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ABSTRACT 1 

Dysferlin is a 237-kDa transmembrane protein involved in calcium-mediated 2 

sarcolemma resealing. Dysferlin gene mutations cause limb-girdle muscular dystrophy 3 

(LGMD) 2B, Miyoshi myopathy (MM), and distal myopathy of the anterior tibialis.  4 

Considering that a secondary Dysferlin reduction has also been described in other 5 

myopathies, our original goal was to identify cases with a Dysferlin deficiency without 6 

dysferlin gene mutations. The dysferlin gene is huge, composed of 55 exons that span 7 

233,140 bp of genomic DNA. We performed a thorough mutation analysis in 65 8 

LGMD/MM patients with ≤20% Dysferlin. The screening was exhaustive, since we 9 

sequenced both genomic DNA and cDNA. When required, we used other methods, 10 

including real-time PCR, long PCR and array CGH. 11 

In all patients we were able to recognize the primary involvement of the dysferlin gene. 12 

We identified 38 novel mutation types. Some of these, such as a dysferlin gene 13 

duplication, could have been missed by conventional screening strategies. Nonsense 14 

mediated mRNA decay was evident in six cases, in three of which both alleles were 15 

only detectable in the genomic DNA, but not in the mRNA. Among a wide spectrum of 16 

novel gene defects, we found the first example of a “nonstop” mutation causing a 17 

dysferlinopathy. 18 

This study presents the first direct and conclusive evidence that an amount of Dysferlin 19 

≤ 20% is pathogenic and always caused by primary dysferlin gene mutations. This 20 

demonstrates the high specificity of a marked reduction of Dysferlin on western blot 21 

and the value of a comprehensive molecular approach for LGMD2B/MM diagnosis. 22 

 23 
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INTRODUCTION 1 

Mutations in the dysferlin gene are responsible for three main dystrophic phenotypes: 2 

limb-girdle muscular dystrophy type 2B (LGMD2B; MIM# 253601 1,2), Miyoshi 3 

myopathy (MM; MIM# 254130 2) and distal myopathy with anterior tibialis onset 4 

(DMAT; MIM#606768 3). During the course of the disease, the phenotypes show a 5 

substantial amount of overlap with weakness extending from the proximal to distal 6 

muscles and vice versa 4,5. Even if clinical differences are reported, they may not be so 7 

striking at the pathological level 6. A unique finding within the spectrum of muscular 8 

dystrophies is that the majority of Dysferlin-deficient patients appear to have no initial 9 

muscle weakness. Indeed, they often show a good performance at sport or have jobs that 10 

require physical activity suggesting that exercise may be a disease-triggering factor7,8. A 11 

secondary Dysferlin reduction has been also observed in calpain 3 (LGMD2A 9), 12 

caveolin-3 (LGMD1C 10). A similar phenotype has been described also in patients with 13 

anoctamin 5 gene (LGMD2L 11) mutations.  14 

The dysferlin gene is huge and routine mutation detection is a long and expensive 15 

process. In addition, there are no prevalent mutations, but, instead, 415 different allelic 16 

variants have been identified thus far (www.dmd.nl). The cost-effectiveness of a 17 

dysferlin gene mutation screening using DHPLC approaches has been reported in large 18 

groups of patients with the identification of many mutations, so validating the efficacy 19 

of genomic mutational screening for routine diagnosis 12. 20 

Most authors have been able to identify the majority of dysferlin gene mutations (but 21 

not all), when Dysferlin was absent from the muscle 13,14. Several mutational screenings 22 

have been reported, many of them based on isolated cases/families and the identification 23 

of private mutations15-22. The biggest cohort was analyzed by Krahn et al.12, composed 24 
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of 134 patients, including a group that had previously been described18. The authors 1 

identified at least one pathological allele in 119/134 patients (88%). The success rate 2 

was higher than in other LGMD cases 23, but not all cases were solved, indicating either 3 

that other genes causing secondary defects of Dysferlin are rarer, or that the mutation 4 

analyses have been inaccurate in that they have missed some of the defects.  5 

Our original aim was to focus on LGMD cases with a marked Dysferlin reduction and 6 

no mutation. To achieve this objective we performed a complete mutation analysis of 7 

the dysferlin gene in a group of 65 LGMD/MM patients with a marked reduction or 8 

absence of the protein detected by western blot. We used all available screening 9 

methods starting from genomic DNA and mRNA. Here we show the high specificity of 10 

the absence or marked reduction of dysferlin expression on muscle biopsy and the high 11 

specificity and sensitivity of a comprehensive molecular approach in the diagnosis of 12 

LGMD2B/MM. 13 

14 
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MATERIALS AND METHODS 1 

Patient recruitment 2 

The patients were between 26 and 77 years of age. They had serum levels of creatine 3 

kinase between 1,200 U/L and 8,000 U/L (with an average value of 3,507 U/L). These 4 

patients showed an absence or marked reduction (5-20% of the normal amount) of 5 

Dysferlin in their skeletal muscle. Ten out of 65 were affected by Miyoshi myopathy, 6 

while the other 55 had an LGMD2B phenotype. In our study we analysed 8 pairs of 7 

siblings. Only three of these patients are wheelchair-confined in accordance with the 8 

slow progression rate of the dysferlinopathies. In particular, the age at which they began 9 

to use a wheelchair was very variable (22, 39 and 49 years of age respectively), again in 10 

accordance with the phenotypical variability of the dysferlinopathies 5,24,25.  11 

Biological samples were obtained from 65 patients (61 of which Italians) from different 12 

centres: Naples (16/65), Rome (5/65), Genoa (8/65), Padua (31/65), Ankara (Turkey) 13 

(3/65) and Buenos Aires (Argentina) (1/65). For all these patients genomic DNA and/or 14 

mRNA from blood samples or muscle biopsies were available.  15 

 16 

Muscle biopsy 17 

At the time of diagnosis, an open biopsy from the quadriceps femoris muscle was 18 

obtained under local anesthesia after written informed consent. 19 

Muscle biopsy specimens were frozen in isopentane, cooled in liquid nitrogen and 20 

stored at −80°C until processed. 21 

 22 

Multiple Western blot analysis of muscle proteins and quantification 23 
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Western blot (WB) analysis and detailed protein analyses were performed as previously 1 

described 26 using a mixture of monoclonal antibodies against Calpain-3 (Calp12A2, 2 

diluted 1:800), alpha-Sarcoglycan (diluted 1:300), beta-Sarcoglycan (diluted 1:300), 3 

Dystrophin (Dys-2, diluted 1:1000), and Dysferlin (Hamlet, diluted 1:1000), all 4 

purchased from Novocastra (UK). In brief, the quantity of muscle proteins in the 5 

samples from the controls and patients was determined by densitometry using ImageJ 6 

software v.1.34n and normalised to the amount of tissue loaded in each lane, using the 7 

skeletal myosin bands in the post-transfer Coomassie blue-stained gels. The values in 8 

each patient were expressed as percentages of the mean of the controls. 9 

 10 

PCR conditions from gDNA 11 

The dysferlin gene (NM_ 001130987.1, 55 coding exons) was amplified by PCR from 12 

genomic DNA. All the exons and flanking intron sequences were amplified using 13 

specific primer pairs (Supplementary Table S1). In a final volume of 25 µl, 60-75ng of 14 

genomic DNA were combined with 0.6 µM of each primer, 0.14mM dNTPs, buffer 15 

LB1X (20mM Tris, 10mM Hepes, 2.5mM magnesium sulphate, 10mM potassium 16 

chloride, 10mM ammonium sulphate) or buffer LC1X (20mM Tris, 10mm Hepes, 17 

2.5mM magnesium sulphate, 20mM ammonium sulphate, 5% glycerol), and 0.9 U of 18 

AmpliTaq-Gold (Perkin Elmer, Massachusetts, USA). After polymerase activation 7 19 

min at 95°C, reactions were then carried out for 30 seconds at 95 °C, 1 minute at Tm 20 

(see Supplementary Table S1) and 1 minute at 68 °C, for 30 cycles.  21 

 22 

DHPLC Analysis 23 
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We performed comparative mutation scanning to select amplicons for aberrant DHPLC 1 

profiles not shared by the normal controls. DHPLC analysis was performed on a WAVE 2 

DNA fragment analysis system (Transgenomic Inc., San Jose, CA) equipped with a 3 

DNASep column (3,500 High Throughput [HT]) employing a UV-C scanner to detect 4 

eluted DNA 27.  5 

 6 

mRNA extraction and cDNA preparation 7 

We used a TRIzol® reagent (Invitrogen Carlsbad, California) according to the 8 

manufacturer’s instructions to extract RNA from the muscle biopsies and the 9 

PAXgene™ Blood RNA Kit (Qiagen, Hilden, Germany) to extract RNA from the 10 

blood28. 11 

The retrotranscription reaction was performed using 2μg of total mRNA according to 12 

the SuperScript® III kit (Invitrogen Carlsbad, California).  13 

 14 

RT-PCR and long PCR 15 

We amplified the dysferlin cDNA in 13 overlapping fragments (Supplementary Table 16 

S2). The reaction was performed in a final volume of 25μl using: 1μl of cDNA, 1μM of 17 

each primer, 0.8mM of dNTPs, Buffer JD1X 29, 0.5U of LA-Taq DNA polymerase 18 

(Takara BIO Inc.) and 1U.I. of Pfu polymerase (Stratagene). Thermocycling was then 19 

carried out for 30 seconds at 94 °C, 1.30 minute at Tm (see Supplementary Table S2) 20 

and 2 minute at 68 °C, for 30 cycles. 21 

Fragments were recovered from agarose gels by using the Mini Elute™ Gel Extraction 22 

Kit (Qiagen, Hilden, Germany) and then sequenced.  23 

 24 
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Sequencing 1 

BigDye® Terminator sequencing chemistry and ABI3130XL automatic DNA sequencer 2 

(Applied Biosystems, Foster City, CA) were used. Each nucleotide change was verified 3 

by reverse sequencing and, in addition, by the sequencing of an overlapping PCR 4 

product obtained with different primers. Mutations were numbered based on protein 5 

(GenBank NP_003485) and cDNA sequence (GenBank NM_003494). Nucleotides 6 

were numbered according to international recommendations 30-32 7 

 8 

Array CGH 9 

A custom array CGH (MotorChip 2.0) was developed using the Agilent 8X60K format 10 

(SurePrint G3 arrays). All dysferlin exons, both the 5’- and 3’-UTR, 2,000 bp at the 11 

5’end of the gene (covering the dysferlin promoter) were included. Probes were 12 

designed based on the exon and flanking intron sequences. Array CGH results were 13 

confirmed by independent assays, such as real time PCR, long PCR and MLPA. 14 

 15 

Bioinformatic software 16 

Splice View software was useful to verify the effect of intronic variants on mRNA 17 

splicing (http://bioinfo.itb.cnr.it/oriel/splice-view.html). Conservation analysis was 18 

performed using ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2/index.html). To 19 

assess intronic and exonic mutations leading to splicing defects, the Human Splicing 20 

Finder website (http://www.umd.be/SSF/) was consulted 33.  21 

22 
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RESULTS 1 

To select patients with a Dysferlin deficiency from a heterogeneous population of 2 

patients affected with an unclassified form of LGMD or MM, we previously analyzed 3 

muscle samples by a multiple WB. A group of 65 patients that showed a marked 4 

reduction or absence of Dysferlin were included in the study (fig. 1A, B). We excluded 5 

cases having more than 20% Dysferlin using a quantitive WB assay26. The average 6 

Dysferlin level was 5% ± 5. We combined different screening methods to identify the 7 

causative alleles (fig. 1C). 8 

 9 

From genomic DNA - DHPLC 10 

Despite the incomplete DHPLC sensitivity and the noise of the variants and 11 

polymorphisms, this first step was chosen for its cost-effectiveness 34. We screened by 12 

DHPLC and targeted a sequencing of all the 55 exons and flanking introns from the 13 

genomic DNA. DHPLC analysis was performed on a first group of 52 patients. We 14 

identified 47 causative mutations, 28 of which were new (Supplementary Table S3). A 15 

full molecular diagnosis (both alleles) was provided for 35 out of 52 patients (67%). 16 

 17 

mRNA analysis  18 

We next performed mRNA analysis in cases without mutations or with ambiguities (one 19 

allele, new mutations, possible splice defects, etc.). We first confirmed on cDNA the 20 

splice mutations. We also extended the analysis to an additional group of 13 patients. 21 

Two sources of mRNA were considered: 1) skeletal muscle that, when available, is the 22 

first choice for the expression level and canonical splicing of muscle dysferlin; 2) 23 

leukocytes that are easy to collect and representative of non muscle dysferlin, with some 24 
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differences in the alternative splicing of exons 5a, 17 or 40a 35,36. For this analysis we 1 

performed 16 muscle biopsies and, when not possible, we collected blood samples. The 2 

cDNA was amplified by PCR in 13 overlapping fragments and then sequenced (fig.S1). 3 

We identified 15 mutations, eight of which were novel. mRNA analysis was useful to 4 

demonstrate the effect of two intronic variations on RNA splicing (fig. 2A-B). Patient 5 

X311 carrying the homozygous mutation 906+4A>G showed a smaller amplification 6 

product of fragment 3 (including approximately exons 7 to 12) of the dysferlin cDNA 7 

compared to the control (fig. 2A). Direct sequencing showed that exon 9 was skipped 8 

(fig. 2A’). At the protein level, exon-9 skipping causes the loss of a part of the C2B 9 

domain, important for the protein function. Therefore, this variation should be 10 

considered as pathological.  11 

The transversion 1639-6T>A, found in a homozygosity in patient X389, inactivated the 12 

donor splice site (with the reactivation of a new donor site in intron 18) resulting in 13 

retention of 4bp from intron 18 sequence (fig. 2B) and a frame-shift (Supplementary 14 

Table S3). 15 

Patient X546 (classified as having severe LGMD2B) showed < 5% Dysferlin. 16 

Molecular analysis confirmed the presence of a frameshift mutation, 1-bp deletion 17 

(g.2077delC) on exon22 (fig. 2C), and the heterozygous deletion of the entire exon 17 18 

(fig. 2D). Exon 17 skipping did not affect the open reading frame, but the amino acid at 19 

the exon junction changed (GAG>GTG, g.1481_1522del, p.E494V+ex17skipping). The 20 

alternative splicing of the exon 17 had previously been identified and characterized as 21 

blood cell isoform36, but it had never been detected in muscle.  22 

 23 

DNA re-sequencing 24 
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All-exon and flanking intron resequencing was used to confirm all the mutations. We 1 

identified three additional mutations, the diagnosis being completed in 58/65 patients 2 

(Table 1). Surprisingly, six apparently homozygous alleles were not confirmed by the 3 

DNA analysis. These alleles were heterozygous and for 3 out of 6 patients a second 4 

nonsense mutation was identified in other regions of the gene. This can be explained by 5 

the nonsense mediated decay (NMD) of the mRNA 16 (fig. 2E). For the other three 6 

patients with NMD the promoter region was not mutated 37. 7 

 8 

Array CGH, real time PCR and long PCR 9 

In all cases with an incomplete gene testing (0 or 1 mutated allele) we performed a CGH 10 

array to identify possible heterozygous intragenic rearrangements, such as deletions or 11 

duplications 38 (Table 1). We used a minimum of three probes per exon plus promoter 12 

probes covering a genomic region of 220kb using a total of 196 probes. We identified a 13 

heterozygous duplication involving the 5’ end of the gene from exon 1 to 22 (3484), and 14 

a heterozygous deletion (X583). In addition, we performed a long PCR on the mRNA 15 

and/ or gDNA using primers located at distant positions in the transcript to confirm the 16 

alterations. 17 

 18 

Mutation spectrum 19 

The exhaustive molecular analysis of the dysferlin gene led to the identification of 65 20 

different mutations, 38 of which (60%) had not previously been described 21 

(Supplementary Table S3 and fig.3). Thirty-one patients showed homozygous alleles 22 

(47.7%), most confirmed by segregation studies. Mutation scanning methods used in 23 

our study led to the identification of 19 additional novel non-pathological variants 24 
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(Supplementary Table S4). The present study confirmed the absence of a mutational 1 

hot-spot region as well as the spreading of mutations along the entire gene. We detected 2 

9 (14%) nonsense mutations, 28 (43%) missense mutations, 5 (8%) splicing mutations, 3 

20 (30.5%) frame shift mutations, one nonstop mutation (1.5%), and two large genomic 4 

rearrangements (3%) (Table 2). 5 

For the novel mutations their absence was demonstrated in > 1,000 control 6 

chromosomes from healthy individuals of matched ethnic origin. In all 10 patients with 7 

10-20% of Dysferlin we always found at least one missense mutation (100%), while 8 

among 24 patients with 0% Dysferlin a missense mutation was only found in 7 cases 9 

(29%). 10 
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DISCUSSION 1 

The present study demonstrates that the marked reduction of Dysferlin observed in 2 

LGMD/MM patients is not genetically heterogeneous. Given the location of Dysferlin, 3 

close to the muscle membrane, its interactions with other proteins, and cumulative data 4 

about the existence of secondary dysferlinopathies, this is surprising, because in other 5 

membrane complexes, such as sarcoglycans, a marked secondary reduction of each 6 

component is common. A Dysferlin reduction has been observed in primary calpain 3 7 

deficiency (LGMD2A 9) or Caveolin 3 deficiency (LGMD1C 10). An LGMD/MM 8 

phenotype has also been observed in patients carrying mutations in the Anoctamin 5 9 

gene (LGMD2L 11).  10 

Our results derive from an exhaustive analysis of RNA and DNA from 65 patients 11 

having a severe Dysferlin reduction. In theory, it has been claimed that a DNA analysis 12 

is necessary to diagnose a primary dysferlinopathy 39. In practice, however, it is not 13 

easy. The dysferlin gene is huge and composed of 55 exons. It spans 233,140bp of 14 

genomic DNA and generates a 6.9 kb-wide transcript. In our mutation screening 15 

flowchart (fig.1), the DNA analysis was first carried out by a DHPLC of all exons and 16 

flanking introns. DHPLC is cheaper, but it can give false-negative/positive results and 17 

therefore it can only have a screening value40. A second problem with DHPLC consists 18 

in the huge number of polymorphisms and variants that are present in this gene 19 

(Supplementary Table S4). These are located in all exons and confound an 20 

interpretation of the results with many heteroduplex shifts per patient. We therefore 21 

used a second technique based on the sequence analysis of the dysferlin cDNA. When a 22 

muscle biopsy was not available, we were able to analyze the patients’ mRNA from 23 

blood, since Dysferlin is highly expressed in the monocytes. This method 28,35 is less 24 
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invasive and can provide an adequate amount of mRNA: the analysis helped us to 1 

understand the pathogenic role of the two intronic variants identified by DNA analysis, 2 

both leading to an alteration of the splicing mechanism (fig. 2A-B).  3 

Despite the larger number of cases identified by mRNA analysis, this method alone can 4 

be faulty when the mutated allele is not expressed. We showed that the mechanism of 5 

nonsense-mediated mRNA decay (NMD) also occurred in dysferlinopathy16. In six out 6 

of 65 patients (fig. 2D) we identified a homozygous mutation from cDNA, a mutation 7 

which was heterozygous from gDNA. By direct sequencing of gDNA we identified in 8 

3/6 (X584, X674, X676) an additional frameshift mutation missed by DHPLC. For the 9 

three other patients (X267, X268, X675), we failed to identify the primary cause of the 10 

missing mRNA expression of the second allele, but the NMD anyhow confirmed the 11 

primary involvement of the dysferlin gene. 12 

This confirms that mRNA analysis alone can be faulty, since true homozygote patients 13 

cannot be distinguished from compound heterozygote patients with important 14 

consequences in respect of genetic counselling. 15 

Thirdly, we resequenced all the relevant genomic regions and three additional mutations 16 

were found. Furthermore, we used three additional methods: long PCR, real time PCR 17 

and array CGH. 18 

Particularly noteworthy was the first evidence of a non stop mutation as a new 19 

pathological mechanism involved in the dysferlinopathies. Patient X295 carries a 20 

homozygous 8-bp (g.6233_6240del, p. P2078fsNON STOP) deletion that was identified 21 

in exon 55 of the dysferlin gene. The deletion led to a frameshift in the reading frame 22 

with the loss of the stop codon (fig. 4A, B). We supposed that the new reading frame 23 

could give rise to the translation of 97 additional amino acids through the 3’end of the 24 
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mRNA. The patient showed a residual expression of <10% of larger sized Dysferlin in 1 

the skeletal muscle (fig. 4C). We hypothesize that the mutation could cause a 2 

mechanism of nonstop mRNA decay. Indeed, it was demonstrated that in the eukaryotes 3 

there is a mechanism of degradation of mRNA lacking the stop codon 41-44. Non stop 4 

mutation has previously been identified in the ACTA1 gene45. 5 

Many groups have questioned the value of protein analysis in carrying out a correct 6 

diagnosis. Fanin et al. 26 observed that the levels of Dysferlin were reduced to 50% of 7 

those of the controls in the carriers of LGMD2B. They showed that a reduction of 50% 8 

indicated both familial and isolated LGMD2B heterozygotes, and suggested the use of 9 

Dysferlin protein testing to select muscle biopsies from suspected carriers for a 10 

subsequent mutation analysis26. 11 

Our data support the dysferlin gene as the unique cause of Dysferlin deficiency between 12 

0% and 20% by WB analysis. Although for three patients (3484, 4132 and X147) the 13 

second allele was not identified, this was only due to incomplete testing for insufficient 14 

DNA. However, this does not affect the main conclusions of the study, because these 15 

patients show sure causative alleles (frame-shift/duplication) that cannot be 16 

coincidental.  17 

This marked reduction is necessary to affect muscle membrane repair. We cannot 18 

exclude the presence of other functional mutations, but a direct proof of pathogenicity is 19 

always required, since the dysferlin gene shows a large number of variants and 20 

polymorphisms that can be misleading. In these cases, the possible lack of mutations in 21 

the dysferlin gene may be due to incomplete genetic testing.  22 

The results obtained in this present paper have an immediate diagnostic application: a 23 

Dysferlin reduction to 20% (that can also be measured from blood monocytes 28,35) can 24 
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be used to identify LGMD2B with 100% accuracy. In the case of LGMD2B this 1 

observation is noteworthy. When a rapid Dysferlin blood testing will be available, 2 

important decisions will derive, such as to avoid steroids (that are 3 

ineffective/deleterious in LGMD2B in contrast with other forms of muscular dystrophy) 4 

and any distressing sport activities in children 7,46. 5 

Although, it is generally agreed that an extensive molecular analysis has a high cost, a 6 

precise determination of the DYSF gene is, however, particularly important from a 7 

diagnostic/counselling perspective and in view of the development of a future 8 

therapeutic strategy. A successful recognition of all the mutations demonstrates the 9 

power of a combined diagnostic strategy. More importantly, a complete genetic testing 10 

should be applied to all other LGMD cases47. 11 
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TITLES AND LEGENDS TO FIGURES 

 

Figure.1: Mutational Scanning. A. The picture shows the western blot on muscle lysate 

from patients (1, 2) and control (C). As observed, patient 1 showed a complete absence of the 

dysferlin-specific band, while sample 2 shows a residual expression (5%) of dysferlin protein, 

compared to the control (as indicated by the arrow). B. An exemplary image of a multiple 

western blot assay used in this study to screen and select the patients for further molecular 

analyses (samples 1 and 2 show a complete dysferlin deficiency). For both A and B, the 

skeletal myosin bands in the post transfer Coomassie blue staining gels were used to 

normalize the amount of loaded protein. C. The flow chart shows the general design of the 

mutation analysis.  

 

Figure 2 Elusive/peculiar mutations: A: Exon 9 skipping in a patient with the variation 

906+4A>G in homozygous status. RT-PCR products between DYSF exons 7 and 12 showing 

the aberrantly-spliced transcript. A: Graphical presentation of the sequence composition of 

the wild-type transcript and the aberrantly-spliced transcript with the exon 9 skipping. B. 

Partial intron 18 retention in a patient with the variation 1639-6T>A in homozygous status. 

RT-PCR products sequencing between DYSF exons 12 and 19 showing a 4 bp retention of 

the intron 18, which is predicted to result in a truncated protein. C-D: Analysis of the cDNA 

sequence of patient X546 for C fragment 5 (including exon 22) and D fragment 4 (including 

exon 17). Both mutations produce a frameshift. E: Sequence analysis performed on specific 

fragments of dysferlin obtained from cDNA and DNA. The same mutation is shown for both 

cDNA and DNA. The mutated base is highlighted in blue. All the patients showed the 

mutation in homozygous status on cDNA and heterozygous status on DNA.  
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Figure 3: Mutation spectrum. The picture shows the position of all the mutations identified 

in this study. Δ identifies missense mutations; ○ identifies the frameshift (del/ins) mutation; ◊ 

identifies the mutations affecting the splicing mechanism;  identifies the non sense mutation 

 

Figure 4: Non stop mutation. A-B: Analysis of DNA sequence obtained from a control (A) 

and patient (B). The mutated base is highlighted in blue. The sequence of exon 55 shows a 

homozygous deletion of 8bp (g. 6233_6240del; p. Pro2078LeufsNON STOP). The frameshift 

skips the stop codon and produces hypothetically the translation of 97 additional amino acids. 

Both nucleotide and translated sequences are reported for both samples. C: The picture shows 

the western blot on muscle lysate from a patient (X295) and control (C). As observed, patient 

X295 showed a residual expression (<10%) of larger sized Dysferlin, compared to the control 

(as indicated by the arrow) 
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Table 1: Number of causative alleles identified by the different techniques  

 

mutations DHPLC DNA 
mRNA 

sequencing 

gDNA 

sequencing 

Array CGH  

Real Time/long PCR 

0 alleles 5 0 0 0 

1 allele 12 8 5 5 

2 alleles 35 18 4 0 

Samples 

examined 
52 26 9 5 

 

 

Table 2: Classification of all mutation types identified (Het: heterozygote, Hom: 

homozygote). Numbers indicate how many mutation types were discovered  

Class of Mutation Mutations (%) 
Status 

Het Hom 
Missense 28 (43%) 27 12 
Nonsense 9 (14%) 9 5 
Splice site 5 (8%) 2 5 
Frameshift 20 (30.5%) 24 8 
Non-Stop 1 (1.5%) 0 1 

Genomic Rearrangements 2 (3%) 2 0 
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