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de Recherche 5588, Grenoble, France

Abstract

Ramlibacter tataouinensis TTB310T (strain TTB310), a betaproteobacterium isolated from a semi-arid region of South Tunisia
(Tataouine), is characterized by the presence of both spherical and rod-shaped cells in pure culture. Cell division of strain
TTB310 occurs by the binary fission of spherical ‘‘cyst-like’’ cells (‘‘cyst-cyst’’ division). The rod-shaped cells formed at the
periphery of a colony (consisting mainly of cysts) are highly motile and colonize a new environment, where they form a new
colony by reversion to cyst-like cells. This unique cell cycle of strain TTB310, with desiccation tolerant cyst-like cells capable
of division and desiccation sensitive motile rods capable of dissemination, appears to be a novel adaptation for life in a hot
and dry desert environment. In order to gain insights into strain TTB310’s underlying genetic repertoire and possible
mechanisms responsible for its unusual lifestyle, the genome of strain TTB310 was completely sequenced and subsequently
annotated. The complete genome consists of a single circular chromosome of 4,070,194 bp with an average G+C content of
70.0%, the highest among the Betaproteobacteria sequenced to date, with total of 3,899 predicted coding sequences
covering 92% of the genome. We found that strain TTB310 has developed a highly complex network of two-component
systems, which may utilize responses to light and perhaps a rudimentary circadian hourglass to anticipate water availability
at the dew time in the middle/end of the desert winter nights and thus direct the growth window to cyclic water availability
times. Other interesting features of the strain TTB310 genome that appear to be important for desiccation tolerance,
including intermediary metabolism compounds such as trehalose or polyhydroxyalkanoate, and signal transduction
pathways, are presented and discussed.
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Introduction

Ramlibacter tataouinensis TTB310T (strain TTB310) is a betapro-

teobacterium isolated from sand particles coated on a meteorite

fragment buried in a sandy soil of a semi-arid region of South

Tunisia (Tataouine). Scanning electron microscopy observations of

the weathered meteorite fragments reveal, in addition to altera-

tion zones at the surface of the meteorite crystals (pyroxene and

chromite) and secondary calcite crystals resulting from terrestrial

weathering [1,2], the presence of bacterial rods with an unusually
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small diameter. The strain TTB310 was isolated among a large

diversity of bacterial strains based on its cell diameter as the main

criterion for the selection, and secondly on its ability to cause the

weathering of orthopyroxene. This strain was characterized by

the presence of a pleomorphic form [3] with motile rod-shaped

(diameter 240 nm) and spherical cells (diameter 800 nm). It was

later identified as a new genus and species, Ramlibacter tataouinensis

[4]. TTB310 is the type strain of this species. One of the most

unusual characteristic of strain TTB310 is the coexistence of both

spherical and rod-shaped cells [4–6]: these features reveal an

original cell cycle that likely constitutes the main adaptation of this

bacterium to this desert environment, characterized by cycles of

air-drying and rehydratation events and long-term desiccation.

The strain TTB310 spherical cells present traits similar to

Azotobacter cysts, such as the absence of motility, cells embedded

within thick extracellular polymeric substances (EPS), the presence

of polyhydroxyalkanoate granules in the cytoplasm and a long-

term resistance to desiccation [4]. Contrary to cysts of Azotobacter,

for which the differentiation into rods is necessary for cell division,

cell division of strain TTB310 occurs under its ‘‘protected’’ form

(cyst), when water and nutrients are available. We thus proposed

that spherical cells should be considered ‘‘cysts’’ due to their

desiccation tolerance, even if they are not resting cells [4]. This

binary fission of spherical ‘‘cyst-like’’ cells (‘‘cyst-cyst’’ division) in an

embedded EPS is the basic mechanism by which a bacterial

colony grows on solid surfaces and probably an important trait

related to its adaptation to desiccation [4,5]. The rod-shaped cells

formed at the periphery of a colony (consisting mainly of cysts) are

highly motile (0.1 mm/min), and colonize a new environment,

where they form a new colony by reversion to cyst-like cells (‘‘cyst-

rod-cyst’’ differentiation) [5,6]. The formation of the rod-shaped

bacteria requires lysis of the EPS, reshaping of the cyst cell

including a condensation of cytoplasmic material, and synthesis

of a motility apparatus. Conversely, the ‘‘rod-to-cyst’’ transition

requires the reshaping of a rod and the synthesis of a new EPS.

This original cell cycle of strain TTB310 with desiccation tolerant

cyst-like cells capable of division and desiccation sensitive motile

rods capable of dissemination seems to be well suited for life in a

hot and dry desert and is summarized in Fig. 1.

In order to gain insights into strain TTB310’s underlying

genetic repertoire and possible mechanisms responsible for its

unusual lifestyle, we sequenced the genome of strain TTB310.

DNA sequence annotation, using both bioinformatics and manual

re-examination by experts in various microbiology fields, shows

that strain TTB310 has classical and specific mechanisms

for adaptation to desert life, combining both enzymatic and

mechanical protective schemes. Both for environmental sensing

and for cell cycle control, genomic data suggest that strain

TTB310 has developed a highly complex network of two-

component systems, which seems to implicate light and perhaps

a rudimentary circadian hourglass.

Results and Discussion

General features on the genome sequences and
structure
The complete genome consists of a single circular chromosome

of 4,070,194 bp with an average G+C content of 70.0%, which is

the highest of the Betaproteobacteria sequenced to date (Table 1). A

total of 3,899 predicted coding sequences (CDS), covering 92% of

the genome, were identified. Among these, 72% are proteins with

a function assigned on the basis of their similarity to other known

Figure 1. Modelling of Ramlibacter tataouinensis TTB310 cell cycle on nutritive agar based on optical and transmission electronic
microscopy (TEM). The life cycle includes the ‘‘cyst-to-cyst’’ division step (‘‘cyst-cyst’’ division) and the ‘‘cyst-to-rod’’ division step plus the reversion
from ‘‘rod-to-cyst’’ component of the cycle (‘‘cyst-rod-cyst’’ differentiation). The ‘‘rod-to-rod’’ division step (‘‘rod-rod’’ division, Video S1 and Text S1)
was included as a step of the ‘‘cyst-rod-cyst’’ differentiation. It should be noted that the complex ‘‘cyst-to-rod’’ division step (Video S1; [4]; see [6] for
details) occurs at the periphery of the colony [5]. The extracellular polymeric substances (EPS) lysis and cytoplasmic modifications during ‘‘cyst-to-rod’’
division step was depicted according to TEM, which showed that, prior to division and transition into rods, cysts contained condensed cytoplasmic
material. These results suggested that the morphological transition occurs solely by the reshaping of cells [6].
doi:10.1371/journal.pone.0023784.g001
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proteins, 19% are conserved hypothetical proteins and 9% did not

display any significant similarity to proteins identified in other

organisms. In addition to protein-encoding genes, a single copy of

the ribosomal (rRNA) operon, 43 transfer RNAs (tRNA) genes

representing all amino acids, and 10 non-coding RNAs were

identified. Genome comparisons showed that the strain TTB310

genome was highly similar with those of the Betaproteobacteria such

as Polaromonas sp. JS666, Delftia acidovorans SPH-1 and Acidovorax

avenae subsp. citrulli AAC00-1 sharing with them 66, 60 and 60% of

its encoded proteins, respectively (Fig. S1).

Carbohydrate metabolism
As expected, strain TTB310 presents the genetic characteristics

of an aerobic, chemo-organotrophic bacterial strain [4] (see Table

S1 for details). Considering the oligotrophic character of deserts

(organic matter ,1 mg/g; [7]), we explored the carbon metab-

olism of strain TTB310 with particular attention. Acetate is used

as a carbon and energy source by strain TTB310 [4]. We found

in strain TTB310 genes encoding the enzymes catalyzing the

transformation of acetate into acetyl-CoA (acetate-CoA ligase,

Rta_15940), and the first enzymes of the autotrophic dicarbox-

ylate/hydroxybutyrate pathway [8] (Table S1). The first steps of

this pathway, from acetate (C2) to oxaloacetate (C4), allow the

incorporation of two molecules of CO2.

Propionate and b-hydroxybutyrate are also used as carbon and

energy sources by this bacterium [4]: propionate can generate

acetyl-CoA with propionyl-CoA as an intermediate (propanoate

metabolism), and b-hydroxybutyrate can generate acetoacetate (b-
hydroxybutyrate dehydrogenase, Rta_17330). These three organic

acids (acetate, propionate and b-hydroxybutyrate) are well-known
carbon substrates for the biosynthesis of polyhydroxyalkanoate

(PHA), representing the carbon and energy storage of strain

TTB310 [4]. Key enzymes for PHA biosynthesis (PHA polymer-

ase, Rta_18090) and catabolism (PHA depolymerase, Rta_29420)

are present. The pentose phosphate pathway is complete, along

with that for pyruvate metabolism. The citric acid cycle (TCA

cycle) is also complete and associated to the glyoxylate bypass

(malate synthase, Rta_02700; isocitrate lyase, Rta_23660). In the

glyoxylate cycle, oxaloacetate (C4) can be regenerated from

phosphoenol-pyruvate (C3) with PEP-carboxylase with the fixation

of one CO2 (Rta_28690). All genes necessary for glycolysis or

gluconeogenesis (from a-D-glucose and b-D-glucose to pyruvate)

are present, but glucose assimilation was not detected in strain

TTB310 [4]: this is probably due to the absence of glucose

transporter. Among all the transporters, Rta_24150 appears to be

the best candidate to import the different carbon sources

metabolized by strain TTB310 including acetate, pyruvate, b-

hydroxybutyrate, c-hydroxybutyrate, DL-lactate, and propionate.

Tolerance to oxidative stress and DNA repair
mechanisms: enzymatic protections
We examined the strain TTB310 genome for the presence of genes

encoding for proteins involved in defense mechanisms against the

toxicity of reactive oxygen species (ROS). strain TTB310 possesses

basic but apparently sufficient equipment with one cytoplasmic

(Rta_11320) and one periplasmic superoxide dismutase (Rta_21880)

to cope with the presence of superoxide. Concerning peroxide

elimination, all various pathways present in organisms such as

Escherichia coli, Xanthomonas campestris and Saccharomyces cerevisiae are

found in strain TTB310, with some enzymes even found in multiple

copies. The genes of strain TTB310 potentially involved in peroxide

scavenging pathways are summarized in Fig. S2. The reductase

enzymes, such as TrxB and AhpF, are also present. Although the

genes encoding one glutathione-synthetase (Rta_02450) and five

thioredoxins (Rta_05290, Rta_17070, Rta_23420, Rta_30710,

Rta_36760) to complete the pathways are present, genes encoding

for a glutathione reductase could not be found. However, four

additional genes (Rta_11850, Rta_13470, Rta_22660, Rta_29620)

similar to trxB (Rta_31670) and ahpF (Rta_24200) are present, though

whether one of them is a glutathione reductase remains to be

determined. Strain TTB310 is therefore equipped to adapt to various

peroxide and superoxide stresses with a classical set of enzymes. One

can however note the presence of genes encoding for enzymes

involved in carotenoid biosynthesis (Rta_07680 to Rta_07730) to

quench ROS in the presence of light, in accordance with the presence

of carotenoid pigments in strain TTB310 [4].

Strain TTB310 encodes a complete set of enzymes known to be

required for DNA replication, DNA recombination, and for various

DNA repair mechanisms. Relevant to the strain TTB310 life cycle,

three proteins are potentially repairing DNA photo-damage: (i) a

candidate deoxyribodipyrimidine photolyase (photoreactivating en-

zyme) PhrB (Rta_34120) highly common in Betaproteobacteria and

responsible for the repair of UV-induced DNA damages in a blue

light dependent manner; (ii) a candidate deoxyribodipyrimidine

photolyase (Rta_37150), highly similar to the Rhodobacter sphaeroides

RSP_3077 protein proposed to act DNA photorepair [9]; and (iii) a

conserved hypothetical protein (CHP) distantly related to the spore

photoproduct lyase protein SplB from Bacillus subtilis (Rta_25110). In

conclusion, both for tolerance to oxidative stresses and DNA repair

mechanisms, strain TTB310 seems to use a ‘‘classical’’ set of enzymes

to cope with the drastic semi-desertic conditions, including enzymes

for carotenoid biosynthesis and for DNA photo-damage repair.

Carbohydrate-active enzymes: mechanical protections
(exopolysaccharide and trehalose synthesis and
degradation)
As explained in the introduction and illustrated by the ‘‘classical’’

set of enzymes used for the tolerance to oxidative stresses and DNA

repair mechanisms, we hypothesize that the cyst extracellular

polymeric substances (EPS), including exopolysaccharides, consti-

tutes the main physical barrier protecting strain TTB310 from

dessiccation/rehydratation cycles. A systematic search for genes

encoding carbohydrate-active enzymes was thus carried out to

corroborate the existence of exopolysaccharide synthesis and

degradation proteins in strain TTB310. A total of 25 glycosyl-

hydrolases (GHs) and 40 glycosyl-transferases (GTs) could be

identified (Table S2), corresponding respectively to 0.65% and

Table 1. General features of the Ramlibacter tataouinensis
TTB310 genome.

Size (bp) 4,070,194

G+C content (%) 70.0

Coding sequences (CDS) 3899

Coding density (%) 92

Average gene length (bp) 964

Proteins with assigned function 2812 (72%)

Conserved hypothetical proteins 726 (19%)

Hypothetical proteins 361 (9%)

rRNAs 16(16S-23S-5S)

tRNAs 43

Non-coding RNAs 10

doi:10.1371/journal.pone.0023784.t001
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1.0% of the CDSs of the genome. These percentages are in the

average range for bacterial and eukaryotic genomes, whether for

GHs alone or GTs alone [10]. The genome encodes a number of

expected features such as peptidoglycan, osmoregulated periplasmic

glucans, lipopolysaccharide and exopolysaccharide biosynthesis

pathways (Table S2).

Interestingly, in strain TTB310 all but one of the identified GHs

belong to families known to degrade equatorial glycosidic bonds of

substrates (e.g. b-linked for a D-gluco configuration). The only

exception is a gene that encodes a candidate intracellular a,a-
trehalase (Rta_36490) that belongs to a distinct subfamily of the

large glycosidase family GH15 found in an operon-like gene

cluster also containing a gene encoding a candidate trehalose 6-

phosphate phosphatase (Rta_36480) and a a,a-trehalose-6-phos-
phate synthase (Rta_36500). The disaccharide trehalose is widely

distributed in nature and can be found in many organisms,

including bacteria, fungi, plants, invertebrates and mammals. It

has been shown that trehalose can protect proteins and cellular

membranes from inactivation or denaturation caused by a variety

of stress conditions, including desiccation, dehydration, heat,

cold, and oxidation [11]. Trehalose is likely to be an essential

component of the metabolism of strain TTB310 since this

organism is subjected to all of the above. Many free-living bacteria

store carbon in the form of bacterial glycogen. It has been shown

that obligate bacterial parasites and symbionts tend to lose their

glycogen metabolism [12]. Strain TTB310 is remarkable in that it

has no candidate gene involved in glycogen metabolism despite

being a free-living bacterium (in strain TTB310, carbon is stored

as PHA). Due to the absence of the glycogen pathway, all the pool

of glucose in strain TTB310 can be directed towards the trehalose

pathway.

The analysis of the stereochemistry of the glycosidic bonds built

by the 40 GTs found in the strain TTB310 genome reveals that a

majority are involved in the formation of equatorial (eg b-linked
for a D-gluco configuration) glycosidic bonds, but 12 (from families

GT4, GT8 and GT20) are likely to be involved in the formation of

axial (eg a-linked for a D-gluco configuration) glycosidic bonds. The
function of only one of these 13 a-bond building GTs can be

confidently assigned, namely the a,a-trehalose-6-phosphate syn-

thase, which is accompanied by its hydrolytic counterpart. This

leaves a dozen genes encoding GTs involved in the formation of

axial (eg a-linked for a D-gluco configuration) glycosidic bonds with

no known degrading counterpart. It is conceivable that the

glycoconjugate products of some these GTs are a series of a-linked
glycolipids, although no simple glycolipid could be detected in

glycerolipid analyses, or that the products are simply not recycled.

In strain TTB310, the only a-cleaving GH is a likely intra-

cellular a,a-trehalase and all other candidate GHs belong to

families known to cleave b-glycosidic bonds. This suggests that the
subset of b-glycosidases that are exported (Table S2) could be

secreted and involved in the rapid breakdown of the abundant

EPS during the ‘‘cyst-to-rod’’ transition and, by inference, that the

EPS is made of mainly b-linked carbohydrates. If the a-bond
building glycosyltransferases discussed earlier were involved in the

synthesis of the EPS, then its breakdown would be performed by

classes of enzymes yet to be discovered (we note that no

polysaccharide lyases have been identified in the strain TTB310

genome).

Membrane glycerolipids: a complex fatty acid
biosynthetic system allowing a versatile tuning of
membrane fluidity
After the EPS, membranes are the second physical barriers for

protecting bacteria from environmental damages. Therefore, the

strain TTB310 genome was carefully examined for glycerolipid

biosynthesis systems and was completed by a biochemical analysis

of inner membrane lipids. Genes for the complete biosynthetic

pathway of lipid A derivatives, which characterize the outer

membrane of Gram negative bacteria, are present in the strain

TTB310 genome, equipping the cell with a robust hydrophobic

barrier anchored to the cell wall. For the inner membrane, lipid

content analysis reveals that it is characterized by a phospho-

glycerolipid profile with little complexity regarding polar heads

(Fig. S3). The major phospholipid is phosphatidylethanolamine.

No phosphatidylserine could be detected, although two phospha-

tidylserine synthases were identified in the genome. One fifth of

the glycerolipids is phosphatidylcholine, a lipid that is absent from

the vast majority of bacteria [13], particularly from E. coli or B.
subtilis, and whose synthesis in strain TTB310 is attributed to a

phospholipids-N-methyl transferase (pmtA, Rta_17000).

Analysis of fatty acid composition by gas chromatography of the

acyl methyl esters indicated a striking complexity, with more than

30 molecular species ranging from 14 carbon atoms (C14) to more

than 20 carbon atoms (Table S3). The usual straight chain fatty

acids (C16 and C18 molecular species) account for half the fatty

acids, with a classical profile of saturated (C16:0, C18:0) and

unsaturated species (C16:1, C18:1, C18:2, C18:3). The other half

comprises even-numbered very-long chain fatty acids (C20, C22,

C24), odd-numbered straight chain fatty acids (C15:0, C17:0) and

branched chain fatty acids (methyl in iso and anteiso positions). At

the genomic level, we detected strain TTB310 genes for fatty acid

biosyntheses initiating with a very large set of primers (Fig. S4). In

summary, we found that strain TTB310 presents the ability to

synthesize even- and odd-numbered, straight and branched chain

fatty acids from acetyl-CoA, propionyl-CoA and branched chain

amino acid derivatives as starting units. Three key enzymes are

involved in the determining steps of these biosyntheses: the

branched chain amino acid transaminase (bcaT, Rta_01870), the a-
keto acid dehydrogenase (bkd) cluster (bkdA1, Rta_10480; bkadA2,

Rta_10490; bkdB, Rta_10500; lpd, Rta_10510) and the b-ketoacyl-
ACP synthase III (fabH) (possibly fabH-like1 (Rta_04890) and fabH-

like2 (Rta_04120)). This complex fatty acid biosynthesis system

therefore provides strain TTB310 with both means by which

membranes can adjust their fluidity at the level of acyl-lipids: (i)

addition of unsaturations and (ii) addition of methyl-branches.

Tuning the derived membrane fluidity is therefore one of the

possible determining mechanisms operating in the tolerance to

temperature [14] and hygrometry variations, and in the shift

between growing, gliding, differentiating, and resisting stages.

Transporters: involvement in osmotic stress tolerance
and cell cycle
A detailed study of the strain TTB310 transporters has been

carried out. In summary, compared to other betaproteobacterial

genomes, the relative transport capability of strain TTB310 and its

percentage of importers (,70%) are similar to those of Ralstonia

solanacearum and to what is observed in Burkholderiaceae species. Due

to possible sudden and drastic fluctuation in osmolarity (osmotic

stress) encountered in the Saharan environment, special attention

has been dedicated to transporters involved in these mechanisms,

including: transporters responsible for the fast uptake of potassium

(or, less frequently, sodium) to increase the internal osmolarity in

response to a hyper-osmotic shock (reviewed in [15]), ABC systems

of the opu subfamily involved in the uptake of less harmful solutes

for the subsequent replacement of K+, mechanosensitive (MS)

channels implicated in response to hypo-osmotic stress and major

intrinsic proteins (MIP) channels involved in passive transport of

water and small solutes such as glycerol and urea [16].

Genomics of a Bacterium Adapted to Desert Life
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The strain TTB310 genome encodes genes similar (Rta_02420,

Rta_26850 and Rta_05740) to E. coli low (Kup or TrkD) and high

(TrkH) efficiency K+ transporters. The presence of several K+

uptake systems might be due to different pH requirements, since

TrkA mainly functions at an alkaline pH and Kup at a low pH in

E. coli [17]. However, analysis of the strain TTB310 genome did

not reveal ABC systems of the opu subfamily involved in histidine,

proline, proline betaine, glycine betaine and choline uptake nor

homologs of the betaine/carnitine/choline transporter (BCCT)

family of betaine transporters. This class of compatible solutes,

very common in rich soil, may be absent in the cell environment of

strain TTB310. In such a case, bacteria can respond to the osmotic

up shift by synthesizing glutamine, proline and trehalose. The

trehalose-centered metabolism of strain TTB310 reported above

suggests that this sugar may be used as a compatible solute.

We identified two candidates (Rta_25200 and Rta_26800) and

one putative (Rta_15000) mechanosensitive-encoding gene, but all

of them belong to the small mechanosensitive ion channels (MscS)

family.

Finally, a member of the major intrinsic proteins (MIP) family

has been predicted (Rta_23560). The best-characterized MIP in

bacteria (AqpZ from E. coli) is involved in short and long-term

osmoregulation, exponential growth and bacterial virulence [18].

It mediates the rapid entry or release of water from the cell in

response to sudden shifts in extracellular osmolarity. Rta_23560

likely plays a similar role in strain TTB310 and might be involved

in the ‘‘water’’ loss of two-thirds of the cell volume during cyst-to-

rod differentiation.

Protein export and secretion systems: involvement in EPS
hydrolysis and cell motility
Genes encoding the general inner membrane export system

(Sec; [19]), the outer membrane protein insertion system (Bam/

Omp85; [20]), the lipoprotein transport system (Lol; [21]) and the

non-essential Twin Arginine Translocation (Tat; [22]) system,

involved in the transport of folded proteins across the inner

membrane, are present in strain TTB310 (Fig. 2, see Table S4 for

details including predicted Tat substrates and lipoproteins).

Moreover, at least one type II secretion system (T2SS) [23,24]

was found in strain TTB310 (Fig. 2, Table S4), which may be

involved in the release of hydrolases required for the breakdown of

the exopolysaccharide during the transition from cyst to rod-

shaped cells. Indeed, a subset of predicted b-glycosidases displays
typical N-terminal signal peptide (Table S2). This is a hallmark for

T2SS substrates, which are first translocated in a Sec- or Tat-

dependent manner across the inner membane [25]. Once the EPS

is degraded, the rod-shaped cells can move in the environment.

The strain TTB310 genome analysis indicates that the motility of

Figure 2. Schematic representation of envelope transport systems in Ramlibacter tataouinensis TTB310. In addition to general export
pathway (Sec and Tat systems), the strain TTB310 genome encodes one type I secretion system potentially involved in secretion of a large protein,
which is a putative adhesin (Rta_27720) as found in Pseudomonas fluorescens [76], and two type II secretion systems (T2SS) potentially involved in
secretion of putative hydrolase implicated in EPS remodelling. The T2SSs clusters (gspFGHIJKLMCDE or gspDHEFG), each encodes an ATPase (GspE), a
secretin (GspD) and a major pseudopilin (GspG), though they contain only one copy of the gspAB genes. One type IV pili machinery with different
pilins and three PilB paralogs is present in strain TTB310 and is potentially involved in gliding motility. There is only one gene (pilD/gspO) encoding a
prepilin peptidase involved in the maturation of both type II secretion system and type IV pili machinery. The strain TTB310 type III secretion system
(T3SS) may be an additional example of the presence of T3SS genes in a nonpathogenic bacterium [29]. It could be involved in the secretion of
chitinases through the thick extracellular polymeric substances (EPS) of cyst-cells.
doi:10.1371/journal.pone.0023784.g002
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rod-shaped cells is not supported by flagellar genes (absent in strain

TTB310), but probably requires at least type IV pili, since all

genes required for assembly of these appendages were found

(Fig. 2, Table S4). These data corroborate previous analyses

indicating that gliding, which may require type IV pili, is the

preferred motility style observed in strain TTB310 [4–6].

Furthermore, two genes encoding histidine kinases (Rta_19330

and Rta_34130), similar to CheA and related to genes encoding

the FrzE and ChpA proteins involved in gliding and twitching

mobility in Myxococcus xanthus and Pseudomonas aeruginosa, respec-

tively, are present in strain TTB310. We thus propose that the

chemotaxis systems in this bacterium may be dedicated to gliding

motility [5,26].

Surprisingly, strain TTB310 possesses one additional gene

cluster localized between Rta_29650 and Rta_29970. This cluster

encodes proteins highly similar to the plant-pathogen type III

secretion system (T3SS) of Acidovorax avenae subsp. citrulli AAC00-1

(T3SS, Hrp2 family: Fig. 2, Table S4), which is involved in

pathogenicity in cucurbits [27]. It should be noted that the strain

TTB310 genome encodes two enzymes distantly related to

chitinases (Rta_26180, Rta_33120) and that one of the gene

encoding a candidate chitinase (Rta_29730) is localized in the

middle of the T3SS cluster. Within the vicinity of this cluster,

additional genes (Rta_29974 to Rta_30025, Table S4) encode

proteins similar to those involved in the last steps of chitinolysis,

and in the transport of chitodextrin across the inner membrane in

Collimonas fungivorans Ter331 [28]. All these genes could confer to

strain TTB310 the ability to metabolize extracellular poly-N-

acetylglucosamine that could result from a direct biosynthesis by

strain TTB310 (Rta_32250: related to poly-b-1,6-N-acetylgluco-

samine synthase) or from other b-N-acetylglucosamine-containing

saccharides present in the soil. T3SS is often described as specific

to pathogenic bacteria, but has been also found in nonpathogenic

bacteria [29]. In strain TTB310, we hypothesize that this T3SS

may be used to secrete proteins (for instance chitinases) across the

thick EPS of cysts.

Cell division and cell shape differentiation
According to the bacterial cell morphologies reviewed by

Margolin [30], strain TTB310 is an original case due to its

transformation from cyst to rod and vice versa (Fig. 1). To perform

these shape differentiations, the strain TTB310 genome displays

highly conserved gene sets required for the cell division and cell

shape determination of rod-shaped Proteobacteria, including

mreBCD (Rta_03840, Rta_03830, Rta_03820), rodA (Rta_09910),

rodZ (Rta_18930), two genes encoding BolA-related proteins

(Rta_08200, Rta_20200) and several penicillin-binding proteins,

including the sidewall elongation penicillin-binding protein 2

(mrdA: Rta_03810). These genetic data and our observations (Fig. 1,

Video S1 and Text S1 for details) predict that cylindrical strain

TTB310 rod cells grow mainly by extending the length of the

cylinder (MreB-dependent sidewall elongation), and that new cell

poles are synthesized at cell division (FtsZ-dependent septum

formation plus constriction) as observed in E. coli [31]. In contrast,

strain TTB310 cysts grow via their division septa (FtsZ-dependent

septum formation) in a manner similar to Streptococcus pneumoniae

ovococci, as some length extension might still occur [4]. The other

shape transitions do not correspond to known models. However,

we observed that ‘‘cyst-to-rod’’ differentiation begins by an

‘‘ovococcal’’ division (FtsZ-dependent), followed by the EPS lysis

(Fig. 1). After this step, the morphological transition occurs by

reshaping of cells (conservation of membrane surface), associated

with loss of two-thirds of the cell volume [6] and leads to a

rearrangement of the peptidoglycan from a spherical to a rod

form, as seen in Video S1. For the ‘‘rod-to-cyst’’ differentiation, a

reverse mechanism could be possible with a rearrangement of the

peptidoglycan from a rod to a spherical form, associated with the

synthesis of a new EPS. It seems that the ability of strain TTB310

to transform its shape from cyst to rod and vice versa uses a

‘‘classical’’ set and organization of cell division genes. However,

the regulation of the strain TTB310 cell cycle must be tightly

controlled, possibly at the transcriptional (sigma factors, transcrip-

tion regulators of one or two component systems) and post-

transcriptional (some His-Asp phosphorelay systems) levels.

A sophisticated system of signal transduction and light
perception: a key for adaptation to extreme
environment?

DNA-binding proteins. To adjust its adaptive response to

environmental changes, the strain TTB310 genome encodes 226

DNA-binding proteins which are, for the most part, Helix-Turn-

Helix (HTH) domain-containing proteins: 12 sigma factors, 187

one-component system proteins with HTH (181) or other (6)

domains («classical» transcriptional regulators: 4.8% of the genes),

and 27 two-component system proteins with HTH domains

(«transcriptional» response regulators) (http://www.p2tf.org/

page.php?base =RamtaDB; Fig. S5). The global number of

HTH domain-containing proteins in strain TTB310 is relatively

high (220: 12+181+27), and reflects the situation found in a wide

diversity of genomes of free-living bacteria in which the one-

component systems (here 181) are the main contributors to the

total number of the HTH domain-containing proteins [31,32]. As

found in a number of phylogenetically distant free-living bacteria,

strain TTB310 exhibits an expansion of the LysR family (27% of

the one-component transcription factors) known to be involved in

the sensing of a wide range of small molecule ligands [33].

Signal transduction: His-Asp phosphorelays. In addition,

strain TTB310 exhibits sophisticated systems involved in adaptive

responses to changes in environmental conditions [34]. Indeed, a

systematic search for two-component system (TCS) proteins using

P2CS (http://www.p2cs.org/page.php?base =RamtaDB) [35,36]

and a manual search, allowed us to identify 131 CDSs potentially

involved in TCS or His-Asp phosphorelay signalling in strain

TTB310. These systems were classically described as the asso-

ciation of two proteins that communicate through a His-Asp

phosphorelay, a histidine kinase sensor protein capable of

autophosphorylation on a conserved His residue that can trans-

fer the phosphoryl group to the receiver (REC) domain of a

response regulator on a conserved Asp residue (Fig. 3) [37]. TCSs

account for about 5.5% of the coding region of the strain TTB310

genome, and represent 3.4% of total protein. This proportion is

remarkably elevated, reflecting an important role of TCSs in this

bacterium, whereas other signal transduction families [34] were

almost missing (Table S5). In strain TTB310, among the 131

CDSs predicted to encode TCS proteins, 82 of them encode

histidine kinase sensors (HKs) and 49 encode response regulators

(RRs), corresponding to about two sensors per regulator. This

unusual ratio between HKs versus RRs suggests a convergent

signalling network in this strain, in addition to ‘‘classical’’ two

component systems (a HK and its cognate RR) also present.

Interestingly, more than half of the HK predicted proteins are

hybrid, since they contain at least a REC domain in addition to

the classical HisKA kinase domain (Fig. 3). This is also an unusual

situation that probably reflects a particular mode of signal

transduction in this organism.

We noted a relative low number of transcriptional regulators

(27) in the strain TTB310 genome, which represent only 55% of

the 49 predicted RRs, against 80 to 90% usually found (Fig. 3).
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The fact that about half of the predicted RRs are not trans-

criptional regulators suggests that TCS outputs could involve

protein-protein interactions. These interactions might directly

modulate the activity of the RR interacting proteins, and therefore

allow a rapid adaptation to environmental changes.

Another particularity of TCSs in strain TTB310 concerns signal

detection by HKs. Indeed, more than half of the predicted HKs

(42) contain no transmembrane segment (TM), and are therefore

predicted to be unable to detect any extracellular signal directly.

This observation can be correlated with the elevated number of

PAS (59) and PAC (50) domains, described as metabolism related

intracellular sensors [38] that are found in 27 soluble HKs and 13

membrane-bound HKs. Among the soluble HKs devoid of PAS/

PAC domains, 12 contain a GAF domain, and 2 are associated to

a bacteriophytochrome domain. These observations indicate that

signal detection in strain TTB310 may occur mostly inside of the

cell through PAS and PAC domains.

Regarding TCS signal transduction in strain TTB310, our

observations suggest: (i) a convergent signalling network due to the

higher proportion of HKs versus RRs; (ii) an intracellular network

of signal transduction, since half of the HKs seem to detect

intracellular signals, (iii) the involvement of many TCS in post-

transcriptional regulation that likely allow a more rapid adaptation

compared to transcriptional regulation and (iv), as explained in the

secretion system part, two chemotaxis systems dedicated to a form

of gliding motility. As found in Caulobacter crescentus [39] and

suggested in the cyanobacterium Nostoc punctiforme ([Anabaena] sp.

strain PCC 7120) [40] that both possess a complex program of cell

differentiation, a part of these systems could be dedicated to the

control of the strain TTB310 cell cycle.

Light sensing: two red/infrared and four blue-light

potential photoreceptors. Strain TTB310 presents one of the

higher proportions of light sensing proteins exhibited by a che-

motrophic non-phototrophic bacterium [41]. Indeed, six genes

encoding potential light sensors that contain all the hallmarks of a

bacteriophytochrome [42], a phototropin [43] or a blue light using

flavin adenine dinucleotide (BLUF) protein [44] have been identified

in strain TTB310: two red/infrared light sensing histidines kinases or

bacteriophytochrome photoreceptors (Rta_25470 and Rta_28950), a

blue-light sensing histidine kinase or phototropin (Rta_12790),

and three sensors of blue-light corresponding to BLUF proteins

(Rta_31060, Rta_20590, Rta_26080). These proteins may allow strain

TTB310 to sense red/infrared (650–750 nm) and blue-light (350–

450 nm), which could be an essential feature for adaptation to desert

conditions. Indeed, due to the strong correlation existing between

light, heat and desiccation in a desert environment, light should be

Figure 3. Schematic representation of His-Asp phosphorelays in Ramlibacter tataouinensis TTB310. Note: (i) a convergent signalling
network due to the higher proportion of histidines kinases (HKs) (82) versus response regulators (RRs) (49); (ii) an intracellular network of signal
transduction since half of the HKs (42) are soluble and appear to detect intracellular signals, (iii) the involvement of many two-component system
(TCS) (20 CheY-like RRs) in post-transcriptional regulation that likely allow a more rapid adaptation compared to transcriptional regulation (light
green dotted arrows indicate possible phosphorylations), and (iv) two chemotaxis systems dedicated to a form of gliding motility.
doi:10.1371/journal.pone.0023784.g003
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one of the more important external cues allowing strain TTB310 to

anticipate desiccation events by induction of protective mechanisms

such as rod encystment. In agreement with this hypothesis,

preliminary experiments using day/night cycles with continuous

light provided by a cool white fluorescent lamp (SYLVANIA GRO-

LUXH, 140 mE m22 s21) shows that strain TTB310 growth is greatly

reduced during the light period. This phenomenon is associated with

a morphological change of rod-shaped cells, which seem to be

transformed into the more resistant cyst-like cells that quickly become

dominant after light exposure. Due to the emission properties of this

fluorescent lamp, which contains little red or far-red light, this

suggests that some of the blue-light receptors described above could

be involved in rod-shaped cell to cyst-like cell differentiation. Finally,

the two bacteriophytochromes (Rta_25470, Rta_28950) could be

involved in the synthesis of the strain TTB310 carotenoids [4], as

demonstrated in D. radiodurans [45].

The Rta_04330 (KaiC ATPase)/Rta_04340 (Histidine
Kinase) signalling pathway: an ancestral simple hourglass
timing mechanism dedicated to anticipate night/day
cycle?
Two genes (Rta_04330 and Rta_35460) encoding proteins

similar to Synechococcus elongatus PCC7942 KaiC protein

(SYNPCC7942_1216: SynKaiC) were found in the strain

TTB310 genome (RtaKaiC). SynKaiC is the core component of

a circadian clock that controls the cyclic expression of almost 30 to

64% of Synechococcus genes ([46]; see [47–52] for recent reviews).

Two other proteins, KaiA and KaiB, are important in the

robustness of the Synechococcus clock. Indeed, oscillations in the

phosphorylation state and more recently in the ATPase activity of

KaiC have been proposed as the pacemaker of the circadian clock.

These oscillations require the action of KaiA and KaiB, which

enhance autokinase and autophosphatase activities of KaiC,

respectively. A simplified timing system acting only as a 24 h

timer, more like an hourglass than a clock, has been recently

demonstrated in Prochlorococcus in the absence of KaiA protein [53].

Contrary to SynKaiC, ProKaiC is constitutively phosphorylated

when incubated alone, and this activity is not modified by the

addition of SynKaiA or KaiB from either species [54,55]. Although

two copies of gene encoding core component of a circadian clock

are present, surprisingly, neither kaiA nor kaiB homologs could be

found in strain TTB310. However, based on the biochemical

properties of the hourglass mechanism found in Prochlorococcus, we

hypothesized a possible timing role of RtaKaiC, in the absence of

both KaiA and KaiB partners.

To evaluate this hypothesis, we compared the gene context of

kaiC in various prokaryotes (Fig. 4). Three kaiC-contexts were

defined from the phylogenetic tree (Fig. 4 and Fig. S6). In the first

kaiC-context («orange group»), kaiC-kaiB genes are clustered.

Except for cyanobacteria, almost all show the presence of a

histidine kinase or a GGDEF/EAL domains containing protein

immediately downstream of a kaiC or kaiB gene (Fig. 4). A second

kaiC-context («dark-blue group») shows a simpler and highly

conserved organization with kaiC followed systematically by a

specific histidine kinase (HK) gene and the absence of kaiB gene

elsewhere in the genome (Fig. 4). A more diverse kaiC-context

(«black group») exhibits a less conserved gene arrangement. The

kaiC gene is frequently followed by a gene encoding a receiver

protein or localized near a signaling protein (HK, GGDEF/EAL

domains containing protein) (Fig. 4).

These three kaiC-contexts are consistent with the phylogenetic

tree of KaiC (Fig. S6). The phosphorylation capacity of KaiC also

presents a similar pattern. Indeed, almost all the KaiC proteins of

the first and second families exhibit phosphorylable residues at the

key positions necessary for their oscillatory activity (Fig. S7). In the

third KaiC family («black group»), only one (or none) phosphor-

ylation site conservation is present with the exception of

PSEEN2280 (SS profile) or NOC_1328, Caur_0239 and

rrnAC0131 (SY profile) (Fig. S6 and S7).

It appears that almost all kaiC bacterial genes, with the

exception of the cyanobacterial ones, occur near signaling

proteins, more frequently upstream of histidine kinase encoding

gene. The KaiC homologs unable to phosphorylate two residues,

like Rta_35460, probably fail to sustain a cyclic timing

mechanism. On the other hand, it is debatable whether KaiC

homologs containing two phosphorylation sites, like Rta_04330,

could potentially represent an hourglass timing mechanism, even

in the absence of KaiB («dark-blue group»). In this family, the kaiC

gene is systematically followed by histidine kinase (HK) encoding

gene (Fig. 4). In the case of strain TTB310, RT_PCR experiments

indicate that Rta_04330 and Rta_04340 are cotranscribed as part

of a single operon (see materiels and methods for details),

suggesting that they are partners in the same regulatory pathway.

From the high sequence similarity of the N-terminal sensor

domain (denoted RtaNt) of these histidine kinases, we defined a

specific consensus sequence. RtaNt exhibits 19% identity (33%

similarity, E-value 5e205) with the N-terminal receiver domain of a

Thermosynechococcus elongatus BP-1 putative two-component response

regulator. Moreover, clustal alignment shows that RtaNt exhibits

16% identity (44% similarity) and 10% identity (40% similarity)

with the cyanobacterial N-terminal sensor domain of the KaiC-

Interacting sensory histidine kinase SasA and KaiB proteins,

respectively. These two proteins are known to interact with

SynKaiC, with SasA being the key player in the output pathway of

the clock «signal». All these observations suggest that these HKs

define a highly conserved KaiC-interacting specific sensory HK

family, as does SasA protein in cyanobacteria, via the protein-

protein interaction module RtaNt.

It is now necessary to demonstrate whether these KaiC

«homologs» have a timing function and to search for the cellular

processes controlled by this potential rudimentary hourglass, as

recently suggested in the heterotrophic bacterium Pseudomonas

putida [56], and in Legionella pneumophila [51]. In the case of strain

TTB310, this predicted rudimentary hourglass could be used, in

addition to light signals (see above), to anticipate water availability

at the dew time in the middle/end of desert nights (winter) and

thus direct the growth window to cyclic water availability times.

Conclusion
The resistance to desiccation of strain TTB310, a bacterium

capable of cyst-division, represents a novel adaptation to

drastically changing conditions in the desert environment. Strain

TTB310 possesses a single circular chromosome of 4,070,194 bp,

with the highest G+C content ever observed (70%) for a

betaproteobacterial genome, encoding 3,899 predicted proteins

(Table 1). DNA sequence annotation, using both bioinformatics

and manual re-examination by experts in various molecular

microbiology fields, shows that strain TTB310 uses both classical

and special toolboxes for adaptation to desert life. Strain TTB310

is only equipped with a classical set of enzymes to adapt to various

peroxide and superoxide stresses. However, we note the presence

of genes encoding enzymes involved in carotenoid biosynthesis to

quench ROS in the presence of light, as expected [4]. In the

same way, the strain TTB310 genome encodes a complete set of

classical enzymes known to be required for DNA replication,

recombination, and for various DNA repair mechanisms,

including photo-damage. Besides these ‘‘classical’’ enzymatic
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Figure 4. Schematic representation of predicted KaiC genetic organization compared to cyanobacterial KaiABC-SasA «clock
system». (SasA is found isolated in Cyanobacteria genomes). This representation is based on the phylogeny of predicted KaiC according to TULIP
tree (Fig. S6). The first clustering corresponds to colour and KaiC-context group name (1rst, 2nd, 3rd) according to the text and exhibits nature of the
phosphorylation sites (ST, SS, SY, TY etc…). KaiC proteins (red colour) have been named according to their encoding gene position in database. KaiC
neighbouring proteins were represented according to their proteic domain contents: HK, histidine kinase domain constituted of a HisKA and an
HATPase_c domains; REC, single domain receiver protein; PAS, PAS domain; PAC, PAC domain; GAF, GAF domain; GGDEF/EAL, GGDEF and EAL
domains. For HK, the N-terminal, PAS, PAC or GAF domains have been replaced by blue-light colour (for details see Fig. S6). Nt_HK: HK with a N-
terminal «orange» domain exhibiting similarities with cyanobacterial KaiB protein and kaiB-like N-terminal KaiC-interacting sensory HK SasA. Genes
are not drawn on scale.
doi:10.1371/journal.pone.0023784.g004
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protective mechanisms, the EPS may constitute the main physical

protection barrier against desiccation/rehydratation cycles in this

bacterium. The genome annotation of carbohydrate-active

enzymes confirms that an exopolysaccharide synthesis and

hydrolysis system is present in strain TTB310, and reveals that

desiccation tolerance is probably aided by the biosynthesis of the

compatible solute trehalose. Indeed, trehalose protects proteins

and membranes from inactivation or denaturation caused by a

variety of stresses (e.g. desiccation, heat, oxidation) and is likely to

be an essential component of strain TTB310 metabolism, which is

subjected to all of the above-mentioned stresses in an arid soil

probably devoid of environmental compatible solutes. Secretion

system annotation has revealed that strain TTB310 is able to

export a subset of ß-glycosidases, potentially secreted and involved

in EPS hydrolysis, but also to synthesize type IV pili, that could be

implicated in the gliding motility of strain TTB310 and in two

chemotaxis systems, as well. While the function of a type III

secretion system in a non-pathogenic bacterium needs to be

studied, we hypothesize that it could be involved in proteins

secretion outside the thick EPS from cysts for nutritional functions

(e.g. chitinolysis). Moreover, a complex fatty acid biosynthesis

system, with addition of unsaturations or of methyl-branches to

acyl-lipids, allows strain TTB310 to adjust membrane fluidity for

adapting to temperature and hygrometry variations.

Besides enzymatic and mechanical adaptations, strain TTB310

exibits a highly complex cell cycle well suited for life in hot and dry

deserts. As for enzymatic protection, cell division and cell shape

determination analysis shows that strain TTB310 uses a ‘‘classical’’

set and organization of cell division genes, with an additional set of

peptidoglycan reshaping enzymes. However, the regulation of the

strain TTB310 cell cycle must be tightly controlled, likely at the

transcriptional (sigma factors, transcription regulators of one or two

component systems) and post-transcriptional levels (His-Asp phos-

phorelay systems). In this context, strain TTB310 exhibits a highly

complex network of 131 two-component signal (TCS)-transduction

proteins (3.5% of the genes), representing an atypical organization,

with convergent signalling networks, as well as an intracellular

network for signal transduction, and the involvement of probably

more than half of the TCSs in post-transcriptional regulation events

that are necessary for rapid adaptation to drastic environmental

changes. In summary, strain TTB310 which is the type strain of R.

tataouinensis possesses all the required systems both for environmental

sensing and for cell cycle control. Among them, the occurrence of two

HK-bacteriophytochromes, one blue-light sensing HK and three

blue light using flavin adenine dinucleotide (BLUF) proteins supports

a control of the cell cycle by red/far red and/or blue light. Finally, the

presence of a potential rudimentary hourglass is suggested by the

presence of a gene encoding a KaiC homologue, followed by an HK.

This hourglass could have a timing function, and be used to anticipate

water availability at the dew time in the middle/end of the desert

winter nights and thus direct the growth window to cyclic water

availability times. These features may be a hallmark for adaptation to

desert conditions, where exposure to light, high temperature and

water deficiency are correlated.

Arid regions are the largest type of terrestrial ecosystem (represen-

ting approximately 33% of the terrestrial surface), yet one of the least

explored at the level of its biodiversity. This report highlights new

adaptation features to desert lifestyle exhibited by this bacterium.

Materials and Methods

Cultivation of cells and preparation of genomic DNA
Ramlibacter tataouinensis TTB310T (strain TTB310) (described in

[4] and available in public strain collection as strain DSM 14655T,

ATCC BAA-407T or LMG 21543T) was cultured in tenfold

diluted tryptic soy broth (TSB 1/10, Difco Laboratories). After

incubation at 30uC for 72 h with shaking, the cells were harvested

for 20 min at 15,000 g and subsequently washed in sterile distilled

water. DNA from strain TTB310 was prepared from 200 ml of

cultures according to standard procedures [57]. The supernatant

fluid was then subjected to a phenol/chloroform extraction and

the DNA was recovered after ethanol precipitation.

Genome Sequencing
The sequencing of the strain TTB310 genome was entirely

executed by the Genoscope (Evry, France), using a conventional

whole genome shotgun strategy [58]. Four libraries were

constructed using different vectors and insert sizes. Three of them

were prepared after genomic DNA fragmentation by mechanical

shearing. The 3 kb (A, B) and 10 kb (C) fragments were cloned

onto pcdna2.1 (A) (INVITROGEN) or pCNS (pSU18 derived) (B,

C) vectors. A forth library were obtained using a BamHI partial

digest of the genomic DNA and 20 kb inserts were introduced

onto pBeloBac11 (D). Vector DNAs were purified and end-

sequenced (31202 (A), 21867 (B), 18139 (C) and 6146 (D)) using

dye-terminator chemistry on ABI3730 sequencers. A pre-assembly

was made without repeat sequences as described by Vallenet et al.

[59] using Phred/Phrap/Consed software package (www.phrap.

org). The finishing step was achieved by primer walking, PCR and

in vitro transposition technology (Template Generation SystemTM

II Kit; Finnzyme, Espoo, Finland), corresponding to 1525, 219

and 228 additional reads, respectively. The strain TTB310

nucleotide sequence and annotation data have been deposited at

GenBank under accession number CP000245 (taxon ID 365046;

project ID 35861).

Gene prediction and annotation
Protein-coding regions in the assembled genome sequence were

identified using the gene prediction software FrameD [60] and

AmiGene [61]. The results were combined and a search for

common genes between the gene identification tools made it

possible to eliminate redundancy. All predicted proteins larger

than 20 amino acids were analysed for sequence similarity against

protein databases (SWISSPROT, TREMBL and PIR). Similarity

searches were carried out using BLASTP [62].

Annotation of the complete genome was performed using a

bioinformatic tool allowing data management, developed in-house

(P. Ortet and M. Barakat, unpublished data). Our tool allows an

expert annotation by manual verification and curation of

functional protein categories after automatic assignment.

Regions of the genome without CDSs, and CDSs without a

database match are re-evaluated by using BLASTX as the initial

search, and CDSs are extrapolated from regions of alignment.

Protein functional annotation was based on similarity searches

against public databases and domain analysis with HMMER (Sean

Eddy http://hmmer.wustl.edu/ 2001).

Functional classification was based on homology searches

against the Clusters of Orthologous Groups of proteins (COGs,

[63]). rRNA and tRNA genes were identified with BLASTN and

tRNA-Scan.

Paralogous families were built as described in Bastien et al. [64].
Briefly, a random proteome database of strain TTB310 was built.

The longest sequences (.5 kb, 7 sequences) were removed to

build up non-redundant proteomes. Each apparent protein of the

non-redundant proteome of strain TTB310 was compared to all

the sequences of the corresponding random database, using the

BLASTP algorithm [62] and the best alignment P-values were

collected. From the distribution of the self6random P-values, a
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0.99-percentile was set to define a cutoff. A Z-value was deduced

and used as a cutoff value according to the TULIP theorem [65].

Then, the calculated cutoff was used as a criterion to partition the

proteome owing to the single-linkage clustering method, using the

SW algorithm [66]. We define paralogs as proteins sequences

satisfying a Z-value cutoff of 18 and having at lest 30% sequence

identity over more than 60% of their lengths.

Glycerolipids analysis
Glycerolipids have been extracted using organic solvents, and

analysed by two-dimensional thin-layer chromatography coupled

with methanolysis and gas chromatography, as previously

described [67].

Analysis of the Carbohydrate-Active Enzyme encoding
genes
All CDSs were compared, using gapped-BLAST [62] against a

library of catalytic and ancillary modules covered by the sequence-

based family classification Carbohydrate-Active Enzymes (CAZy at

URL: http://www.cazy.org) [68,69]. The assignment to the various

families of glycosidases and transglycosidases (hereafter referred

to as glycoside hydrolase or GHs), glycosyltransferases (GTs),

polysaccharide lyases (PLs), and ancillary carbohydrate-binding

modules (CBMs), provides the foundation to the sequence and

mechanism-based annotation of the carbohydrate-active enzyme-

encoding genes [70]. This analysis, which integrates the frequent

modular structure of this class of enzymes and the polyspecificity of

many families, provides an insight into the metabolism of oligo- and

polysaccharides by strain TTB310. The list of CDSs assigned to

GHs and GTs families is provided in Table S2.

Analysis of transporter candidates
The annotation of transporter candidates was achieved with the

bioinformatic strategy developed for the annotation of ABC

transporters [71]. The method has been extended to other

transport systems with the annotated transporters retrieved from

TransportDB (http://www.membranetransport.org/) [72] and

functional annotation was completed with the help of TCDB

(http://www.tcdb.org/).

Cultivation of cells in light/dark cycles
Strain TTB310 was cultured in tenfold diluted tryptic soy broth

(TSB 1/10, Difco Laboratories). After incubation at 30uC for 72 h

with shaking in the dark, bacteria were spread on TSB 1/10 agar

plates (1.5 g l21) and cultured at 30uC in the dark or in light/dark

conditions (12 h/12 h) in an incubator equipped with fluorescent

lamp (Infors multitron 2). Continuous light was provided by

cool white fluorescent lamps (SYLVANIA GRO-LUXH,

140 mE m22 s21). Every hour, a small piece of agar supporting

one colony was cut to observe bacteria with a BX50 Olympus

microscope equipped with a differential interference contrast

(DIC) device and a 1006 oil immersion objective (UPlanApo,

Olympus) according to [6].

RNA isolation and RT-PCR
For analysis of Rta_04330 (1.488 kb) and Rta_04340 (1.515 kb)

gene expression, cells were treated with RNAprotect Bacteria

Reagent (Qiagen) prior to RNA isolation using the RNeasy Mini

Kit (Qiagen) according to the manufacturer’s instructions. RNA

samples were treated twice with DNase. For RT-PCR, cDNA was

synthesized in 20 mL reactions using 1 mg of RNA and the

Transcriptor First Strand cDNA Synthesis Kit (Roche). DNA

fragments of 2.5 kb were then amplified in 25 mL reactions using

1 mL of cDNA from the first step, Taq polymerase (Sigma) and two

primers designed in kaiC gene (Rta_04330: Rta04330_Forward

GCATCGTGCTCGATTCGCTG) and at the end of the adjacent

gene encoding an HK (Rta_04340: Rta04340_Reverse GAC-

GAAGTGGAAGTCGAAGCC), respectively. These amplifica-

tions were carried out by incubating reactions at 95uC for 5 min

prior to 35 cycles of 30 s at 95uC, 30 s at 56uC and 2 min at 72uC,

followed by a final step at 72uC for 2 min. Controls for DNA

contamination were performed with reactions lacking reverse

transcriptase. The amplification of a fragment of 2.5 kb corre-

sponding to 1 kb of Rta_04330 and to the entire 1.5 kb length of

Rta_04340, demonstrates that the two genes are co-expressed.

KaiC phylogenetic analysis
Rta_04330 and Rta_35460 were first aligned with

SYNPCC7942_1216 (SynKaiC) with the Basic Local Alignment

Search Tool software (BLAST: Align two or more sequences).

Other KaiC sequences were retrieved from the non-redundant

protein sequences database (nr: NCBI) with Rta_04330 as query

and then aligned with the Multiple Sequence Alignment software

CLUSTALW (Fig. S7). Cyanobacteria and Proteobacteria represents

the most abundant KaiC containing phylogenetic groups.

Therefore, we voluntarily excluded redundant sequences, mostly

from Cyanobacteria and Proteobacteria, for a greater clarity of the

representation. Classification of protein sequences was performed

with the TULIP 1.1 server (http://malport.bi.up.ac.za/TULIP/

index.php) [65], and was based on pairwise alignments and

following evolutionary assumptions, according to the TULIP

theorem (Theorem of the Upper LImit of a score Probability).

Input sequences were compared with the Smith-Waterman

method using the following substitution matrix: blosum62.bla. Z-

values were estimated after 1000 sequence randomizations.

Proteins were classified using a distance matrix derived from Z-

value probabilities. The resulting unrooted Tulip tree was drawn

with the TreeDyn online software (http://www.phylogeny.fr)

[73,74]. In this case, TULIP tree was consistent with phylogenies

described by Dvornyk et al. [75] and Loza-Correa et al. [51]. The

nature of the phosphorylable residues and of the neighbouring

genes was added manually on the Fig. S6.

Supporting Information

Figure S1 Comparison of the Ramlibacter tataouinensis

TTB310 genome against the closest proteobacterial

genomes. Similarity searches were carried out between strain

TTB310 and all the complete proteomes present in NCBI

database, using BLASTP. The figure was generated with the

results of the thirteen most similar genomes (12 betaproteobac-

teria, 1 alphaproteobacterium). Genomes are represented by

successive circles made of coloured sticks representing individual

genes. Color code of sticks: orange, strain TTB310 CDS forward;

yellow: strain TTB310 CDS reverse; green: similar genes present

and found in the same genomic environment in the other genomes

(synteny); red: similar genes present in the other genomes. White

holes represent an absence of similar genes in the other genomes.

Names of the thirteen strains used for genome comparison

classified from the inner (most similar) to the outside of the circle:

Polaromonas sp. JS666, Delftia acidovorans SPH-1, Acidovorax avenae

subsp. citrulli AAC00-1, Polaromonas naphthalenivorans CJ2, Acidovorax

sp. JS42, Leptothrix cholodnii SP-6, Methylibium petroleiphilum PM1,

Rhodoferax ferrireducens T118, Azoarcus sp. BH72, Ralstonia eutropha

H16 chromosome 1, Bordetella petrii DSM 12804, Burkholderia

xenovorans LB400 chromosome 1, Bradyrhizobium sp. ORS278.

(TIFF)
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Figure S2 Genes of Ramlibacter tataouinensis TTB310
potentially involved in peroxide scavenging pathways.

(TIFF)

Figure S3 Glycerolipid composition of Ramlibacter ta-

taouinensis TTB310 membranes. PE, phosphatidylethanol-

amine, PC, phosphatidylcholine, PG, phosphatidylglycerol, DPG,

diphosphatidylglycerol, PI, phosphoinositides. Glycerolipids (100 mg)

were resolved by two-dimensional thin layer chromatography (first

dimension, chloroform/methanol/water 65:25:4; second dimension,

chloroform/acetone/methanol/acetic acid/water 100:40:20:10) and

visualized after 8-anilino-1-naphthalenesulfonic acid spray.

(TIFF)

Figure S4 Biosynthesis of even- and odd-numbered,
straight and branched chain fatty acids from acetyl-CoA,
propionyl-CoA and branched chain amino acids deriv-
atives as starting units in Ramlibacter tataouinensis

TTB310. Determining steps for the distribution of fatty acid

molecular species in the final profile include the branched chain

amino acid transaminase (bcaT), the a-keto acid dehydrogenase

(bkd) cluster and the b-ketoacyl-ACP synthase III (fabH).

(TIFF)

Figure S5 DNA-binding proteins in Ramlibacter tataoui-

nensis TTB310. This figure represents the distribution of the

transcription factors found in R. tataouinensis.

(TIFF)

Figure S6 Representation of prokaryotic predicted KaiC
proteins according to (1) their TULIP tree position, (2)
nature of their phosphorylable sites and (3) their genetic
organization. Proteins were classified using a distance matrix

derived from Z-value probabilities (see Materials and Methods). We

have integrated the RecA protein (Rta_37450, 351 residues) as an

outgroup and two archaeal KaiC single domain proteins (SSO1861,

280 residues; SSO2452, 262 residues) recently classified as archaeal

RadC and thought to be implicated in DNA repair [77]. (ST)

represent the nature of the conserved KaiC phosphorylation sites

residues (S, serine; T, threonine; Y, tyrosine; F, phenylalanine; A,

alanine; L, leucine; H, histidine; D, aspartic acid). KaiC

neighbouring proteins were represented according to their protein

domain contents: REC, single domain receiver protein; Nt_PAS_-

PAC_GAF_HK_REC, hybrid histidine kinase with N-terminal

domain composed of a N-terminal region, one PAS, one PAS and

one GAF domains; PAS_2PAC_GGDEF_EAL, protein containing

one PAS, two PAC, one GGDEF and one EAL domains. HP,

Hypothetical Protein. Nt_HK: HK with an «orange» N-terminal

domain exhibiting similarities with cyanobacterial KaiB protein and

kaiB-like N-terminal KaiC-interacting sensory HK SasA (see text).

Orange branches represent kaiC genes (ST or SS) localized in the

vicinity of a kaiB gene. Deep-Blue branches represent kaiC genes

(SY, TY, SF) localized upstream a conserved specific histidine

kinase designated Nt_HK (see above and text). Light-blue branches

represent kaiC genes (SY, NY, SP, SH) branched with deep-blue

family, but included in the «third black family» (see text). Black

branches represent kaiC genes with poorly conserved phosphoryla-

tion sites (SS, SA, SF, AF, DY, SL etc…) and more heterogeneous

organization. a, b, c, d, e represent a-, b-, c-, d-, and e-
Proteobacteria. KaiC1a, KaiC2a, KaiC3a indicate that the strain

«a» contains 3 differents KaiC copies called 1a, 2a and 3a.

(TIFF)

Figure S7 Sequence alignment of KaiC proteins cen-
tered on SynKaiC phosphorylable residues (T426, S431
and T432). Conserved T, ST are red coloured, S replacing T are

green coloured, Y replacing T are blue coloured, T replacing S are

pink coloured and other replacement with a non phosphorylable

residue are italicized. KaiC proteins exhibiting one or several

replacements with a non phosphorylable residue are in bold.

RtaKaiC are underlined. Cyano: Cyanobacteria; a, b, c, d, e
represent a-, b-, c-, d-, and e-Proteobacteria.
(TIFF)

Table S1 Genes involved in autotrophic dicarboxylate/
hydroxybutyrate cycle (carbohydrate metabolism), en-
ergetic metabolism, dissimilative nitrate reduction and
cofactors and vitamins synthesis in Ramlibacter tataoui-

nensis TTB310. Note that: i) ATP is generated by classical and

complete oxidative phosphorylation including the five complexes

[complex I (NADH ubiquinone oxidoreductase), complex II

(fumarate reductase/succinate dehydrogenase), complex III (cyto-

chrome bc1), complex IV (cytochrome oxidase), and complex V],

plus two additional oxidases [one additional cytochrome oxidase,

and one cytochrome d (bd-I) ubiquinone oxidase, known to

function at low oxygen concentration in Escherichia coli]. ii) enzymes

for complete denitrification and dinitrogen reduction are absent,

and iii) key enzymes for the biosynthesis of thiamine, pantothenate

and biotin are missing, confirming the growth factor requirement

of this bacterium [4].

(XLS)

Table S2 Carbohydrate-active enzymes (CAZymes)
found in Ramlibacter tataouinensis TTB310. Note that

this table contains: i) a list of CAZymes found in strain TTB310, ii)

a comparison of CAZymes from strain TTB310 against seven

betaproteobacterial genomes, and iii) a list of exported and

potentially secreted glycosyl hydrolases.

(XLS)

Table S3 Fatty acid composition of each membrane
glycerolipid class extracted from Ramlibacter tataoui-

nensis TTB310 cells. PE, phosphatidylethanolamine, PC,

phosphatidylcholine, PG, phosphatidylglycerol, DPG, diphospha-

tidylglycerol, PI, phosphoinositol, FA, fatty acid.

(DOC)

Table S4 Characteristics of cell envelope transport
systems in Ramlibacter tataouinensis TTB310. This table
contains genes involved in: general export pathway (Sec

translocation, SRP insertion and Tat translocation pathways,

including predicted Tat substrates), Outer Membrane Protein

(OMP) insertion machinery, Outer Membrane (OM) lipoproteins

synthesis (including Predicted lipoproteins), type I, type II and type

III secretion systems, and type IV pili machinery.

(XLS)

Table S5 Additional signal transduction, regulator and
bifunctional proteins in Ramlibacter tataouinensis

TTB310.
(DOC)

Text S1 Experimental conditions for live optical imag-
ing of Ramlibacter tataouinensis TTB310 (video S1).
(DOC)

Video S1 Live optical imaging of Ramlibacter tataoui-

nensis TTB310 exhibiting both ‘‘cyst-to-rod’’ division
step (in the middle of the screen) and ‘‘rod-rod’’ division
(last images) (See Text S1 for details).
(AVI)
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