Section
7.1]. As a consequence, the admissibility assumption (A1) is satisfied. The control operator B is defined
in this case as the Dirichlet map for which we refer to [TW09, Section 10.6]. The duality identity (5.7)
shows in fact that it corresponds to a boundary control, i.e. to Problem (1.4). Finally, according to
Assumption 1.2-(iii), Γb satisfies GCC∂ , so that the observability inequality of [BLR92] directly implies
the first part of Assumption (A3).

All the assumptions of Theorem 2.4 are then satisfied, so that it implies Theorem 1.3 in the boundary
control case.

6.2 Control of diffusive systems

Here, we prove Corollary 1.4. Our control strategy consists in first regularizing the initial data (thanks to
the natural smoothing effect of the heat equation), and then apply a transmutation argument.

First case: internal control. Let T > 0. On the time interval (0, T
2 ), we set f = 0. Hence, the initial

data (u0
1, u

0
2) ∈

(

L2(Ω)
)2

are driven to some (u1, u2)|t= T
2
∈ D(Ap) =

(

H2(Ω)∩H1
0 (Ω)

)2 ⊂ H1
0 (Ω)×L2(Ω).

As a consequence of Theorem 1.3, combined with [Mil06, Theorem 3.4] there exists a control function
f ∈ L2((T

2 , T ) × Ω) such that (u1, u2)|t=T = 0.
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Second case: boundary control. Let T > 0. On the time interval (0, T
2 ), we set f = 0. Hence,

the initial data (u0
1, u

0
2) ∈

(

H−1(Ω)
)2

are driven to some (u1, u2)|t= T
2
∈
(

H1
0 (Ω)

)2 ⊂ L2(Ω) × H−1(Ω).

As a consequence of Theorem 1.3, combined with [Mil06, Theorem 3.4] there exists a control function
f ∈ L2((T

2 , T ) × ∂Ω) such that (u1, u2)|t=T = 0.

Note that we could have taken the initial data in less regular spaces, provided that the coefficients a, p
are smooth enough.

6.3 Control of Schrödinger systems

The proof of Corollary 1.5 is the same as that of Corollary 1.4, except that the Schrödinger equation does
not enjoy smoothing properties. Hence, Corollary 1.5 is a direct consequence of Theorem 1.3, combined
with [Mil05, Theorem 3.1].

7 Appendix: a direct proof of Lemma 3.3: Observability for a

wave equation with a right hand-side

In this section, we provide a direct proof of Lemma 3.3 for a wave equation in a very simple setting.
For this, we suppose that (Ω, g) is a compact connected Riemannian manifold without boundary, and
we closely follow the proofs of [RT74, BLR88, BLR92]. This shows in particular that the observability
inequality for equations with a right hand-side (3.14)-(3.15) are indeed the natural energy estimates in
the spaces we consider. In the following, ∆ denotes the (negative) Laplace-Beltrami operator on Ω for the
metric g, and P = P (t, x, ∂t, ∂x) = ∂2

t − ∆ + 1 denotes the d’Alembert operator on R × Ω. Its principal
symbol is given by p(t, x, τ, η) = −τ2 + |η|2x for (t, x, τ, η) ∈ R × Ω × R × T ∗

x Ω ⊂ T ∗(R × Ω), where
|η|2x = gx(η, η) denotes the Riemannian norm in the cotangent space of Ω at x.

Lemma 7.1. Suppose that the couple (ωb, Tb) satisfies GCC. Then, there exists a constant Cb > 0 such
that for all T ≥ Tb and v ∈ H1((0, T ) × Ω) solution of Pv = f ∈ L2((0, T ) × Ω), we have

∫ T

0

‖v‖2
H1(Ω) + ‖∂tv‖2

L2(Ω)dt ≤ Cb

(

∫ T

0

∫

ω

|∂tv|2dx dt+

∫ T

0

‖f‖2
L2(Ω)dt

)

. (7.1)

Proof. We first remark that it is sufficient to prove (7.1) with a time depending constant Cb = C(T ). The
time invariance property of the equation Pv = f then yields the desired result.

The proof relies on a compactness-uniqueness method. In a first step, we prove the following weaker
energy estimate

∫ T

0

‖v‖2
H1(Ω) + ‖∂tv‖2

L2(Ω)dt ≤ C(T )
(

∫ T

0

∫

ω

|∂tv|2dx dt+

∫ T

0

‖f‖2
L2(Ω)dt+

∫ T

0

‖v‖2
L2(Ω)dt

)

, (7.2)

in which a compact term has been added in the right hand-side. In a second step we use a uniqueness
argument to get rid of this additional term.

We define the two following vector spaces:

E = F = {v ∈ H1((0, T ) × Ω);Pv ∈ L2((0, T ) × Ω)},

endowed with the norms

‖v‖2
E = ‖v‖2

H1((0,T )×Ω) + ‖Pv‖2
L2((0,T )×Ω),

‖v‖2
F = ‖v‖2

L2((0,T )×Ω) + ‖∂tv‖2
L2((0,T )×ω) + ‖Pv‖2

L2((0,T )×Ω).

We first remark that E is a Hilbert space for the norm ‖·‖E and that we have E ⊂ F with ‖·‖F ≤ ‖·‖E . If
we prove that the space F is complete, the Banach isomorphism theorem then yields the inverse inequality:
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‖·‖E ≤ C‖·‖F , which implies (7.2). Let us consider a Cauchy sequence (vk)k∈N of F . Since L2((0, T )×Ω)
and L2((0, T )×ω) are complete, there exist v ∈ L2((0, T )×Ω), w ∈ L2((0, T )×ω) and f ∈ L2((0, T )×Ω)
such that

vk → v in L2((0, T ) × Ω),

∂tv
k|ω → w in L2((0, T ) × ω),

Pvk → f in L2((0, T ) × Ω).

Since ∂tv
k → ∂tv and Pvk → Pv in D′((0, T ) × Ω), we also have ∂tv|ω = w ∈ L2((0, T ) × ω) and

Pv = f ∈ L2((0, T ) × Ω). The first order differential operator ∂t is microlocally elliptic on Char(P ) =

{ρ ∈ T ∗(R × Ω), p(ρ) = 0}, so that v ∈ H1((0, T ) × ω). As a consequence, v satisfies

{

Pv = f ∈ L2((0, T ) × Ω),

v ∈ H1((0, T ) × ω).
(7.3)

Now, pick any point ρ = (t, x, τ, η) ∈ T ∗(R×Ω) \ 0 such that t ∈ (0, T ). If ρ /∈ Char(P ), then P is elliptic
of order two at ρ and the first equation of (7.3) yields that v ∈ H2 microlocally at ρ. If ρ ∈ Char(P ),
we denote by Γ = {γ(s), s ∈ (−S−, S+)} the maximal bicharacteristic curve of P satisfying γ(0) = ρ.
Since the couple (ω, T ) satisfies the geometric control condition, there exists s∗ ∈ (−S−, S+) such that
π(γ(s∗)) ∈ (0, T ) × ω, where π : T ∗(R × Ω) → R × Ω denotes the natural projection. The second line of
(7.3) implies that v ∈ H1, microlocally at γ(s∗). Hörmander’s theorem on propagation of singularities
[Tay81, Chapter 6, Theorem 2.1] (see also [Hör94, Theorem 26.1.1]) yields that v ∈ H1 microlocally at ρ
since v satisfies Pv ∈ L2. Note that the L2 regularity for f is the natural one, required by the propagation
theorem.

Finally we obtain v ∈ H1((0, T ) × Ω). Hence, the Cauchy sequence (vk)k∈N of F converges towards
v ∈ F , and F is complete. The Banach isomorphism theorem gives the existence of a constant C > 0
(depending on T ) such that ‖ · ‖E ≤ C‖ · ‖F , which implies (7.2).

Now, we must get rid of the additional term ‖v‖2
L2((0,T )×Ω) in (7.2). For this, we prove that there

exists a constant C > 0 such that for all v ∈ E satisfying Pv = f ∈ L2((0, T ) × ω), we have

‖v‖2
L2((0,T )×Ω) ≤ C

(

‖∂tv‖2
L2((0,T )×ω) + ‖f‖2

L2((0,T )×Ω)

)

. (7.4)

We suppose that this inequality is false. Then, there exists a sequence (vk)k∈N, such that

‖vk‖L2((0,T )×Ω) = 1,

∂tv
k|ω → 0 in L2((0, T ) × ω),

Pvk → 0 in L2((0, T ) × Ω).

Hence, the energy estimate (7.2) gives ‖vk‖H1((0,T )×Ω) ≤ C uniformly, so that we can extract a subsequence

(also denoted vk) that converges in L2((0, T ) × Ω). Calling v ∈ L2((0, T ) × Ω) its limit, we have











‖v‖L2((0,T )×Ω) = 1

∂tv|ω = 0 on (0, T ) × ω

Pv = 0 in (0, T ) × Ω

(7.5)

Once again, the propagation of regularity [Tay81, Chapter 6, Theorem 2.1] together with GCC gives (for
instance) v ∈ H2((0, T ) × Ω). According to a uniqueness result [Rob91], the last two lines of (7.5) yield
v = 0 on (0, T ) × Ω, which contradicts the first line of (7.5). This gives (7.4), and concludes the proof of
the lemma.
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