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Abstract In this paper, we present a generic topological
and geometrical framework which allows to define and
control several parallel algorithms for 2D digital curve
approximation. The proposed technique is based on com-
binatorial map simplifications guided by geometrical cri-
teria. We illustrate the genericity of the framework by
defining three contour simplification methods: a polyg-
onal approximation one based an area deviation com-
putation; a digital straight segments reconstruction one
which guaranties to obtain a loss-less representation; and
a moment preserving simplification one which simplifies
the contours while preserving geometrical moments of
the image regions. Thanks to a complete experimental
evaluation, we demonstrate that the proposed methods
can be efficiently implemented in a multi-thread environ-
ment to simplify labeled image contours.

Keywords combinatorial maps · parallel contour
simplification · polygonal approximation · multi-thread
image processing

1 Introduction

Image processing algorithms often need to compute, ex-
tract or analyze information contained in images. These
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information can be computed by decomposing an image
into regions and by extracting topological and geometri-
cal features from them. As a consequence of the discrete
nature of images, region contours are composed of dis-
crete curves (set of pixels or set of inter-pixel elements,
see Klette and Rosenfeld (2004a)) whose topology can be
complex (several connected components, junctions,. . . ).
If we want to efficiently represent all region contours, we
are facing two difficulties. First, we need a data-structure
to represent the topology of regions and thus to repre-
sent the topology of their contours. Then, we need a pro-
cess to approximate the discrete contours with polygonal
lines while preserving the geometry of the contours. In
this paper we present a generic and parallel algorithm to
simplify contours of a multi-region image using combi-
natorial maps and geometrical criteria.

In computer vision, many segmentation algorithm out-
puts are decompositions of the image into labeled regions
such that pixels in a region have uniform features (im-
age intensities, texture characteristics,. . . ). To represent
regions and to be able to perform efficient operations
on them, a topological data structure is required in or-
der to describes boundaries and adjacency information.
There are many different structures to represent the re-
gion boundaries of a given image, the first one being the
Region Adjacency Graph (RAG) (Rosenfeld 1974). How-
ever, a RAG does not describe all the information con-
tained in the image (like multi-adjacencies or inclusion
relations). To represent all the information, several mod-
els based on combinatorial maps were defined (Domenger
1992; Fiorio 1996; Brun and Domenger 1997; Damiand
et al 2004). The main advantage of these models is to
describe the subdivision of regions into cells (vertices,
edges and faces) and to describe all the incidence and
adjacency relations between these cells and thus to rep-
resent the topology of the image. Combinatorial maps al-
low us to link geometrical features to edges and regions,
and to design a simple and generic contour simplification
by removing combinatorial maps vertices. Using a shared
memory parallel model, we show that the simplification
algorithm can be easily parallelized by adding mutexes
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to some cells and by using the model to avoid concurrent
access.

Once the topology of regions and contours has been
handled, we need a simplification algorithm to approxi-
mate all the region contours with polygonal lines. For
nearly half a century, a wide literature exists in the
polygonal approximation of digital curves. Among all
published surveys on the subject, Bhowmick and Bhat-
tacharya (2007) provides an interesting classification
of approximation techniques: there exist the curvature
maxima based techniques which set vertices to high cur-
vature loci (Teh and Chin 1988); the combinatorial op-
timization using ant colonies to minimize the number of
edges and their location (Yin 2003); the perceptual orga-
nization based approaches (Hu and Yan 1997); the area
deviation between the discrete curve and the approxi-
mation techniques (Wall and Danielsson 1984); and fi-
nally the approximation using Digital Straight Segments
(DSS) which main advantage is that the representa-
tion is loss-less since the original curve can be retrieved
from the digitization of the approximated curve (Klette
and Rosenfeld 2004a). The algorithms in the first three
approaches cannot be considered in our parallel multi-
region framework since either they cannot be applied
on complex digital curve topologies, or the approxima-
tion cannot be decided locally, making the parallelization
more complex or impossible.

In this paper we illustrate our generic framework
with three different geometrical criteria: First a polyg-
onal simplification process based on a maximal distance
threshold (area deviation based approach). Then we have
also considered a digital reconstruction criterion based
on DSS (Kovalevsky 1990; Dorst and Smeulders 1991;
Lindenbaum and Bruckstein 1993; Debled-Rennesson
and Reveillès 1995; Klette and Rosenfeld 2004a). The
last criterion exploits the topological data structure to
construct an approximation based on the region geome-
try preservation (using geometrical moments) instead of
a region contour simplification process.

In section 2, we first introduce combinatorial maps.
Section 3 details our two generic simplification algo-
rithms, a sequential and a parallel one, taking a given cri-
terion as parameter. In section 4, we present two contour
based criteria: a distance-to-curve criterion, and a digital
straight segment recognition, and in section 5 we give a
region based criterion based on geometrical moments as-
sociated to regions. In section 6, we finally present some
experiments and we conclude in section 7.

2 Combinatorial Maps Presentation

A combinatorial map is a mathematical model of space
subdivision representation based on a planar map (Ed-
monds 1960; Tutte 1963). The subdivision of a 2D topo-
logical space is a partition of the space into 3 subsets
whose elements are cells of 0, 1 and 2 dimension (respec-
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Fig. 1 2D combinatorial map example. (a) A 2D object.
(b) Corresponding combinatorial map. Darts are represented
by labeled black arrows (to represent the orientation). Two
darts linked by β1 are drawn consecutively, and two darts
linked by β2 are concurrently drawn and in reverse orienta-
tion. (c) Corresponding subdivision made of 5 vertices (la-
beled from 1 to 5), 6 edges and 3 faces (by counting the
infinite face). We use sometimes this representation instead
of drawing all the darts of the map as in (b) to make figures
lighter.

tively called vertices, edges and faces, and denoted i -cell
for an i -dimensional cell). In 2D, a combinatorial map is
equivalent to other structures such as the Winged-Edge
data structure (Baumgart 1975) or the doubly-connected
edge list (Preparata and Ian Shamos 1990; de Berg et al
2008). The main advantage of combinatorial maps is the
generic definition which is valid in any dimension. This
is not used in this work since we consider only 2D im-
ages, but allow us to plan extension of this work to 3D
as explain in the conclusion.

Intuitively a 2D combinatorial map (or 2-map) is a
decomposition of 2D objects into faces, edges and ver-
tices. The basic element of a 2-map is called a dart (some-
times called half-edge in 2D). Each dart is incident to a
vertex, an edge and a face. Darts are linked together with
two one-to-one mappings β1 and β2 which describe the
structure of the subdivision: β1 connects one dart be-
longing to an edge to the dart of the next edge of the
same face; β2 connects one dart belonging to an edge to
the dart of the other face of the same edge. Definition 1
is the definition of 2D combinatorial map (see Lienhardt
(1991) and Fig. 1).

Definition 1 (2D combinatorial map) A 2D combi-
natorial map is a triplet M = (D,β1, β2) where:

1. D is a finite set of darts;
2. β1 is a permutation1 on D;
3. β2 is an involution2 on D;

1 A permutation on a set S is a one-to-one mapping from
S onto S.

2 An involution f on a set S is a one-to-one mapping from
S onto S such that f = f−1.
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Combinatorial maps encode subdivisions and inci-
dence relations between all the different cells of the space,
and so represent the topology of this space. Thanks to
this model and its implementation (Damiand et al 2004),
we can directly (i.e. in O(1)) retrieve all the different re-
lations associated to darts and one-to-one mappings. We
denote v(d) (resp. e(d), f(d)) for the vertex (resp. edge,
face) incident to dart d.

Moreover, several operations exist to modify a com-
binatorial map. The main operation used in this paper is
the removal of an i -cell, called the i -removal operation,
which removes the i -cell and merges the two incident
(i+1)-cells. The i -removal operation is possible only for
degree3 one or two cells. Indeed, otherwise it is not pos-
sible to decide how to connect cells around the removed
cell. Thanks to combinatorial maps, it is possible to test
in O(1) if the degree of a vertex is 2. Moreover, the re-
moval of a vertex does not modify the degree of the other
vertices (see (Damiand and Lienhardt 2003; Damiand
et al 2004) for more details on removal operations and
algorithms).

In Fig. 1, vertices 1, 4 and 5 are degree two vertices
and can be removed, while vertices 2 and 3 are degree
three vertices and thus cannot be removed.

In this work, we use a combinatorial map to describe
regions contained in a labeled image. Such image can be
the result of any segmentation algorithm (for example
(Damiand and Resch 2003; Dupas and Damiand 2008)).
Regions in a labeled image are the maximal sets of 4-
connected pixels with same label. Note that we can con-
sider any type of image and use the color of each pixel as
a label. Regions are important for image processing since
they contain colorimetric information about objects em-
bedded in the image (mean color, texture characteris-
tics, . . . ). Each region of the image is represented with
a data structure added to the combinatorial map. This
allows to easily add some information to regions. More-
over, each region is linked to a dart associated to the
external boundary of the region, and all the darts of a
region are linked with its belonging region. This allows
to retrieve in constant time, given a dart, its belonging
region, and given a region, we can retrieve in linear time
all of its darts.

We can see in Fig. 2 an example of a 2D combinatorial
map describing the labeled image shown in Fig. 3. Ver-
tex 3 is a degree one vertex because it is incident to one
edge (a self loop). Even if this vertex can be technically
removed, its removal involves the lost of the boundary
between region R2 and R3. Vertex 4 is also a degree one
vertex, but this case is not possible when the combinato-
rial map describes a labeled image. Indeed, such a map
represents boundary between regions, and these bound-
aries are closed curves. To summarize, vertices with de-
gree greater than two can not be removed, and degree 1
vertices either must not be removed or does not exist:

3 The degree of an i-cell c is the number of distinct (i+1)-
cells incident to c.
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Fig. 2 An example of a 2D combinatorial map describing
the labeled image shown in Fig. 3 containing three regions,
plus an infinite region R0 which is the complementary of the
image (except the edge between vertices 2 and 4 which must
not exist normally). Vertices 1 and 2 are degree three vertices
and thus cannot be removed. Vertex 3 is a degree one vertex
(it is incident to one edge). Lastly, vertex 4 is also a degree one
vertex, but this case is not possible when the combinatorial
map describes a labeled image.
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Fig. 3 Interpixel example. Pixels (for example a), linels (for
example b) and pointels (for example c).

this ensures that only degree two vertices must be con-
sidered during our simplification algorithms.

Combinatorial maps encode only the topology of the
image. Geometry is described by using the cellular frame-
work that decomposes the digital space pixels into linels,
pointels and pixels: linels are unit one dimensional ele-
ments separating two pixels and pointels are zero dimen-
sional elements between linels (see (Klette and Rosenfeld
2004a) and Fig. 3).

In the rest of the paper, we present several techniques
to perform a labeled image contour simplification. All
these processes are based on the same generic algorithm
using combinatorial map data structure properties.

3 The Generic and Parallel Algorithms for
Polygonal Approximation

We present now the generic algorithms allowing to sim-
plify a given set of digital curves according to a given
criterion. These algorithms use the high level represen-
tation of the curves by a combinatorial map. This al-
lows to handle efficiently the vertices, the edges and the
faces of the subdivision, and to use removal operations
allowing to simplify the model while updating its proper-
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ties. First we present a straightforward sequential algo-
rithm to sketch the main principle of our method, then
we present the parallel version which is a direct extension
of the sequential one.

3.1 The sequential algorithm

The main principle of the sequential algorithm, presented
in Algorithm 1, is first to compute a combinatorial map
where each edge corresponds to a linel between two pix-
els belonging to two different regions (by using algorithm
presented in Damiand et al (2004)). Then we scan the
vertices of the map and remove each degree two vertex
such that the geometrical criterion used for the polyg-
onal approximation method is satisfied. When a vertex
is removed, as detailed above, both incident edges are
merged into a unique edge. The geometrical embedding
of the new edge corresponds to the concatenation of two
adjacent discrete curves into a single one.

Algorithm 1: Sequential polygonal approximation
of contours of a labeled image.

Input: A labeled image I ;
A criterion criterion().

Output: A polygonal approximation of contours of I.

M ← combinatorial map where each edge corresponds
to a linel contour of I ;
foreach dart d of M do

if the degree of v(d) is 2 and criterion(d) then
Remove v(d);

The main loop of Algorithm 1 considers each dart
successively, and processes only degree two vertices. In-
deed, vertices with degree greater than 2 are at the junc-
tion of several branches and thus cannot be removed.
Moreover, since the removal of a vertex does not modify
the degree of the other vertices, we are sure that these
vertices can not become removable later. This property
ensures that during the simplification process, each ver-
tex is tested exactly once.

When the current vertex is removed during the main
loop, we jump over removed darts and continue the loop
with the next dart. At the end of the algorithm, we have
considered each vertex of the map, and we have removed
the ones satisfying our merging criterion. This allows us
to prove that the polygonal approximation is stable since
no more vertex can be removed.

Fig. 4 illustrates each step of Algorithm 1: Fig. 4a is
the input labeled image; Fig. 4b is the initial combinato-
rial map where each edge corresponds to a linel between
two pixels with different labels, and Fig. 4c is the result
obtained at the end of the algorithm where each edge
corresponds to an approximation of the corresponding
curve (by using the distance to curve criterion presented
in section 4.1).
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Fig. 4 Example of 2D discrete reconstruction of contours of
a labeled image. (a) A labeled image with 5 regions (plus the
infinite region R0). (b) Initial combinatorial map where each
edge of the map corresponds to a linel between two pixels
with different labels. (c) Result obtained after the polygonal
approximation. Each edge of this map corresponds to an ap-
proximation of the corresponding curve satisfying the given
criterion.
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Fig. 5 Two possible results of 2D polygonal approximation
of contours of the same labeled image (image given in Fig. 4a).
Results can be different for the segment extremities, but can
also be different in number of segments. (a) A result with 16
vertices, and 19 edges. (b) A second result with 15 vertices
and 18 edges.

Note that the result of polygonal approximation de-
pends on the order in which vertices are processed in the
main loop of Algorithm 1. Indeed, each result is com-
posed of a stable polygonal reconstruction in the sense
that the union of two adjacent segments does not satisfy
the given criterion. However, depending on the order of
processed vertices, the extremities of segments can be
different, and moreover the number of segments can also
be different (see the example in Fig. 5). It is possible to
add a pre-processing step in order to sort vertices and
thus to add some properties on the resulting polygonal
approximation. A discussion on this point is addressed
in the conclusion.

The key point of Algorithm 1 is that each operation
used in the main loop is a local process, and that each
adjacency and incidence relations can be retrieved di-
rectly in O(1) thanks to our model. Thus, the overall
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computational cost of Algorithm 1 is linear in number of
darts, times the cost of the geometrical criterion.

3.2 The parallel algorithm

The main idea of the parallel algorithm is to share the
combinatorial map, to split the main loop of the sequen-
tial algorithm into several independent loops, and to ex-
ecute each loop in parallel using threads. Thanks to the
combinatorial map data-structure, the information asso-
ciated to darts (degree, neighbors,. . . ) can be retrieved in
O(1) in a thread-safe manner. The remaining bottleneck
is the generic criterion computation and the removal of
the considered dart. Since the algorithm is generic, we do
not know yet the problems that can arise due to concur-
rent access of different threads. We avoid these problems
by using the function takeMutexes() which must be de-
fined according to each simplification method in order
to guaranty correct access to the shared memory. Algo-
rithm 2 details the pseudo-code executed by each thread
independently.

Algorithm 2: Parallel polygonal approximation:
per-thread algorithm.

Input: A combinatorial map M where each edge
corresponds to a linel of the image contours;
L a list of darts to process;
A criterion criterion();
A method entering in critical section
takeMutexes().

Output: Sub-part of M corresponding to L is
modified such that each edge corresponds to
a segment of a polygonal approximation.

Let P be a stack of darts to consider latter;
foreach dart d of L ∪ P do

if the degree of v(d) is 2 then
if takeMutexes(d) then

if criterion(d) then
Remove v(d);

Release taken mutexes;

else
Push d in P ;

The main loop of this algorithm is very similar to
Algorithm 1 one. We can point out two main differences:
first, the list of darts to process is now only a part of the
whole darts of the map since other darts are processed
by other threads. Secondly, we have added a particular
process to avoid conflicts due to concurrent access. This
is achieved by function takeMutexes(). As detailed in
the sections 4 and 5, it is enough to protect the map
locally with mutexes around the removed vertices.

The function return false if it was not able to take all
the required mutexes. In such a case, the current vertex
cannot be processed because the modifications made by

another thread can modify the vertex, and thus we need
to re-test this vertex later. For that, the vertex is pushed
in a stack of vertices to be considered later. Note that
mutexes are taken in non-blocking mode to avoid inter-
blocking situations, and that the termination is guaran-
teed by using a total order on cells, as explained in the
following sections.

4 Approximation with Contour Based Criteria

4.1 Distance-to-Curve Criterion

The first simplification process we present is based on
a very simple contour polygonal approximation using
a distance-to-curve criterion which corresponds to an
adaptation of Wall and Danielsson (1984).

The criterion is given in function
criterionPolygon(). It consists in computing the
maximal distance between the edge obtained if we
remove the vertex incident to the considered dart (the
Euclidean segment [v1, v2]) and all the pointels of the
corresponding curve in the image associated to edges
e(d) and e(β0(d)) (see Fig. 6). The criterion is satisfied
if the distance is smaller that a threshold specified by
the user. To compute the distance between segment

Function criterionPolygon(d: a dart,
ǫ: a number):Boolean

Let v1 the vertex incident to β0(d) and v2 the vertex
incident to β1(d) ;
if distance-to-curve(e(d),[v1, v2])< ǫ and
distance-to-curve(e(β0(d)),[v1, v2])< ǫ then

return true;

return false;

[v1, v2] and the curve, we compute successively the
distance between [v1, v2] and each pointel belonging to
both edges incident to d and to β0(d) (the two edges
incident to vertex v(d)). The complexity of the function
criterionPolygon() is linear in the length of the
discrete curve between v1 and v2.

Since the processing of a vertex is limited to the two
incident edges, the parallel algorithm needs to protect
concurrent accesses on both edges incident to the cur-
rent vertex. This is simply achieved by adding a mu-
tex to each edge of the combinatorial map. Then, in the
takeMutexesPolygon() procedure, we try to take the
mutexes associated to edges e1 and e2. If both mutexes
are taken, we have a guaranty that there is no other
thread processing a vertex incident to either edge e1 or
e2. As discussed in section 4.3, we use a total order on the
edges to decide which mutex we take first (order ≺ and
its associated min and max functions). The order can be
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Fig. 6 Criterion used to allow or deny the removal of a vertex
for the polygonal approximation. Pointels are labeled from a
to k and edges are numbered from 1 to 4. (a) We try to remove
the vertex incident to pointel e. We compute the maximal dis-
tance between segment [a, g] and each pointel of edges e(1)
and e(2) (i.e. pointels from a to g). If this distance is smaller
than ǫ, the vertex is removed and edges e(1) and e(2) are
merged into edge e(4) in (b). (b) We want to remove ver-
tex incident to pointel g, we compute the maximal distance
between segment [a, k] and pointels from a to k.

arbitrarily chosen and in our experiments, we have used
the order induced by edge memory addresses.

Function takeMutexesPolygon(d:
a dart):Boolean

Let e1 the edge incident to d (resp. e2 to β0(d));
Let einf = min

≺

(e1, e2) and esup = max
≺

(e1, e2);

Try to take mutex minf associated to einf ;
if mutexes minf is taken then

Try to take mutex msup associated to esup;
if mutexes msup is taken then

return true;

else
Release minf ;

return false;

4.2 Discrete Straight Segment Reconstruction

To illustrate the genericity of the proposed simplification
algorithm, we consider a second method of polygonal ap-
proximation using digital straight segment recognition.
DSS recognition algorithms are widely used to convert a
digital contour into a polygon (see Klette and Rosenfeld
(2004a) or Klette and Rosenfeld (2004b) for a complete
survey). Indeed, this class of algorithms provides sev-
eral advantages compared to the contour approximation
algorithm presented above: a DSS contains arithmeti-
cal structures allowing to speed up the recognition pro-
cess using only integer number computations; and using

ba c
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g h

i j k

(a) (b)

Fig. 7 Illustration of the DSS based contour simplification.
(a) Both sequences {a, . . . , g} and {g, . . . , k} are DSS but the
union test on these two DSS will fail. (b) Contour reconstruc-
tion defined by the DSS extermities.

DSS, we can derive a loss-less representation of the dig-
ital curve since the digitization of the obtained polygon
exactly coincides with the input set.

In the literature, many DSS characterizations exist
(Klette and Rosenfeld 2004a), we consider here a digital
straight line as the set of pixels (x, y) ∈ Z

2 satisfying:

µ ≤ ax− by < µ+ |a|+ |b| (1)

with a, b, µ ∈ Z. Hence, b/a is the DSS slope and
µ its intercept. According to Reveillès (1991), the re-
sulting set of pixels is a 4−arc, which means that each
pixel of the DSL has exactly two 4-adjacent neighbors.
A DSS is defined as a finite connected subset of a DSL.
For example in Fig. 7a, both sequences {a, . . . , g} and
{g, . . . , k} are DSS. Bold lines (dashed or not) repre-
sent the DSS leaning lines defined by ax − by = µ and
ax−by = µ+|a|+|b|−1. Based on this definition, a recog-
nition problem may arise: given a set of grid points, does
there exists a DSS containing it ? In the literature, many
algorithms have been proposed (Kovalevsky 1990; Dorst
and Smeulders 1991; Lindenbaum and Bruckstein 1993;
Debled-Rennesson and Reveillès 1995; Klette and Rosen-
feld 2004a). In our framework, we consider a recognition
process based on a union predicate: given two 4-adjacent
DSS, we decide if the union of the two pixel sets forms a
DSS. Indeed, thanks to the combinatorial map represen-
tation, DSS parameters are attached to darts and thus
the access to the adjacent DSS parameters can be ob-
tained in O(1). Then, a naive algorithm to decide if the
union of two DSS S and T (i.e. the union of the two grid
point sets) is a DSS or not can be done in O(|T |). Note
that more complex algorithms using preimages (Linden-
baum and Bruckstein 1993) can be designed to obtain a
computational cost in O(log (α)) where α corresponds to
largest side of the bounding box containing S and T .

For this method, we use as criterion the following
function criterionDSS(). Note that contrary to the pre-
vious criterion criterionPolygon(), the parameter ǫ
has disappeared since it is embedded in the DSS defi-
nition. In our implementation, the computational cost of
function criterionDSS() is equal to the cost of function
criterionPolygon().

In the initial map where each edge corresponds to a
linel, we add an attribute to each edge containing the
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Function criterionDSS(d: a dart):Boolean

let d1 the dss associated to d (resp d2 associated to
β0(d));
if d1 ∪ d2 is a DSS then

return true;

return false;

straight line equation of the corresponding edge (param-
eters a, b and µ). This equation is easy to initialize since
each segment of the initial map corresponds to a linel.
Then, during the simplification algorithm, when we pro-
cess vertex v(d), we test if the union of the two edges
incident to v(d) is a DSS (these two edges are obtained
from d and β0(d)). When this criterion is satisfied, we
remove v(d) and update the DSS parameters of the new
edge by modifying the corresponding attributes.

As for the polygonal approximation, we can prove
that, at the end of the process, we obtain a stable de-
composition into DSSs since the union predicate fails on
each couple of remaining adjacent DSS. Fig. 7 illustrates
the DSS based contour reconstruction.

For the parallel algorithm, we use Algorithm 2
and the criterion function criterionDSS().
The function takeMutexes() is the same than
takeMutexesPolygon() because for both methods,
modifications are only made locally and concern the two
incident edges around the removed vertex.

4.3 Termination Analysis

In these contour based criteria, an infinite loop situation
consists in a state where all threads fail taking their two
mutexes and thus no vertex is processed. Such situation
only occurs when a cycle of degree 2 vertices is consid-
ered, with one thread associated to each vertex of the
cycle, and when each thread starts taking its left mu-
tex (and succeeds). In this case, no thread will be able
to take its right mutex (see example in Fig. 8). Thus,
no vertex is processed at this step and the same con-
figuration could occur in the remaining execution flow.
As a consequence, the program may not terminate. In
the other cases (chain of degree 2 vertices, one vertex of
the cycle not associated to a thread, or a thread starting
with its right mutex), we can demonstrate that at least
one thread can process its vertex.

To avoid the pathological case, we define a total order
of the edges (relationship ≺ in takeMutexesPolygon()).
Using this order to take the two mutexes, we can ensure
that at least one thread in the cycle can take its two mu-
texes (and thus process the point). Indeed, the situation
where each thread takes its left mutex is not consistent
with the total order and thus could never occur.

Conversely, the situation is the same if all threads
take their right mutex first. Again, the ≺ order solves
the problem.

a

3

21 b

c

d4

Fig. 8 Termination analysis: four threads working on the
four vertices 1, 2, 3 and 4. Each thread i ∈ {1, 2, 3, 4} succeeds
to take its left mutex: (1 − a), (2 − b), (3 − c), (4 − d). If
a ≺ b ≺ c ≺ d and if we have (1−a), (2−b), (3−c), then thread
4 tries to take a but fails and thus takeMutexesPolygon()
returns false on 4 (and 3 can take d and process its vertex).

5 Approximation with a Region Based Criterion

The main idea of this third method of contour simpli-
fication is to preserve geometrical characteristics of the
regions with the help of geometrical moments: geometri-
cal moments associated to each region of the topological
map are computed and controlled during the contour
simplification.

5.1 Geometrical moments

In many computer vision or shape modeling applications
geometrical moments have been widely used to provide a
powerful tools to describe shape geometry (Teh and Chin
1988; Mukundan and Ramakrishnan 1998). Considering
a compact domain Ω on R

2, the geometrical moment
mpq of order p and q is defined as follows:

mpq =

∫ ∫

Ω

xpyqdxdy . (2)

From equation 2, we can first observe that m00 is
the area of the domain Ω and (m10

m00

, m10

m00

) its center of
gravity. Note that geometrical moments mpq may not be
relevant for shape description purposes since they are not
invariant to basic transformation such as translation or
scaling. However, from the geometrical moments, other
invariant moments can be derived. For example, central
moments (Mukundan and Ramakrishnan 1998) are in-
variant to translation and can be computed as polynoms
of mpq moments. In shape matching, complex moments
can be designed to achieve rotational invariance. For ex-
ample, Zernike moments (Teh and Chin 1988; Novotni
and Klein 2004) can be defined by linear combination of
geometrical moments.

When the domain Ω is either discrete (subset of
Z
2) or defined by a polygonal boundary, a fast geomet-

rical moment computation algorithm can be designed.
First, let us consider a triangular domain T with vertices
{(0, 0), (x1, y1), (x2, y2)} on which we want to integrate
a function f : R2 → R. Using a linear mapping of the
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triangle vertices to the unit triangle T0 vertices {(0, 0),
(1, 0), (0, 1)}, we have:

∫∫

T

f(x, y)dxdy = det

(

x1 x2

y1 y2

)

1
∫

0

1−Y
∫

0

g(X,Y )dXdY (3)

with g(X,Y ) = f(x1X + x2Y, y1X + y2Y ).
Hence, using an analytical evaluation of the integra-

tion of the geometrical moments over T0, we obtain the
following formulas to compute the geometrical moments
of T :

m00 =
1

2
(x1y2 − y1x2) (4)

m10 =
(x1y2 − y1x2) (x2 + x1)

6

m01 =
(x1y2 − y1x2) (y2 + y1)

6

m11 =
(x1y2 − y1x2) ((2x2 + x1) y2 + y1 x2 + 2x1 y1)

24
. . .

If we consider now a polygonal domain P , a classi-
cal approach to compute the integration of f over P is
to sum the contributions of the integration of f over
all triangles {(0, 0), (xi, yi), (xi+1, yi+1)} (i = {0, 1,
. . . , n}mod n). Thanks to the determinant in equation 3,
as depicted in Fig. 9, the sign a contribution depends on
the edge orientation. Such an evaluation framework has
been widely used to evaluate integrals over polygonal do-
mains, such as geometrical moments (Sheue-Ling-Chang
1984) or Spherical Harmonics (Mousa et al 2006).

+

−

p

p
i

i+1

Fig. 9 Integral computation over a polygonal domain based
on triangular contributions.

In our framework, in order to preserve the geometri-
cal characteristics of the labeled image regions, the idea
is to define a contour simplification algorithm controlled
by geometrical moment variations. We can sketch the al-
gorithm formalized below as follows: to decide if a vertex
is removed, the error is evaluated in terms of geometrical
moment changes of the adjacent regions.

5.2 Moment based simplification algorithm

For this method, contrary to both previous ones, at-
tributes are associated to regions and not to edges. In-
deed, each region of the topological map will contain the
set of moments we consider. The criterion which allows
or denies to remove a vertex needs here to compute the
new moment of both regions incident to the current ver-
tex (there are always two regions since we process only
degree two vertices).

a

b

c

A

B

Fig. 10 Moment based contour simplification.

Let us consider the example given in Fig. 10: let us
suppose that we decide to remove the vertex b. Hence
both regions A and B change leading to regions A′ and
B′. If we denote Tuv the triangle {(0, 0), u, v} and mP

pq

the geometrical moment of order p, q of the domain P , it
follows from the additivity of the geometrical moments
that

mA′

pq = mA
pq −mTab

pq −mTbc

pq +mTac

pq (5)

mB′

pq = mB
pq −mTab

pq −mTbc

pq +mTac

pq (6)

Hence, the quantity δpq = −mTab

pq −mTbc

pq +mTac

pq can
be viewed as an error measurement induced by the re-
moval of b. Note that δpq and thus mA′

pq and mA′

pq can be
computed in O(1) thanks to equations 4.

The overall simplification process can now be formal-
ized as follows: we first fix the number of moments we
want to control and we compute the analytic formulas
of equation 4. Then, we compute the geometrical mo-
ments of the initial image regions. This step can be per-
formed without increasing the computational complexity
during the topological map extraction. Then, to decide
if a given vertex of the map can be removed, we con-
struct a predicate based on a threshold on the ratio be-
tween updated moments and initial ones (see function
criterionMoment()).

In a computational point of view, the criterion is eval-
uated in O(1) since the topological information (adjacent
regions) can be retrieved from the map in O(1) and since
the moments can be updated in O(1) if the number of
moments is fixed.

In the parallel method, to avoid problems due to con-
current access, mutexes need here to be linked to re-
gions (see function takeMutexesMoment()). Otherwise,
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Function criterionMoment(d: a dart,
τ : a percentage):Boolean

Let r1 the region incident to d (resp. r2 incident to
β2(d));
Let m1 the moments of r1 when removing vertex v(d)
(resp m2 of r2);
foreach moment m of m1 (resp. m2) do

if m differs more than τ percent from
corresponding original moment of r1 (resp. r2)
then

return false;

return true;

if two concurrent threads process two vertices incident
to a same region, both criteria can return true to allow
both removals because each modification is smaller than
the threshold while the sum of the two moment modi-
fications is greater than the threshold. Adding mutexes
onto regions avoid this situation because the concurrent
threads can not process two vertices incident to a same
region.

Function takeMutexesMoment(d:
a dart):Boolean

Let r1 the region incident to d (resp. r2 to β2(d));
Let rinf = min

≺

(r1, r2) and rsup = max
≺

(r1, r2);

Try to take mutex minf associated to rinf ;
if mutexes minf is taken then

Try to take mutex msup associated to rsup;
if mutexes msup is taken then

return true;

else
Release minf ;

return false;

This shows another interest of our approach which al-
lows to use any cells of the cellular decomposition (ver-
tices, edges and faces), and depending on the needs of
each application, we can add different attributes onto
different cells.

5.3 Termination Analysis

Similarly to section 4.3, termination problem may oc-
cur when thread dependencies during the non-atomic
takeMutexesMoment() process induce a cycle. Again,
we have used an arbitrary total order on regions (≺ in
takeMutexesMoment()) to break the cycle and ensure
the termination of the simplification.

Table 1 Image characteristics: Size is the size of the image
in number of pixels (x and y), Regions, Vertices and Edges
are respectively the number of regions, of vertices and edges
of the initial combinatorial map corresponding to the image.

Size Regions Vertices Edges
Airplane 512× 512 1689 28201 29481
Baboon 512× 512 6291 81050 85647
Cornouaille 256× 256 1177 15828 16797
Goldhill 720× 576 4705 66484 69858
Lamp 256× 256 1633 16736 18040
Lena 512× 512 3118 39577 41937
Peppers 512× 512 3402 35338 38120
Table 256× 256 698 12622 13171

6 Experiments

To evaluate our generic framework for labeled image con-
tour simplification, we have set up several experiments.
First, we evaluate the genericity in terms of time effi-
ciency of the algorithm parallel versions compared to
sequential ones. Secondly we demonstrate the scale-up
property considering high resolution images. Lastly, we
evaluate the criteria in terms of visual quality.

Our experiments were made with an “Intel Core i7
CPU” at 2.80GHz, with 12 giga-bytes of memory and 8
mega-bytes of cache. This processor has four cores and
uses hyper-Threading technology, allowing to run eight
threads simultaneously. We have used eight segmented
images: Airplane, Baboon, Cornouaille, Goldhill,
Lamp, Lena, Peppers, Table (see Fig. 11). These images
are classical images used in image processing, segmented
with a basic region growing algorithm.

Table 1 presents all the characteristics of these images
(size, number of regions) and the number of vertices and
edges of the initial map (where each edge corresponds
to a linel). The number of darts is not given since it
is twice the number of edges. Table 2 gives the times
taken by our methods (values are means of ten tests for
each image). For the polygonal approximation method,
we have used a threshold ǫ = 1.0, and for the moment
preserving method a percentage of modification allowed
τ = 5%.

First, we can remark that our methods are very effi-
cient. Indeed, the time required for each method is very
small: the worst case is in 40.15 milliseconds to simplify
Baboon with the sequential moment methods. Baboon is
the worst case image because it is composed with many
small regions which avoid contour simplifications. Sec-
ondly, we can remark that in general, the discrete recon-
struction method and the polygonal simplification are
faster than the moment preserving simplification. The
moment method is slower than both other methods due
to the computation of moments: there are six moments
to compute for three edges, and moments used complex
formula.

We can observe that the speed-up of the parallel
method is interesting: about 42% for the polygonal ap-
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Fig. 11 The eight images used in our experiments: Airplane, Baboon, Cornouaille, Goldhill, Lamp, Lena, Peppers and
Table.

Table 2 Times in milliseconds (10−3 seconds) taken to compute the polygonal approximation with the sequential (poly seq.)
and parallel (poly par.) method, to compute the discrete reconstruction with the sequential (dss seq.) and parallel (dss par.)
algorithm, and to compute the simplification preserving moments with the sequential (mom seq.) and parallel (mom par.)
algorithm. The three rows speed-up give the percentage of speed-up of the parallel method on the sequential one for each
type of simplification, the three rows push give the number of vertices pushed in the stack of elements to reconsider, and the
three rows rem. vertices give the number of removed vertices for each method (means of ten tests).

Airpl. Baboon Cornou. Goldhi. Lamp Lena Peppers Table
poly seq. 7.14 25.28 3.42 19.86 3.6 10.98 9.41 2.57
poly par. 3.65 11 2.27 8.8 2.61 5.05 4.66 2.16
poly speed-up 48.86% 56.46% 33.70% 55.67% 27.62% 54.04% 50.46% 16.05%
poly push 58 50 47 48 42 57 44 53
rem vertices 21,597 58,557 11,857 48,740 11,951 29,115 25,210 10,179

dss seq. 7.7 28.77 3.45 22.82 3.74 12.08 10.44 2.49
dss par. 3.29 10.14 2.02 8.16 2.26 4.59 4.21 1.86
dss speed-up 57.26% 64.77% 41.59% 64.24% 39.52% 61.97% 59.67% 25.14%
dss push 58 44 52 45 38 56 46 37
rem vertices 21,405 57,735 11,694 48,065 11,790 28,688 24,861 10,037

mom seq. 11.05 40.15 5.55 31.11 5.88 17.6 15.08 3.68
mom par. 9.01 31.84 2.75 20.28 3.11 6.66 6.05 2.5
mom speed-up 18.44% 20.68% 50.45% 34.79% 47.18% 62.15% 59.88% 32.09%
mom push 657,693 2,556,919 20,237 1,459,085 14,545 87,108 73,450 19,350
rem vertices 20,344 50,907 10,749 44,806 10,129 26,465 22,170 9,555

proximation, 51% for the discrete reconstruction method
and 40% for the moment preserving method. First, we
must notice that the gain for parallel methods is related
to the time required by the sequential one. Indeed, fast
sequential algorithms are really difficult to improve. This
is for example the case for Cornouaille, Lamp and Table
images, which are small images of sizes 256× 256.

Secondly, this speed-up must be considered relatively
to the number of conflicts during the simplification. The
rows poly push, dss push and mom push in table 2 give
the number of vertices pushed in the stack of dart to re-
consider (a vertex is pushed in this stack when the thread

was not able to take the two required mutexes). We can
observe than the number of conflicts is really small for
the two first methods (polygonal and DSS simplifica-
tions), while these numbers are important for the mo-
ment method. Indeed, for the two first methods, mutexes
are local since they correspond to the two edges incident
to the current vertex, while for the moment method, mu-
texes correspond to the two regions incident to the cur-
rent vertex, which prohibits the process of many other
vertices.

This explain why we have for example a speed up
of 20% for the image Baboon, and 62% for the im-
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Fig. 12 Time (in milliseconds) taken by the three con-
tour simplification methods in sequential and parallel for
the image peppers, by increasing its size from 512 × 512 to
3584× 3584.

Table 3 Slopes of the linear regression between computation
times and size of combinatorial maps in number of darts for
our 6 methods: polygonal, DSS and moments for sequential
and parallel methods (slopes are multiply by 105).

Polygonal DSS Moments
Seq. Par. Seq. Par. Seq. Par.
18 7,6 23 7,7 19,7 7,45

age Lena for the moment method. For Baboon, we ob-
tain better results by decreasing the number of threads.
We have 33.23ms with two threads, 26.8ms with four
threads, and 31.84ms with eight threads. These times
are related to the number of conflicts: 1 101 506 for two
threads, 12 528 498 for four threads, and 25 569 191 for
eight threads. Using four threads seems in this case to
be a good compromise between number of vertices to
treat by each thread, and number of conflicts.

We have also considered an experiment in order to
study the scale-up property of our algorithms. For that,
we have taken the Peppers image, and multiply its size
by 2, 3, 4, 5, 6 and 7. Thus, we obtain 7 images of size
from 512 × 512 to 3584 × 3584. We have run our three
simplification methods in sequential and in parallel onto
these 7 images. Results are presented in Fig. 12. We can
first remark that even for large images, our methods are
really quick: less than 120 milliseconds for image of size
3584 × 3584 for the DSS method. Secondly, we can ob-
serve that despite the fact that the worst case complexity
is not linear for the first two methods, the time efficiency
behaves linearly. As expected, Fig. 12 also illustrates the
speed-up between sequential and parallel methods. This
is confirmed while studying the slopes of the linear re-
gression between computation times and size of images
given in table 3. We can observe that slopes are smaller
for parallel methods than for sequential ones: this shows

that the speed-up of parallel methods comparing to se-
quential ones increases for bigger images.

To evaluate the results of the proposed simplifica-
tion methods, Fig. 13 shows three zooms onto the left
eye of Lena. We can observe that the contours obtained
with the DSS method describe more precisely the orig-
inal regions than contours obtained with the polygonal
approximation. This can be verified in table 2 by looking
at the number of removed vertices: there are always less
removed vertices for DSS method than for polygonal one.
We can also see that the moment based method preserves
more precisely the small region contours while allowing
more important modifications on large region contours.
Indeed, in this method, the modifications allowed are a
percentage of the original moments, and thus for small
regions, removing a pixel involves, in percentage, a big-
ger modification than for a large region. This can be
also verified in Fig. 14 for experiments on other classical
images (Soldier and Bird). The DSS method gives re-
sults with more vertices than both other approaches, due
to reversibility. The moment preserving method simplify
more strongly small details due to the merging criterion
which is given in a percentage of the whole region. This
shows once again the interest of our generic approach
allowing to easily propose a new criterion mixing local
and global features depending on the need of a particular
application.

7 Conclusion

In this paper, we have presented a generic algorithm
which allows to simplify the contour of any labeled im-
age. By using a combinatorial map which describes the
image, we use cells of the subdivision to add some pa-
rameters, and we use incident and adjacency relations to
merge two edges when it is possible. This gives a simple
and efficient algorithm. Moreover, since all processes are
local, the algorithm can easily be parallelized with inde-
pendent threads sharing the same map. Our experiments
show that the speed-up of the parallel algorithm is about
45% with a “Intel Core i7 CPU CPU”. Since our algo-
rithm is fully parallel, the speed of our method will be
improved by using future generation of processors with
more cores. Furthermore, thanks to the time efficiency
evaluation presented above, we have shown that a real-
time multi-region contour simplification can be obtained.

As a consequence the genericity of our framework, we
have presented three simplification methods: a first one
which is a polygonal approximation of contours, a sec-
ond one which is a discrete polygonalization and a third
one which is a moment preserving simplification. These
three methods illustrate the interest of using combinato-
rial map because we use different type of cells (edges for
polygonal approximation and for discrete reconstruction
and regions for moment preserving simplification) and
several adjacency and incidence relations.
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(a) (b) (c)

Fig. 13 Zoom around the left eye of Lena for the three contour simplifications: (a) Polygonal approximation, (b) Discrete
reconstruction and (c) Moment preserving simplification.

An advantage of our method is the possibility to pro-
cess vertices in any order. This can be easily achieved by
adding a step which sorts vertices of the initial combina-
torial map in a specific order. For example, we can use
random orders to obtain results which can be statisti-
cally studied. This order of vertices must also be studied
in order to improve the parallel methods by decreasing
the number of conflicts.

Another future work could be to schedule the vertices
to process considering geometrical information. For ex-
ample, we could order points according their estimated
curvature measurement and then start the simplification
process with low curvature value vertices. Moreover, we
can easily add the notion of critical points (vertices that
cannot be removed) by marking these particular vertices
and do not process them during our algorithm. Lastly,
we plan to extend this method in 3D by using 3D com-
binatorial maps (Damiand 2008).
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