
HAL Id: hal-00636373
https://hal.science/hal-00636373v1

Submitted on 27 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Frequent Submap Discovery
Stéphane Gosselin, Guillaume Damiand, Christine Solnon

To cite this version:
Stéphane Gosselin, Guillaume Damiand, Christine Solnon. Frequent Submap Discovery. Symposium
on Combinatorial Pattern Matching, Jun 2011, Palermo, Italy. pp.429-440, �10.1007/978-3-642-21458-
5_36�. �hal-00636373�

https://hal.science/hal-00636373v1
https://hal.archives-ouvertes.fr

Frequent Submap Discovery

Stéphane Gosselin, Guillaume Damiand, and Christine Solnon⋆ ⋆⋆

Université de Lyon, CNRS
Université Lyon 1, LIRIS, UMR5205, F-69622, France

{stephane.gosselin,guillaume.damiand,christine.solnon}@liris.cnrs.fr

Abstract. Combinatorial maps are nice data structures for modeling
the topology of nD objects subdivided in cells (e.g., vertices, edges, faces,
volumes, ...) by means of incidence and adjacency relationships between
these cells. In particular, they can be used to model the topology of
plane graphs. In this paper, we describe an algorithm, called mSpan, for
extracting patterns which occur frequently in a database of maps. We
experimentally compare mSpan with gSpan on a synthetic database of
randomly generated 2D and 3D maps. We show that gSpan does not
extract the same patterns, as it only considers adjacency relationships
between cells. We also show that mSpan exhibits nicer scale-up properties
when increasing map sizes or when decreasing frequency.

1 Introduction

Combinatorial maps are nice data structures for modeling the topology of nD
objects subdivided in cells (e.g., vertices, edges, faces, volumes, ...) by means of
incidence and adjacency relationships between these cells. First defined in 2D
[9, 19, 12, 4], they have been extended to nD [2, 14, 15]. Combinatorial maps are
often used to model the partition of an image in regions and to describe the
topology of this partition (e.g., [1] for 2D images and [5] for 3D images). There
exist efficient image processing algorithms using this topological information.
However, there exist few algorithms for analyzing or comparing combinatorial
maps, which are key issues in image processing.

In this paper, we describe an algorithm for extracting patterns which occur
frequently in a database of maps. This algorithm is a first step for analyzing and
characterizing sets of maps. Finding frequent patterns in databases is a classical
data mining problem, the tractability of which highly depends on the existency
of efficient algorithms for deciding if two patterns are actually different or if
they are two occurrences of a same object. Hence, if finding frequent subgraphs
is intractable in the general case, it may be solved in incremental polynomial

⋆ The authors acknowledge an Anr grant Blanc 07-1 184534: this work was done in
the context of project Sattic.

⋆⋆ Paper published in Proceedings of 22nd Symposium on Combinato-
rial Pattern Matching, LNCS 6661, pp. 429-440, June 2011. Thanks
to Springer Berlin Heidelberg. The original publication is available at
http://dx.doi.org/10.1007/978-3-642-21458-5 36

2 Stéphane Gosselin, Guillaume Damiand, and Christine Solnon

time when considering classes of graphs for which subgraph isomorphism may
be solved in polynomial time, such as trees [3] or outerplanar graphs [11]. We
have introduced efficient polynomial-time algorithms to decide of submap iso-
morphism in [7], and to search for a map into a database of maps in [10]. These
algorithms allow us to design an incremental polynomial time algorithm for ex-
tracting frequent patterns from a database of maps.

Outline. Basic definitions on combinatorial maps are recalled in section 2. The
algorithm for extracting frequent submaps from 2D maps is described in section
3, and its extension to nD maps is described in section 4. First experimental
results on a synthetic database of randomly generated 2D and 3D maps and on
a database of maps extracted from images are reported in section 5 and 6.

2 Recalls on Combinatorial Maps

Combinatorial maps describe the subdivision of nD objects into cells of dimen-
sions lower or equal to n (0D vertices, 1D edges, 2D faces, 3D volumes, ...),
and describe the topology of these cells by means of incidence and adjacency
relationships between these cells. For sake of simplicity, we first introduce maps
in 2D and describe our algorithm within this 2D context. The extension to nD

maps is rather straightforward and is described in section 4.
In 2D, a combinatorial map models a plane graph i.e., the embedding of a

planar graph into a plane, as illustrated in Fig. 1. It is defined by a set of darts
and two functions β1 and β2 as follows.

Definition 1 (Combinatorial map [15]). A 2D combinatorial map (or map)
is defined by a tuple M = (D,β1, β2) where D is a finite set of darts; β1 is a
permutation on D (i.e., a one-to-one mapping from D to D); and β2 is an
involution on D (i.e., a one-to-one mapping from D to D such that β2 = β−1

2
).

A dart d is said to be i-sewn with another dart d′ if d′ = βi(d). β1 is a per-
mutation which models dart successions when turning around faces with respect
to some given order. β2 models adjacency relations between faces.

In some cases, it may be useful to allow some βi to be partially defined, thus
leading to open combinatorial maps. The basic idea is to add a new element
ǫ to the set of darts, and to allow darts to be i-sewn with ǫ. By definition,
β1(ǫ) = β2(ǫ) = ǫ. Fig. 2 gives an example of open map (see [8, 17] for precise
definitions).

In this paper, we extract patterns from maps, where patterns are maps which
are isomorphic to submaps of these maps. More precisely, map isomorphism has
been defined e.g. in [16] as follows.

Definition 2 (Map isomorphism). Two maps M = (D,β1, β2) and M ′ =
(D′, β′

1
, β′

2
) are isomorphic if there exists a bijection f : D → D′ such that

∀d ∈ D, f(β1(d)) = β′

1
(f(d)) and f(β2(d)) = β′

2
(f(d)).

Frequent Submap Discovery 3

G =

F1 F3

F2 F4
M = F1

F2

F3

F47
9

11

12

6

13 16

8 10

5

4

17

18

314

2

151

Face F4 F2 F1 F3

Dart 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

β1 2 3 4 5 6 7 1 9 10 11 8 13 14 15 12 17 18 16
β2 15 14 18 17 10 9 8 7 6 5 12 11 16 2 1 13 4 3

Fig. 1. The map M describes the topology of the plane graph G. Darts are represented
by numbered arrows. 1-sewn darts are drawn consecutively, and 2-sewn darts are con-
currently drawn and in reverse orientation, with a little grey segment between the two
darts. Darts 1 to 7 correspond to face F4, darts 8 to 11 to face F2 and so on.

This definition has been extended to open maps in [7] by adding that f(ǫ) = ǫ,
thus enforcing that, when a dart is i-sewn with ǫ, then the dart matched to it
by f is i-sewn with ǫ. Submap isomorphism simply derives from the definition of
map isomorphism: there is a submap isomorphism from a map M to a map M ′

if there exists a submap of M ′ which is isomorphic to M ′, where a submap is
basically obtained by removing some darts (and free-ing darts that were i-sewn
with the removed darts). For example, there is a submap isomorphism from the
map of Fig. 2 to the map of Fig. 1 as it is isomorphic to the submap of Fig. 1
obtained by removing darts 1 to 11.

In [7], we have described an algorithm which decides of submap isomorphism
from a map M = (D,β1, β2) to a map M ′ = (D′, β′

1
, β′

2
) in O(|D|·|D′|), provided

that M is connected, i.e., there must exist a path of sewn darts between every
pair of darts of M .

In [10], we have introduced a signature which allows us to efficiently search
for a map M in a database B containing k maps such that the largest map has t
darts: the time complexity for building the signature of the database is O(k · t2);

F1 F2

f

a

b

d

g

c e

Face F1 F2

Dart a b c d e f g

β1 b c d a f g e
β2 ǫ ǫ e ǫ c ǫ ǫ

Fig. 2. Open combinatorial map example. Darts a, b, d, f and g are not 2-sewn.

4 Stéphane Gosselin, Guillaume Damiand, and Christine Solnon

Algorithm 1: mSpan(S, σ)

Input: a set of maps S and a real number σ ∈]0; 1]
Output: the set F of all maps which are submaps of at least σ · |S| maps of S

1 F1 ← all patterns composed of 1 face and occurring in at least σ · |S| maps of S
2 F ← F1

3 while F1 6= ∅ do
4 choose a pattern f in F1

5 Cand← {f}
6 while Cand 6= ∅ do
7 remove a pattern p from Cand

8 Fp ← grow(p, F1)
9 Cand← Cand ∪ Fp

10 F ← F ∪ Fp

/* All frequent patterns which contain face f belong to F */

11 remove f from F1

12 return F

the space complexity of this signature is O(k · t), and the time complexity of
searching for all maps of B which are isomorphic to M is O(n · t2).

3 Frequent submap discovery

When considering 2D maps, the basic cell is the face. Therefore, a pattern is
a connected set of faces. We can then define the problem of frequent submap
discovery in a similar way as [13] has defined the problem of frequent subgraph
discovery: given a set of maps S and a parameter σ such that 0 < σ ≤ 1, the
goal is to find all patterns M such that freq(M,S) ≥ σ · |S|, where freq(M,S)
is the frequency of M in S, i.e., the number of maps M ′ ∈ S such that there is
(at least) one submap isomorphism from M to M ′.

A map may have an exponential number of different submaps so that a naive
representation of the search space for this problem has exponential size in the
length of the input. To reduce the set of candidate patterns to be explored, we
exploit the fact that the frequency constraint is anti-monotone with respect to
the submap isomorphism partial order relation: if a pattern p is not frequent,
then any pattern p′ such that p is subisomorphic to p′ cannot be frequent.

Algorithm 1 describes our frequent submap mining algorithm, called mSpan
for Map-based Substructure Pattern mining. mSpan follows the same basic prin-
ciple as gSpan [20] which extracts frequent subgraphs: it constructs patterns with
a depth-first search algorithm and exploits the frequency constraint to prune
parts of the search space which do not contain frequent patterns.

More precisely, we first compute the set F1 of all frequent patterns composed
of a single face, and we initialize the set F of all frequent patterns with F1.
Then, for each face f of F1, we build all frequent patterns which contain f plus
some faces of F1 and we add these frequent patterns to F (lines 4-10). Finally,

Frequent Submap Discovery 5

Algorithm 2: grow(p, F1)

Input: a frequent pattern p and a set of frequent 1-face patterns F1

Output: a set Fp of all frequent patterns built by adding a face of F1 to p

1 Lp ← ∅
2 for each occurrence o of the pattern p in a map of S do

3 for each dart d which belongs to the boundary of this occurrence o of p do

4 if β2(d) 6= ǫ so that there exists a face which is 2-sewn with d then

5 let f be the face 2-sewn with d

6 if f ∈ F1 then

7 let pf be the pattern obtained by 2-sewing face f to dart d of o
8 if pf 6∈ Lp then add pf to Lp and initialize freq(pf) to 1
9 else update freq(pf)

10 return {pi ∈ Lp | freq(pi) ≥ σ · |S|}

we remove f from F1 (line 11) in order to prevent us from re-building frequent
patterns containing f in the next iterations of the while loop of lines 3-11. The set
of all frequent patterns which contain f plus some faces of F1 is built iteratively
by using a set Cand of frequent patterns which are candidate to be extended by
sewing to them one face of F1: at each iteration (lines 6-10), we remove a pattern
p from Cand (line 7) and the grow function computes all frequent patterns that
may be built by sewing a face of F1 to p (line 8); these frequent patterns are
added to the set Cand (line 9) in order to further build new patterns which
contain them.

The grow function is described in algorithm 2. Given a frequent pattern p

and a set of frequent 1-face patterns F1, it returns all frequent patterns obtained
by sewing one face of F1 to p. This is done by traversing the boundary of every
occurrence o of p in a map of S: for each dart d of this boundary, if the face
which is 2-sewn to d belongs to F1 then the pattern pf obtained by 2-sewing
this face to dart d of o is a candidate frequent pattern which is added to Lp if
it does not already belong to it (line 8). Once all candidate patterns have been
computed in Lp, we return all patterns of Lp which are frequent (line 10).

Data structure used to memorize pattern occurrences (line 2 of Algo. 2). When
trying to grow pattern p by adding a new face to it, we do not compute all
occurrences of p in a map of S. This information is incrementally stored: each
time an occurrence of a pattern pf is found (line 7), we keep track of it in an
occurrence list occ(pf) which contains one dart for every pattern occurrence of
pf as illustrated in Fig. 3.

Traversing the boundary of a pattern occurrence (line 3 of Algo. 2). The darts
which belong to the boundary of an occurrence o of a pattern p are found by
performing a traversal of o, guided by the pattern p, starting in parallel from
dart 1 of p and from the initial dart associated with o in the occurrence list

6 Stéphane Gosselin, Guillaume Damiand, and Christine Solnon

M =

7

4

3

1 2

6 5

M ′ =

c

e

f

s

y

g

a

q p

o

d
v

r

u

t

w

zx
lk

m

n

j

h

i

b

Fig. 3. Example of pattern occurrence list. Pattern M occurs 5 times in map M ′. For
each occurrence o, we memorize the dart of M ′ which corresponds to dart 1 of pattern
M . Hence, the occurrence list associated with pattern M in map M ′ is occ(M) =<

q, a, j, p, i >. To find the boundary of an occurrence of M , we search for the darts of
M ′ which correspond to the 2-free darts of M (i.e., 1, 6, 7, 5, 2). For example, the
boundary of the occurrence of M which starts at dart q contains darts q, k, m, l, p.

occ(p), as illustrated in Fig. 3 (see [8] for more details). This is done in linear
time with respect to the number of darts of the pattern p.

Data structure used to decide if a pattern pf belongs to Lp (line 8 of Algo. 2).
Each time a new pattern pf is found (line 7), we compute its signature and
we add this signature to a signature tree. If the pattern pf has k darts, then
the space complexity of the signature of pf is O(k) and the time complexity to
compute the signature and to add it to the signature tree is O(k2) in the worst
case. Using this tree signature allows us to check if pf already belongs to Lp

(line 8) in O(k), whatever the size of Lp is (see [10] for more details).

Frequency update (line 9 of Algo. 2). A pattern may appear several times in the
same map, however, its frequency is increased by 1 at most once for each map.
We explore occurrences map by map, so it is sufficient to use a flag to know if
the frequency of a pattern for a given map has already been increased.

4 Generalization to nD combinatorial maps

For sake of simplicity, we have described our frequent submap mining algorithm
for 2D combinatorial maps. However, it can be extended to nD maps in a very
straightforward way. Actually, we have implemented it for the nD case and we
report experimental results on 2D and 3D maps in the next section.

If 2D maps are described by two functions β1 and β2 which respectively
describe adjacency relations between edges and faces, nD maps are described by
n functions, β1 to βn, such that each βi function describes adjacency relations
between cells of dimension i, called i-cells (1-cells are edges, 2-cells faces, 3-cells
volumes, ...). We have extended submap isomorphism to nD maps in [8].

Frequent Submap Discovery 7

3

3

5
4

43 4

Map Primal graph Dual labeled graph

Fig. 4. Example of primal graph and dual labeled graph associated with a map.

In nD, mined patterns are connected n-cells (i.e., connected faces in 2D,
connected volumes in 3D, ...). Algorithms 1 and 2 are extended to the nD case
by replacing faces with n-cells: we first search for all frequent patterns composed
of one n-cell and, for each of these patterns, we iteratively compute all frequent
patterns which contain it. The grow function builds new frequent patterns by
n-sewing a frequent n-cell with a frequent pattern.

5 Experimental evaluation on synthetic databases

Using synthetic databases allows us to evaluate scale-up properties when de-
creasing the frequency threshold σ, and when increasing the size of the maps,
i.e., the number of faces in 2D and the number of volumes in 3D.

Considered datasets. We have generated different databases. Each database
D(n, k) contains 1000 connected maps such that n ∈ {2, 3} corresponds to the
dimension of the map, and k to the number of n-cells (faces for n = 2 and
volumes for n = 3). Maps are randomly generated in such a way that they are
connected and their faces (resp. volumes) have degrees varying between 3 and
10 (resp. 4 and 10). When n = 2 (resp. n = 3), each n-map is generated by
first building k closed n-cells such that the degree of each n-cell is randomly
chosen within [3; 10] (resp. [4; 10]) according to a uniform distribution, and then
randomly n-sewing these n-cells until we obtain a connected map. Note that
generated maps may have holes and do not have outer (infinite) n-cell.

Maps vs graphs. We compare mSpan with gSpan1, which is a state-of-the-art
algorithm for extracting frequent connected subgraphs from a database of graphs
[20]. Let us first note that mSpan and gSpan solve different problems which
have different theoretical complexities: if submap isomorphism has a polynomial-
time complexity, subgraph isomorphism is NP-complete. Therefore, it is not
surprising if gSpan and mSpan exhibit different scale-up properties. Given a
2D map, we can generate a primal graph in a very straightforward way (see

1 implementation found in http://www.cs.ucsb.edu/∼xyan/software/gSpan.htm

8 Stéphane Gosselin, Guillaume Damiand, and Christine Solnon

4 33

Fig. 5. Two different submaps which correspond to the same dual labeled graph.

Fig. 4). However, mining the primal graph is not really meaningful and the
extracted patterns cannot be compared with those extracted by mSpan. Indeed,
mSpan extracts connected sets of faces whereas patterns extracted by gSpan are
connected subgraphs which may not correspond to connected sets of faces at all
(e.g., trees). For a fair comparison, we consider the dual graph which associates
a vertex with every face of the 2D map and which connects two vertices iff
the corresponding faces in the map are adjacent. We also label each vertex of
the dual graph with the degree of the corresponding face (i.e., its number of
edges). Patterns extracted by gSpan from the labeled dual graph are connected
subgraphs and, therefore, correspond to connected sets of faces in the 2D map.
Labels associated with vertices allow gSpan to discriminate faces which have
different degrees and greatly improve performances of gSpan. However, gSpan
does not consider the topology of the graph (i.e., the order in which faces are
encountered when turning around one face) so that two different submaps may
correspond to the same subgraph in the dual labeled graph, as illustrated in
Fig. 5. Therefore, mSpan and gSpan do not extract the same frequent patterns.

For 3D maps, we also generate dual labeled graphs: we associate a vertex
with every volume of the 3D map; we connect two vertices iff the corresponding
volumes are adjacent; and we label each vertex with the degree of the correspond-
ing volume. This way, connected subgraphs of dual labeled graphs correspond
to connected sets of volumes. However, like in 2D, different connected sets of
volumes may correspond to a same connected graph.

Note that labeled dual graphs are much smaller than the corresponding maps:
a 2D (resp. 3D) map which has 350 faces (resp. 80 volumes) has 1800 (resp. 1200)
darts or so, whereas the corresponding dual graph has 800 (resp. 160) edges or
so and 350 (resp. 80) vertices.

Scale-up properties when increasing map sizes. Top and middle curves of Fig. 6
display results of mSpan and gSpan on D(n, k) databases with σ = 0.9 when
increasing the number of faces k from 4 to 350 for n = 2, and when increasing
the number of volumes k from 2 to 80 for n = 3. Each run has been limited to
3600 seconds of CPU time. mSpan is able to extract all frequent patterns within
this time limit, even for the largest values of k. gSpan is faster than mSpan when
k < 50 in 2D, and when k < 30 in 3D. However, for larger values of k it becomes
slower, and it is not able to compute all frequent patterns within the CPU time
limit of 3600 seconds when k > 120 in 2D and when k > 50 in 3D. Actually,
gSpan extracts much more frequent patterns than mSpan, and the greater k,

Frequent Submap Discovery 9

Comparison of scale-up properties for D(2, k) databases
when increasing the number k of faces (σ = 0.9):

1

10

100

1000

0 50 100 150 200 250 300 350

T
im

e
(i
n
s)

#Faces

mSpan
gSpan

1

10

100

1000

10000

0 50 100 150 200 250 300 350

#
F
re
q
u
en

t
P
a
tt
er
n
s

#Faces

mSpan
gSpan

Comparison of scale-up properties for D(3, k) databases
when increasing the number k of volumes (σ = 0.9):

1

10

100

1000

0 10 20 30 40 50 60 70 80

T
im

e
(i
n
s)

#Volumes

mSpan
gSpan

1

10

100

1000

0 10 20 30 40 50 60 70 80

#
F
re
q
u
en

t
P
a
tt
er
n
s

#Volumes

mSpan
gSpan

Comparison of scale-up properties for the D(2, 60) database when increasing σ:

1

10

100

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(i
n
s)

sigma

mSpan
gSpan

1

10

100

1000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#
F
re
q
u
en

t
P
a
tt
er
n
s

sigma

mSpan
gSpan

Fig. 6. Comparison of mSpan (bold lines) and gSpan (dashed lines) scale-up properties:
curves on the left (resp. right) plot the evolution of CPU-time in seconds (resp. number
of extracted patterns).

the larger the difference. This comes from the fact that graphs do not model the
topology so that different map patterns (which may not be frequent) correspond
to the same graph pattern (which may become frequent).

Scale-up properties when increasing σ. Bottom curves of Fig. 6 displays results
of mSpan and gSpan on the D(2, 60) database when increasing the frequency
threshold from 0.1 to 1. It shows us that gSpan is faster than mSpan when

10 Stéphane Gosselin, Guillaume Damiand, and Christine Solnon

σ > 0.9, but for smaller values of σ, mSpan becomes faster and gSpan is not
able to compute all frequent patterns within the CPU time limit of 3600 seconds
when σ < 0.7. Actually, the number of extracted patterns grows much quicker
for gSpan than for mSpan when decreasing the frequency threshold σ. We have
performed similar experiments on 3D maps, and observed very similar results.

6 Application to image classification

The goal of this section is not to define a new approach for classifying images,
but to show that frequent patterns may be used to describe images by numerical
vectors, thus allowing one to use the numerous tools defined on vector spaces for
searching, classifying or clustering purposes. We have considered a supervised
classification problem, which involves deciding the class of a new image know-
ing the classes of a sample learning set of images, and we have used the C4.5
classification method [18].

We have considered a database of 4 classes of images such that each class
contains 40 images (see a sample in Table 1). Each image of the database has
been segmented into a 2D combinatorial map, using the algorithm described
in[6]. These maps have 98 faces on average (minimum 10 and maximum 253).

Cherry

Football

Sea

Greenland
Table 1. Sample of the database composed of 4 classes with 40 images per classe.

We have considered a leave-k-out experimental protocol, with k = 10%: we
have selected 10 different learning sets, such that each learning set contains 144
images (36 images of each class) and, for each of these learning sets, we have

Frequent Submap Discovery 11

classified the 16 remaining images; we report average results obtained over the
10 different learning sets.

For each learning set, we have used mSpan to extract frequent patterns with
the frequency threshold σ set to 0.1. On average over the 10 learning sets, mSpan
has extracted 854 frequent patterns, whose sizes are ranging between 1 and 8
faces, in less than one second of CPU-time on an Intel Core 2 Duo with 4GB
RAM. Then, each image i has been represented by a numerical vector Vi whose
dimension is equal to the number of frequent patterns and such that the jth

element of Vi is equal to the number of occurrences of the jth frequent pattern
in the map associated with i.

Table 2 displays the confusion matrix of a C4.5 classification of these numer-
ical vectors. The average classification rate is equal to 81% or so. This result is
very promising as it has been obtained with frequent patterns only. Indeed, this
kind of topological information is only a small part of the information contained
in an image, and it could be easily combined with any other classical features
such as colour or texture to improve the classification process, thus bridging the
gap between traditional pattern recognition techniques based on feature vectors,
and structural pattern recognition techniques based on structured representa-
tions of images such as graphs.

❵
❵
❵

❵
❵
❵
❵
❵

❵
❵
❵

real class
classified as

Cherry Football Sea Greenland

Cherry 77.5 5 5 12.5

Football 2.5 80 17.5 0

Sea 0 15 85 0

GreenLand 2.5 0 15 82.5
Table 2. Confusion Matrix. Each cell on line i and column j gives the percentage of
images which belong to class i and have been classified in class j.

7 Conclusion

We have introduced an algorithm called mSpan for extracting frequent patterns
from combinatorial maps. This algorithm uses efficient polynomial time proce-
dures for deciding of submap isomorphism [7], and for searching for isomorphic
occurrences of a given map in the signature of a base of maps [10].

Combinatorial maps model the topology of nD objects subdivided in cells
(e.g., vertices, edges, faces, volumes, ...) by means of incidence and adjacency
relationships between these cells. We have shown that we can use dual labeled
graphs to model adjacency relationships between cells, but these graphs do not
model the topology of these cells (i.e., the order in which they are encountered
when turning around a given cell). Therefore, different map patterns (which
may not be frequent) may be modeled by a same dual labeled graph (which may

12 Stéphane Gosselin, Guillaume Damiand, and Christine Solnon

become frequent) so that a graph mining algorithm extracts much more patterns.
Of course, the relevancy of extracted patterns depends on the application. We
have already applied mSpan to an aperiodic tiling application, the goal of which
is to find the largest pattern occurring frequently in a given aperiodic tiling.
Clearly, on this kind of application, the topology is of uppermost importance
and patterns extracted from dual labeled graphs are not relevant.

References

1. J.-P. Braquelaire and L. Brun. Image segmentation with topological maps and
inter-pixel representation. 9(1):62–79, march 1998.

2. E. Brisson. Representing geometric structures in d dimensions: topology and order.
In SCG, pages 218–227, Saarbrücken, Germany, 1989.

3. Yun Chi, Richard R. Muntz, Siegfried Nijssen, and Joost N. Kok. Frequent subtree
mining - an overview. Fundam. Inf., 66:161–198, November 2004.

4. R. Cori. Un code pour les graphes planaires et ses applications. In Astérisque,
volume 27. Soc. Math. de France, Paris, France, 1975.

5. G. Damiand. Topological model for 3d image representation: Definition and incre-
mental extraction algorithm. CVIU, 109(3):260–289, March 2008.

6. G. Damiand, Y. Bertrand, and C. Fiorio. Topological model for two-dimensional
image representation: definition and optimal extraction algorithm. CVIU,
93(2):111–154, February 2004.

7. G. Damiand, C. De La Higuera, J.-C. Janodet, E. Samuel, and C. Solnon. Poly-
nomial Algorithm for Submap Isomorphism: Application to searching patterns in
images. In (GbR), LNCS, pages 102–112. Springer, May 2009.

8. G. Damiand, C. Solnon, C. De La Higuera, J.-C. Janodet, and E. Samuel. Polyno-
mial Algorithms for Subisomorphism of nD Open Combinatorial Maps. Computer
Vision and Image Understanding (CVIU), December 2011.

9. J. Edmonds. A combinatorial representation for polyhedral surfaces. Notices of
the American Mathematical Society, 7, 1960.

10. S. Gosselin, G. Damiand, and C. Solnon. Efficient search of combinatorial maps
using signatures. Theoretical Computer Science, 412(15):1392 – 1405, 2011. The-
oretical Computer Science Issues in Image Analysis and Processing.

11. T. Horvath, J. Ramon, and S. Wrobel. Frequent subgraph mining in outerplanar
graphs. In KDD 2006, pages 197–206, 2006.

12. A. Jacques. Constellations et graphes topologiques. In Combinatorial Theory and
Applications, volume 2, pages 657–673, 1970.

13. M. Kuramochi and G. Karypis. Frequent subgraph discovery. Data Mining, IEEE
International Conference on, 0:313, 2001.

14. P. Lienhardt. Subdivision of n-dimensional spaces and n-dimensional generalized
maps. In SCG, pages 228–236, Saarbrücken, Germany, 1989.

15. P. Lienhardt. Topological models for boundary representation: a comparison with
n-dimensional generalized maps. Computer-Aided Design, 23(1):59–82, 1991.

16. P. Lienhardt. N-dimensional generalized combinatorial maps and cellular quasi-
manifolds. IJCGA, 4(3):275–324, 1994.

17. M. Poudret, A. Arnould, Y. Bertrand, and P. Lienhardt. Cartes combinatoires
ouvertes. Research Notes 2007-1, Laboratoire SIC E.A. 4103, October 2007.

18. Steven L. Salzberg. C4.5: Programs for machine learning by j. ross quinlan.
morgan kaufmann publishers, inc., 1993. Machine Learning, 16:235–240, 1994.
10.1007/BF00993309.

Frequent Submap Discovery 13

19. W.T. Tutte. A census of planar maps. Canad. J. Math., 15:249–271, 1963.
20. X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In Proceed-

ings of the 2002 IEEE International Conference on Data Mining, ICDM ’02, pages
721–, Washington, DC, USA, 2002. IEEE Computer Society.

