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Compound Poisson Approximation and Testing

for Gene Clusters with Multigene Families

S. GRUSEA,1,2 E. PARDOUX,1 O. CHABROL,1 and P. PONTAROTTI 1

ABSTRACT

We present in this article a compound Poisson approximation for computing probabilities
involved in significance tests for conserved genomic regions between different species. We
consider the case when the conserved genomic regions are found by the reference region
approach. An important aspect of our computations is the fact that we are taking into
account the existence of multigene families. We obtain convergence results for the error of
our approximation by using the Stein-Chen method for compound Poisson approximation.

Key words: compound Poisson approximation, multigene families, reference-region approach,

significance test for gene clusters, Stein-Chen method.

1. INTRODUCTION

Orthologous genes are two genes, in two different species, that descend from the same gene at

the ancestor of the two species, as the result of a speciation event. We call conserved genomic region or

gene cluster two chromosomic regions, in two different species, that have in common a certain number of

orthologous genes, not necessarily adjacent or in the same order in the two genomes. We do not impose any

restriction on the gap length between consecutive orthologs. In the literature, various definitions for gene

clusters exist (Bergeron et al., 2002; Danchin et al., 2004; Durand et al., 2003; Hoberman and Durand, 2005,

Hoberman et al., 2005; Raghupathy et al., 2005; 2009). We have chosen here a very unrestrictive definition,

in order to be able to detect evolutionary signals even between very distant species. The conserved genomic

regions can represent signs of evolutionary relatedness between species or of functional selective pressures

acting on certain groups of genes. But for this to be the case, the conserved genomic regions have to be

significant, i.e., very improbable to have appeared by chance.

During the evolutionary time, the gene order in one genome can be affected by various genome re-

arrangement events such as inversions, translocations, transpositions, chromosomic fissions, and fusions.

Therefore, in the absence of certain constraints due to functional selective pressures, the gene order is

randomized during evolution. This is one reason why, in general, the null hypothesis taken in the signif-

icance tests for gene clusters is the hypothesis of random gene order.

There exist different approaches when searching for gene clusters (Durand et al., 2003). In this article,

we focus on the case when the gene clusters are found by the ‘‘reference region’’ approach, which consists
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in starting with a fixed genomic region in a certain species A (called the reference region) and searching for

significant orthologous gene clusters in the genome of another species B.

In general, the orthology relation between the genes of two species is not one-to-one. For a given gene in

one species, we may find more than one orthologous gene in another species, as the result of duplication

events happened after the separation of the two species. The genes in one species which are orthologous to

the same gene in another species are called co-orthologs of this gene and form what we call a multigene

family. The existence of multigene families is an important fact which needs to be considered when testing

for gene cluster significance, but very few of the existent statistical tests consider it. Danchin et al. (2004)

propose to weigh the orthologs in inverse proportion to the sizes of the multigene families, but their use of a

binomial distribution is not adequate in these settings. Raghupathy et al. (2005, 2009) take also into account

the existence of multigene families, but their test is suitable only for clusters found by the window-

sampling approach, and not by the reference region approach, as in our case.

In this article, we adopt the idea of Danchin et al. (2004) for taking into account the multigene families

and propose a compound Poisson approximation for computing the probabilities, under the null hypothesis,

of different gene clusters.

The article is organized as follows. In Section 2, we present the mathematical framework. We explain the

simplified mathematical model that we use and we describe the way in which we take into account

the existence in the genome B of multiple co-orthologs for the genes in the reference region. We give the

mathematical formulation of the problem and we start by considering, for technical convenience, the case

of a circular genome. In Subsection 2.3, we give a very short presentation of the Stein-Chen method for

compound Poisson approximation—the coupling approach. We present in Theorem 1 a result of Roos

(1993), which gives a convergence result for the error of the approximation under the existence of a certain

coupling. Section 3 is the core of the article, containing the compound Poisson approximations for our

probability of interest, together with the convergence results that we have obtained using the Stein-Chen

method. Following the approach of Roos (1993a,b), we construct explicitly the coupling needed in The-

orem 1, and we estimate the terms appearing in the error bound in Theorem 1. Theorem 2 states the

obtained convergence result. In Subsection 3.2, we describe a ‘‘Markovian’’ approximation for computing,

in practice, the parameters of the compound Poisson distribution. In Subsection 3.3, we extend the results to

the case of a linear genome. In Section 4, we present some numerical results, both in the circular and in the

linear case, for a set of selected values for the parameters which are interesting in our biological framework.

We also discuss the biological implications of our results. Section 5 presents three applications of our

results on real biological data. We analyze three examples: the first one is a comparison between the human

genome and the genome of Oryzias-Latipes, the second one is a comparison between the human genome

and the genome of Ciona-Intestinalis, and the third one is a comparison between the human genome and the

genome of Danio-Rerio.

2. MATHEMATICAL FRAMEWORK

2.1. Mathematical formulation of the problem

We model the genome as an ordered set of genes, the length of a genomic region being measured in

number of genes. We ignore the separation into chromosomes and the physical distances between genes.

The data that we dispose of are: the number m of genes in the reference region from the genome A which have

at least one ortholog in the genome B; for each of those genes i¼ 1, . . . , m, the number of orthologs it has in B,

which we denote fi; the positions in B of these orthologs; the total number N of genes in the genome B.

We make the (natural) assumption that there exists a maximal size fmax for the multigene families.

Based on the fact that we are in the case m<<N, we make a further approximation and consider the

genome B as the continuous interval [0, 1], in which the ‘‘new’’ positions of the orthologs are obtained by

dividing by N their real positions in the genome.

We will use a pure significance test, with the null hypothesis H0 : random gene order in the genome B.

All the probabilities and distributions appearing throughout the paper are implicitly considered under the

null hypothesis H0.

For i¼ 1, . . . , m, we let Uij, j¼ 1, . . . , /i represent the positions in B of the orthologs of the gene i from

the reference region. Under H0, the r.v.’s Uij, j¼ 1, . . . , /i, i¼ 1, . . . , m are i.i.d. uniformly distributed on

[0, 1].
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Let n : ¼/1þ � � � þ/m denote the total number of genes in B which are orthologous to genes in the

reference region in A. We are interested only in these n genes. We want to test whether they cluster together

in a significant way, i.e., in a way which is very improbable by chance, under the null hypothesis.

For taking into account the existence in B of multiple orthologs for the genes in the reference region, we

consider the following counting measure:

lm : ¼
Xm

i¼ 1

1

/i

X/i

j¼ 1

dUij
:

For an ortholog belonging to a multigene family of size fi, we call 1
/i

its label. For an interval I � [0, 1], we

will refer to mm(I) as its weight.

For applying a statistical test we need to compute, for a given weight h and a given length r, the

probability, under the null hypothesis, of finding somewhere in the genome B an orthologous cluster of

weight greater than h and of length smaller than r. We will call such a cluster of type (h : r).

In this article, we focus on the computation of this probability. For technical simplifications, we first

consider the case when B is a circular genome, hence the circle of length 1 in our model.

2.2. The circular case

Let h be fixed, of the form h¼
Pm

i¼ 1
ni

/i
, with 0 � ni � /i, i¼ 1, . . . , m.

Let r 2 (0, 1) be also fixed.

We denote by U(1) � U(2) � � � � � U(n) the ordered positions in B of the n orthologs, i.e. the order

statistics of n i.i.d. r.v.’s uniformly distributed on the circle of length 1.

Let Wm¼Wm(h, r) denote the r.v. representing the number of (possibly overlapping) clusters of type (h : r)

in the genome B. Let also

Ak ¼Ak(h, r) : ¼flm([U(k), U(k)þ r]) � hg

denote the event of having in B a cluster of type (h : r) starting with the k-th ortholog.

We have Wm¼
Pn

k¼ 1 1Ak
. We are interested in computing P(Wm � 1), the probability of finding,

somewhere in the genome B, at least one cluster of type (h : r).

We will further simplify the parametrization of the problem.

Let /01 5 � � � 5/0J denote all the different values among the multigene families’ sizes /1, . . . , /m, and

let gj¼ jfi¼ 1, . . . , m : /i¼/0jgj, j¼ 1, . . . , J denote their multiplicities.

Remark 1. We can represent the measure mm as lm¼
Pn

i¼ 1 LidU(i)
, where dx denotes the Dirac

measure in x and L¼ (L1, . . . , Ln) is a random vector independent of the U(i)’s and uniformly distributed

over the set of all possible labelings of the n orthologs:

K¼ ‘¼ (‘1, . . . , ‘n) 2 1

/01
, . . . ,

1

/0J

� �n

: i : ‘i¼
1

/0j

( )�����
�����¼ gj/

0
j,8j

( )
:

Let nmin : ¼ g1¼ jfi : /i¼/01gj, where /01¼ minf/i : i¼ 1, . . . , mg. We let also h� : ¼dh/01e and we

assume that nmin� h*, s.t. h* is the minimal number of orthologs in a cluster of weight greater than h.

For every labeling ‘ 2 K and every k¼ 1, . . . , n, let

hk(‘) : ¼ minfd : ‘kþ � � � þ ‘kþ d� 1 � hg

be the minimal number of orthologs in a cluster starting with the k-th ortholog so as to be of weight greater

than h. Therefore,

Ak \ fL¼ ‘g¼fU(kþ hk(‘)� 1)�U(k) � rg \ fL¼ ‘g:

Let h* :¼max‘,k{hk(‘)}.

We have h� � dh/0Je, where /0J ¼ maxf/i : i¼ 1, . . . , mg.

Remark 2. We place ourselves in the asymptotic settings of m?? , or equivalently, n?? .
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Note that we are in the case of a sum of indicators which are in a short-range dependence and a long-

range (almost) independence. Because of the strong dependence between the neighboring indicators, the

events Ak will tend to occur in clumps. Consequently, it seems reasonable to approach the distribution of

Wm by a compound Poisson distribution CP(l), with a ‘‘good’’ choice of the parameter l.

We will quantify the error using the Kolmogorov distance. We recall that the Kolmogorov distance

between two measures m and n on Rþ is

dK(l, �)¼ sup
k2N
jl([k,1)� �([k,1))j:

We will approximate our probability of interest P(Wm � 1) by the corresponding probability

CP(k)([1,1))¼ 1� expf�
P1
i¼ 1

kig for the compound Poisson distribution, with an error

jP(Wm � 1)�CP(k)([1,1))j � dK(L(Wm), CP(k)):

It is therefore sufficient to obtain bounds for the Kolmogorov distance between the two distributions. For

bounding the Kolmogorov distance, we will use the Stein-Chen method for compound Poisson approxi-

mation.

The Stein-Chen method is a general method to obtain bounds on the distance between two probability

distributions with respect to a probability metric. It was originally formulated for normal approximations

by Stein (1972), to obtain a bound for the Kolmogorov distance between the distribution of a sum of

m-dependent sequence of random variables and a standard normal distribution. The Poisson approximation

version was developed by Chen (1975). See also Stein (1986).

The Stein-Chen method for compound Poisson approximation was introduced by Barbour et al. (1992).

In this article, we use, more precisely, the coupling approach developed by Roos (1993 a,b).

2.3. The Stein-Chen method, the coupling approach

Let W ¼
P

a2C Ia be a sum of indicators. We assume that there exists a local-dependence structure

between these indicators (of the type short-range dependence, long-range independence), so that we can,

for every a 2 C, divide G into four disjoint subsets {a}, Cvs
a , Cvw

a and Cb
a:

Cvs
a : ¼fb 2 Cnfag : Ib ‘‘very strongly’’ dependent on Iag,

Cvw
a : ¼fb 2 Cnfag : Ib ‘‘very weakly’’ dependent on fIc, c 2 fag [ Cvs

a gg,
Cb

a : ¼Cnffag [ Cvs
a [ Cvw

a g:

We let Ua : ¼
P

b2Cvs
a

Ib, Za : ¼ IaþUa, Xa : ¼
P

b2Cb
a

Ib.

The canonical choice for the parameter of the approximating compound Poisson distribution is the

following: k¼
PGþ 1

i¼ 1 kidi, where G¼ maxa2CfjCvs
a jg and

ki¼
1

i

X
a2C

E(Ia1fZa ¼ ig):

In practice, it is not always easy to compute the canonical parameters. Sometimes it is useful to keep only

a smaller number of parameters: k̂k¼
P‘

i¼ 1 k̂kidi, with ‘<Gþ 1, where k̂ki¼ ki for i¼ 2, . . . , ‘, k̂ki¼ 0 for

i� ‘þ 1 and k̂k1¼ E(W)�
P‘

i¼ 2 iki.

For every a 2 C, let Va be a r.v. and Va its set of values.

We have the following theorem (see Theorem 4.F. in Roos, 1993a).

Theorem 1. Assume that for every a 2 C and v 2 Va we can construct, on the same probability space,

the indicators fI00biv(a), b 2 C, i¼ 1, . . . , jCvs
a j þ 1g and fI0bv(a), b 2 Cg in such a way that

L(I00biv(a), b 2 C)¼L(Ib, b 2 CjIa1fZa ¼ ig ¼ 1, Va¼ v), 8i (1)

L(I0bv(a), b 2 C)¼L(Ib, b 2 C): (2)

Then, for all choices of the sets Cvs
a and Cvw

a and for all bounded functions g : g : N�!R, we have
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dK(L(W), CP(k̂k)) � cK(k̂k)
X
a2C

[(EIa)2þ EIaE(UaþXa)þ E(IaXa)

(

þ
XjCvs
a j þ 1

i¼ 1

X
b2Cvw

a

E(Ia1fZa ¼ ighb, a, i(Va))]þ
XGþ 1

i¼ ‘þ 1

i(i� 1)ki

9=
;,

where cK(k̂k)¼ supA2K supi�1 jgk̂k, A
(iþ 1)� gk̂k, A

(i)j, with K¼f[k,1) : k 2 Ng and gk̂k, A
being the solution

of the Stein-Chen equation for compound Poisson approximation (Roos, 1993a) and hb, a, i(v)¼
EjI00biv(a)� I0bv(a)j.

Barbour et al. (2000) showed that, if the following condition is fulfilled:

k1 � 2k2 � 3k3 � � � � , (3)

then

cK(k) � min
1

2
,

1

k1þ 1

� �
: (4)

In the next section, we apply this method to our Wm, using Theorem 1.

3. COMPOUND POISSON APPROXIMATION FOR P(Wm � 1)

3.1. The circular case

We place ourselves in the asymptotic settings of n?? and r? 0, with nr? 0.

We let Ik : ¼ 1Ak
, k¼ 1, . . . , n.

For every k 2 f1, . . . , ng, we choose the dependence sets as follows:

Cvs
k : ¼fk� h� þ 2, . . . , k� 1, kþ 1, . . . , kþ h� � 2g,

Cvw
k : ¼fj : jj� kj4 2(h� � 2)g,
Cb

k : ¼Cnffag [ Cvs
a [ Cvw

a g¼fj : h� � 25 jj� kj � 2(h� � 2)g:

Here, G¼ maxk¼ 1, ..., n jCvs
k j ¼ 2(h� � 2) and Zk ¼

Pkþ h� � 2
j¼ k� h� þ 2 Ij.

We will explicitly construct the coupling described in Theorem 1.

Let us define the spacings Sj :¼U(jþ1)�U(j), j¼ 1, . . . , n, with the circular convention modulo n.

Notation 1. For a sequence (aj)j�1 we will denote ai, k : ¼ aiþ � � � þ aiþ k� 1.

For every k 2 f1, . . . , ng and ‘ 2 K, we have Ak\ {L¼ ‘}¼ {Sk,hk(‘)�1� r}.

Let k 2 f1, . . . , ng be fixed. The indicators appearing in the expression of Zk are those from Ik�h*þ2 to

Ikþh*�2. Consequently, if L¼ ‘, the spacings appearing in the expression of Zk are Sk� h� þ 2, . . .,
Skþh*þhkþh*�2(‘)�4.

Let Vk : ¼ (L, Sk� h� þ 2, . . . , Skþ h� þ h� � 4). Note that Vk contains all the spacings which may appear in Zk,

for different values of ‘.
For every v¼ (‘, z1, . . . , z2h� þ h� � 5), with ‘ 2 K, z1, . . . , z2h� þ h� � 5 4 0 and z1þ � � � þ z2h� þ h� � 5 5 1,

we will construct on the same probability space the indicators fI00jiv(k), j¼ 1, . . . , ng and fI0j(k), j¼ 1, . . . , ng
(not depending on v) verifying the relations (1) and (2) in Theorem 1.

Note that the event {Ik1{Zk¼i}¼ 1} is Vk - measurable and thus, for the condition (1) to be fulfilled, it

suffices to construct the family of indicators fI0j(k), j¼ 1, . . . , ng (not depending on i), s.t.

L(I00jv(k), j¼ 1, . . . , n)¼L(Ij, j¼ 1, . . . , njVk ¼ (‘, z1, . . . , z2h� þ h� � 5)):

Let U01, . . . , U0n be r.v.’s independent on L and such that L(U01, . . . , U0n)¼L(U(1), . . . , U(n)).

Define the corresponding spacings S0j¼U0jþ 1�U0j ,8j¼ 1, . . . , n (with the circular convention

U0nþ 1¼U01). We thus have L(S01, . . . , S0n)¼L(S1, . . . , Sn).

For v¼ (‘, z1, . . . , z2h� þ h� � 5) with ‘ 2 K, z1, . . . , z2h� þ h� � 5 4 0 and z1þ � � � þ z2h� þ h� � 5 5 1, we let
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S00j ¼
1�

P2h� þ h� � 5

i¼ 1

zi

1�
Pkþ h� þ h� � 4

i¼ k� h� þ 2

S0i

S0j, j 2 f1, . . . , ngnfk� h� þ 2, . . . , kþ h� þ h� � 4g,

S00k� h� þ 2¼ z1, . . . , S00kþ h� þ h� � 4¼ z2h� þ h� � 5:

Note that

L(S001, . . . , S00n)¼L(S1, . . . , SnjSk� h� þ 2¼ z1, . . . , Skþ h� þ h� � 4¼ z2h� þ h� � 5):

Let also l0m :¼
Pn

i¼ 1 LidU0
i
.

For every j 2 f1, . . . , ng we construct the indicators needed in Theorem 1 as

I0j(k) :¼ 1fl0m([U0
j
, U0

j
þ r])�hg, I00jv(k) : ¼ 1fS00

j
þ ��� þ S00

jþ hj (‘)� 2
�rg:

It is easy to see that the indicators defined above verify the conditions (1) and (2). It remains to compute

all the quantities appearing in the error bound in Theorem 1.

The canonical choice for the parameters of the compound Poisson distribution is k¼
P2h� � 3

i¼ 1 kidi, , with

ki¼ 1
i

Pn
k¼ 1 E(Ik1fZk ¼ ig).

In our approximation we will use only half of the parameters, by truncating at ‘¼ h*� 1. Instead of l
we will use k̂k¼

Ph� � 1
i¼ 1 k̂kidi, where k̂ki¼ ki for i¼ 2, . . . , h� � 1 and k̂k1¼ E(Wm)�

Ph� � 1
i¼ 2 ki¼

k1þ
P2h� � 3

i¼ h�
iki.

We will approximate the probability of interest P(Wm � 1) by

p :¼ 1� exp �
Xh� � 1

i¼ 1

k̂ki

( )
:

Remark 3. As the indicators fI00jv(k), j¼ 1, . . . , ng do not depend on i, also the term hj, k(v)¼
E I00jv(a)� I0jv(a)
��� ��� appearing in Theorem 1 does not depend on i and thus

dK(L(Wm), CP(k̂k)) � cK(k̂k)
Xn

k¼ 1

f(EIk)2þ EIkE(Uk þXk)þ E(IkXk)

(

þ
X
j2Cvw

k

E(Ikhj, k(Vk))gþ
X2h� � 3

i¼ h�

i(i� 1)ki

9=
;,

where Uk¼
Pkþ h� � 2

j¼ k� h� þ 2 Ij� Ik and Xk¼
Pk� h� þ 1

j¼ k� 2h� þ 4 Ijþ
Pkþ 2h� � 1

j¼ kþ h� � 1 Ij.

Using classic results on uniform spacings (Pyke, 1965, 1972), one can easily prove

Lemma 2. For fixed k, assume that n?? , r? 0 s.t. nr? 0. Then, uniformly with respect to

0< nr< 1, we have

P(S1, k � r)¼ (nr)k

k!
(1þO 1

n

� �
þO(nr))

and for fixed i and j,

if i5 k : P(S1, i � r, Sk, j � r)¼ (nr)iþ j

i!j!
(1þO 1

n

� �
þO(nr)),

if i � k : P(S1, i � r, Sk, j � r)¼ (2k� iþ j� 2)!

(kþ j� 1)!(k� 1)!(k� iþ j� 1)!
(nr)kþ j� 1

· (1þO 1

n

� �
þO(nr)):
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For every k¼ 1, . . . , n, we have E(Ik)¼ 1
jKj
P

‘2K P(Sk, hk(‘)� 1 � r).

For every ‘ 2 K, from Lemma 1 and the exchangeability of the spacings, we have

P(Sk, hk(‘)� 1 � r)¼P(S1, hk(‘)� 1 � r)¼ (nr)hk(‘)� 1

(hk(‘)� 1)!
(1þO 1

n

� �
þO(nr)):

We hence obtain, for 0< nr< 1, the following upper bound:

E(Ik) � (nr)h� � 1

(h� � 1)!
(1þO 1

n

� �
þO(nr)): (5)

We make the following (biologically realistic) assumption on the data.

Assumption 1. We assume that we have nmin G n, i.e., nmin¼ an(1þO( 1
n
)), with a� 1 fixed.

Based on Assumption 1, we obtain

jf‘ 2 K : h1(‘)¼ h�gj � jKj: (6)

This further implies that E(Ik) � (nr)h� � 1 and E(Wm) � n(nr)h� � 1.

Let k< j. We have E(IkIj)¼ 1
jKj
P

‘2K P(Sk, hk(‘)� 1 � r, Sj, hj(‘)� 1 � r), where for each ‘ 2 K, using

Lemma 1, we have

P(Sk, hk(‘)� 1 � r, Sj, hj(‘)� 1 � r)¼P(S1, hk(‘)� 1 � r, Sj� kþ 1, hj(‘)� 1 � r)

¼ (2(j� k)þ hj(‘)� hk(‘))!

(j� k)!(j� kþ hj(‘)� hk(‘))!(j� kþ hj(‘)� 1)!
(nr)j� kþ hj(‘)� 1

· (1þO(
1

n
)þO(nr)), (7)

if k 5 j � kþ hk(‘)� 2 ( we say that the two clusters intersect)

¼ 1

(hk(‘)� 1)!(hj(‘)� 1)!
(nr)hk(‘)þ hj(‘)� 2(1þO(

1

n
)þO(nr)), (8)

if j4 kþ hk(‘)� 2 ( we say that the two clusters do not intersect):

From Assumption 1, we can also obtain that

jf‘ 2 K : hk(‘)¼ h�, hj(‘)¼ h�gj � jKj: (9)

Next we will estimate the error terms appearing in Theorem 1. We have

Proposition 3. Assume that n?? , r? 0 s.t. nr? 0 and nmin G n. Then, uniformly in 1
n
� nr 5 1 and

n4 2(2h� þ h� � 4) _ exp 4(h� þ h� � 5)
3(h� � 1)þ h�

n o
, we have the following estimates:

(a)
Xn

k¼ 1

(EIk)2 � n(nr)2(h� � 1)

[(h� � 1)!]2
(1þO(

1

n
)þO(nr));

(b)
Xn

k¼ 1

E(Ik)E(Uk þXk) � 4(h� � 2)
n(nr)2(h� � 1)

[(h� � 1)!]2
(1þO 1

n

� �
þO(nr));

(c)
Xn

k¼ 1

E(IkXk) � 2(2h� � h� � 2)
n(nr)2(h� � 1)

[(h� � 1)!]2
(1þO 1

n

� �
þO(nr));

(d)
Xn

k¼ 1

X
j2Cvw

k

E(Ikhj, k(Vk)) � 2(h� � 1)f2h� þ h� � 5þ 2h� � 2(h� þ h� � 4)g

·
n(nr)2(h� � 1)

[(h� � 1)!]2
(1þO 1

n

� �
þO(nr));

(e)
X2h� � 3

i¼ h�

i(i� 1)ki � (h� � 2)22h� � 5 n(nr)2(h� � 1)

[(h� � 1)!]2
(1þO 1

n

� �
þO(nr)):
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Proof. The bounds in (a) and (b) follow easily using (5). &

Proof of (c). We have

Xn

k¼ 1

E(IkXk)¼
Xn

k¼ 1

Xk� h� þ 1

j¼ k� 2h� þ 4

E(IjIk)þ
Xkþ 2h� � 4

j¼ kþ h� � 1

E(IkIj)

( )
,

where E(IkIj)¼ 1
jKj
P

‘2K P(Sk, hk(‘)� 1 � r, Sj, hj(‘)� 1 � r).

For j¼ kþ h*� 1, using Lemma 1,

– if hj(‘)¼ h* and hk(‘)¼ h*, then the two clusters do not intersect and, from (8), we obtain

P(Sk, hk(‘)� 1 � r, Sj, hj(‘)� 1 � r)¼ (nr)2(h� � 1)

[(h� � 1)!]2
(1þO(

1

n
)þO(nr));

– if hj(‘)¼ h* and hk(‘)> h*, then the two clusters intersect and, using (7), we obtain

P(Sk, hk(‘)� 1 � r, Sj, hj(‘)� 1 � r) � 1

2

(nr)2(h� � 1)

[(h� � 1)!]2
(1þO(

1

n
)þO(nr));

– for every other ‘ we have P(Sk, hk(‘)� 1 � r, Sj, hj(‘)� 1 � r)¼ (nr)2(h� � 1)O(nr).

It follows from (9) that E(IkIkþ h� � 1) � (nr)2(h� � 1)

[(h� � 1)!]2 (1þO( 1
n
)þO(nr)).

The other cases for j can be treated in a similar manner and the upper bound stated in (c)

easily follows. &

Proof of (d). We will condition on the r.v. Vk ¼ (L, Sk� h� þ 2, . . . , Skþ h� þ h� � 4). Given that

Vk¼ (‘, z1, . . . , z2h� þ h� � 5), we have Ik ¼ 1fzh� � 1, hk (‘)� 1�rg (hence deterministic) and thus

Xn

k¼ 1

X
j2Cvw

k

E(Ikhj, k(Vk))¼
Xn

k¼ 1

X
j2Cvw

k

1

jKj
X
‘2K

d(k, j, ‘),

where for each k¼ 1, . . . , n, j 2 Cvw
k and ‘ 2 K, we let

d(k, j, ‘) :¼ E[Ikhj, k(Vk)jL¼ ‘]¼ d1(k, j, ‘)þ d2(k, j, ‘),

d1(k, j, ‘) :¼
Z

1fzh� � 1, hk (‘)� 1�rgP(S00j, hj(‘)� 1 � r, S0j, hj(‘)� 1 4 r)

dF(z1, . . . , z2h� þ h� � 5),

d2(k, j, ‘) :¼
Z

1fzh� � 1, hk (‘)� 1�rgP(S00j, hj(‘)� 1 4 r, S0j, hj(‘)� 1 � r)

dF(z1, . . . , z2h� þ h� � 5),

with F being the distribution of (Sk� h� þ 2, . . . , Skþ h� þ h� � 4).

We further decompose d1(k, j, ‘) :¼ d01(k, j, ‘)þ d001 (k, j, ‘), where

d01(k, j, ‘) :¼
Z

1fzh� � 1, hk (‘)� 1�rg1fz1, 2h� þ h� � 5 4 arg

· P(S00j, hj(‘)� 1 � r, S0j, hj(‘)� 1 4 r)dF(z1, . . . , z2h� þ h� � 5),

d001 (k, j, ‘) :¼
Z

1fzh� � 1, hk (‘)� 1�rg1fz1, 2h� þ h� � 5�arg

· P(S00j, hj(‘)� 1 � r, S0j, hj(‘)� 1 4 r)dF(z1, . . . , z2h� þ h� � 5),

with a¼ a(n) to be chosen a little further. &

We will simplify the notation by writing hk instead of hk(‘). We have:
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d01(k, j, ‘) �
Z

1fzh� � 1, hk � 1 5 rg1fz1, 2h� þ h� � 5 4 argdF(z1, . . . , z2h� þ h� � 5)

¼
Z r

0

n(nu)hk � 2

(hk� 2)!

Z 1

ar� u

n(nv)2h� þ h� � hk � 5

(2h� þ h� � hk � 5)!
(1� u� v)n� (2h� þ h� � 4)

· (1þO 1

n

� �
)dvdu

�
Z nr

0

xhk � 2

(hk � 2)!
e� x=2

Z n

anr� x

y2h� þ h� � hk � 5

(2h� þ h� � hk � 5)!
e� y=2

· 1þO 1

n

� �� �
dydx ( by a change of variableþLemma 3)

� 22h� þ h� � 5

Z nr=2

0

zhk � 2

(hk� 2)!
e� z

Z 1
anr=2� z

t2h� þ h� � hk � 5

(2h� þ h� � hk � 5)!
e� t

· 1þO 1

n

� �� �
dydx

� 4(nr)hk � 1

(hk� 1)!

(anr)2h� þ h� � hk � 5

(2h� þ h� � hk� 5)!
e� anr=2 1þO 1

n

� �� �
( by Lemma 2)

� 4(nr)hk þ h� � 2

(h� � 1)!

1

n

n

(nr)h� � 1

(anr)2h� þ h� � hk � 5

(2h� þ h� � hk � 5)!
e� anr=2

� �

· 1þO 1

n

� �� �

� 1

n
(nr)2(h� � 1)O(nr),

if 1
n
� nr and (3h� þ h� � 3) log n � anr �

ffiffiffi
n
p

, entailing that

n(anr)2h� þ h� � hk � 5e� anr=2 � (nr)h� , and if moreover a> 1, nr< 1 and

anr> 4(2h*þ h*� 4) for applying Lemma 2 and Lemma 3. The last inequality is hence valid for

4(2h� þ h� � 4) _ (3h� þ h� � 3) log n � anr �
ffiffiffi
n
p

and
1

n
� nr 5 1

In a similar manner we can bound d001 (k, j, ‘), then decompose and bound d2(k, j, ‘).
We finally obtain that, if we take a :¼ (3h� þ h� � 3) log n

nr
then, uniformly in 1

n
� nr 5 1 and

n4 4(2h� þ h� � 4) _ exp 4(2h� þ h� � 4)
3h� þ h� � 3

n o
, we have the upper bound stated in (d).

Proof of (e). For every k¼ 1, . . . , n we let Cik denote the class of all the subsets of size i� 1 of

Cvs
k ¼fk� h� þ 2, . . . , k� 1, kþ 1, . . . , kþ h� � 2g. We obtain

iki¼
Xn

k¼ 1

X
C2Cik

E Ik

Y
t2C

It

Y
t2Cvs

k nC
(1� It)

0
@

1
A �Xn

k¼ 1

X
C2Cik

E(Iinf CIsup C):

For every k¼ 1, . . . , n and C 2 Cik we have

E(Iinf CIsup C)¼ 1

jKj
X
‘2K

P(Sinf C, hinf C(‘)� 1 � r, Ssup C, hsup C(‘)� 1 � r)

and h*� 1� i� 1� sup C� inf C.

If hinf C(‘)¼ hsup C(‘)¼ h*, then the two clusters do not intersect and we have

P(Sinf C, hinf C(‘)� 1 � r, Ssup C, hsup C(‘)� 1 � r)¼ (nr)2(h� � 1)

[(h� � 1)!]2
1þO 1

n

� �
þO(nr)

� �
:

It follows that E(Iinf CIsup C) � (nr)2(h� � 1)

[(h� � 1)!]2 1þO 1
n


 �
þO(nr)


 �
and hence
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iki �
2(h� � 2)

i� 1

� �
n(nr)2(h� � 1)

[(h� � 1)!]2
1þO 1

n

� �
þO(nr)

� �
:

The bound stated in (e) then follows from

X2h� � 3

i¼ h�

(i� 1)
2(h� � 2)

i� 1

� �
¼ (2h� � 4)

X2h� � 5

j¼ h� � 2

2h� � 5

j

� �
¼ (h� � 2)22h� � 5:

&

We have used the following two elementary lemmas that we state without proof. For a proof of Lemma

4, see Grusea (2008), and for a proof of Lemma 5, see Roos (1993a).

Lemma 4. Let X1, . . . , Xn be i.i.d. r.v.’s with distribution Exp(1) and let i, k� 1 s.t. iþ k� 1� n. Then,

uniformly in a� 1, b< 1, ab> 2(n� k� 1), we have the following inequality:

P(X1, n 4 ab, Xi, k 5 b) � 2
bk

k!

(ab)n� k� 1

(n� k� 1)!
e� ab:

Lemma 5. For 0� x� 1 and n� 2(mþ 1) we have (1� x)n�(mþ1)� e�nx/2.

In the following lemma, we show that the chosen parameters for the approximating compound Poisson

distribution verify the relation (3), and hence we can use the bound (4) of Barbour et al. (2000).

Lemma 6. If 0< nr< 1 and nmin G n, then for every i 2 f1, . . . , h� � 1g we have k̂ki � n(nr)iþ h� � 2. If

nmin G n and nr� g, where g is a fixed constant g< 1, then îkki � (iþ 1)k̂kiþ 1,8i.

Proof. We have iki¼
Pn

k¼ 1 E(Ik1fZk ¼ ig). One can easily show that the leading terms in the expression

of ili are those which are expectations of products of i consecutive indicators. For a term with i consecutive

indicators, of the form

E(Ij � � � Ijþ i� 1)¼ 1

jKj
X
‘2K

E(Ij � � � Ijþ i� 1jL¼ ‘),

we have that for each ‘ the extreme clusters intersect (because of the fact that jþ i� 1� jþ hj(‘)� 2, as

i< h*� hj(‘), Vj) and hence

P(Sjþ � � � þ Sjþ i� 1þ hjþ i� 1(‘)� 2 � r) � E(Ij � � � Ijþ i� 1jL¼ ‘)
� E(IjIjþ i� 1jL¼ ‘),

implying that E(Ij � � � Ijþ i� 1jL¼ ‘ � (nr)iþ hjþ i� 1(‘)� 2:.
Using (6) we obtain E(Ij � � � Ijþ i� 1) � (nr)iþ h� � 2,8j.
The results in the statement easily follow. &

For the detailed proofs of Proposition 1 and Lemma 2, see Grusea (2008).

From Proposition 1 and Lemma 4, together with Theorem 1 and relation (4), we obtain the following

upper bound on the error of approximating P(Wm � 1) by p¼ 1� expf�
Ph� � 1

i¼ 1 k̂kig.

Theorem 7. Suppose that n�!1, r�!0 and nmin G n. Then, uniformly in 1
n
� nr 5 1 and

n4 2(2h� þ h� � 4) _ exp 4(2h� þ h� � 4)
3(h� � 1)þ h�

n o
, we have:

P(Wm � 1)� pj j � C
n(nr)2(h� � 1)

[(h� � 1)!]2
1þO 1

n

� �
þO(nr)

� �
,

where C¼ 4h� � h� � 6þ (h� � 1)f2h� þ h� � 5þ 2h� � 2(h� þ h� � 4)gþ (h� � 2)22h� � 6.

Moreover, if E(Wm)¼ p1 is held constant when n�!1, then
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P(Wm � 1)� pj j ¼O 1

n

� �
:

3.2. The computation of the parameters

In practice, based on the fact that the leading terms in the expression of k̂k i are those containing products

of i consecutive indicators, and using a ‘‘Markovian’’ approximation, we make the following approxi-

mation for the parameters:

k̂ki 	 npqi� 1(1� q)2, for i¼ 2, . . . , h� � 1,

k̂k1¼ np�
Xh� � 1

i¼ 2

ik̂ki,

where p : ¼P(A1) and q : ¼P(A2jA1).

For computing p we sum over all labelings ‘:

p¼ 1

jKj
X
‘2K

P(S1, h1(‘)� 1 � r),

where P(S1, h1(‘)� 1 � r) is given by a Beta distribution function (Glaz et al., 1983; Pyke, 1965).

Note that it suffices to sum only over all different (‘1, . . . , ‘h�) possible.

We compute q¼P(A2jA1)¼P(A1 \ A2)=p in a similar way. We have

P(A1 \ A2)¼ 1

jKj
X
‘2K

P(A1 \ A2jL¼ ‘)

¼ 1

jKj
X
‘2K

P(S1, h1(‘)� 1 � r, S2, h2(‘)� 1 � r):

In this case it suffices to sum over all different (‘1, . . . , ‘h� þ 1).

For calculating P(S1, h1(‘)� 1 � r) and P(S1, h1(‘)� 1 � r, S2, h2(‘)� 1 � r) we use classic results on uniform

spacings (Glaz et al., 1983).

3.3. The linear case

Next we briefly consider the case of a linear genome. As in the circular case, we see the genome B as the

interval [0, 1] and the positions of the n orthologs as i.i.d. r.v.’s uniformly distributed on [0, 1]. The events

Ak are defined as before, but in this case we have a smaller number of possible events, precisely n� h*þ 1.

We also have a boundary effect which consists in the fact that for k¼ n� h� þ 2, . . . , n� h� þ 1 the events

Ak have a smaller probability.

Similarly to the circular case, we approximate the distribution of the number of clusters of type (h : r) in the

genome B, Wm :¼
Pn� h� þ 1

k¼ 1 1Ak
, by a compound Poisson distribution of parameter k̂k¼

Ph� � 1
i¼ 1 k̂kidi, where

k̂ki¼
1

i

Xn� h� þ 1

k¼ 1

E(Ik1fZk ¼ ig), i¼ 2, . . . , h� � 1, k̂k1¼ E(Wm)�
Xh� � 1

i¼ 1

îkki

and Zk¼
Pkþ h� � 2

j¼ k� h� þ 2 1Aj
. Notice that Theorem 2 is valid in this case, too.

For the computation of the parameters we ignore the boundary effects and use a Markovian approxi-

mation as in the circular case. Note that, based on Assumption 1 (see also the relations (6) and (9)), the

error introduced in the computation of the parameters by ignoring the boundary effects is negligible.

4. NUMERICAL RESULTS AND DISCUSSION

We denote by /0 : ¼ (/01, . . . , /0J) the vector containing all the distinct values /01 5 � � � 5/0J among the

sizes of the multigene families in the genome B, and we denote by g :¼ (g1, . . . , gJ) the vector containing

their multiplicities. We present two sets of numerical results for our compound Poisson approximation, see

the two tables below. In Table 1 we give the results for the circular case and in Table 2 for the linear case.
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We have selected values for f0, g, h, r which are interesting in practice, for our biological purpose of

statistically testing the significance of gene clusters found by the reference region approach. In both tables,

p is our compound Poisson approximation for the probability of interest P(Wm(h, r) � 1) and p̂pMC – e is a

Monte Carlo estimate, based on 106 simulations, of the 95%-confidence interval for the same probability.

We have estimated e using the Central Limit Theorem.

Notice that, although Theorem 2 does not apply very well for these selected values and the theoretical

bound given by the theorem is poor, the numerical results are very satisfactory.

We present here numerical results only for some selected values for f0, g, h, r, but the approximation

remains very good for a large panel of values for the parameters.

Note that in the case of a one-to-one orthology mapping (fi¼ 1, Vi) the weight of an interval is exactly

the number of orthologs it contains. The probability P(Wm(h, r) � 1) can then be expressed in terms of the

distribution of a continuous conditional scan statistic, for which a lot of approximations exist (Glaz, 2001)

and also an exact (even if quite computationally demanding) expression (Huntington et al., 1975).

However, in the more general case that we treat in this article, trying to find an exact expression for this

probability by using the method in Huntington et al. (1975) seems very difficult.

In biological applications, h and r will be the weight and respectively the (normalized) length of a given

observed orthologous cluster in the genome B, for which we want to test its significance. The so-called

p-value of this cluster is exactly the probability P(Wm(h, r) � 1), for which we give here a compound

Poisson approximation. The observed cluster is significant, and hence interesting from the biological point

of view, provided its p-value is smaller than a fixed threshold (0.01 for example).

Table 1. Numerical Results for the Circular Case

(f0, g, h, r) p̂pMC 
 " p

(1, 100, 8, 0.01) 0.0053 – 0.000146 0.0053

(1, 100, 8, 0.012) 0.0150 – 0.000245 0.0153

((1, 2), (100, 10), 8, 0.01) 0.0061 – 0.000156 0.0060

((1, 2), (100, 10), 8, 0.012) 0.0174 – 0.000264 0.0178

((1, 2, 3), (100, 15, 5), 8, 0.01) 0.0070 – 0.000167 0.0071

((1, 2, 3), (100, 15, 5), 8, 0.02) 0.0208 – 0.000288 0.0212

((1, 2, 3, 4), (100, 15, 5, 3), 8, 0.01) 0.0072 – 0.000170 0.0073

((1, 2, 3, 4), (100, 15, 5, 3), 8, 0.012) 0.0219 – 0.000296 0.0222

((1, 2, 3, 4, 5), (100, 15, 5, 3, 2), 8, 0.01) 0.0071 – 0.000169 0.0075

((1, 2, 3, 4, 5), (100, 15, 5, 3, 2), 8, 0.012) 0.0219 – 0.000296 0.0227

The vector f0 contains all the distinct sizes of the multigene families in the genome B and the

vector g contains their multiplicities. p is our compound Poisson approximation for

P(Wm(h, r) � 1) and p̂pMC – e is a 95%–confidence interval for the same probability based on

Table 2. Numerical Results for the Linear Case

(f0, g, h, r) p̂pMC 
 " p

(1, 100, 8, 0.01) 0.0052 – 0.000144 0.0052

(1, 100, 8, 0.012) 0.0146 – 0.000242 0.0151

((1, 2), (100, 10), 8, 0.01) 0.0060 – 0.000155 0.0060

((1, 2), (100, 10), 8, 0.012) 0.0173 – 0.000263 0.0176

((1, 2, 3), (100, 15, 5), 8, 0.01) 0.0068 – 0.000165 0.0070

((1, 2, 3), (100, 15, 5), 8, 0.02) 0.0203 – 0.000285 0.0211

((1, 2, 3, 4), (100, 15, 5, 3), 8, 0.01) 0.0072 – 0.000170 0.0073

((1, 2, 3, 4), (100, 15, 5, 3), 8, 0.012) 0.0216 – 0.000294 0.0220

((1, 2, 3, 4, 5), (100, 15, 5, 3, 2), 8, 0.01) 0.0073 – 0.000171 0.0074

((1, 2, 3, 4, 5), (100, 15, 5, 3, 2), 8, 0.012) 0.0217 – 0.000295 0.0226

The vector f0 contains all the distinct sizes of the multigene families in the genome B and the

vector g contains their multiplicities. p is our compound Poisson approximation for

P(Wm(h, r) � 1) and p̂pMC – e is a 95% confidence interval for the same probability based on
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A java program for computing our compound Poisson approximation for the p-value of a given gene

cluster, in the linear case, is available via the following web address: www.math.univ-toulouse
.fr/*grusea/Program/program.html.

For a rigorous statistical test, the threshold must be chosen in order to bound the Type 1 error of the test.

However, as we do not fix in advance the weight h when we search for conserved orthologous clusters, we

deal here with a multiple testing problem and the choice of the threshold becomes quite complicated. We

are currently trying to find solutions to this problem.

5. APPLICATIONS TO BIOLOGICAL DATA

This section is devoted to some applications of our results to real biological data. In the three examples

given here, the detection of the orthologs and the identification of the conserved genomic regions were

performed using the expert system CASSIOPE (Lopez et al., 2009).

5.1. Comparison of Homo-Sapiens and Oryzias-Latipes

In this example, we are interested in finding signs for the conservation of the Major Histocompatibility

Complex (MHC) between the human genome and the genome of Oryzias-Latipes (or Japanese killifish, a

very small ricefish, popular as an aquarium fish native to Southeast Asia).

The MHC contains genes involved in the immune defense. In the human genome, as the result of two

rounds of polyploidization (whole genome duplication), we find four MHC paralogous regions (Abi-

Rached et al., 2002).

We choose as reference region for our analysis the MHC paralogous region on the human chromosome 9

(129045207–140191570). The numbers in brackets represent the positions on the chromosome of the

starting and, respectively, the ending nucleotide of the region. It has been shown that this region evolves

slower than the other three.

This region contains 38 genes which have at least one ortholog in the genome of Oryzias-Latipes.

Among those 38 genes, eight have two orthologs in Oryzias-Latipes and 30 have a single ortholog.

Therefore, using the notations from Section 2, the data are the following: m¼ 38, the number of genes in the

reference region in the human genome (the species A) which have at least one ortholog in the genome of

Oryzias-Latipes (the species B); f0 ¼ (1, 2), the vector containing all the distinct values for the sizes of the

multigene families in the Oryzias-Latipes genome; g¼ (30, 8), the vector containing the multiplicities of

the different sizes in f0; n¼ 46, the total number of genes in Oryzias-Latipes which are orthologous of genes in

the human reference region; N¼ 19686, the size of the genome of Oryzias-Latipes (the total number of genes).

After locating the 46 orthologs in the genome of Oryzias-Latipes, nine conserved genomic regions were

identified: three regions on the chromosome 9 and six others on the chromosome 12.

For each of these regions we determine its weight h and its normalized length r, and then we calculate its

p-value using our compound Poisson approximation. The results are as follows.

The region #1, on the chromosome 9 (899561–1206257), contains three orthologs, of labels 3 · 1
2
; hence,

its weight is h¼ 1.5. The total number of genes in the region is 9, thus the normalized length of the region is

r¼ 9
19686

. We obtain a p-value of 0.00956, and hence this region is significant.

The region #2, on the chromosome 9 (28437906–29203467), contains four orthologs, of labels

2 · 1, 2 · 1
2
; hence, h¼ 3. For this region r¼ 22

19686
and its p-value is 0.0148. This region is thus significant at

the level a¼ 0.05.

The region #3, on the chromosome 9 (31902437–32170260), contains three orthologs, of labels 1, 2 · 1
2
;

hence, h¼ 2. The length of this region is r¼ 3
19686

and the p-value is 0.00104. The region is very significant.

The region #4, on the chromosome 12 (993203–5399518), contains four orthologs, of labels 3 · 1, 1
2
;

hence, h¼ 3.5. For this region r¼ 7
19686

and its p-value is 1.63 · 10�5. Therefore, this region is highly

significant.

The region #5, on the chromosome 12 (6945906–8246163), contains six orthologs, of labels 3 · 1, 3 · 1
2
,

and thus h¼ 4.5. The length of the region is r¼ 52
19686

and its p-value is 1.27 · 10�4. This region is hence

very significant.

The region #6, on the chromosome 12 (10049683–10113348), contains three orthologs, of labels 3 · 1;

therefore, h¼ 3. The length of the region is r¼ 3
19686

and its p-value is 2.82 · 10�4. This region is hence

very significant.
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The region #7, on the chromosome 12 (11625364–11880175), contains four orthologs, of labels 4 · 1;

hence, h¼ 4. For this region r¼ 16
19686

and the p-value is 5.83 · 10�5. The region is hence highly significant.

The region #8, on the chromosome 12 (15301431–15697269), contains four orthologs, of labels 3 · 1,

3 · 1, 1
2
; hence, h¼ 3.5. The region has length r¼ 18

19686
and p-value 2.71 · 10�4. This region is thus very

significant.

The region #9, on the chromosome 12 (25421295–26996650), contains six orthologs, of labels 2 · 1,

2 · 1, 4 · 1
2
; hence, h¼ 4. The length of the region is r¼ 30

19686
. We obtain the p-value 3.81 · 10�4; hence,

this region is also very significant.

The results indicate a high conservation between the human MHC region on the chromosome 9 and the

nine regions on the chromosomes 9 and 12 of Oryzias-Latipes.

5.2. Comparison of Ciona-Intestinalis and Homo-Sapiens

In this second analysis, we present a comparison between the human genome and the genome of Ciona-

Intestinalis, which is a Urochordata (sea squirt) whose genome has been sequenced and which has become,

over the past decade, a major experimental model for developmental biologists. For more details about the

comparison presented here, see Zucchetti et al. (2009).

We start with a reference genomic region in Ciona, spread over chromosomes 4 and 10 and containing

genes of the immunoglobulin superfamily. The concatenated reference region contains 14 genes having at

least one ortholog in the human genome.

The data are the following: m¼ 14, the number of genes in the reference region in Ciona which have at

least one ortholog in the human genome; f0 ¼ [1, 2, 3, 4, 7, 8, 16], the vector containing all the distinct

values for the sizes of the multigene families in the human genome; g¼ [5, 3, 2, 1, 1, 1, 1], the vector

containing the multiplicities of the different sizes in f0; n¼ 52, the total number of genes in the human

genome which are orthologous of genes in the reference region in Ciona; N¼ 36396, the size of the human

genome.

After locating the 52 orthologs in the human genome, we found two conserved genomic regions, on the

chromosomes 11 and 19.

After computing, using our compound Poisson approximations, the p-values of the different gene

clusters, we obtain the following results.

The region #1, on the human chromosome 11 (60495750–133526846), contains 14 orthologs, of labels

2 · 1, 3 · 1
2

, 1
3

, 2 · 1
7

, 6 · 1
16

, and so h¼ 3.494. The normalized length is r¼ 140
36396

. The normalized length of

this region is r¼ 998
36396

. We obtain a p-value of 0.0083; thus, this region is very significant (at the level

a¼ 0.01).

The region #2, on the human chromosome 19 (40511919–60093650), contains 13 orthologs, of labels

3 · 1, 1
2

, 2 · 1
3

, 1
4

, 2 · 1
7

, 4 · 1
8
; hence, h¼ 5.2024. For this region r¼ 803

36396
and we obtain a p-value of

1.7612 · 10�6. This region is highly significant.

We identified, in the human genome, two very significant conserved regions orthologous to the reference

region in Ciona. The first one is on the human chromosome 11 and the second one on the human

chromosome 19. This shows the conservation of the immunoglobulin superfamily in human and in Ciona

since their divergence from their common ancestor, more than 800 million years ago.

5.3. Comparison of Homo-Sapiens and Danio-Rerio

In this third example, we present another comparison involving the MHC human region on the chro-

mosome 9. We are interested in finding orthologous regions for this human reference region in the genome

of Danio-Rerio.

Danio-Rerio, commonly known as zebrafish, is a tropical freshwater fish very popular as an aquarium

fish. It is also an important vertebrate model organism for biologists.

In this comparison, the reference region is the Homo-Sapiens MHC region on chromosome 9

(ENSG00000136895–ENSG00000159247), the numbers in the brackets being the gene identifiers, in

the Ensemble database, respectively, for the starting and the ending gene in the region. When searching

for orthologs for the genes from the reference region in the genome of Danio-Rerio, we find 20 genes in

the human reference region which have at least one ortholog in the genome of Danio. Among these

20 genes, 16 have a single ortholog, two have two orthologs, one has three orthologs, and one has eight

orthologs.
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We thus have m¼ 20, f0 ¼ (1, 2, 3, 8), g¼ (16, 2, 1, 1), and n¼ 31. The size of the genome of Danio-

Rerio is N¼ 28509 genes.

After locating these 31 orthologs in the genome of Danio-Rerio, we identify a conserved genomic region

on chromosome 5 (ENSDARG00000030173–ENSDARG00000068122) containing seven orthologs, of

weights 5 · 1, 1
2

, 1
8
; hence, the weight of the cluster is h¼ 5.625. The region contains 38 genes in total;

hence, its normalized length is r¼ 38
28509

. We obtain a p-value of 2 · 10�10, and hence the region is highly

significant.

With this example, we find another strong evidence for the conservation of the MHC region between

human and fish.
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