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Introduction

Combinatorial maps are nice data structures for modeling the topology of nD objects subdivided in cells (e.g., vertices, edges, faces, volumes, ...) by means of incidence and adjacency relationships between these cells. First defined in 2D [START_REF] Edmonds | A combinatorial representation for polyhedral surfaces[END_REF][START_REF] Tutte | A census of planar maps[END_REF][START_REF] Jacques | Constellations et graphes topologiques[END_REF][START_REF] Cori | Un code pour les graphes planaires et ses applications[END_REF], they have been extended to nD [START_REF] Brisson | Representing geometric structures in d dimensions: topology and order[END_REF][START_REF] Lienhardt | Subdivision of n-dimensional spaces and n-dimensional generalized maps[END_REF][START_REF] Lienhardt | Topological models for boundary representation: a comparison with n-dimensional generalized maps[END_REF]. Combinatorial maps are often used to model the partition of an image in regions and to describe the topology of this partition (e.g., [START_REF] Braquelaire | Image segmentation with topological maps and inter-pixel representation[END_REF] for 2D images and [START_REF] Damiand | Topological model for 3d image representation: Definition and incremental extraction algorithm[END_REF] for 3D images). There exist efficient image processing algorithms using this topological information. However, there exist few algorithms for analyzing or comparing combinatorial maps, which are key issues in image processing.

In this paper, we describe an algorithm for extracting patterns which occur frequently in a database of maps. This algorithm is a first step for analyzing and characterizing sets of maps. Finding frequent patterns in databases is a classical data mining problem, the tractability of which highly depends on the existency of efficient algorithms for deciding if two patterns are actually different or if they are two occurrences of a same object. Hence, if finding frequent subgraphs is intractable in the general case, it may be solved in incremental polynomial time when considering classes of graphs for which subgraph isomorphism may be solved in polynomial time, such as trees [START_REF] Chi | Frequent subtree mining -an overview[END_REF] or outerplanar graphs [START_REF] Horvath | Frequent subgraph mining in outerplanar graphs[END_REF]. We have introduced efficient polynomial-time algorithms to decide of submap isomorphism in [START_REF] Damiand | Polynomial Algorithm for Submap Isomorphism: Application to searching patterns in images[END_REF], and to search for a map into a database of maps in [START_REF] Gosselin | Efficient search of combinatorial maps using signatures[END_REF]. These algorithms allow us to design an incremental polynomial time algorithm for extracting frequent patterns from a database of maps.

Outline. Basic definitions on combinatorial maps are recalled in section 2. The algorithm for extracting frequent submaps from 2D maps is described in section 3, and its extension to nD maps is described in section 4. First experimental results on a synthetic database of randomly generated 2D and 3D maps and on a database of maps extracted from images are reported in section 5 and 6.

Recalls on Combinatorial Maps

Combinatorial maps describe the subdivision of nD objects into cells of dimensions lower or equal to n (0D vertices, 1D edges, 2D faces, 3D volumes, ...), and describe the topology of these cells by means of incidence and adjacency relationships between these cells. For sake of simplicity, we first introduce maps in 2D and describe our algorithm within this 2D context. The extension to nD maps is rather straightforward and is described in section 4.

In 2D, a combinatorial map models a plane graph i.e., the embedding of a planar graph into a plane, as illustrated in Fig. 1. It is defined by a set of darts and two functions β 1 and β 2 as follows.

Definition 1 (Combinatorial map [START_REF] Lienhardt | Topological models for boundary representation: a comparison with n-dimensional generalized maps[END_REF]). A 2D combinatorial map (or map) is defined by a tuple M = (D, β 1 , β 2 ) where D is a finite set of darts; β 1 is a permutation on D (i.e., a one-to-one mapping from D to D); and β 2 is an involution on D (i.e., a one-to-one mapping from D to D such that

β 2 = β -1 2 ).
A dart d is said to be i-sewn with another dart d ′ if d ′ = β i (d). β 1 is a permutation which models dart successions when turning around faces with respect to some given order. β 2 models adjacency relations between faces.

In some cases, it may be useful to allow some β i to be partially defined, thus leading to open combinatorial maps. The basic idea is to add a new element ǫ to the set of darts, and to allow darts to be i-sewn with ǫ. By definition, β 1 (ǫ) = β 2 (ǫ) = ǫ. Fig. 2 gives an example of open map (see [START_REF] Damiand | Polynomial Algorithms for Subisomorphism of nD Open Combinatorial Maps[END_REF][START_REF] Poudret | Cartes combinatoires ouvertes[END_REF] for precise definitions).

In this paper, we extract patterns from maps, where patterns are maps which are isomorphic to submaps of these maps. More precisely, map isomorphism has been defined e.g. in [START_REF] Lienhardt | N-dimensional generalized combinatorial maps and cellular quasimanifolds[END_REF] as follows. This definition has been extended to open maps in [START_REF] Damiand | Polynomial Algorithm for Submap Isomorphism: Application to searching patterns in images[END_REF] by adding that f (ǫ) = ǫ, thus enforcing that, when a dart is i-sewn with ǫ, then the dart matched to it by f is i-sewn with ǫ. Submap isomorphism simply derives from the definition of map isomorphism: there is a submap isomorphism from a map M to a map M ′ if there exists a submap of M ′ which is isomorphic to M ′ , where a submap is basically obtained by removing some darts (and free-ing darts that were i-sewn with the removed darts). For example, there is a submap isomorphism from the map of Fig. 2 to the map of Fig. 1 as it is isomorphic to the submap of Fig. 1 obtained by removing darts 1 to 11.

Definition 2 (Map isomorphism). Two maps

M = (D, β 1 , β 2 ) and M ′ = (D ′ , β ′ 1 , β ′ 2 ) are isomorphic if there exists a bijection f : D → D ′ such that ∀d ∈ D, f (β 1 (d)) = β ′ 1 (f (d)) and f (β 2 (d)) = β ′ 2 (f (d)). G = F1 F3 F2 F4 M = F1 F2 F3 F4
In [START_REF] Damiand | Polynomial Algorithm for Submap Isomorphism: Application to searching patterns in images[END_REF], we have described an algorithm which decides of submap isomorphism from a map M = (D,

β 1 , β 2 ) to a map M ′ = (D ′ , β ′ 1 , β ′ 2 ) in O(|D|•|D ′ |)
, provided that M is connected, i.e., there must exist a path of sewn darts between every pair of darts of M .

In [START_REF] Gosselin | Efficient search of combinatorial maps using signatures[END_REF], we have introduced a signature which allows us to efficiently search for a map M in a database B containing k maps such that the largest map has t darts: the time complexity for building the signature of the database is O(k • t 2 ); 

Frequent submap discovery

When considering 2D maps, the basic cell is the face. Therefore, a pattern is a connected set of faces. We can then define the problem of frequent submap discovery in a similar way as [START_REF] Kuramochi | Frequent subgraph discovery[END_REF] has defined the problem of frequent subgraph discovery: given a set of maps S and a parameter σ such that 0 < σ ≤ 1, the goal is to find all patterns M such that f req(M, S) ≥ σ • |S|, where f req(M, S) is the frequency of M in S, i.e., the number of maps M ′ ∈ S such that there is (at least) one submap isomorphism from M to M ′ . A map may have an exponential number of different submaps so that a naive representation of the search space for this problem has exponential size in the length of the input. To reduce the set of candidate patterns to be explored, we exploit the fact that the frequency constraint is anti-monotone with respect to the submap isomorphism partial order relation: if a pattern p is not frequent, then any pattern p ′ such that p is subisomorphic to p ′ cannot be frequent.

Algorithm 1 describes our frequent submap mining algorithm, called mSpan for Map-based Substructure Pattern mining. mSpan follows the same basic principle as gSpan [START_REF] Yan | gspan: Graph-based substructure pattern mining[END_REF] which extracts frequent subgraphs: it constructs patterns with a depth-first search algorithm and exploits the frequency constraint to prune parts of the search space which do not contain frequent patterns.

More precisely, we first compute the set F 1 of all frequent patterns composed of a single face, and we initialize the set F of all frequent patterns with F 1 . Then, for each face f of F 1 , we build all frequent patterns which contain f plus some faces of F 1 and we add these frequent patterns to F (lines 4-10). Finally, 

10 return {pi ∈ Lp | f req(pi) ≥ σ • |S|}
we remove f from F 1 (line 11) in order to prevent us from re-building frequent patterns containing f in the next iterations of the while loop of lines 3-11. The set of all frequent patterns which contain f plus some faces of F 1 is built iteratively by using a set Cand of frequent patterns which are candidate to be extended by sewing to them one face of F 1 : at each iteration (lines 6-10), we remove a pattern p from Cand (line 7) and the grow function computes all frequent patterns that may be built by sewing a face of F 1 to p (line 8); these frequent patterns are added to the set Cand (line 9) in order to further build new patterns which contain them.

The grow function is described in algorithm 2. Given a frequent pattern p and a set of frequent 1-face patterns F 1 , it returns all frequent patterns obtained by sewing one face of F 1 to p. This is done by traversing the boundary of every occurrence o of p in a map of S: for each dart d of this boundary, if the face which is 2-sewn to d belongs to F 1 then the pattern p f obtained by 2-sewing this face to dart d of o is a candidate frequent pattern which is added to L p if it does not already belong to it (line 8). Once all candidate patterns have been computed in L p , we return all patterns of L p which are frequent (line 10).

Data structure used to memorize pattern occurrences (line 2 of Algo. 2). When trying to grow pattern p by adding a new face to it, we do not compute all occurrences of p in a map of S. This information is incrementally stored: each time an occurrence of a pattern p f is found (line 7), we keep track of it in an occurrence list occ(p f ) which contains one dart for every pattern occurrence of p f as illustrated in Fig. 3. For each occurrence o, we memorize the dart of M ′ which corresponds to dart 1 of pattern M . Hence, the occurrence list associated with pattern M in map M ′ is occ(M ) =< q, a, j, p, i >. To find the boundary of an occurrence of M , we search for the darts of M ′ which correspond to the 2-free darts of M (i.e., 1, 6, 7, 5, 2). For example, the boundary of the occurrence of M which starts at dart q contains darts q, k, m, l, p. occ(p), as illustrated in Fig. 3 (see [START_REF] Damiand | Polynomial Algorithms for Subisomorphism of nD Open Combinatorial Maps[END_REF] for more details). This is done in linear time with respect to the number of darts of the pattern p.

Data structure used to decide if a pattern p f belongs to L p (line 8 of Algo. 2). Each time a new pattern p f is found (line 7), we compute its signature and we add this signature to a signature tree. If the pattern p f has k darts, then the space complexity of the signature of p f is O(k) and the time complexity to compute the signature and to add it to the signature tree is O(k 2 ) in the worst case. Using this tree signature allows us to check if p f already belongs to L p (line 8) in O(k), whatever the size of L p is (see [START_REF] Gosselin | Efficient search of combinatorial maps using signatures[END_REF] for more details).

Frequency update (line 9 of Algo. 2). A pattern may appear several times in the same map, however, its frequency is increased by 1 at most once for each map. We explore occurrences map by map, so it is sufficient to use a flag to know if the frequency of a pattern for a given map has already been increased.

Generalization to nD combinatorial maps

For sake of simplicity, we have described our frequent submap mining algorithm for 2D combinatorial maps. However, it can be extended to nD maps in a very straightforward way. Actually, we have implemented it for the nD case and we report experimental results on 2D and 3D maps in the next section.

If 2D maps are described by two functions β 1 and β 2 which respectively describe adjacency relations between edges and faces, nD maps are described by n functions, β 1 to β n , such that each β i function describes adjacency relations between cells of dimension i, called i-cells (1-cells are edges, 2-cells faces, 3-cells volumes, ...). We have extended submap isomorphism to nD maps in [START_REF] Damiand | Polynomial Algorithms for Subisomorphism of nD Open Combinatorial Maps[END_REF]. In nD, mined patterns are connected n-cells (i.e., connected faces in 2D, connected volumes in 3D, ...). Algorithms 1 and 2 are extended to the nD case by replacing faces with n-cells: we first search for all frequent patterns composed of one n-cell and, for each of these patterns, we iteratively compute all frequent patterns which contain it. The grow function builds new frequent patterns by n-sewing a frequent n-cell with a frequent pattern.

Experimental evaluation on synthetic databases

Using synthetic databases allows us to evaluate scale-up properties when decreasing the frequency threshold σ, and when increasing the size of the maps, i.e., the number of faces in 2D and the number of volumes in 3D.

Considered datasets. We have generated different databases. Each database D(n, k) contains 1000 connected maps such that n ∈ {2, 3} corresponds to the dimension of the map, and k to the number of n-cells (faces for n = 2 and volumes for n = 3). Maps are randomly generated in such a way that they are connected and their faces (resp. volumes) have degrees varying between 3 and 10 (resp. 4 and 10). When n = 2 (resp. n = 3), each n-map is generated by first building k closed n-cells such that the degree of each n-cell is randomly chosen within [3; 10] (resp. [4; 10]) according to a uniform distribution, and then randomly n-sewing these n-cells until we obtain a connected map. Note that generated maps may have holes and do not have outer (infinite) n-cell.

Maps vs graphs. We compare mSpan with gSpan1 , which is a state-of-the-art algorithm for extracting frequent connected subgraphs from a database of graphs [START_REF] Yan | gspan: Graph-based substructure pattern mining[END_REF]. Let us first note that mSpan and gSpan solve different problems which have different theoretical complexities: if submap isomorphism has a polynomialtime complexity, subgraph isomorphism is NP-complete. Therefore, it is not surprising if gSpan and mSpan exhibit different scale-up properties. Given a 2D map, we can generate a primal graph in a very straightforward way (see Fig. 4). However, mining the primal graph is not really meaningful and the extracted patterns cannot be compared with those extracted by mSpan. Indeed, mSpan extracts connected sets of faces whereas patterns extracted by gSpan are connected subgraphs which may not correspond to connected sets of faces at all (e.g., trees). For a fair comparison, we consider the dual graph which associates a vertex with every face of the 2D map and which connects two vertices iff the corresponding faces in the map are adjacent. We also label each vertex of the dual graph with the degree of the corresponding face (i.e., its number of edges). Patterns extracted by gSpan from the labeled dual graph are connected subgraphs and, therefore, correspond to connected sets of faces in the 2D map. Labels associated with vertices allow gSpan to discriminate faces which have different degrees and greatly improve performances of gSpan. However, gSpan does not consider the topology of the graph (i.e., the order in which faces are encountered when turning around one face) so that two different submaps may correspond to the same subgraph in the dual labeled graph, as illustrated in Fig. 5. Therefore, mSpan and gSpan do not extract the same frequent patterns.

For 3D maps, we also generate dual labeled graphs: we associate a vertex with every volume of the 3D map; we connect two vertices iff the corresponding volumes are adjacent; and we label each vertex with the degree of the corresponding volume. This way, connected subgraphs of dual labeled graphs correspond to connected sets of volumes. However, like in 2D, different connected sets of volumes may correspond to a same connected graph.

Note that labeled dual graphs are much smaller than the corresponding maps: a 2D (resp. 3D) map which has 350 faces (resp. 80 volumes) has 1800 (resp. 1200) darts or so, whereas the corresponding dual graph has 800 (resp. 160) edges or so and 350 (resp. 80) vertices.

Scale-up properties when increasing map sizes. Top and middle curves of Fig. 6 display results of mSpan and gSpan on D(n, k) databases with σ = 0.9 when increasing the number of faces k from 4 to 350 for n = 2, and when increasing the number of volumes k from 2 to 80 for n = 3. Each run has been limited to 3600 seconds of CPU time. mSpan is able to extract all frequent patterns within this time limit, even for the largest values of k. gSpan is faster than mSpan when k < 50 in 2D, and when k < 30 in 3D. However, for larger values of k it becomes slower, and it is not able to compute all frequent patterns within the CPU time limit of 3600 seconds when k > 120 in 2D and when k > 50 in 3D. Actually, gSpan extracts much more frequent patterns than mSpan, and the greater k, Comparison of scale-up properties for D(2, k) databases when increasing the number k of faces (σ = 0.9): the larger the difference. This comes from the fact that graphs do not model the topology so that different map patterns (which may not be frequent) correspond to the same graph pattern (which may become frequent).

Scale-up properties when increasing σ. Bottom curves of Fig. 6 displays results of mSpan and gSpan on the D(2, 60) database when increasing the frequency threshold from 0.1 to 1. It shows us that gSpan is faster than mSpan when σ > 0.9, but for smaller values of σ, mSpan becomes faster and gSpan is not able to compute all frequent patterns within the CPU time limit of 3600 seconds when σ < 0.7. Actually, the number of extracted patterns grows much quicker for gSpan than for mSpan when decreasing the frequency threshold σ. We have performed similar experiments on 3D maps, and observed very similar results.

Application to image classification

The goal of this section is not to define a new approach for classifying images, but to show that frequent patterns may be used to describe images by numerical vectors, thus allowing one to use the numerous tools defined on vector spaces for searching, classifying or clustering purposes. We have considered a supervised classification problem, which involves deciding the class of a new image knowing the classes of a sample learning set of images, and we have used the C4.5 classification method [START_REF] Steven | C4.5: Programs for machine learning by j. ross quinlan[END_REF].

We have considered a database of 4 classes of images such that each class contains 40 images (see a sample in Table 1). Each image of the database has been segmented into a 2D combinatorial map, using the algorithm described in [START_REF] Damiand | Topological model for two-dimensional image representation: definition and optimal extraction algorithm[END_REF]. These maps have 98 faces on average (minimum 10 and maximum 253).

Cherry Football Sea Greenland Table 1. Sample of the database composed of 4 classes with 40 images per classe.

We have considered a leave-k-out experimental protocol, with k = 10%: we have selected 10 different learning sets, such that each learning set contains 144 images (36 images of each class) and, for each of these learning sets, we have classified the 16 remaining images; we report average results obtained over the 10 different learning sets.

For each learning set, we have used mSpan to extract frequent patterns with the frequency threshold σ set to 0.1. On average over the 10 learning sets, mSpan has extracted 854 frequent patterns, whose sizes are ranging between 1 and 8 faces, in less than one second of CPU-time on an Intel Core 2 Duo with 4GB RAM. Then, each image i has been represented by a numerical vector V i whose dimension is equal to the number of frequent patterns and such that the j th element of V i is equal to the number of occurrences of the j th frequent pattern in the map associated with i.

Table 2 displays the confusion matrix of a C4.5 classification of these numerical vectors. The average classification rate is equal to 81% or so. This result is very promising as it has been obtained with frequent patterns only. Indeed, this kind of topological information is only a small part of the information contained in an image, and it could be easily combined with any other classical features such as colour or texture to improve the classification process, thus bridging the gap between traditional pattern recognition techniques based on feature vectors, and structural pattern recognition techniques based on structured representations of images such as graphs. 2. Confusion Matrix. Each cell on line i and column j gives the percentage of images which belong to class i and have been classified in class j.
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Conclusion

We have introduced an algorithm called mSpan for extracting frequent patterns from combinatorial maps. This algorithm uses efficient polynomial time procedures for deciding of submap isomorphism [START_REF] Damiand | Polynomial Algorithm for Submap Isomorphism: Application to searching patterns in images[END_REF], and for searching for isomorphic occurrences of a given map in the signature of a base of maps [START_REF] Gosselin | Efficient search of combinatorial maps using signatures[END_REF].

Combinatorial maps model the topology of nD objects subdivided in cells (e.g., vertices, edges, faces, volumes, ...) by means of incidence and adjacency relationships between these cells. We have shown that we can use dual labeled graphs to model adjacency relationships between cells, but these graphs do not model the topology of these cells (i.e., the order in which they are encountered when turning around a given cell). Therefore, different map patterns (which may not be frequent) may be modeled by a same dual labeled graph (which may become frequent) so that a graph mining algorithm extracts much more patterns. Of course, the relevancy of extracted patterns depends on the application. We have already applied mSpan to an aperiodic tiling application, the goal of which is to find the largest pattern occurring frequently in a given aperiodic tiling. Clearly, on this kind of application, the topology is of uppermost importance and patterns extracted from dual labeled graphs are not relevant.
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 ǫ2 Fig. 2. Open combinatorial map example. Darts a, b, d, f and g are not 2-sewn.

Algorithm 1 : 4 choose a pattern f in F1 5 Cand ← {f } 6 while Cand = ∅ do 7 remove a pattern p from Cand 8 Fp 9 Cand ← Cand ∪ Fp 10 F

 145678910 mSpan(S, σ) Input: a set of maps S and a real number σ ∈]0; 1] Output: the set F of all maps which are submaps of at least σ • |S| maps of S 1 F1 ← all patterns composed of 1 face and occurring in at least σ • |S| maps of S 2 F ← F1 3 while F1 = ∅ do ← grow(p, F1) ← F ∪ Fp /* All frequent patterns which contain face f belong to F */ 11 remove f from F1 12 return F the space complexity of this signature is O(k • t), and the time complexity of searching for all maps of B which are isomorphic to M is O(n • t 2 ).

Algorithm 2 :

 2 grow(p, F 1 ) Input: a frequent pattern p and a set of frequent 1-face patterns F1 Output: a set Fp of all frequent patterns built by adding a face of F1 to p 1 Lp ← ∅ 2 for each occurrence o of the pattern p in a map of S do 3 for each dart d which belongs to the boundary of this occurrence o of p do 4 if β2(d) = ǫ so that there exists a face which is 2-sewn with d then 5 let f be the face 2-sewn with d 6 if f ∈ F1 then 7 let p f be the pattern obtained by 2-sewing face f to dart d of o 8 if p f ∈ Lp then add p f to Lp and initialize f req(p f ) to 1 9 else update f req(p f )

Fig. 3 .

 3 Fig.3. Example of pattern occurrence list. Pattern M occurs 5 times in map M ′ . For each occurrence o, we memorize the dart of M ′ which corresponds to dart 1 of pattern M . Hence, the occurrence list associated with pattern M in map M ′ is occ(M ) =< q, a, j, p, i >. To find the boundary of an occurrence of M , we search for the darts of M ′ which correspond to the 2-free darts of M (i.e., 1, 6, 7, 5, 2). For example, the boundary of the occurrence of M which starts at dart q contains darts q, k, m, l, p.
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 4 Fig. 4. Example of primal graph and dual labeled graph associated with a map.
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 35 Fig. 5. Two different submaps which correspond to the same dual labeled graph.

Fig. 6 .

 6 Fig. 6. Comparison of mSpan (bold lines) and gSpan (dashed lines) scale-up properties: curves on the left (resp. right) plot the evolution of CPU-time in seconds (resp. number of extracted patterns).

implementation found in http://www.cs.ucsb.edu/∼xyan/software/gSpan.htm