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Abstract

In this article, we propose to study two issues associated with the use of the in-
cremental projection method for solving the incompressible Navier-Stokes equa-
tion. The first one is the combination of this time splitting algorithm with an
adaptive local refinement method. The second one is the reduction of spurious
velocities due to the right-hand side of the momentum balance. We propose a
new variant of the incremental projection method for solving the Navier-Stokes
equations with variable density and illustrate its behaviour with the example of
two phase flows simulations using a Cahn-Hilliard/Navier-Stokes model.

Keywords: Incremental projection method, local adaptive refinement,
spurious velocities.

1. Introduction

Pressure correction schemes [1] are time discretizations of the incompressible
Navier-Stokes system. It allows to uncouple the resolution of the momentum
balance (convection-diffusion problem) from the divergence free constraint by
using a splitting strategy.

In this article, we deal with the incremental projection method [2]. Let us
describe this scheme considering first the unsteady Stokes problem:

∂u

∂t
−∆u+∇p = f , in ]0, T [×Ω,

div (u) = 0, in ]0, T [×Ω,
(1)

where Ω is a smooth connected bounded domain of Rd (d = 2 or 3) and T is a
positive constant. The unknowns are the vector-valued function u :]0, T [×Ω →
Rd which stands for the velocity and the scalar function p :]0, T [×Ω → R which
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stands for the pressure. The vector-valued function f :]0, T [×Ω → Rd is a
source term which is assumed to be given and smooth. The previous system is
supplemented with a Dirichlet boundary condition on the frontier Γ of Ω:

u = 0, on ]0, T [×Γ, (2)

and with the following initial condition:

u(0, ·) = 0, in Ω. (3)

We consider an uniform discretization 0 = t0 < t1 < · · · < tN = T of the time
interval ]0, T [ and we denote by ∆t = tn+1 − tn (0 6 n 6 N − 1) the time step.
To simplify notation, when a function f is given, we denote by fn (0 6 n 6 N)
the value f(tn, ·) of the function f at time tn.

The projection algorithm is initialized with the prescribed value u0 = 0 for
the velocity and with an arbitrary data p0 for the pressure (in practice, we use
p0 = 0). Then, assuming that an approximation (un, pn) of the pair velocity-
pressure at time tn is given, the first step of the projection method consists
in computing an intermediate approximation ũn+1 of the velocity at time tn+1

forgetting for a moment the divergence free constraint (so that the pressure
term can be explicited):

ũn+1 − un

∆t
−∆ũn+1 +∇pn = fn+1, in Ω,

ũn+1 = 0, on Γ.

(4)

This predicted velocity ũn+1 is then corrected by the resolution of the following
problem (of Darcy type), which allows to obtain the approximations un+1 of
the velocity and pn+1 of the pressure at time tn+1:

un+1 − ũn+1

∆t
+∇(pn+1 − pn) = 0, in Ω,

div (un+1) = 0, in Ω,

un+1 · n = 0, on Γ.

(5)

This algorithm is consistent with the continuous problem (1)-(2)-(3) in the sense
that when we add the two systems (4) and (5) we obtain:

un+1 − un

∆t
−∆ũn+1 +∇pn+1 = fn+1, in Ω.

The boundary condition un+1 ·n = 0 is reasonable owing to the Dirichlet bound-
ary condition which is imposed to the velocity on Γ. Moreover, it allows to
identify un+1 as the L2(Ω)-projection of ũn+1 on the space of divergence free
functions with a vanishing normal trace on Γ following the Leray decomposition:(
L2(Ω)

)d
=

{
v ∈

(
L2(Ω)

)d
; divv = 0 in Ω,v·n = 0 on Γ

}
⊕∇

{
q ∈ H1(Ω)

}
. (6)
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Nevertheless, it is important to remark (this is the main drawback of the incre-
mental projection method) that this boundary condition imposes the following
equality for all n ∈ J0 ;NK:

∇pn · n = ∇p0 · n, on Γ.

This pressure boundary condition is artificial (since it is not satisfied by the
solution of the continuous problem in general) and leads to a loss of precision
[3].

The system (5) (i.e. the projection step) can be solved in two successive
sub-steps. Indeed, by taking the divergence of the first equation, the velocity
un+1 is eliminated and we obtain an elliptic equation on the pressure increment
Φn+1 = pn+1 − pn. Thus, the resolution of system (5) is formally equivalent to:−∆Φn+1 = − 1

∆t
div (ũn+1), in Ω,

∇Φn+1 · n = 0, on Γ,
and un+1 = ũn+1−∆t∇Φn+1 in Ω. (7)

In practice, the projection method is used in combination with a spatial
discretization. We consider in this article a H1-conformal finite element ap-
proximation. Let Vu

h and Vp
h be two finite element approximation spaces of

Vu = H1(Ω) and Vp = {νp ∈ L2(Ω);
∫
Ω
νp = 0 dx} respectively. Since the

velocity satisfies an homogeneous Dirichlet boundary condition, we define the
following approximation space:

Vu
h,0 =

{
νuh ∈ Vu

h ; νuh = 0 on Γ
}
.

We assume that these approximation spaces satisfy the so-called uniform inf-sup
condition, i.e. that there exists a positive constant β (independent of h) such
that

inf
νp
h∈Vp

h

sup
νu

h∈Vu
h,0

∫
Ω

νphdiv ν
u
h dx

|νph|L2(Ω)
|νu

h |(H1(Ω))d
> β.

Finally, we assume that the approximation space Vp
h is H1-conformal:

Vp
h ⊂ H1(Ω).

In particular, the elliptic problem (7) can naturally be discretized in this space,
using the Galerkin method.

Remark 1. These assumptions are for instance satisfied by the Lagrange finite
elements Pk+1/Pk for k > 1. We refer to [4] for other examples.

The fully discrete version of the standard incremental projection method can
be written as follows:
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Problem 0 (Standard incremental projection method). Let u0
h = 0 and p0h = 0.

Assume that (un
h, p

n
h) ∈ Vu

h,0 ×Vp are given (0 6 n 6 N − 1), then (un+1
h , pn+1

h )
are defined as follows:

• Step 1: Velocity prediction

Find ũn+1
h ∈ Vu

h,0 such that

∀νu
h ∈ Vu

h,0,

∫
Ω

ũn+1
h − un

h

∆t
· νu

h dx+

∫
Ω

∇ũn+1
h : ∇νu

h dx

+

∫
Ω

νu
h · ∇pnh dx =

∫
Ω

fn+1 · νu
h dx.

• Step 2.1: Pressure increment computation

Find Φn+1
h ∈ Vp

h such that

∀νph ∈ Vp
h,

∫
Ω

∇Φn+1
h · ∇νph dx =

1

∆t

∫
Ω

ũn+1
h · ∇νph dx.

• Step 2.2: Pressure correction

Let pn+1
h ∈ Vp

h such that

pn+1
h = pnh +Φn+1

h .

• Step 2.3: Velocity correction

Find un+1
h ∈ Vu

h,0 such that

∀νu
h ∈ Vu

h,0,

∫
Ω

un+1
h · νu

h dx =

∫
Ω

ũn+1
h · νu

h dx

−∆t

∫
Ω

νu
h · ∇Φn+1

h dx.

The aim of this article is to study the two following issues:

• on one hand, we are interesting in using the incremental projection method
in combination with an adaptive local refinement procedure. In this case,
the approximation space Vu

h,0 and Vp
h are modified at each time step and

the pressure correction step has no more sense because it consists in alge-
braically adding two functions pnh and Φn+1

h which do not lie in the same
approximation spaces. We propose in Section 2 a variant of the projection
method and prove that the resulting fully discrete scheme is still stable.

• on the other hand, we are interested in the particular case where the right-
hand side f of the momentum balance is a gradient f = ∇Q of a function
Q ∈ H1(Ω). In this case, the solution of the Stokes equation is trivial:
u = 0 and p = Q (up to a constant). The incremental projection method
is not able to compute exactly this trivial solution and numerical spurious
velocities appear during the resolution. In Section 3, we propose a variant
of the projection method to overcome this difficulty.
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In Section 4, we illustrate the variants proposed in Sections 2 and 3 by general-
izing these schemes to a more intricate situation: the coupling between Cahn-
Hilliard and Navier-Stokes equations with variable density for the simulation of
two-phase flows.

2. Conforming adaptive refinement

The aim of this section is not to describe a particular adaptive refinement
procedure but rather to describe the consequences of the use of a local adaptive
refinement procedure on the incremental projection method.

When using an adaptive refinement method, the approximation spaces are
modified from a time step to the following. This time evolution is described by
adding a superscript n or n+ 1 to the notation of approximation spaces in the
sequel.

A conseque.texnce of this modification is that the pressure correction step
has no more sense. Indeed, since pnh belongs to Vp,n

h , there is no reason that

the sum pnh +Φn+1
h belongs to the pressure approximation space Vp,n+1

h at time
tn+1. We propose to replace the explicit pressure pnh by its H1-projection on the

approximation space Vp,n+1
h at time tn+1. This leads to the following variant:

Problem 1 (Variant 1). Let u0
h = 0 and p0h = 0. Assume that (un

h, p
n
h) ∈

Vu,n
h,0 ×Vp,n

h are given (0 6 n 6 N −1), then (un+1
h , pn+1

h ) are defined as follows:

• Step 0: Pressure prediction

Find p̃n+1
h ∈ Vp,n+1

h such that

∀νph ∈ Vp,n+1
h ,

∫
Ω

∇p̃n+1
h · ∇νph dx =

∫
Ω

∇pnh · ∇νph dx. (8)

• Step 1: Velocity prediction

Find ũn+1
h ∈ Vu,n+1

h,0 such that

∀νu
h ∈ Vu,n+1

h,0 ,

∫
Ω

ũn+1
h − un

h

∆t
· νu

h dx+

∫
Ω

∇ũn+1
h : ∇νu

h dx

−
∫
Ω

p̃n+1
h div (νu

h) dx =

∫
Ω

fn+1 · νu
h dx.

(9)

• Step 2.1: Pressure increment computation

Find Φn+1
h ∈ Vp,n+1

h such that

∀νph ∈ Vp,n+1
h ,

∫
Ω

∇Φn+1
h ∇νph dx =

1

∆t

∫
Ω

ũn+1
h · ∇νph dx. (10)

• Step 2.2: Pressure correction

Let pn+1
h ∈ Vp,n+1

h such that

pn+1
h = p̃n+1

h +Φn+1
h . (11)
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• Step 2.3: Velocity correction

Find un+1
h ∈ Vu,n+1

h,0 such that

∀νu
h ∈ Vu,n+1

h,0 ,

∫
Ω

un+1
h · νu

h dx =

∫
Ω

ũn+1
h · νu

h dx

+∆t

∫
Ω

Φn+1
h div νu

h dx.

(12)

All steps make sense and performing the projection of pnh in a preliminary
step allows to preserve the stability of the method. This result is stated in the
following theorem.

Theorem 1. Given un
h ∈ Vu,n

h,0 and pnh ∈ Vp,n
h , we assume that the triplet

(un+1
h , ũn+1

h , pn+1
h ) is a solution of Problem 1. Then, we have the following

inequality:

1

2

∣∣un+1
h

∣∣2
(L2(Ω))d

− 1

2
|un

h|
2
(L2(Ω))d +

1

2

∣∣ũn+1
h − un

h

∣∣2
(L2(Ω))d

+∆t
∣∣∇ũn+1

h

∣∣2
(L2(Ω))d

+
1

2

[
∆t2

∣∣∇pn+1
h

∣∣2
(L2(Ω))d

−∆t2|∇pnh|
2
(L2(Ω))d

]
6 ∆t

∫
Ω

fn+1 · ũn+1
h dx.

Proof. This proof which is largely inspired from references [5], [6], [7] is split in
four steps.

(i) We take νu
h = ∆tũn+1

h in the system (9). This yields:

1

2

∣∣ũn+1
h

∣∣2
(L2(Ω))d

− 1

2
|un

h|
2
(L2(Ω))d +

1

2

∣∣ũn+1
h − un

h

∣∣2
(L2(Ω))d

+∆t
∣∣∇ũn+1

h

∣∣2
(L2(Ω))d

+∆t

∫
Ω

ũn+1
h · ∇p̃n+1

h dx = ∆t

∫
Ω

fn+1 · ũn+1
h dx.

(13)

The last term of the left-hand side is not zero since ũn+1
h do not satisfy

the divergence free constraint which is actually imposed (in a weak sense)
to the function ûh = ũn+1

h − ∆t∇Φn+1
h . Indeed, the pressure increment

computation step (10) can be written as follows:

∀νph ∈ Vp
h,

∫
Ω

ûh · ∇νph dx = 0. (14)

(ii) Since Φn+1
h = pn+1

h − p̃n+1
h (cf (11)), we have by definition of ûh:

ûh +∆t∇pn+1
h = ũn+1

h +∆t∇p̃n+1
h .

We evaluate the L2 norm of the two sides of this equality. This yields:

|ûh|2(L2(Ω))d +∆t2
∣∣∇pn+1

h

∣∣2
(L2(Ω))d

=
∣∣ũn+1

h

∣∣2
(L2(Ω))d

+∆t2
∣∣∇p̃n+1

h

∣∣2
(L2(Ω))d

+ 2∆t

∫
Ω

ũn+1
h · ∇p̃n+1

h dx,
(15)
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since the product 2∆t

∫
Ω

ûh · ∇pn+1
h dx vanishes owing to the equality

(14).

(iii) Combining (13) and (15) yields:

1

2
|ûh|2(L2(Ω))d − 1

2
|un

h|
2
(L2(Ω))d+

1

2

∣∣ũn+1
h − un

h

∣∣2
(L2(Ω))d

+∆t
∣∣∇ũn+1

h

∣∣2
(L2(Ω))d

+
1

2
∆t2

[∣∣∇pn+1
h

∣∣2
(L2(Ω))d

−
∣∣∇p̃n+1

h

∣∣2
(L2(Ω))d

]
= ∆t

∫
Ω

fn+1 · ũn+1
h dx.

(16)

(iv) The last step of the proof consists in remarking that:

– Taking νph = p̃n+1
h in the pressure prediction step (8) yields:∣∣∇p̃n+1

h

∣∣
(L2(Ω))d

6 |∇pnh|(L2(Ω))d .

– the velocity correction step (12) defines un+1
h as the L2(Ω) projection

of ûh in Vu
h,0. Thus, we have:∣∣un+1

h

∣∣
(L2(Ω))d

6 |ûh|(L2(Ω))d .

These two remarks combined with the inequality (16) yield the conclusion.

3. Computation of equilibrium states: f = ∇Q

We now assume that the right-hand side f of the momentum balance equa-
tion is the gradient of a function Q ∈ H1(Ω).

Since u0 = 0, the exact solution of the Stokes problem (1) is trivial: u = 0,
p = Q (up to a constant). The issues we are dealing with in this section can
be formulated as follows: is the incremental projection method (cf Problem 0)
able to exactly compute this trivial solution when the function Q belongs to the
pressure approximation space Vp

h?
Let us begin with a very simple numerical example. This is the 2D simulation

of a fluid initially at rest ( u0 = 0 ) confined in the box Ω =]0, 1[2. The density
and the viscosity of the fluid are equal to 1 and the only external force is the
gravity f = g where g = (0,−10) is a constant vector. We numerically solve the
unsteady Stokes problem using the incremental projection method (cf Problem
0).

We use a time step equal to 1 and we use a Taylor-Hood finite element
approximation (i.e. a P2−P1 approximation on triangular meshes and a Q2−Q1

approximation on quadrangular meshes). The projection method is initialized
by choosing u0 = 0 and p0 = 0. The meshes we use for the computations and the
discrete solution u1

h we obtain at the end of the first time step are presented in

7



Figure 1 for a structured square 20×20 mesh (at the right) and for a triangular
unstructured mesh (at the left).

Figure 1: Example of spurious velocities,
∣∣u1

h

∣∣
L∞(Ω)

∼ 10−3

The exact solution (u ≡ 0, p = (g1(x − 0.5) + g2(y − 0.5))) of the con-
tinuous problem (1) belongs to the discrete approximation space Vu

h,0 × Vp
h.

However, we observe that the discrete velocity is not zero from the first time
step:

∣∣u1
h

∣∣
L∞(Ω)

∼ 10−3. The pair (un
h ≡ 0, pnh = (g1(x − 0.5) + g2(y − 0.5)))

for all n ∈ J1 ;NK, is not a solution of Problem 0, because of the initialization
(u0

h ≡ 0, p0h = 0).
In this simple example, the non zero velocities have small amplitude and

are located in the neighborhood of (horizontal) boundaries where the condition
∇pnh · n = 0,∀n ∈ J0 ;NK imposed by the scheme is not satisfied by the exact
solution. But, this phenomenon can have a greater influence if the Navier-Stokes
system is coupled to other equations (cf Section 4).

It would be preferable that the predicted velocity vanishes when the right-
hand side of the momentum balance is the gradient of a function (possibly
depending on the time) which belongs the pressure approximation space Vp

h.

The idea is to apply the Leray decomposition (6) to the right-hand side f :
f = uf +∇pf ,

div (uf ) = 0,

uf · n = 0 on Γ,

(17)

and to discretize the following system (instead of the system (1)) using the
incremental projection method:

∂u

∂t
−∆u+∇q = f −∇pf , in ]0, T [×Ω,

div (u) = 0, in ]0, T [×Ω.
(18)

We then set p = q + pf . We obtain the following algorithm (a)-(d):
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(a) Velocity prediction:

ũn+1 − un

∆t
−∆ũn+1 +∇qn = fn+1 −∇pn+1

f

(b) Pressure increment computation:

−∆Φn+1 = − 1

∆t
div

(
ũn+1

)
(c) Pressure correction: qn+1 = qn +Φn+1.

(d) Velocity correction: un+1 = ũn+1 −∆t∇Φn+1.

We can now go back to the variable pn = qn+pnf . Defining p̃n+1 = pn+pn+1
f −pnf ,

the steps (a) and (c) can be written as follows (the steps (b) and (d) remain
unchanged):

(a′) Velocity prediction:

ũn+1 − un

∆t
−∆ũn+1 +∇p̃n+1 = fn+1.

(c′) Pressure correction: pn+1 = p̃n+1 +Φn+1.

It remains to note that, owing to (17), we can obtain pf by solving:{
−∆pf = −div (f), in ]0, T [×Ω,

∇pf · n = f · n, on ]0, T [×Γ.

Consequently, p̃n+1 is the solution of the following system:{
∆p̃n+1 = ∆pn + div (fn+1)− div (fn), in Ω,

∇p̃n+1 · n = ∇pn · n+ fn+1 · n− fn · n, on Γ.

Thus, we propose the following algorithm:

Problem 2 (Variant 2). Let u0
h = 0.

• Pressure initialization (only if n = 0): Let p0h be the solution of the
following problem:

Find p0h ∈ Vp,0
h such that

∀νph ∈ Vp,0,

∫
Ω

∇p0h · ∇νph dx =

∫
Ω

f0 · ∇νph dx.
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Assume that (un
h, p

n
h) ∈ Vu,n

h,0 ×Vp,n are given (0 6 n 6 N−1), then (un+1
h , pn+1

h )
are defined as follows:

• Step 0: Pressure prediction

Find p̃n+1
h ∈ Vp,n+1

h such that

∀νph ∈ Vp,n+1,

∫
Ω

∇p̃n+1
h · ∇νph dx =

∫
Ω

∇pnh · ∇νph dx

+

∫
Ω

(fn+1 − fn) · ∇νph dx.

• Step 1: Velocity prediction

Find ũn+1
h ∈ Vu,n+1

h,0 such that

∀νu
h ∈ Vu,n+1

h,0 ,

∫
Ω

ũn+1
h − un

h

∆t
· νu

h dx+

∫
Ω

∇ũn+1
h : ∇νu

h dx

−
∫
Ω

p̃n+1
h div (νu

h) dx =

∫
Ω

fn+1 · νu
h dx.

• Step 2.1: Pressure increment computation

Find Φn+1
h ∈ Vp,n+1

h such that

∀νph ∈ Vp,n+1
h ,

∫
Ω

∇Φn+1
h ∇νph dx =

1

∆t

∫
Ω

ũn+1
h · ∇νph dx.

• Step 2.2: Pressure correction

Let pn+1
h ∈ Vp,n+1

h such that

pn+1
h = p̃n+1

h +Φn+1
h .

• Step 2.3: Velocity correction

Find un+1
h ∈ Vu,n+1

h,0 such that

∀νu
h ∈ Vu,n+1

h,0 ,

∫
Ω

un+1
h · νu

h dx =

∫
Ω

ũn+1
h · νu

h dx

+∆t

∫
Ω

Φn+1
h div νu

h dx.

The advantage of this algorithm is that it allows the computation of the
exact solution in the particular case where the right-hand side is the gradient of
a function of the pressure approximation space. This is stated in the following
proposition:

Proposition 1. Assume that, for all n ∈ J0 ;NK, fn = ∇qnh with qnh ∈ Vp
h and

denote by (un
h, p

n
h)n∈J0 ;NK the approximate solution given by Problem 2. Then

∀n ∈ J0 ;NK, un
h = 0 and pnh = qnh .

10



Proof. The proof is made by induction. The initialization step gives u0
h = 0 and

p0h = q0h. Let us now assume that, for a given n, we have un
h = 0 and pnh = qnh .

Then we obtain after the step 0: p̃n+1
h = qn+1

h . The step 1 becomes:∫
Ω

ũn+1
h

∆t
· νu

h dx+

∫
Ω

∇ũn+1
h : ∇νu

h dx = 0, ∀νu
h ∈ Vu

h,0.

This proves that ũn+1
h = 0, and consequently the step 2.1 gives Φn+1 = 0.

Finally, the steps 2.2 and 2.3 give pn+1
h = qn+1

h and un+1
h = 0.

Let us go back to the test case (presented at the beginning of this section)
of the simulation of a fluid at rest. Proposition 1 states that no spurious veloc-
ity are created if we use the Variant 2. This is confirmed by numerical tests:
|u|L∞ ∼ 10−9.

Remark 2. • When the right-hand side f does not depend on the time,
the only difference between Variant 2 (cf Problem 2) and the standard
algorithm (cf Problem 0) is the pressure initialization step. This is not
true when the right-hand side depends on the time.

• The solution of Problem 2 satisfies the following artificial boundary con-
dition:

∀n ∈ J0 ;NK, ∇pnh · n = fn · n.

• The same idea applied to the non-incremental version (less accurate) of
the projection method leads to a similar algorithm; the pressure prediction
step is replaced by the following: Find p̃n+1

h ∈ Vp
h such that

∀νph ∈ Vp,

∫
Ω

∇p̃n+1
h · ∇νph dx =

∫
Ω

fn+1 · ∇νph dx.

Remark 3. • The reasoning done in this section presents some links with
the pressure separation algorithm (cf [8] and [9]) for the resolution of
Navier-Stokes equations since they consist in subtracting an approximation
of the pressure to the two sides of the momentum balance before performing
its resolution. This is this idea which led to the equation (18).

• The underlying idea is also very closed from the work of [10] which allows
to limit the apparition of spurious velocities. In this reference, the authors
use the decomposition (17) and propose to compute in a first step an ap-
proximation qh of the “gradient part” pf of the right-hand side f , and then
to replace, in the resolution of the Stokes problem, the right hand side f
by (f − ∇qh) + ∇(Πhqh) where Πh is the L2 projection on the pressure
approximation space. The computation of qh has to be performed in an
approximation space which is larger than the pressure one, the aim being
that the two terms f −∇qh and ∇(Πhqh) generate few spurious velocities:
the first because it is close to the “solenoidal part” uf of the right-hand
side and the second because it is the gradient of a function (Πhqh) which

11



belongs to the pressure approximation space. This implies that the method
used for the resolution of Stokes equations does not generate spurious ve-
locities in the particular case where the right-hand side is the gradient of
a function which belongs to the pressure approximation space. Thus, the
variant of the projection method proposed above could be used in combina-
tion with such methods.

4. Variable density flows. Coupling with Cahn-Hilliard model

We give in this section, a more intricate example of the apparition of spurious
velocities with two phase flows simulations using a diffuse interface model. In
this kind of modelization [11, 12, 13, 14], the interfaces between the two phases
are considered as mixing areas with a small but positive thickness ε. The phase i
is represented by a smooth phase indicator ci called order parameter (which can
be understood here as the volumic fraction of the phase i in the mixture). Thus,
the system has as many unknowns as phases. These unknowns vary between 0
and 1 (values which correspond to pure phases by convention) and are linked by
the relationship

∑
i ci = 1. Thus, when only two phase are present, the system

can be described with a unique order parameter c = c1 = 1− c2.
The two-phase Cahn-Hilliard model is based on the minimization of the

following free energy, under the constraint of volume conservation:

Fdiph
σ,ε (c) =

∫
Ω

12
σ

ε
f(c) +

3

4
σε|∇c|2 dx.

This energy depends on two constant parameters: the surface tension σ between
the two phases and the interface thickness ε. The function f is called Cahn-
Hilliard potential and has a double well structure: f(c) = c2(1− c)2.

The Cahn-Hilliard system models the non-miscibility of phase by maintain-
ing the thickness of the mixing area (or interface) at the prescribed value ε. It
also allows a volumic representation of capillary forces µ∇c (due to surface ten-
sions between the different phases). The hydrodynamic is taking into account
through a coupling with Navier-Stokes equation. The model we consider here
is the following:

∂c

∂t
+ u · ∇c = div (M(c)∇µ) ,

µ =
12

ε
σf ′(c)− 3

2
σε∆c,√

%(c)
∂

∂t
(
√

%(c)u) + (%(c)u · ∇)u+
u

2
div (%(c)u)

− div (2η(c)Du) +∇p = µ∇c+ %(c)g,

divu = 0,

The intermediate unknown µ (which is the functional derivative of the free en-
ergy) is called chemical potential. The diffusion coefficient M is called mobility

12



and may depend on c: M(c) = Mdegc
2(1− c)2 where Mdeg is a constant coeffi-

cient. Note that we adopt a non standard form of the Navier-Stokes equations.
Indeed, the density is here a function of the order parameter and does not
satisfy the mass conservation equation. Thus, the conservative form or non-
conservative form of Navier-Stokes equations do not allow to deduce the kinetic
energy balance. The form presented above, initially proposed in [15], enables to
obtain the energy balance without using the mass conservation equation. We
supplement the previous system with the boundary condition (2) for the veloc-
ity, with Neumann homogeneous boundary conditions for the order parameter
c and for the chemical potential µ. We assume that the initial condition (3) for
the velocity holds and that an initial boundary condition c(0, ·) = c0 is given
for the order parameter c.

Let us denote by Vc
h and Vµ

h two approximation spaces of Vc = H1(Ω) and
Vµ = H1(Ω). The standard projection method ( cf Problem 0) can be general-
ized as follows for solving the Cahn-Hilliard/Navier-Stokes model. We denote
by c0h ∈ Vc

h an approximation (which is classically obtained by finite element
interpolation) of the initial data c0.

Problem 3 (Variant 3). Let u0
h = 0 and p0h = 0. Assume that (cnh,u

n
h, p

n
h) ∈

Vc,n
h × Vu,n

h,0 × Vp,n
h are given.

• Step I: Cahn-Hilliard system

Find (cn+1
h , µn+1

h ) ∈ Vc,n+1
h ×Vµ,n+1

h such that ∀νch ∈ Vc,n+1
h , ∀νµh ∈ Vµ,n+1

h ,
∫
Ω

cn+1
h − cnh

∆t
νµh dx+

∫
Ω

νµhu
n
h · ∇cn+1

h dx = −
∫
Ω

M(cnh)∇µn+1
h · ∇νµh dx,∫

Ω

µn+1
h νch dx =

∫
Ω

12

ε
σf ′(cn+1

h )νch dx+

∫
Ω

3

2
σε∇cn+1

h · ∇νch dx,

• Step II.0: Pressure renormalization

Find p̃n+1
h ∈ Vp,n+1

h such that

∀νph ∈ Vp,n+1
h ,

∫
Ω

∇p̃n+1
h√
%n+1
h

·
∇νph√
%n+1
h

dx =

∫
Ω

∇pnh√
%nh

·
∇νph√
%n+1
h

dx.

• Step II.1: Velocity prediction

Find ũn+1
h ∈ Vu,n+1

h,0 such that, ∀νu
h ∈ Vu,n+1

h,0 ,∫
Ω

√
%n+1

√
%n+1ũn+1

h −
√
%nun

h

∆t
· νu

h dx

+
1

2

∫
Ω

(%n+1un
h · ∇)ũn+1

h · νu
h − (%n+1un

h · ∇)νu
h · ũn+1

h dx

+

∫
Ω

2ηn+1Dũn+1
h : Dνu

h dx−
∫
Ω

p̃n+1
h div (νu

h) dx =

∫
Ω

µn+1
h ∇cn+1

h · νu
h dx,

where %n+1 and ηn+1 stand for %(cn+1
h ) and η(cn+1

h ).
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• Step II.2.1: Pressure increment computation

Find Φn+1
h ∈ Vp,n+1

h such that, ∀νph ∈ Vp,n+1
h ,∫

Ω

1

%n+1
h

∇Φn+1
h · ∇νph dx =

1

∆t

∫
Ω

ũn+1
h · ∇νph dx

• Step II.2.2: Pressure correction

Let pn+1
h ∈ Vp,n+1

h such that

pn+1
h = p̃n+1

h +Φn+1
h .

• Step II.2.3: Velocity correction

Find un+1
h ∈ Vu,n+1

h,0 such that, ∀νu
h ∈ Vu,n+1

h,0 ,∫
Ω

%n+1
h un+1

h · νu
h dx =

∫
Ω

%n+1
h ũn+1

h · νu
h dx+∆t

∫
Ω

Φn+1
h div νu

h dx.

Remark 4. The pressure renormalization step II.0, initially proposed in [15]
enables to ensure the stability of the method in the case where the density is
variable.

The previous scheme is also a generalization of Variant 1 (cf Problem 1) to
the case of variable density since the Step II.0 is a projection of the explicit
pressure pn on the pressure approximation space Vp,n+1

h at time tn+1. All steps
make sense in the case of local adaptive refinement and the method is stable.
However, we are going to show through a simple example that this algorithm can
lead to the apparition of spurious velocities and that the work done in Section
3 has to be generalized to variable density flows.

Let us perform the Laplace test case using the scheme presented above: this
is the simulation of a 2D bubble at equilibrium. The test case parameters are
given in Table 1.

R Ω σ %b %l ηb ηl
10−2 [0, 4R]× [0, 4R] 4 1 1000 1.5× 10−3 150× 10−3

ε ∆t Mdeg

R/10 10−3 10−6

Table 1: Laplace test case parameters

At equilibrium, we may obtain:
∂c

∂t
= 0 and u = 0. Then, the equations

imply that µ = constant and ∇p = µ∇c. Thus, we expect to find:
u = 0,

p = µc (up to a constant),

µ = constant.

(19)
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Furthermore, the Laplace relationship gives the pressure jump expected at the
equilibrium:

[p] =
σ

R
, (20)

where R is the bubble radius.
The space discretization is performed using multilevel finite element approx-

imation spaces based on a Q1 approximation for the order parameter c, the
chemical potential µ and the pressure p and on a Q2 approximation for the
velocity u. The reader can refer to [16] for a precise description of the construc-
tion of these approximation spaces. The important point is to note that here
approximation spaces are not modified during the time marching and that the
resolution is accurate in the neighborhood of interface: there is about 10 meshes
in the interface.

The initialization of the order parameter is done using an interpolation of
the equilibrium profile ceq of plane interfaces:

c0(x, y) = ceq(
√
x2 + y2 −R) =

1

2
− 1

2
tanh

2
(√

x2 + y2 −R
)

ε

 .

The results we obtain at different time steps are presented in Figure 2. The solid
lines represent 10 contour levels (between 0.1 and 0.9) of the order parameter
c and the dotted lines represent 15 contour levels of the stream function. We
observe that spurious velocities appear in the neighborhood of the interface
which becomes unstable after few time steps.

t = 0 t = ∆t t = 7∆t

KE = 0 KE = 8.17× 10−7 KE = 9.61× 10−2

‖u‖∞ = 0 ‖u‖∞ = 0.23 ‖u‖∞ = 32.9

Figure 2: Contour level of the order parameter (solid lines), streamlines (dotted
lines), kinetic energy (KE) and max norm of the velocity.

This phenomenon can be explained by the following two reasons:

• At the initialization, the order parameter profile we chose does not allow
to obtain a constant chemical potential µ. Consequently, the right-hand
side of the momentum balance is not a gradient. There is no chance to
obtain a solution with a vanishing velocity.
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• The projection method presented in Problem 3 does not allow to compute
the solutions uh = 0 and ph = qh of the Navier-Stokes equation in the
particular case where the right-hand side is a gradient ∇qh, qh ∈ Vp

h.

Concerning the initialization problem, it is difficult to bring a solution since
the analytical expression of the equilibrium profile is known only for plane inter-
faces on an infinite domain. We propose to numerically compute the equilibrium
profile.

Assume that the equilibrium profile is reached and that the order parameter
is constant far from interfaces. Let us denote by c0 and c∞ the constant values
of order parameters in each phase. Owing to equations (19) and (20), the Cahn-
Hilliard system gives:

f ′(c0) = f ′(c∞) =
ε

12R
(c0 − c∞).

In practice we numerically solved the polynomial equations f ′(c0) = f ′(c∞) =
ε

12R and use the values we obtain to initialize order parameters:

c0(x, y) = (c0 − c∞)ceq(x, y) + c∞.

Then, we perform (before the beginning of the computation) few time iterations
solving only the Cahn-Hilliard system with a constant mobility M ≡ 1 to obtain
a numerical solution which is very closed from the steady solution. We manage
to obtain a discrete solution such that |µmax − µmin| ∼ |machine epsilon| for all
meshes.

Concerning the projection method, owing to Section 3, we propose the fol-
lowing variant:

Problem 4 (Variant 4). • Step I.: Cahn-Hilliard system resolution

This step remains unchanged (cf Problem 3).

• Initialization (only if n = 0): Let u0
h = 0 and p0h the solution of the

following problem:

Find p0h ∈ Vp,0
h such that

∀νph ∈ Vp,0,

∫
Ω

1√
%0
√

%1
∇p0h · ∇νph dx =

∫
Ω

1√
%0
√
%1

f0 · ∇νph dx.

Assume that (un
h, p

n
h) ∈ Vu,n

h,0 ×Vp,n are given (0 6 n 6 N −1), (un+1
h , pn+1

h )
are defined as follows:

• Step II.0: Pressure prediction

Find p̃n+1
h ∈ Vp,n+1

h such that, ∀νph ∈ Vp,n+1
h ,∫

Ω

1

%n+1
∇p̃n+1

h ∇νph dx =

∫
Ω

1
√
%n

√
%n+1

∇pnh∇νph dx

+

∫
Ω

( fn+1√
%n+1

− fn√
%n

)
·

∇νph√
%n+1

dx,
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where fn = µn
h∇cnh + %(cn+1

h )g.

• Step II.1: Velocity prediction

Find ũn+1
h ∈ Vu,n+1

h,0 such that, ∀νu
h ∈ Vu,n+1

h,0 ,∫
Ω

√
%n+1

√
%n+1ũn+1

h −
√
%nun

h

∆t
· νu

h dx

+
1

2

∫
Ω

(%n+1un
h · ∇)ũn+1

h · νu
h − (%n+1un

h · ∇)νu
h · ũn+1

h dx

+

∫
Ω

2ηn+1Dũn+1
h : Dνu

h dx−
∫
Ω

p̃n+1
h div (νu

h) dx =

∫
Ω

fn+1 · νu
h dx,

where %n+1 and ηn+1 stands for %(cn+1
h ) and η(cn+1

h ) respectively.

• Step II.2.1: Pressure increment computation

Find Φn+1
h ∈ Vp,n+1

h such that

∀νph ∈ Vp,n+1
h ,

∫
Ω

1

%n+1
h

∇Φn+1
h ∇νph dx =

1

∆t

∫
Ω

ũn+1
h · ∇νph dx.

• Step II.2.2: Pressure correction

Let pn+1
h ∈ Vp,n+1

h such that

pn+1
h = p̃n+1

h +Φn+1
h .

• Step II.2.3: Velocity correction

Find un+1
h ∈ Vu,n+1

h,0 such that

∀νu
h ∈ Vu,n+1

h,0 ,

∫
Ω

%n+1
h un+1

h · νu
h dx =

∫
Ω

%n+1
h ũn+1

h · νu
h dx

+∆t

∫
Ω

Φn+1
h div νu

h dx.

The advantage of this method is the same as in Section 3. Assume that
fn = ∇qnh , ∀n ∈ N, and that un

h = 0 and pnh = qnh then we obtain after the
step II.0: p̃n+1

h = qn+1
h . Thus, the step II.1 becomes:∫

Ω

%n+1 ũ
n+1
h

∆t
· vh dx+

∫
Ω

2ηn+1Dũn+1
h : Dvh dx = 0, ∀vh ∈ Vu

h,0.

The solution is ũn+1
h = 0. Then the step II.2.1 implies that Φn+1 = 0 and the

steps II.2.2 and II.2.3 give pn+1
h = qn+1

h and un+1
h = 0.

Let us go back to the Laplace test case. The results we obtain using this
variant of the incremental projection method are presented in Figure 3. On this
academic test case, the spurious velocities are completely eliminated.
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t = 0 t = ∆t t = 100∆t

KE = 0 KE = 2.0× 10−31 KE = 1.46× 10−28

‖u‖∞ = 0 ‖u‖∞ = 2.48× 10−14 ‖u‖∞ = 5.7× 10−14

Figure 3: Variant 2: contour level of the order parameter, kinetic energy (KE)
and max norm of the velocity.

To conclude this section, we provide a numerical simulation of a 2D gas
bubble rising in a liquid column.

The space discretization is performed on square local adaptive refined meshes
using:

• Q1 Lagrange finite element for the order parameter c, the chemical poten-
tial µ and for the pressure p,

• Q2 Lagrange finite element for each component of the velocity u.

The adaptation procedures are based on conforming multilevel finite element
approximation spaces which are built by refinement or unrefinement of the finite
element basis functions instead of cells. All the details about this method and
also various examples (in particular, simulations using the Cahn-Hilliard model
considered in this article) are described in [16]. The refinement criterion used
in those (un-)refinement procedures imposes the value of the smaller diameter
hmin of a cell and ensures that refined areas are located in the neighborhood
of the interfaces (i.e. where no order parameter is equal to one). We do not
give more details on spatial discretization issues here since the main goal of this
article is to investigate the properties of time discretization scheme.

The test case parameters are given in Table 2. This corresponds to a Bond
number equal to 1 and a Morton number equal 5 × 10−3. In this regime, a
bubble keeps its spherical shape during its rise [17, 18]. We observe the same
kind of behaviour here even if we perform 2D simulations.
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R Ω σ %b %l
1.336× 10−3 [−4R, 4R]× [0, 24R] 0.07 1 1000

ηb ηl
1.15× 10−3 1.15× 10−1

ε hmin ε/hmin ∆t Mdeg

R/10 R/10 1 10−4 or 5× 10−4 10−5

Table 2: Rising bubble. Test case parameters

We perform the simulation for time steps ∆t equal to 10−4 and 5 × 10−4

using the Variants 3 and 4 of the incremental projection method (cf Problems 3
and 4). The time evolution of the system is presented in Figure 4. We observe
that the volume of the bubble is not conserved when using the Variant 3. A
more precise representation of the time evolution of the bubble volume is given
in Figure 5 using both the Variants 3 and 4 for ∆t = 10−4 and ∆t = 5× 10−4.
The represented quantity is computed by adding the area of all cells K such
that

∫
K
cn+1
h dx > 0.5. The bubble volume is strictly conserved when using the

Variant 4 and decreases when using the Variant 3. This volume decrease is less
important when the time step go to zero but is still present. Note that the same
kind of behaviour is observed for the quantity

∫
Ω
cn+1
h dx. This can be explained

by the apparition of spurious velocities in the neighborhood of interfaces (see
Figure 6) which brings here a consequent contribution to the volume evolution
through the transport term

∫
Ω
un
h · ∇cn+1

h dx. Indeed, as it was mentioned in the
proof of Theorem 1, the transport velocity un

h is not divergence free, it is the L2-

projection on Vu,n+1
h,0 of the function ũn+1

h −∆t∇Φn+1
h which is divergence free in

a weak sense (i.e. against functions of Vp,n+1
h ). This is true for both Variants 3

and 4 but consequences are less serious for Variant 4 thanks to spurious currents
elimination.
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t = 0 t = 0.14 t = 0.28

t = 0.42 t = 0.56

Figure 4: Time evolution (∆t = 5×10−4) of the system using the Variant 3 (on
the left) and the Variant 4 (on the right).

Figure 5: Time evolution of the volume of the bubble.
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Variant 3 Variant 4

Figure 6: Velocity at t = 0.28 using the Variant 3 (on the left) and the Variant
4 (on the right).

5. Conclusion

In this article, we proposed a new variant (cf Problem 4) of the incremental
projection algorithm. This stable scheme can be used in combination with an
adaptive local refinement procedure for the space discretization. Furthermore, it
eliminates the spurious velocities due to the taking into account of the right-hand
side of the momentum balance. The behaviour of the method was illustrated
with two phase flows simulations using a Cahn-Hilliard/Navier-Stokes model.
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