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Abstract

We use the finite Markov chain embedding technique to obtain the distribution of the number of

cycles in the breakpoint graph of a random uniform signed permutation. This further gives a very good

approximation of the distribution of the reversal distance between two random genomes.

Index Terms

Markov processes, probabilistic algorithms, distribution functions, biology and genetics.

I. INTRODUCTION

A. The biological context

Comparing genomic organization between different species may help to decipher the evolu-

tionary history of species and also to better understand the biology of contemporary species.

Orthologous genes are two genes, in two different species, that descend from the same gene

at the ancestor of the two species, as the result of a speciation event. They tend, in general, to

have similar functions. Therefore, finding a group of orthologous genes in close proximity in the

genomes of two different species may represent a sign for evolutionary or functional relationships

between these genes. For this to be the case, the observed orthologous gene clusters have to be

significant, i.e. very improbable to have appeared by chance.

During the evolutionary time, the gene order in one genome can be affected by various genome

rearrangement events, like inversions, translocations, transpositions, chromosomic fissions and

fusions. Hence, in the absence of certain constraints due to functional selective pressures, the

gene order is rapidly randomized. This is one reason why, in general, the null hypothesis taken

in the significance tests for gene clusters is the hypothesis of random gene order.

In the “genomic comparison” literature various definitions for gene clusters exist, and also

different statistical tests for detecting gene clusters which are significant from the point of view

of the proximity of the orthologs (see [3], [4], [6], [7], [13], [15], [19], [20], [26], [35]). On

the other hand, one might want to take into account also the order of the orthologs in these

gene clusters, considering that the clusters in which the gene order is exceptionally conserved

are even more biologically significant.

Sankoff and Haque [27] propose three adjacency disruption measures for comparing the order

of the orthologs which are in common between two clusters in two genomes. They investigate

August 27, 2010 DRAFT



3

in more detail the “maximum adjacency disruption” criterion, giving analytic formulas for some

values of its distribution under random gene order and also simulation results. Grusea [17]

propose three measures based on the mathematical transposition distance between permutations,

for assessing the exceptionality of the gene order in conserved genomic regions found by the

reference region approach, and obtains analytic expressions for the distribution of these distances

in the case of a uniform random permutation. In [12], Corteel et al. analyze the distribution of

the number of common intervals in the case of a uniform random permutation and also study

some generalized common intervals, in which gaps of a certain size are permitted.

In the “genome rearrangements” literature, several more biologically relevant distances have

been studied, which take into account one or a combination of different types of genomic

events: reversals, translocations, chromosomic fissions and fusions, biological transpositions,

block-interchanges – see [23] for a review. The problem with using these distances as test

statistics comes from the fact that their distributions for a random permutation are very difficult

to obtain and there are very few results on this subject.

Recently, Doignon and Labarre [14] and Bona and Flynn [8] have found, in two different ways,

the distribution of the number of (edge-disjoint) alternating cycles in the bicolored breakpoint

graph of a random unsigned permutation, which can be used to deduce the exact distribution

of the “block-interchange” distance of Christie [11]. However, for signed permutations, corre-

sponding to the case when gene orientation is also known, the exact distribution of the number

of cycles in the breakpoint graph is still unknown.

Sankoff and Haque [28] use a constructive approach to obtain asymptotic estimates for the

distribution of the number of cycles in the breakpoint graph of two random signed permutations.

Xu et al. [33] and Xu [32] use a similar approach to study the case of multichromosomal

genomes.

The comparison of two genomes induces a decomposition of the genomes into synteny blocks

(or conserved segments), chromosomic segments containing orthologous genes in the same

or reverse order in the two genomes (see [10], [24]). The genomes could then be seen as

permutations (unsigned or signed) of the set of synteny blocks. Some authors extend the notion

of synteny block, allowing for some micro-rearrangements inside the synteny blocks (see [25]).

In the present work we are interested in finding the exact distribution of the number of

alternating cycles in the breakpoint graph of a random signed permutation. The knowledge of
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this distribution provides a very good approximation for the distribution of the reversal distance

for a random signed permutation. This further allows us to use the reversal distance as a test

statistic for assessing the exceptionality of the gene order in conserved genomic regions or of

the order of the synteny blocks between two genomes.

We use the finite Markov chain embedding technique of Fu and Koutras [16] to obtain the

distribution of the number of cycles in the breakpoint graph of a random signed permutation via

a product of transition probability matrices of a certain finite Markov chain.

B. The breakpoint graph and the reversal distance

We let Sn denote the permutation group of order n. For a permutation π ∈ Sn we will

use the notation π = [π(1), ..., π(n)]. A signed permutation of n elements is a permutation

π = [π(1), ..., π(n)] in which the elements π(i), i = 1, ..., n have a sign, either + or −. In other

words, π(i) ∈ {±1, ...,±n}, for i = 1, ..., n and {|π(1)|, ..., |π(n)|} = {1, ..., n}. We denote by

Bn the set of all the signed permutations of n elements.

The reversal of the interval (i, j) in the signed permutation π reverses the subsequence

π(i), ..., π(j) while changing their signs, hence produces the signed permutation

π′ = [π(1), ..., π(i− 1),−π(j),−π(j − 1), ...,−π(i+ 1),−π(i), π(j + 1), ..., π(n)].

For π ∈ Bn, we let drev(π, Id) denote its reversal distance, i.e. the minimum number of reversals

needed to transform π into the identity permutation Id = [+1, ...,+n].

Bafna and Pevzner [2] introduced the concept of breakpoint graph of a permutation and noticed

important links between the cycle decomposition of this graph and the reversal distance. The

breakpoint graph of a signed permutation is defined as follows. Given a signed permutation π in

Bn, we first transform it into an unsigned permutation π′ ∈ S2n by replacing the positive elements

+i by the pair (2i−1, 2i) and the negative elements −i by the pair (2i, 2i−1). For instance, the

signed permutation π = [+3,−4,−2,+1,+5] is transformed into π′ = [5, 6, 8, 7, 4, 3, 1, 2, 9, 10].

We then extend π′ by adding two more elements, one at the beginning, which we will denote S

(for Start) and one at the end, which we will denote T (for Terminus).

The breakpoint graph of the signed permutation π ∈ Bn is the graph G(π) = (V,B ∪ C),

having the set of vertices V = {S, 1, 2, ..., 2n, T} and the edge set partitioned into two subsets:
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Fig. 1. The breakpoint graph of the permutation π = [+3,−4,−2,+1,+5].

the set B of solid edges, corresponding to the adjacencies in the permutation π, and the set C

of dashed edges, corresponding to the adjacencies in the identity permutation Id.

More precisely, if for every element a of the permutation π we denote respectively by aL and

aR the left and right elements in the pair associated to a in π′, then we will have a solid edge

between aR and bL if a and b are consecutive in π. We have also solid edges between S and

(π1)L and between (πn)R and T . We have dashed edges between the vertices 2i− 1 and 2i, for

every i = 1, ..., n, between S and 1 and between 2n and T .

Note that each vertex in G(π) is of degree 2, having exactly one solid edge and one dashed edge

incident to it. Consequently, the breakpoint graph decomposes uniquely into disjoint alternating

cycles, i.e. cycles in which the solid edges and the dashed edges alternate. For a given cycle, we

call its length the number of solid edges, or equivalently, the number of dashed edges it contains.

In the example from Fig. 1, the breakpoint graph of the permutation π = [+3,−4,−2,+1,+5]

decomposes into two alternating cycles, one of length 1 and one of length 5.

For a signed permutation π ∈ Bn, we will denote c(π) the number of alternating cycles in

the breakpoint graph G(π). The reason for introducing c(π) in [2] was that it is easily seen to

give the following lower bound, for every π ∈ Bn

drev(π, Id) ≥ n+ 1− c(π). (1)

Hannenhalli and Pevzner [18] proved that for every signed permutation π ∈ Bn we have the

exact formula

drev(π, Id) = n+ 1− c(π) + h(π) + f(π), (2)

where h(π) is the number of hurdles in G(π) and f(π) is 1 if π is a fortress and 0 otherwise

(see [18] for the definitions of hurdle and fortress).
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The problem of computing the reversal distance for signed permutations (without giving an

optimal sequence of reversals) can be solved in linear time (see Bader et al. [1]). The problem

becomes more complicated if one wants also an optimal sequence of reversals. The most efficient

sorting algorithms at present are the one by Tannier et al. [31], than runs in O(n3/2
√
log n), and

the algorithm by Swenson et al. [30] that runs in O(n log n) time for almost all permutations.

Caprara [9] showed that genomes containing hurdles are very rare. For example, less than one

percent of the genomes with 8 genes contain hurdles and only one in 105 genomes with 100

genes. Swenson et al. [29] proved that the probability that a random signed permutation on n

elements contains a hurdle is O(n−2) and the probability that it contains a fortress is O(n−15).

It was also shown that the bound (1) approximates the reversal distance extremely well for both

simulated (see Kececioglu and Sankoff [22]) and biological data (see Bafna and Pevzner [2]).

Kececioglu and Sankoff [22] observed that the average difference between this bound and the

exact distance is less than 1 for a random permutation.

One can therefore use the bound (1) as a very good approximation for the reversal distance.

Moreover, in the case of unichromosomal genomes, the bound (1) agrees exactly with the

double-cut-and-join (DCJ) distance introduced by Yancopoulos et al. [34]. For more details on

this distance see also [5].

The goal of the present work is to find the distribution of c(Π) for a random (uniform) signed

permutation Π.

II. THE DISTRIBUTION OF c(Π)

A. The finite Markov chain embedding technique

For obtaining the distribution of c(Π) for a random signed permutation Π, we use the finite

Markov chain embedding technique introduced by Fu and Koutras [16].

Let Xn (n a non-negative integer) be a non-negative integer random variable. As in Definition

2.1 of [16], we call Xn finite Markov chain embeddable if

(i) there exists a (possibly inhomogeneous) finite Markov chain {Yt : 1 ≤ t ≤ n} with

values in a finite state space E = {a1, ..., am},

(ii) there exists a finite partition {Cx, x = 0, 1, ..., ℓ} of E, and

(iii) for every x = 0, 1, ..., ℓ we have

P(Xn = x) = P(Yn ∈ Cx).
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The distribution of Xn can in this case be obtained via a product of transition matrices of

the Markov chain (Yt)1≤t≤n. Indeed, if we define, for every 2 ≤ t ≤ n, the transition matrix

Pt := (Pt(y, z))y,z∈E by

Pt(y, z) = P(Yt = z|Yt−1 = y), ∀y, z ∈ E,

then, by Theorem 2.1 in [16], we have

P(Xn = x) = µ1P2 · · ·Pn

∑
i:ai∈Cx

ei, (3)

where

µ1 = (P(Y1 = a1), ...,P(Y1 = am))

is the row vector of the initial probability of the Markov chain and, for each i = 1, ...,m, ei is

the column vector having 1 at the i-th coordinate and 0 elsewhere.

B. The construction of the Markov chain

Let n be a fixed positive integer. We start with Π1 being a random uniform signed permutation

with one element, hence Π1 = [+1] with probability 1/2 and Π1 = [−1] with probability 1/2.

For every t = 2, ..., n, we let Πt represent the random signed permutation of t elements which

is obtained from Πt−1 by inserting at random the element t uniformly into one of the t possible

positions, with the “+” sign with probability 1/2 and the “−” sign with probability 1/2, the

sign being independent of the position.

Note that (Πt)1≤t≤n is an inhomogeneous Markov chain with initial distribution

P(Π1 = [1]) = P(Π1 = [−1]) = 1/2

and the following transition probability matrices: for every 2 ≤ t ≤ n,

Mt(σ, σ
+,i) = P(Πt = σ+,i|Πt−1 = σ) =

1

2t
,

Mt(σ, σ
−,i) = P(Πt = σ−,i|Πt−1 = σ) =

1

2t
,

where

σ+,i := [σ1, ..., σi−1, t, σi, ..., σt−1],

σ−,i := [σ1, ..., σi−1,−t, σi, ..., σt−1]
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and Mt(σ, σ
′) = 0 for every other σ′ ∈ Bt.

It is easy to see that for every t = 1, ..., n, Πt is a random signed permutation of t elements,

uniformly chosen among the 2tt! elements of Bt. In our case, the random variable of interest is

Xn := c(Πn), which we will show to be finite Markov chain embeddable. We construct a finite

Markov chain (Yt)1≤t≤n verifying the conditions (i),(ii) and (iii), as follows.

For every t = 1, ..., n we denote by Kj,t, j = 1, ..., n+1 the random variables representing the

number of cycles of length j in the breakpoint graph of the permutation Πt. We also denote by

Lt the length of the cycle in G(Πt) which contains the terminal point T . For every t = 1, ..., n

we obviously have Kj,t = 0 for j = t+ 2, ..., n+ 1 and
t+1∑
j=1

jKj,t = t+ 1,
t+1∑
j=1

Kj,t = c(Πt).

We let

Yt := (Lt, K1,t, ..., Kn+1,t), t = 1, ..., n.

We call Yt the type of the permutation Πt. For example, the permutation π = [+3,−4,−2,+1,+5]

from Fig. 1 is of type (1, 1, 0, 0, 0, 1, 0). Note that for every 1 ≤ t ≤ n, Yt takes values in the

finite set

Et =

(ℓ, k1, ..., kt+1, 0, ..., 0︸ ︷︷ ︸
n−t

) : ℓ ∈ {1, ..., t+ 1},
t+1∑
j=1

jkj = t+ 1, kℓ ≥ 1

 .

Let us denote
−→
k := (k1, ..., kn+1). We have

P(c(Πn) = x) = P(Yn ∈ Cx),

where, for every x = 1, 2, ..., n+ 1,

Cx =

{
(ℓ,

−→
k ) :

n+1∑
j=1

kj = x,
n+1∑
j=1

jkj = n+ 1, kℓ ≥ 1

}
.

We will show that (Yt)1≤t≤n is an inhomogeneous Markov chain. The initial distribution of

Y1 is

P(Y1 = (1, 2, 0, 0, ..., 0)) = P(Y1 = (2, 0, 1, 0, ..., 0)) = 1/2,

the case Y1 = (1, 2, 0, 0, ..., 0) corresponding to Π1 = [+1] and the case Y1 = (2, 0, 1, 0, ..., 0) to

Π1 = [−1].

For 2 ≤ t < n, write Yt−1 = (ℓ,
−→
k ). Note that necessarily kℓ ≥ 1.
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Fig. 2. The disjoint cycle decomposition of G(π), for π = [+4,−2,−1,+5,+3].

We have the following result.

Proposition 1: (Yt)1≤t≤n is an inhomogeneous Markov chain of initial distribution

P(Y1 = (1, 2, 0, 0, ..., 0)) = P(Y1 = (2, 0, 1, 0, ..., 0)) = 1/2

and the following transition probabilities.

If Yt−1 = (ℓ,
−→
k ), with kℓ ≥ 1, then the possible transitions are to Yt = (ℓ′,

−→
k′ ), where

(i) ℓ′ = ℓ+ 1 and
−→
k′ =

−→
k − e′ℓ + e′ℓ+1, with probability ℓ/(2t);

(ii) ℓ′ = j, with 1 ≤ j ≤ ℓ, and
−→
k′ =

−→
k − e′ℓ + e′j + e′ℓ+1−j , with probability 1/(2t);

(iii) ℓ′ = ℓ + x + 1, with 1 ≤ x ≤ t − ℓ, x ̸= ℓ and
−→
k′ =

−→
k − e′ℓ − e′x + e′ℓ+x+1, with

probability xkx/t;

(iv) ℓ′ = 2ℓ+ 1 and
−→
k′ =

−→
k − 2e′ℓ + e′2ℓ+1, with probability ℓ(kℓ − 1)/t,

where for each i, e′i is the row vector having 1 at the i-th coordinate and 0 elsewhere.

Proof: For a permutation π of type (ℓ,
−→
k ), we will show that P(Yt = (ℓ′,

−→
k′ )|Πt−1 = π)

depends only on ℓ′,
−→
k′ , ℓ,

−→
k . This easily implies that (Yt)1≤t≤n is a Markov chain.

Suppose now that Πt−1 = π, with π being of type (ℓ,
−→
k ). In Fig. 2 we have the disjoint cycle

decomposition of the breakpoint graph of the permutation Π5 = π = [+4,−2,−1,+5,+3]. In

this case we have ℓ = 5 and
−→
k = (1, 0, 0, 0, 1, 0).

We will investigate the changes produced in the breakpoint graph when inserting the new

element ±t, at random, into one of the t possible positions of the permutation π, with the “+”

sign with probability 1/2 and the “−” sign with probability 1/2.

The modifications concerning the dashed edges are simple. Disregarding the sign of ±t, the

dashed edge between 2(t− 1) and T is deleted and replaced by a dashed edge between 2(t− 1)

and 2t− 1, and then another dashed edge is added between 2t and T (see for example Fig. 3).
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Fig. 3. For Π6 = [+4,−2,−1,+6,+5,+3] the cycle containing T grows to the length ℓ′ = ℓ + 1 = 6. The element +6 is

inserted into Π5 = [+4,−2,−1,+5,+3] in position i = 4, corresponding to the deletion of the solid edge 1–9.

Concerning the solid edges: we choose at random a solid edge among the t solid edges in

the breakpoint graph of π, we delete it and then add two other solid edges to connect the two

extremities of the deleted edge to 2t − 1 and 2t respectively, in one of the two possible ways.

The choice of the solid edge to be deleted corresponds to the choice of the position in the

permutation π where ±t is inserted. The way in which we connect the two extremities of the

deleted edge to 2t− 1 and 2t respectively, corresponds to the sign of the element t.

More precisely, if we choose to insert the element ±t in the position i, where 2 ≤ i ≤ t− 1,

then we will delete the solid edge between (π(i − 1))R and (π(i))L. If we insert +t, then we

will add two solid edges between (π(i − 1))R and 2t − 1 and between 2t and (π(i))L. If we

insert −t, then we will add two solid edges between (π(i− 1))R and 2t and between 2t− 1 and

(π(i))L.

If we choose to insert the element ±t in the position 1, i.e. at the beginning of the permutation

π, then we will delete the solid edge between S and (π(1))L. If we insert +t we add two solid

edges between S and 2t− 1 and between 2t and (π(1))L, and if we insert −t we add two solid

edges between S and 2t, and between 2t− 1 and (π(1))L.

If we choose to insert ±t in the position t, i.e. at the end of the permutation π, then we will

delete the solid edge between (π(t))R and T . If we insert +t we add two solid edges between

(π(t − 1))R and 2t − 1 and between 2t and T , and if we insert −t we add two solid edges

between (π(t− 1))R and 2t and between 2t− 1 and T .

The cases (i) and (ii) in the statement correspond to the deletion of a solid edge from the cycle

containing T , and the cases (iii) and (iv) correspond to the deletion of a solid edge belonging
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Fig. 4. For Π6 = [+4,−2,−1,−6,+5,+3] the cycle containing T splits into two and ℓ′ = 3. The element −6 is inserted

into Π5 = [+4,−2,−1,+5,+3] in position i = 4, corresponding to the deletion of the solid edge 1–9.

to a cycle not containing T .

If we delete a solid edge belonging to the cycle of size ℓ which contains T , then we have two

possible situations, depending on the deleted solid edge and on the permutation π. One situation

is that, when we insert +t, the cycle containing T grows to the length ℓ + 1 (see Fig. 3), and

when we insert −t it splits into two smaller cycles, of sizes which sum to ℓ+1 (see Fig. 4). The

other possible situation is the converse, i.e. when we insert −t the cycle containing T becomes

of size ℓ+1 (see Fig. 5), and when we insert +t it splits into two smaller cycles, of sizes which

sum to ℓ+ 1 (see Fig. 6).

The event that the cycle containing T becomes of size ℓ + 1 occurs with probability ℓ/(2t),

because we have ℓ possible solid edges to choose in the cycle containing T . In the case when

the cycle containing T splits into two cycles, the new size j of the cycle which will contain T

is chosen at random, uniformly between 1 and ℓ. The size of the second cycle is then simply

ℓ + 1 − j. Each size j corresponds to a specific choice for the deleted solid edge, hence the

event that the cycle containing T splits into two cycles and the size of the new cycle which will

contain T becomes j, occurs with probability 1/(2t).

If we delete a solid edge from a cycle not containing T , then, disregarding the sign of t, this

cycle will merge with the one containing T . If the cycle from which we have deleted a solid

edge was of size x, then in the breakpoint graph of Πt the cycle containing T will be of size

ℓ+ x+ 1.

In (iii), x represents the length of the cycle not containing T from which we choose a solid

edge to be deleted. If x ̸= ℓ, the probability that this event occurs equals xkx/t, because we
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Fig. 5. For Π6 = [−6,+4,−2,−1,+5,+3] the cycle containing T grows to the length ℓ′ = ℓ + 1 = 6. The element −6 is

inserted into Π5 = [+4,−2,−1,+5,+3] in position i = 1, corresponding to the deletion of the solid edge S–7.

Fig. 6. For Π6 = [+6,+4,−2,−1,+5,+3] the cycle containing T splits into two and ℓ′ = 2. The element +6 is inserted

into Π5 = [+4,−2,−1,+5,+3] in position i = 1, corresponding to the deletion of the solid edge S–7.

have kx cycles of length x that we can choose, and each of them contains x solid edges.

The case (iv) corresponds to the case x = ℓ, when we have only kℓ−1 possibilities to choose

a cycle of size ℓ not containing T .

Proposition 1 describes the entries of the transition probability matrix Pt of the inhomogeneous

Markov chain (Yt)t. As described in (3), we can therefore obtain the distribution of c(Πn) via

the product of n transition matrices of this Markov chain.

C. Numerical results

We have implemented an iterative procedure which, for a given n, computes numerically the

distribution of Yn and then the distribution of c(Πn). At each step t = 1, ..., n− 1, we compute

the distribution of Yt+1 from the distribution of Yt, using the transition probabilities described

in Proposition 1. The complexity of our algorithm is O(n2 × p(n+1)), where p is the partition

function, i.e. for every positive integer m, p(m) is the number of integer partitions of m. An
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TABLE I

THE DISTRIBUTION OF c(Π) FOR A RANDOM SIGNED PERMUTATION Π ∈ B20 .

k 1 2 3 4 5 6 7 8 9

pk 0.19213 0.34805 0.27688 0.13047 0.04126 0.00938 0.00160 0.00021 0.00002

TABLE II

THE DISTRIBUTION OF c(Π) FOR A RANDOM SIGNED PERMUTATION Π ∈ B30 .

k 1 2 3 4 5 6 7 8 9 10

pk 0.15849 0.31791 0.28690 0.15704 0.05909 0.01639 0.0035 0.00059 0.00008 0.00001

asymptotic expression for p(m) is given by

p(m) ∼
exp(π

√
(2m)/3)

4m
√
3

, as m → ∞.

In Table I and Table II we give the distribution of c(Π) for a random uniform signed

permutation Π of 20 and 30 elements, respectively. In the two tables pk denotes the probability

that c(Π) takes the value k. For the values of k not appearing in the tables the corresponding

probabilities are negligible. On a Pentium 4 processor, 3.1 Mhz, 512 Mb, the computation time

was 13s for n = 20, 300s for n = 30, 4× 103s for n = 40 and 4× 104s for n = 50.

III. CONCLUDING REMARKS

In this article we have obtained the distribution of the number of alternating cycles in the break-

point graph of a random signed permutation, in the form of a product of transition probability

matrices of a certain finite Markov chain, using the finite Markov chain embedding technique.

A drawback of our method is the fact that our Markov chain is inhomogeneous and of large

dimension, which induces a high computational complexity.

A plan for a future work is to find a closed analytic formula for the exact distribution of the

number of cycles in the breakpoint graph of a random signed permutation.
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