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STAGGERED SCHEMES FOR ALL SPEED FLOWS

R. Herbin1, W. Kheriji2 and J.-C. Latche3

Abstract. We present in this paper a class of schemes for the numerical simulation of compressible

flows. In order to ensure the stability of the discretizations in a wide range of Mach numbers and

introduce sufficient decoupling for the numerical resolution, we choose to implement and study pressure

correction schemes on staggered meshes. The implicit version of the schemes is also considered for the

theoretical study. We give both algorithms for the barotropic Navier Stokes equations, for the full

Navier-Stokes equations and for the Euler equations. In each case, we summarize the theoretical

results that were recently obtained concerning the stability and consistency of the schemes and present

some numerical results which confirm their good performance.

Introduction

The aim of this paper is to review some recent contributions to the development of a class of schemes for
the simulation of industrial compressible flows. The considered systems of governing equations are coupled
and strongly nonlinear, and the applications in view involve complex geometry and flows, possibly combining
quasi-steady states with quick transient phases, with strong physical properties contrasts (in particular, for
the viscosity, the compressibility and the density). Accordingly, the algorithms are developed so as to realize
a compromise between two main requirements: preserve the stability in a wide range of Mach numbers and
introduce sufficient decoupling to facilitate the resolution of discrete algebraic systems. Pressure correction
methods seem to be a good choice to address these requirements.

This class of schemes was first introduced in the framework of incompressible flows a long time ago [6, 54],
and such algorithms are now quite widespread and well understood in this context (see, for example, [44] for
an introduction and [20] for a review of most of the variants). Pressure correction schemes are less popular in
the context of compressible flows, even though their application to compressible Navier-Stokes equations may
also be traced back to the late sixties, with the seminal work of Harlow and Amsden [25,26], who developed an
iterative algorithm (the so-called ICE method) including an elliptic corrector step for the pressure. Later on,
pressure correction equations appeared in numerical schemes proposed by several researchers, essentially in the
finite-volume framework, using either a collocated [11, 35, 38, 45, 50, 52] or a staggered arrangement [3, 5, 8, 33,
34,36,56,57,59–61] of unknowns; in the first case, some corrective actions are to be foreseen to avoid the usual
odd-even decoupling of the pressure in the low Mach number regime. Some of these algorithms are essentially
implicit, the end-of-step solution being then obtained by SIMPLE-like iterative processes [11,35,36,38,45,52,58].
The other schemes [3,8,33,34,50,56,57,59,61,62] are predictor-corrector methods, where basically two steps are
performed sequentially: first a semi-explicit decoupled prediction of the momentum or velocity (and possibly
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energy, for non-barotropic flows) and, second, a correction step where the end-of step pressure is evaluated and
the momentum and velocity are corrected, as in projection methods for incompressible flows. The Characteristic-
Based Split (CBS) scheme (see [48] for a recent review or [63] for the seminal paper) was developed in the
finite-element context and belongs to this latter class of methods.

In this work, implicit-in-time discretizations are addressed for their (relative) simplicity in view of the theoret-
ical studies; however, non-iterative pressure correction schemes are our main concern for practical computations.
We consider here staggered–in–space discretizations, with the aim to build schemes which are stable and accu-
rate at all Mach numbers and, in particular, which boil down when the Mach number tends to zero to a usual
algorithm for incompressible flows (or, more generally, for the asymptotic model of vanishing Mach number
flows [43]). This last requirement also implies that, if we implement upwinding techniques (and we will have to
for stability reasons), upwinding may have to be performed for each equation separately and with respect to the
material velocity only. This is in contradiction with the most common strategy adopted for hyperbolic systems,
where upwinding is built from the wave structure of the system (see eg. [4, 55] for surveys and [10, 23, 24] for
analysis of these schemes at low Mach number), and yields algorithms which are used in practice (see, eg., the
so-called AUSM family of schemes [41, 42]), but sarcely studied from a theoretical point of view. One of our
main concerns here will thus be to bring, as far as possible, theoretical arguments supporting our numerical
developments. Let us first recall a (possible) common skeleton of convergence studies in the finite volume
context [12]. The proof may usually be decomposed into three steps:

(i) The first step is to get the existence and some a priori estimates on the approximate solution, or, in other
words, to obtain stability results for the scheme.

(ii) Next, up to the extraction of a subsequence, compactness arguments yield the existence of a (possibly
weak) limit to a sequence of discrete solutions obtained with a sequence of discretizations the space step
and, for unsteady problems, the time step of which tend to zero. At this point, a priori estimates may
imply some regularity of the limit.

(iii) Finally, the fact that the limit is a solution to (a weak form) of the continuous problem is proven by
passing to the limit in (a weak formulation of) the scheme.

For the problems studied here, namely the compressible Navier-Stokes or Euler equations, the realization of the
complete program seems out of reach, due to the lack of control (Step (i)) of space translates of the unknown;
hence we obtain a convergence of sequence of discrete solutions (Step (ii)) in a sense too weak to allow the
passage to the limit in the scheme (Step (iii)). There is thus no hope at the present stage to prove the
convergence of the schemes in the general cases (i.e. except for the barotropic viscous Navier-Stokes equations,
see [15, 40, 49] for theoretical analysis of the continuous prolem and [13,14, 17] for scheme convergence analysis
in the simplified case of the steady Stokes problem), and our theoretical analyses are then necessarily somewhat
incomplete. However, in both the barotropic and the non-barotropic cases, and at least for most variants of the
schemes, we do get the following results:

(i) We show that the discrete solution satisfies discrete analogues of the estimates known in the continuous
case: positivity of the density and, in the non-barotropic case, of the internal energy, decrease of the total
energy, and, for the viscous barotropic flows, control of the velocity in the L2(H1) norm. These estimates
allow to prove the existence of at least one solution to the scheme, by topological degree arguments.

(ii) Supposing the convergence of the scheme in strong enough norms, we then show that the limits of se-
quences of solutions are weak solutions to the continuous problem, which may be seen (and is refered to
hereafter) as a consistency property of the schemes.

Finally, we confort these theoretical experiments by numerical tests, performed with the open-source software
ISIS [32], developed at IRSN on the basis of the software component library and programming environment
PELICANS [51].

This paper is organized as follows. We first introduce the considered space discretizations (Section 1). Then
we turn to the barotropic Navier-Stokes equations (Section 2), to the ”complete” Navier-Stokes equations
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(Section 3), and, finally, to the Euler equations (Section 4); for each case, we present the schemes, summarize
the theoretical results and report some numerical tests.

In several theoretical developments, we are lead to use a derived form of a discrete finite volume convection
operator (for instance, typically, a convection operator for the kinetic energy, possibly with residual terms,
obtained from the finite volume discretization of the convection of the velocity components); an abstract pre-
sentation of such computations is given in the Appendix.

1. Meshes and unknowns

Let the computational domain Ω be an open polygonal subset of R
d, d ≤ 3, and M be a partition of Ω,

supposed to be regular in the usual sense of the finite element literature (eg. [7]). The cells may be:

- for a general domain Ω, either convex quadrilaterals (d = 2) or hexahedra (d = 3) or simplices, both
types of meshes being possibly combined in a same mesh,

- for a domain the boundaries of which are hyperplanes normal to a coordinate axis, rectangles (d = 2) or
rectangular parallelepipeds (d = 3) (the faces of which, of course, are then also necessarily normal to a
coordinate axis).

By E and E(K) we denote the set of all (d − 1)-faces σ of the mesh and of the element K ∈ M respectively.
The set of edges included in the boundary of Ω is denoted by Eext and the set of internal ones (i.e. E \ Eext)
is denoted by Eint; a face σ ∈ Eint separating the cells K and L is denoted by σ = K|L. The outward normal
vector to a face σ of K is denoted by nK,σ. For K ∈ M and σ ∈ E , we denote by |K| the measure of K and by

|σ| the (d − 1)-measure of the face σ. For 1 ≤ i ≤ d, we denote by E(i) ⊂ E the subset of the faces of E which
are perpendicular to the ith unit vector of the canonical basis of R

d.

The space discretization is staggered, using either the Marker-And Cell (MAC) scheme [26, 27], or non-
conforming low-order finite element approximations, namely the Rannacher and Turek element (RT) [53] for
quadrilateral or hexahedric meshes, or the Crouzeix-Raviart (CR) element [9] for simplicial meshes.

For all these space discretizations, the degrees of freedom for the pressure, the density and the internal energy
are associated to the cells of the mesh M, and are denoted by:

{
pK , ρK , eK , K ∈ M

}
.

Let us then turn to the degrees of freedom for the velocity.

- Rannacher-Turek or Crouzeix-Raviart discretizations – The degrees of freedom for the velocities
are located at the center of the faces of the mesh, and we choose the version of the element where they
represent the average of the velocity through a face. The set of degrees of freedom reads:

{uσ,i, σ ∈ E , 1 ≤ i ≤ d}.

- MAC discretization – The degrees of freedom for the ith component of the velocity, defined at the centres
of the face σ ∈ E(i), are denoted by:

{
uσ,i, σ ∈ E(i), 1 ≤ i ≤ d

}
.

For the definition of the schemes, we need a dual mesh which is defined as follows.

- Rannacher-Turek or Crouzeix-Raviart discretizations – For the RT or CR discretization, the dual
mesh is the same for all the velocity components. When K ∈ M is a simplex, a rectangles or a cuboid, for
σ ∈ E(K), we define DK,σ as the cone with basis σ and with vertex the mass center of K. We thus obtain
a partition of K in m sub-volumes, where m is the numbers of faces of the mesh, each sub-volume having
the same measure |DK,σ| = |K|/m. We extend this definition to general quadrangles and hexahedra, by
supposing that we have built a partition still of equal-volume sub-cells, and with the same connectivities;
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note that this is of course always possible, but that such a volume DK,σ may be no longer a cone, since,
if K is far from a pallelogram, it may not be possible to built a cone having σ as basis, the opposite
vertex lying in K and a volume equal to |K|/m. The volume DK,σ is referred to as the half-diamond cell
associated to K and σ.
For σ ∈ Eint, σ = K|L, we now define the diamond cell Dσ associated to σ by Dσ = DK,σ ∪DL,σ.

- MAC discretization – For the MAC scheme, the dual mesh depends on the component of the velocity.
For each of them, its definition differs from the RT or CR one only by the choice of the half-diamond
cell, which, for K ∈ M and σ ∈ E(K), is now the rectangle of basis σ and of measure |DK,σ| equal to
half the measure of K.

We denote by |Dσ| the measure of the dual cell |Dσ|, and by ε = Dσ|Dσ′ the face separating two diamond
cells Dσ and Dσ′ (see Figure 1).

Dσ

Dσ′

σ′ = K|MK

L

M

|σ|σ
=
K
|L

ε = D
σ |D

σ ′

Figure 1. Primal and dual meshes for the Rannacher-Turek and Crouzeix-Raviart elements.

2. Compressible barotropic Navier-Stokes equations

The addressed problem in this section reads:

∂tρ+ div(ρu) = 0, (1a)

∂t(ρu) + div(ρu ⊗ u) + ∇p− div(τ (u)) = 0, (1b)

ρ = ̺(p), (1c)

where t stands for the time, ρ, u and p are the density, velocity, and pressure in the flow, τ (u) stands for
the shear stress tensor, and the function ̺ is the equation of state. The problem is supposed to be posed over
Ω × (0, T ), where (0, T ) is a finite time interval. This system must be supplemented by suitable boundary
conditions, and initial conditions for ρ and u, the initial condition for ρ being supposed positive. The closure
relation for τ (u) is assumed to be:

τ (u) = µ(∇u + ∇
t
u) −

2µ

3
divu I,
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where µ stands for a non-negative parameter, possibly depending on x. When the viscous term τ (u) vanishes,
the system (1) becomes hyperbolic.

Let us denote by Ek the kinetic energy Ek = 1
2 ρ |u|

2. Taking the inner product of (1b) by u yields, after
formal compositions of partial derivatives and using (1a):

∂tEk + div
(
Ek u

)
+ ∇p · u = div

(
τ (u)

)
· u. (2)

This relation is refered to as the kinetic energy balance.

Let us now define the function P , from (0,+∞) to R, as a primitive of s 7→ ℘(s)/s2, where ℘ = ̺−1; this
quantity is often called the elastic potential. Let H be the function defined by H(s) = sP(s), ∀s ∈ (0,+∞); it
may easily be checked that ρH′(ρ)−H(ρ) = ℘(ρ); therefore, by a formal computation detailed in the appendix
(see Equation (34)), multiplying (1a) by H′(ρ) yields:

∂t
(
H(ρ)

)
+ div

(
H(ρ)u

)
+ p div(u) = 0. (3)

Let us denote by S the quantity S = Ek + H(ρ). Summing (2) and (3), we get:

∂tS + div
(
(S + p)u

)
− div

(
τ (u) u

)
= −τ (u) : ∇u. (4)

This shows that, in the hyperbolic case, S is an entropy of the system, and an entropy solution to (1) is thus
required to satisfy:

∫ T

0

∫

Ω

[
−S∂tϕ− (S + p)u · ∇ϕ

]
dx dt−

∫

Ω

S(x, 0) ϕ(x, 0) dx ≤ 0, ∀ϕ ∈ C∞
c

(
Ω × [0, T )

)
, ϕ ≥ 0. (5)

Then, formally, if we suppose that the velocity is prescribed to zero at the boundary (the normal velocity, in
the hyperbolic case), integrating (4) yields, since the viscous dissipation term τ (u) : ∇u is non-negative:

d

dt

∫

Ω

[1

2
ρ |u|2 + H(ρ)

]
dx ≤ 0. (6)

Since the function P is increasing, Inequality (6) provides an estimate of the solution.

We study two schemes for the numerical solution of System (1) which differ by the time discretization: the
first one is implicit, and the second one is a non-iterative pressure-correction scheme introduced in [16]. This
latter algorithm (and, by an easy extension, also the first one) was shown in [16] to have at least one solution, to
provide solutions satisfying ρ > 0 (and so p > 0) and to be unconditionally stable, in the sense that its (their)
solution(s) satisfies a discrete analogue of Inequality (6). The results presented in this section complement this
work in several directions. For the implicit scheme:

- We first derive discrete analogues of (2) and (3), the first (local) balance equation, i.e. the discrete kinetic
energy balance, being obtained on dual cells, and the second one, i.e. the elastic potential balance, on
primal cells.

These equations are used a first time to obtain the stability of the scheme by a simple integration in
space (i.e. summation over the primal and dual control volumes).

- Second, in one space dimension and for the hyperbolic case, we prove that the limit of any convergent
sequence of solutions to the scheme is a weak solution to the problem (in fact, satisfies the Rankine-
Hugoniot conditions, and thus exhibits ”correct” shocks).

- Finally, passing to the limit on the discrete kinetic energy and elastic potential balances, we show that
such a limit also satisfies the entropy inequality (5).
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For the pressure correction scheme, the results are essentially the same: the scheme is unconditionally stable,
and the passage to the limit in the scheme shows that, in case of convergence, the predicted and end-of-step
velocities necessarily tend to the same function, and that the limit is a weak solution to the problem, satisfying
the entropy inequality.

Numerical tests, performed with the pressure correction scheme, confort these theoretical results.

We first summarize in this section the obtained theoretical results (Sections 2.1 and 2.2.3) which are detailed
in [28]. Then we show results of a numerical test (Section 2.2.4), extracted from a more comprehensive study
also addressing an extension of the scheme to two-phase flows, presented in [37].

2.1. An implicit scheme scheme

2.1.1. The scheme

Let us consider a uniform partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), and let
δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the constant time step.

We begin with the discretization of the mass balance equation (1a). For both the MAC and RT or CR
discretizations, let us denote by u

n+1
σ ·nK,σ the outward normal velocity to the face σ of K, which is computed,

for the RT and CR elements, by taking the inner product of the velocity at the face with the outward normal
vector (as implied by the notation) and which is given, for the MAC scheme, by the value of the component
of the velocity at the center of the face (up to a change of sign). The discrete equations are obtained by an
upwind finite volume discretization and read:

∀K ∈ M,
|K|

δt
(ρn+1
K − ρnK) +

∑

σ∈E(K)

FK,σ = 0, with FK,σ = |σ| u
n+1
σ · nK,σ ρ̃

n+1
σ , (7)

and where ρ̃n+1
σ is the upwind approximation of ρn+1 at the face σ with respect to u

n+1
σ · nK,σ. This ap-

proximation ensures that ρn+1 > 0 if ρn > 0 and if the density is prescribed to a positive value at inflow
boundaries.

For both MAC and RT or CR discretizations, we denote by (divτ(un+1))σ,i an approximation of the i-th
component of the viscous term associated to σ, and we denote by (∇pn)σ,i the i-th component of the discrete
pressure gradient at the face σ. With these notations, we are able to write the following general form of the
approximation of the momentum balance equation:

|Dσ|

δt
(ρn+1
σ u

n+1
σ,i − ρnσ u

n
σ,i) +

∑

ε∈E(Dσ)

Fn+1
σ,ε u

n+1
ε,i

+|Dσ|(∇pn+1)σ,i − |Dσ|(divτ(un+1))σ,i = 0,

(8)

for 1 ≤ i ≤ d, and for σ ∈ E in the case of the RT or CR discretizations, and σ ∈ E(i) in the case of the MAC
scheme. In this relation, ρn+1

σ and ρnσ stand for an approximation of the density on the face σ at time tn+1 and
tn respectively (which must not be confused with the upstream density ρ̃σ used in the mass balance), Fn+1

σ,ε is

the discrete mass flux through the dual face ε outward Dσ, and u
n+1
ε,i stands for an approximation of u

n+1
i on

ε which may be chosen either centred or upwind.

The finite element discretization of the i-th component of the pressure gradient term reads:

|Dσ|(∇pn+1)σ,i = −
∑

M∈M

∫

M

pn+1 divϕ
(i)
σ dx,
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with ϕ
(i)
σ reads ϕ

(i)
σ = ϕσe

(i), where ϕσ is the finite element shape function associated to σ and e
(i) stands for

the ith vector of the canonical basis of R
d. Since the pressure is piecewise constant, using the definition of the

RT or CR shape functions, an easy computation yields for an internal face σ = K|L :

|Dσ|(∇pn+1)σ,i = |σ| (pn+1
L − pn+1

K ) nK,σ · e(i),

This expression coincides which the discrete gradient in the MAC discretization.

The finite element discretization of the viscous term (divτ(un+1))σ,i, associated to σ and to the component
i, reads:

|Dσ|(divτ(un+1))σ,i = −µ
∑

K∈M

∫

K

∇u
n+1 · ∇ϕ

(i)
σ −

µ

3

∑

K∈M

∫

K

div u
n+1 div ϕ

(i)
σ .

The MAC discretization of this same viscous term is detailed in [2].

The main motivation to implement a finite volume approximation for the first two terms in (8) is to obtain
a discrete equivalent of the kinetic energy balance (see next section). For this result to be valid, the necessary
condition is that the convection operator vanishes for a constant velocity, i.e. that the following discrete mass
balance over the diamond cells is satisfied [1, 16]:

∀σ ∈ Eint,
|Dσ|

δt
(ρn+1
σ − ρnσ) +

∑

ε∈E(Dσ)

Fn+1
σ,ε = 0. (9)

This governs the choice for the definition of the density approximation ρσ and the mass fluxes Fσ,ε. The density
ρσ is defined by a weighted average: ∀σ ∈ Eint, σ = K|L, |Dσ| ρσ = |DK,σ| ρK + |DL,σ| ρL. For a dual edge ε
included in the primal cell K, the flux Fσ,ε is computed as a linear combination (with constant coefficients, i.e.

independent of the edge and the cell) of the mass fluxes through the faces of K, i.e. the quantities (Fn+1
K,σ )σ∈E(K)

appearing in the discrete mass balance (7). We do not give here this set of coefficients, and refer to [1, 18, 31]
for a detailed construction of this approximation.

2.1.2. Kinetic energy balance, elastic potential identity and stability

We begin by deriving a discrete kinetic energy balance equation. Let δup be a coefficient defined by δup = 1
if an upwind discretization is used for the convection term in the momentum balance equation (8) and δup = 0
in the centered case. With this notation, the momentum balance equation reads:

|Dσ|

δt
(ρn+1
σ u

n+1
σ,i − ρnσu

n
σ,i) +

∑

ε=Dσ |D
σ′

1

2
Fn+1
σ,ε (un+1

σ,i + u
n+1
σ′,i )

+ δup
∑

ε=Dσ |D
σ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − u
n+1
σ′,i ) + |Dσ| (∇pn+1)σ,i − |Dσ|(divτ(un+1))σ,i = 0.

Taking the inner product of this equation with the corresponding velocity unknown, i.e. u
n+1
σ,i , yields T conv

σ,i +

T up
σ,i + T p,τσ,i = 0, with:

T conv
σ,i =

[ |Dσ|

δt

(
ρn+1
σ u

n+1
σ,i − ρnσu

n
σ,i

)
+

∑

ε=Dσ |D
σ′

1

2
Fn+1
σ,ε (un+1

σ,i + u
n+1
σ′,i )

]
u
n+1
σ,i ,

T up
σ,i = δup

[ ∑

ε=Dσ |D
σ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − u
n+1
σ′,i )

]
u
n+1
σ,i ,

T p,τσ,i = |Dσ| (∇pn+1)σ,i u
n+1
σ,i − |Dσ|(divτ(un+1))σ,i u

n+1
σ,i .
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Lemma A.2, applied on the dual mesh, yields:

T conv
σ,i =

1

2

|Dσ|

δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(u
n
σ,i)

2
]

+
1

2

∑

ε=Dσ |D
σ′

Fn+1
σ,ε u

n+1
σ,i u

n+1
σ′,i +

|Dσ|

2 δt
ρnσ

(
u
n+1
σ,i − u

n
σ,i

)2
.

Let us define Rn+1
σ,i by the sum of T up

σ,i and the last term of T conv
σ,i :

Rn+1
σ,i =

1

2

|Dσ|

δt
ρnσ

(
u
n+1
σ,i − u

n
σ,i

)2
+ δup

[ ∑

ε=Dσ |D
σ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − u
n+1
σ′,i )

]
u
n+1
σ,i . (10)

With this notation, we thus obtain the following relation:

1

2

|Dσ|

δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(u
n
σ,i)

2
]

+
1

2

∑

ε=Dσ |D
σ′

Fn+1
σ,ε u

n+1
σ,i u

n+1
σ′,i

+ |Dσ| (∇pn+1)σ,i u
n+1
σ,i − |Dσ|(divτ(un+1))σ,i u

n+1
σ,i = −Rn+1

σ,i . (11)

We recognize at the left-hand side a discrete kinetic energy balance, i.e. a reasonable discretization of Equation
(2), with a conservative finite volume discretization of the kinetic energy convection terms. The right-hand side
consists in a numerical residual, the sign of which will be studied later.

We now turn to the elastic potential balance. Multiplying the discrete mass balance equation (7) by H′(ρK)
and invoking Lemma A.1 yields, ∀K ∈ M:

|K|

δt
(H(ρn+1

K ) −H(ρnK)) +
∑

σ∈E(K)

|σ|
[
H(ρn+1

σ ) + pK
]

u
n+1
σ · nK,σ = −Rn+1

K , (12)

with:

Rn+1
K =

1

2

|K|

δt
H′′(ρn,n+1

K )(ρn+1
K − ρnK)2 −

1

2

∑

σ∈E(K)

|σ| u
n+1
σ · nK,σ H′′(ρn+1

σ )(ρn+1
σ − ρn+1

K )2,

where ρn,n+1
K ∈ [min(ρn+1

K , ρnK),max(ρn+1
K , ρnK)] and, for σ ∈ E(K), ρn+1

σ ∈ [min(ρn+1
σ , ρn+1

K ),max(ρn+1
σ , ρn+1

K )].

Equation (12) is a finite volume discretization of the (non conservative) elastic potential balance (3), with a
non positive residual term, thanks to the fact that the function H is convex and that an upwind approximation
of the density is used in the mass balance.

The stability of the scheme is then obtained by summing:

(i) Equation (11) over the components i and the faces σ ∈ E for the RT or CR discretizations, and over i
and σ ∈ E(i) for the MAC scheme,

(ii) Equation (12) over K ∈ M,
(iii) and, finally, the two obtained relations.

Let us suppose that the velocity vanishes at the boundary, and let us then invoke three arguments. First,
the discrete gradient and divergence operators are dual with respect to the L2 inner product, in the sense that:

∑

i,E

|Dσ| (∇pn+1)σ,i u
n+1
σ,i +

∑

K∈M

pK
∑

σ∈E(K)

|σ| u
n+1
σ · nK,σ = 0,
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where the notation
∑
i,E means that we sum over the component index i and on σ ∈ E for the RT and CR

discretizations, and on i and σ ∈ E(i) for the MAC scheme. Second, we suppose that (see Section 3):

∑

i,E

|Dσ| (divτ(un+1))σ,i u
n+1
σ,i ≤ 0.

Third, reordering the summations yields, for the part of the remainder of the momentum balance equation
associated to the upwinding:

∑

i,E

T up
σ,i = δup

∑

i,Ē (ε=Dσ |D
σ′ )

1

2
|Fn+1
σ,ε | (un+1

σ,i − u
n+1
σ′,i )2 ≥ 0,

where the notation
∑

i,Ē (ε=Dσ |D
σ′ ) means that we perform the sum over i and the faces of the dual mesh

associated to the component i of the velocity, and that, for a face ε in the sum, the two adjacent dual cells are
denoted by Dσ and D′

σ. Finally, since the conservative fluxes vanish in the summation, we thus get:

1

2

∑

i,E

|Dσ|

δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(u
n
σ,i)

2
]

+
∑

K∈M

|K|

δt
(H(ρn+1

K ) −H(ρnK)) ≤ 0, (13)

which is a discrete analogue to (6).

2.1.3. Passing to the limit in the scheme (1D case)

We focus in this section on the inviscid 1D form of Problem (1), and show that, if a sequence of solutions
is controlled in suitable norms and converges to a limit, this latter necessarily satisfies a (part of the) weak
formulation of the continuous problem.

Let (M(m), δt(m))m∈N be a sequence of meshes and time steps, such that the time step δt(m) and the size
h(m) of the mesh M(m), defined by:

h(m) = sup
K∈M(m)

diam(K),

tend to zero as m→ ∞.

Let ρ(m), p(m) and u(m) be the solution given by the scheme with the mesh M(m) and the time step δt(m), or,
more precisely speaking, a 1D version of the scheme which may be obtained by taking the MAC variant, only
one horizontal stripe of meshes, supposing that the vertical component of the velocity (the degree of freedom
of which are located on the top and bottom boundaries) vanishes, and that the measure of the faces is equal to
1. To the discrete unknowns, we associate piecewise constant functions on time intervals and on primal or dual
meshes, so the density ρ(m), the pressure p(m) and the velocity u(m) are defined almost everywhere on Ω× (0, T )
by:

ρ(m)(x, t) =

N−1∑

n=0

∑

K∈M

(ρ(m))nK XK X(n,n+1), p(m)(x, t) =

N−1∑

n=0

∑

K∈M

(p(m))nK XK X(n,n+1),

u(m)(x, t) =

N−1∑

n=0

∑

σ∈E

(u(m))nσ XDσ
X(n,n+1),

where XK , XDσ
and X(n,n+1) stand for the characteristic function of K, Dσ and the interval (tn, tn+1) respec-

tively.

We suppose a uniform control on the translates in space and time of the sequence of solutions, which we
now state. For discrete function q and v defined on the primal and dual mesh, respectively, we define a discrete
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L1
(
(0, T ); BV(Ω)

)
norm by:

‖q‖T ,x,BV =

N∑

n=0

δt
∑

σ∈E, σ=K|L

|qnL − qnK |, ‖v‖T ,x,BV =

N∑

n=0

δt
∑

ε∈Ē, σ=Dσ |D′

σ

|vnσ′ − vnσ |,

and a discrete L1
(
Ω; BV((0, T ))

)
norm by:

‖q‖T ,t,BV =
∑

K∈M

hK

N−1∑

n=0

|qn+1
K − qnK |, ‖v‖T ,t,BV =

∑

σ∈E

hσ

N−1∑

n=0

|vn+1
σ − vnσ |,

where, for σ = K|L, hσ = (hK + hL)/2. We suppose the following uniform bounds of the sequence of solutions
with respect to these two norms:

‖ρ(m)‖T ,x,BV + ‖p(m)‖T ,x,BV + ‖u(m)‖T ,x,BV ≤ C, ∀m ∈ N, (14)

and:
‖u(m)‖T ,t,BV ≤ C, ∀m ∈ N. (15)

A weak solution to the continuous problem satisfies, for any ϕ ∈ C∞
c

(
[0, T )× Ω

)
:

−

∫

Ω×(0,T )

[
ρ ∂tϕ+ ρ u ∂xϕ

]
dxdt−

∫

Ω

ρ(x, 0)ϕ(x, 0) dx = 0, (16a)

−

∫

Ω×(0,T )

[
ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ

]
dxdt−

∫

Ω

ρ(x, 0)u(x, 0)ϕ(x, 0) dx = 0, (16b)

ρ = ̺(p). (16c)

Note that these relations are not sufficient to define a weak solution to the problem, since they do not imply
anything about the boundary conditions. However, they allow to derive the Rankine-Hugoniot conditions ; so,
if we show that they are satisfied by the limit of a sequence of solutions to the discrete problem, this implies,
loosely speaking, that the scheme computes the right shocks, which is the result we are seeking. It is stated in
the following theorem.

Theorem 2.1. Let Ω be an open bounded interval of R. Let (M(m), δt(m))m∈N be a sequence of meshes and
time steps, such that h(m) and δt(m) tend to zero as m tends to infinity. Let

(
ρ(m), p(m), u(m)

)
m∈N

be the

corresponding sequence of solutions. We suppose that this sequence satisfies (15) and (14) and converges in

Lr
(
(0, T )× Ω

)3
, for 1 ≤ r <∞, to (ρ̄, p̄, ū) ∈ L∞

(
(0, T )× Ω

)3
.

Then the limit (ρ̄, p̄, ū) satisfies the system (16) and the entropy condition (5).

Proof. The passage to the limit in the equations of the scheme is technical, but invokes rather standard argu-
ments.

Obtaining the entropy condition is more intricate. We need to pass to the limit in the kinetic energy balance
(11) and in the elastic potential balance (12) simultaneously. To this purpose, for ϕ ∈ C∞

c

(
[0, T ) × Ω

)
, we

define two interpolates: one is defined over the dual cells and is used as a test function for (11) and the second
one is defined over the primal cells, and is used as a test function for (12). We then pass to the limit in the
”differential terms” of these discrete equations, and disregard the non-negative residuals (at the left-hand side).
A problem is posed by the residual associated to the upwinding, which reads:

Rn+1
σ,i =

[ ∑

ε=Dσ |D
σ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − u
n+1
σ′,i )

]
u
n+1
σ,i ,
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and the sign of which is unknown. To get an intuition of how to deal with this term, let us remark that it may
be seen as a discrete analogue to a diffusion term −µu∆u with a numerical viscosity µ tending to zero as the
space step. Let us now compare this term to µ|∇u|2, in the sense of distributions. For ψ a regular function
with a compact support, remarking that −µu∆u− µ|∇u|2 = −div(µu∇u), we get:

∫ T

0

∫

Ω

[
−µu∆u− µ|∇u|2

]
ψ dx dt =

∫ T

0

∫

Ω

µu∇u · ∇ψ dxdt ≤ Cψ ‖u‖L∞ ‖u‖W 1,1µ,

and therefore, if ‖u‖L∞ and ‖u‖W 1,1 are bounded, the difference between −µu∆u and µ|∇u|2 behaves like µ.
Returning at the discrete level, this computation suggests that Rσ behaves at the limit as a dissipation term
(i.e. a discrete equivalent of µ|∇u|2), the sign of which is guaranteed. The same argument is used in a different
way in the non-barotropic case: the ”viscous term” Rσ is compensated in the internal energy balance by a
”dissipation term” (see Section 4.1). �

Remark 2.2 (Control of the translates). In the assumptions of Theorem 2.1, we can sharpen (14) and (15).
Indeed, to prove that the limit is a weak solution, it is sufficient to have:

lim
m→+∞

h(m)
[
‖ρ(m)‖T ,x,BV + ‖p(m)‖T ,x,BV + ‖u(m)‖T ,x,BV

]
= 0.

In addition, this estimate may be proven (and not supposed) by adding to the scheme a numerical diffusion
scaled by (h(m))β , with 0 < β < 2. To obtain that the limit is the entropy weak solution, the following
assumption is sufficient:

lim
m→+∞

δt
[
‖u(m)‖T ,t,BV

]
= 0.

2.2. A pressure correction scheme

2.2.1. The scheme

In this section, we derive the pressure correction scheme from the implicit scheme. The first step, as usual, is
to compute a tentative velocity by solving the momentum balance equation with the begining-of-step pressure.
Then, the velocity is corrected and the other variables are advanced in time, in the so-called correction step.
For stability reasons, or, in other words, to be able to derive a kinetic energy balance, we need that the mass
balance over the dual cells (9) holds; since the mass balance is not yet solved when performing the prediction
step, this leads us to do a time shift of the density at this step.

In the time semi-discrete setting, the proposed algorithm reads:

1 - Pressure renormalization step – Solve the following elliptic problem for p̃n+1:

div
[ 1

ρn
∇p̃n+1

]
= div

[ 1

(ρn ρn)1/2
∇pn

]
(17)

2 - Prediction step – Solve the following semi-discrete linearized momentum balance equation for ũ
n+1:

ρn ũ
n+1 − ρn−1

u
n

δt
+ div(ρn ũ

n+1 ⊗ u
n) + ∇p̃n+1 − div(τ (ũn+1)) = 0. (18)
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3 - Correction step – Solve (simultanuously) the following non linear equations for pn+1, u
n+1 and ρn+1:

ρn
u
n+1 − ũ

n+1

δt
+ ∇(pn+1 − p̃n+1) = 0, (19a)

ρn+1 − ρn

δt
+ div(ρn+1

u
n+1) = 0, (19b)

ρn+1 = ̺(pn+1). (19c)

The solution of Step 3 is performed by combining equations (19a) and (19b), therefore obtaining a non-linear
elliptic problem for the pressure, which reads in the time semi-discrete setting:

̺(pn+1) − ρn

δt2
− div

[ ρn+1

ρn
∇(pn+1 − p̃n+1)

]
= −

1

δt
div(ρn+1ũn+1).

The fully discrete equations are obtained from the implicit scheme by a mere change in time levels, except
for Equations (17) and (19a), which are new. The first one is obtained by using the discrete gradient and
divergence operators already introduced, and reads:

∀K ∈ M,
∑

σ=K|L

1

ρnσ

|σ|2

|Dσ|

(
p̃n+1
K − p̃n+1

L

)
=

∑

σ=K|L

1√
ρnσ ρ

n−1
σ

|σ|2

|Dσ|
(pnK − pnL) .

Relation (19a) is discretized similarly to the momentum balance (8), i.e. a finite volume technique is used for
the unsteady term in both the MAC, RT and CR discretizations:

|Dσ|

δt
ρnσ (un+1

σ,i − ũ
n+1
σ,i ) + |Dσ|

[
(∇pn+1)σ,i − (∇p̃n+1)σ,i

]
= 0,

for 1 ≤ i ≤ d, and for σ ∈ E in the case of the RT or CR discretizations, and σ ∈ E(i) in the case of the MAC
scheme.

2.2.2. Stability and kinetic energy balance equation

We repeat the process that we followed for the implicit scheme, to prove the stability of the scheme and
derive a discrete kinetic energy balance equation. To this purpose, we multiply the velocity prediction equation
by the corresponding degree of freedom of the predicted velocity ũ

n+1
σ,i , to obtain:

|Dσ|

δt

(
ρnσũ

n+1
σ,i − ρn−1

σ u
n
σ,i

)
ũ
n+1
σ,i +

∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i ũ

n+1
σ,i

+ |Dσ| (∇p̃n+1)σ,i ũ
n+1
σ,i − |Dσ|(divτ(un+1))σ,i ũ

n+1
σ,i = 0. (20)

We then write the velocity correction equation as:

[ |Dσ|

δt
ρnσ

]1/2

u
n+1
σ,i +

[
|Dσ| δt

]1/2

(ρnσ)
1/2

(∇pn+1)σ,i =
[ |Dσ|

δt
(ρnσ

]1/2

ũ
n+1
σ,i +

[
|Dσ| δt

]1/2

(ρnσ)
1/2

(∇p̃n+1)σ,i,
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and square this relation, sum with (20) and get, applying Lemma A.2 (again on the dual mesh) to the first two
terms of (20):

1

2

|Dσ|

δt

[
ρnσ(u

n+1
σ,i )2 − ρn−1

σ (unσ,i)
2
]

+
1

2

∑

ε=Dσ |D
σ′

Fnσ,ε ũ
n+1
σ,i ũ

n+1
σ′,i + |Dσ| (∇pn+1)σ,i u

n+1
σ,i

− |Dσ|(divτ(un+1))σ,i ũ
n+1
σ,i +

|Dσ| δt

ρnσ

[
|(∇pn+1)σ,i|

2 − |(∇p̃n+1)σ,i|
2
]

= Rn+1
σ,i , (21)

where Rn+1
σ,i takes the same expression as in the implicit case (i.e. is given by Equation (10)), replacing u

n+1

by ũ
n+1. Summing Relation (21) over the components and edges, Relation (12) over the cells and finally the

two resulting equations together yields:

1

2

∑

i,E

|Dσ|

δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(u
n
σ,i)

2
]

+
∑

K∈M

|K|

δt
(H(ρn+1

K ) −H(ρnK))

+
∑

i,E

|Dσ| δt

ρnσ

[
|(∇pn+1)σ,i|

2 − |(∇p̃n+1)σ,i|
2
]
≤ 0,

which would be a discrete analogue to (6), up to a detail: to obtain a difference of the same quantity taken at
two consecutive time steps, we need to change ρnσ |(∇p̃n+1)σ,i|2 to ρn−1

σ |(∇pn)σ,i|2. This is the purpose of the
pressure renormalization step, which was already introduced in [19]; we finally get:

1

2

∑

i,E

|Dσ|

δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(u
n
σ,i)

2
]

+
∑

K∈M

|K|

δt
(H(ρn+1

K ) −H(ρnK))

+
∑

i,E

|Dσ| δt
[ 1

ρnσ
|(∇pn+1)σ,i|

2 −
1

ρn−1
σ

|(∇pn)σ,i|
2
]
≤ 0.

Note that this inequality yields a control on (δt times) a H1 discrete semi-norm of the pressure, conforting
the robustness of the scheme, but also increasing its dissipation. In our numerical experiments, the pressure
renormalization step did not appear to have a significant influence on the results, and was then systematically
omitted.

2.2.3. Passing to the limit in the scheme (1D case)

We obtain for the pressure correction scheme results which are similar to the implicit scheme ones. They are
stated in the following theorem.

Theorem 2.3. Let Ω be an open bounded interval of R. Let (M(m), δt(m))m∈N be a sequence of meshes and
time steps, such that h(m) and δt(m) tend to zero as m tends to infinity. Let

(
ρ(m), p(m), u(m), ũ(m)

)
m∈N

be the

corresponding sequence of solutions. We suppose that this sequence satisfies the control over the time and space
estimates given by (14), (15) and:

‖ũ(m)‖T ,x,BV ≤ C, ∀m ∈ N.

We assume in addition that it converges in Lr
(
(0, T ) × Ω

)4
, for 1 ≤ r <∞, to (ρ̄, p̄, ū, ¯̃u) ∈ L∞

(
(0, T ) × Ω

)4
.

Then we have ¯̃u = ū, and the triplet (ρ̄, p̄, ū) satisfies the system (16) and the entropy condition (5).

2.2.4. Numerical experiments

We now describe the behaviour of the pressure correction scheme for a Riemann problem, i.e. an inviscid
monodimensional problem, the initial condition of which consists in two uniform left (L) and right (R) states,
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Figure 2. Sod shock tube problem – Centred scheme – Exact solution and numerical solution
of the problem at t = 1 with CFL=1. Velocity (left) and pressure (right).

separated by a discontinuity, located by convention at the origin x = 0. The two initial constant states are
given by: (

ρ
u

)

L

=

(
1
0

)
,

(
ρ
u

)

R

=

(
0.125
0

)
,

and the equation of state is given by p = ρ. The problem is posed over the interval (−2, 3). The solution of this
problem consists in a rarefaction wave travelling to the left and a shock travelling to the right.

The problem is solved with a one dimensional scheme, which may be obtained from the previous exposition
by taking one horizontal stripe of cells (of constant size) with the MAC discretization, and applying perfect slip
boundary conditions at the top and bottom boundary.

On Figure 2, we show the solution at t = 1 obtained with various meshes and time steps. These latter
parameters are adjusted to have CFL = 1, taking as reference velocity the sum of the maximum velocity v = 1
and the speed of sound a = 1. In these computations, we use a centred discretization of the convection term in
the momentum balance equation, surprinsingly without observing any spurious oscillations. However, note that
results obtained with the CR and RT discretizations (not shown here) differ in this respect: the introduction of a
residual viscosity (either physical or by upwinding) is necessary to avoid the odd-even decoupling phenomenon,
as usually observed with centred approximations of the convection operator.

We then report, on Figure 3, the obtained numerical error as a function of the time and space step. The
observed order of convergence is close to 0.9, for both the velocity and the pressure.
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Figure 3. Sod shock tube problem – Centred scheme – L1 norm of the error between the
numerical solution and the exact solution at t = 1, as a function of the mesh (or time) step,
for CFL=1. Velocity (left) and pressure (right).
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3. Compressible Navier-Stokes equations

We now address the compressible Navier-Stokes equations (22).

∂tρ+ div(ρu) = 0, (22a)

∂t(ρu) + div(ρu ⊗ u) + ∇p− div(τ (u)) = 0, (22b)

∂t(ρE) + div(ρE u) + div(pu) + div(q) = div(τ (u) · u), (22c)

ρ = ̺(p, e), E =
1

2
|u|2 + e, (22d)

where E and e are the total energy and internal energy in the flow, and q stands for the heat conduction flux,
assumed to be given by:

q = −λ∇e,

with λ ≥ 0. We suppose that the equation of state may be set under the form p = ℘(ρ, e) with ℘(·, 0) = 0 and
℘(0, ·) = 0. This system must be complemented by suitable boundary conditions and initial conditions for u, ρ
and e, which we suppose positive for the two latter unknowns.

Let us suppose that the solution is regular. Subtracting the kinetic energy balance equation from the total
energy balance, we obtain the internal energy balance equation:

∂t(ρe) + div(ρeu) + p div(u) − div(λ∇e) = τ (u) : ∇u. (23)

Since,

(i) the viscous dissipation term τ (u) : ∇u is non-negative,
(ii) thanks to the mass balance equation, the first two terms may be recast as a transport operator: ∂t(ρe)+

div(ρeu) = ρ [∂te+ u · ∇e],
(iii) and, finally, because, from the assumption on the equation of state, the pressure vanishes when e = 0,

this equation implies that e remains non-negative at all times.

In the framework of incompressible or low Mach number flows, the natural energy balance equation is the
internal energy equation (23), so discretizing (23) instead of the total energy balance (22c) is a reasonable choice
in order to obtain an algorithm which is valid for all flow regimes. In addition, it presents two advantages:

- first, it avoids the space discretization of the total energy, which is rather unnatural for staggered schemes
since the velocity and the scalar variables are not colocated,

- second, a suitable discretization of (23) may yield, ”by construction” of the scheme, the positivity of the
internal energy.

However, integrating (22c) over Ω yields a stability estimate for the solution, which reads, if we suppose for
short that u is prescribed to zero on the whole boundary ∂Ω, and that the system is adiabatic, i.e. ∇q ·n = 0
on ∂Ω:

d

dt

∫

Ω

[1

2
ρ |u|2 + ρe

]
dx ≤ 0, (24)

and we would like (an analogue of) this stability estimate to hold at the discrete level.

In fact, the bridge between the discretization of (23) and this latter inequality is once again the kinetic
energy balance equation, and the tools which were developed in the previous sections will readily yield the
desired stability result if, at the discrete level,we are able:

(i) to identify the integral of the dissipation term at the right-hand side of the discrete counterpart of (23)
with what is obtained from the (discrete) L2 inner product between the velocity and the diffusion term
in the discrete momentum balance equation (22b).
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(ii) to prove that the right-hand side of (23) is non-negative in order to preserve the positivity of the internal
energy.

Both properties are quite natural for finite element discretizations, but may be not so easy to obtain for the
MAC scheme; for this latter case, a way to build an approximation of the viscous and dissipation terms to get
this property is proposed in [30] ( see also [2]).

Two unconditionally stable schemes for the compressible Navier-Stokes equations are built, on the basis of
these arguments [30]: the first one is implicit, and the second one, used in practice, is a pressure correction
scheme. We only describe here this latter, which reads:

Pressure renormalization step – Solve for p̃n+1:

∀K ∈ M,
∑

σ=K|L

1

ρnσ

|σ|2

|Dσ|

(
p̃n+1
K − p̃n+1

L

)
=

∑

σ=K|L

1√
ρnσ ρ

n−1
σ

|σ|2

|Dσ|
(pnK − pnL) , (25a)

Prediction step – Solve for ũ
n+1:

For 1 ≤ i ≤ d,

∣∣∣∣∣
∀σ ∈ E(i) in the MAC case,

∀σ ∈ E otherwise,

|Dσ|

δt
(ρnσũ

n+1
σ,i − ρn−1

σ u
n
σ,i) +

∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i + |Dσ| (∇p̃n+1)σ,i

−|Dσ| (divτ(ũn+1))σ,i = 0,

(25b)

Correction step – Solve for ρn+1, pn+1, en+1 and u
n+1:

For 1 ≤ i ≤ d,

∣∣∣∣∣
∀σ ∈ E(i) in the MAC case,

∀σ ∈ E otherwise,

|Dσ|

δt
ρnσ (un+1

σ,i − ũ
n+1
σ,i ) + |Dσ|

[
(∇pn+1)σ,i − (∇p̃n+1)σ,i

]
= 0, (25c)

∀K ∈ M,
|K|

δt
(ρn+1
K − ρnK) +

∑

σ∈E(K)

Fn+1
K,σ = 0, (25d)

∀K ∈ M,

|K|

δt
(ρn+1
K en+1

K − ρnKe
n
K) +

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ + |K|

(
pn+1 divũ

n+1
)
K

−div(λ∇e)K = |K|
(
τ (ũn+1) : ∇ũ

n+1
)
K
,

(25e)

∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K . (25f)

The construction of this scheme relies on the same ingredients as in the barotropic case, in particular the time
shift of the densities.

The equation (25e) is a approximation of the internal balance over the primal mesh K, which ensures the
positivity of the internal energy, thanks to two essential arguments:
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- first, the approximation of the convection operator e 7→ ∂t(ρe) + div(ρeu) is upwind (i.e. en+1
σ = en+1

K if

Fn+1
K,σ ≥ 0 and en+1

L otherwise) and this operator satisfies a consistency property with the mass balance

∂tρ+ div(ρu) = 0 which may be stated as the fact that it vanishes if e is constant.

This property is, of course, necessary for an operator to satisfy a discrete maximum principle (constants
are necessarily solutions to an equation obeying a maximum principle. . . ); it is also classically shown [39]
to be sufficient.

- second, the internal energy balance is coupled to the algorithm in such a way that the pressure in the
discretization of the term p divu obeys the equation of state, and thus, in particular vanishes when e < 0
(see [46] for another pressure-correction algorithm using the same coupling).

The technique used to ensure the positivity of e is to define:

|K|
(
pn+1 divũ

n+1
)
K

= ℘(ρn+1
K , (en+1

K )+)
∑

σ∈E(K)

|σ| ũ
n+1
σ · nK,σ, (26)

where (en+1
K )+ stands for the positive part of en+1

K , i.e. (en+1
K )+ = max(en+1

K , 0). Testing then the internal

energy balance by the negative part of en+1
K , designed by (en+1

K )− = −min(en+1
K , 0), and summing over K ∈ M.

Supposing, for short, that the normal velocity vanishes on the boundaries, Lemma A.2 yields:

∑

K∈M

[ |K|

δt

(
ρn+1
K en+1

K − ρnKe
n
K

)
+

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ

]
(en+1
K )− ≥

−1

δt

∑

K∈M

̺n+1
K

[
(en+1
K )−

]2
− ̺nK

[
(enK)−

]2
,

while, ∀K ∈ M,
(
pn+1 divũ

n+1
)
K

(en+1
K )− = 0 and the right-hand side is non-negative, which yields the

result. A topological degree argument, applied to the algebraic system corresponding to the whole correction
step, yields the existence of at least one solution and, since, for this solution, e ≥ 0, (en+1

K )+ = en+1
K and the

discretization (26) is consistent.

The obtained stability result is stated in the following theorem.

Theorem 3.1. There exists a solution to the scheme which satisfies ρ > 0, e > 0 and for all n ≤ N , the
following inequality holds:

∑

K∈M

|K| ρnKe
n
K +

1

2

∑

σ∈Eint

|Dσ| ρ
n−1
σ |unσ|

2 +
δt2

2
|pn|2ρn−1, M

≤
∑

K∈M

|K| ρ0
Ke

0
K +

1

2

∑

σ∈Eint

|Dσ| ρ
−1
σ |u0

σ|
2 +

δt2

2
|p0|2ρ−1, M,

where, for any discrete pressure q:

|q|2ρ, M =
∑

σ=K|L

1

ρσ

|σ|2

|Dσ|
(pL − pK)2.

4. Euler equations

For solutions with shocks, Equation (23) is not equivalent to (22c); more precisely speaking, one can show
that, at a shock location, a positive measure should replace τ (u) : ∇u (which formally vanishes since µ = 0)
at the right-hand side of Equation (23). Discretizing (23) instead of (22c) may thus yield a scheme which does
not compute the correct weak discontinuous solutions, the manifestation of this non-consistency being that the
numerical solutions present shocks which do not satisfy the Rankine-Hugoniot conditions associated to (22c).
The essential result of this section is to provide solutions to circumvent this problem.
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This study is closely related to the analysis performed in the barotropic case. Indeed, it may be checked that
the entropy of the barotropic problem takes an expression similar to the total energy E (in fact, if the equation
of state in the barotropic case is derived by supposing that the flow is isentropic, we have the exact equality
H = ρe); the elastic potential balance (in the barotropic case) plays the same role as the internal energy balance
(in the non-barotropic case). The only difference is that the entropy condition is an inequality while the total
energy is an equality: in other words, while, for the barotropic case, we just checked that residual terms were
non-positive, we now have to ensure that they vanish with the discretization steps. To this purpose, we thus
follow a strategy quite similar to Section 2:

- Starting from the discrete momentum balance equation, with an ad hoc discretization of the convection
operator, we derive a discrete kinetic energy balance; residual terms are present in this relation, which do
not tend to zero with space and time steps (they are the discrete manifestations of the above mentioned
measures).

- These residual terms are then compensated by source terms added to the internal energy balance.

We provide a theoretical justification of this process by showing that, in the 1D case, if the scheme is stable
enough and converges to a limit (in a sense to be defined), this limit satisfies a weak form of (22c) which implies
the correct Rankine-Hugoniot conditions. Then, we perform numerical tests which substantiate this analysis.
Two different time discretizations are proposed in [29]: first, a fully implicit scheme (a solution to which may
be rather difficult to obtain in practice) and, second, a pressure correction scheme (the algorithm indeed used
in the tests presented here); we only present here the latter algorithm.

4.1. The discrete kinetic energy balance equation and the corrective source terms

We derive here a slightly different discrete kinetic energy balance than in Section 2.2.2. Our starting point,
however, is still the velocity prediction step which we multiply by the corresponding unknown, i.e. Equation
(20), which now reads, since, in the present algorithm, we omit the pressure renormalization step:

|Dσ|

δt

(
ρnσũ

n+1
σ,i − ρn−1

σ u
n
σ,i

)
ũ
n+1
σ,i +

∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i ũ

n+1
σ,i + |Dσ| (∇pn)σ,i ũ

n+1
σ,i = 0.

The next step is to multiply the velocity correction equation by ũ
n+1
σ,i and use the identity 2a(a− b) = a2 +(a−

b)2 − b2 to get:

1

2

|Dσ|

δt

[
ρnσ(u

n+1
σ,i )2 − ρnσ(ũ

n
σ,i)

2
]

+ |Dσ|
[
(∇pn+1)σ,i − (∇pn)σ,i

]
ũ
n+1
σ,i +

|Dσ|

2 δt
ρnσ

(
u
n+1
σ,i − ũ

n+1
σ,i

)2
= 0.

Invoking Lemma A.2 for the first two terms of the first of these relations and summing with the second one
yields:

1

2

|Dσ|

δt

[
ρnσ(u

n+1
σ,i )2 − ρn−1

σ (unσ,i)
2
]

+
1

2

∑

ε=Dσ |D
σ′

Fnσ,ε ũ
n+1
σ,i ũ

n+1
σ′,i + |Dσ| (∇pn+1)σ,i ũ

n+1
σ,i = Rn+1

σ,i , (27)

with:

Rn+1
σ,i =

|Dσ|

2 δt
ρnσ

(
u
n+1
σ,i − ũ

n+1
σ,i

)2
−

|Dσ|

2 δt
ρn−1
σ

(
ũ
n+1
σ,i − u

n
σ,i

)2

− δup
[ ∑

ε=Dσ |D
σ′

1

2
|Fnσ,ε|

(
ũ
n+1
σ,i − ũ

n+1
σ′,i

)]
ũ
n+1
σ,i .

We recognize at the left-hand side a conservative discrete kinetic energy balance. The next step is now to
deal with the residual terms at the right-hand side, or, more precisely speaking, to somewhat compensate them
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by some source term which we introduced in the internal energy balance. Let us denote by Sn+1
K the source

term in the balance over the cell K. We choose:

∀K ∈ M,

Sn+1
K =

1

2

∑

σ∈E(K)

|DK,σ|

δt
ρn−1
K

(
ũ
n+1
σ − u

n
σ

)2
−

1

2

∑

σ∈E(K)

|DK,σ|

δt
ρnK

(
u
n+1
σ − ũ

n+1
σ

)2

+ δup
∑

ε∩K̄ 6=∅,

ε=Dσ |D
σ′

αK,ε
|Fn+1
σ,ε |

2
(un+1

σ − u
n+1
σ′ )2. (28)

The coefficient αK,ε is fixed to 1 if the face ε is included in K, and this is the only situation to consider for
the RT and CR discretization. For the MAC scheme, some dual edges are included in the primal cells, whereas
some lie on their boundary; for ε on a cell boundary, we denote by Nε the set of cells M such that M̄ ∩ ε 6= ∅
(the cardinal of this set is always 4), and compute αK,ε by:

αK,ε =
|K|∑

M∈Nε
|M |

.

For a uniform grid, this formula yields αK,ε = 1/4.

The expression of the terms (SK)K∈M is justified by the passage to the limit in the scheme (for a one-
dimensional problem) performed in Section 4.2. Let us just here remark that:

∑

K∈M

Sn+1
K +

∑

E,i

Rn+1
σ,i = 0,

which shows that the introduction of this term allows to recover the total energy balance over the whole
computational domain Ω. Note however that, the term Sn+1

K may be negative, which we have indeed observed
in computations, and so the above proof of the positivity of the internal energy is not valid here; however, even
in very severe cases (as, for instance, Test 3 of [55, chapter 4]), at least with a reasonable time step, we still
obtained e > 0.

Remark 4.1 (Form of the corrective source terms). Comparing with the source term of the continuous internal
energy balance (23), it is easy to identify in the last part of SK the viscous dissipation associated to the
numerical diffusion introduced by the upwinding. In fact, this analogy also holds for the first two terms: they
are dissipation and antidissipation terms associated to the diffusion and antidiffusion introduced by the semi-
implicit time discretization.
Note by the way that only a dissipation term is obtained for the implicit case (i.e. the corrective terms Sn+1

K

are non-negative, see Chapter 4), and thus, for this time discretization, the positivity of the internal energy is
ensured.

Remark 4.2 (On the necessity of the corrective source terms). Let us consider a sequence of discretizations
(M(m), δt(m))m∈N, the space and time steps of which tend to zero, an associated sequence of discrete velocities
(u(m))m∈N, and the corresponding sequence of (piecewise constant functions associated to the) corrective term
(S(m))m∈N. It may be checked that S(m) tends to zero in L1(Ω×(0, T )) as soon as the time and space derivatives
of the functions (u(m))m∈N are bounded in a strong enough norm, and in particular stronger than the BV norm
(for instance, suppose that the jumps between two consecutive time steps and adjacent cells are bounded by δt
and h respectively), i.e. everywhere the solution is regular. On the opposite, for a sequence (u(m))m∈N obtained
by projecting a discontinuous function u, S(m) does not tend to zero.
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4.2. Passing to the limit in the scheme

As for the barotropic equations, we now pass to the limit in the scheme.

We suppose given a sequence of meshes and time steps (M(m), δt(m))m∈N, such that the time step and the
size h(m) of the mesh M(m), defined by:

h(m) = supK∈M(m) diam(K),

tend to zero as m→ ∞.

Let ρ(m), p(m), e(m), ũ(m) and u(m) be the associated solution of the pressure correction scheme (25) with
the mesh M(m) and the time step δt(m) (or, more precisely speaking, as in the barotropic case, a 1D version
of the scheme). To the discrete unknowns, we associate piecewise constant functions on time intervals and on
primal or dual meshes:

ρ(m)(x, t) =

N−1∑

n=0

∑

K∈M

(p(m))nK XK X(n,n+1), p(m)(x, t) =

N−1∑

n=0

∑

K∈M

(ρ(m))nK XK X(n,n+1),

e(m)(x, t) =
N−1∑

n=0

∑

K∈M

(e(m))nK XK X(n,n+1), u(m)(x, t) =
N−1∑

n=0

∑

σ∈E

(u(m))nσ XDσ
X(n,n+1),

ũ(m)(x, t) =

N−1∑

n=0

∑

σ∈E

(ũ(m))nσ XDσ
X(n,n+1).

We suppose that the sequence of discrete solutions
(
ρ(m), p(m), e(m), u(m), ũ(m)

)
m∈N

is uniformly bounded in

L∞
(
(0, T ) × Ω

)
, i.e.:

|(ρ(m))nK | + |(p(m))nK | + |(e(m))nK | ≤ C, ∀K ∈ M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (29)

and:
|(u(m))nσ | + |(ũ(m))nσ | ≤ C, ∀σ ∈ E(m), for 0 ≤ n ≤ N (m), ∀m ∈ N. (30)

In addition, we also suppose the following uniform control on the translates in space and time:

‖ρ(m)‖T ,x,BV + ‖e(m)‖T ,x,BV + ‖u(m)‖T ,x,BV + ‖ũ(m)‖T ,x,BV ≤ C, ∀m ∈ N, (31)

and:
‖ρ(m)‖T ,t,BV + ‖u(m)‖T ,t,BV ≤ C, ∀m ∈ N. (32)

As in the barotropic case, we are not able to prove the estimates (29)–(32) for the solutions of the scheme, but
such inequalities are satisfied by the ”interpolation” of the solution to a Riemann problem, and are observed,
with a limited sequence of meshes and time steps, in computations.

A weak solution to the continuous problem satisfies, for any ϕ ∈ C∞
c

(
[0, T )× Ω

)
:

−

∫

Ω×(0,T )

[
ρ ∂tϕ+ ρ u ∂xϕ

]
dxdt−

∫

Ω

ρ(x, 0)ϕ(x, 0) dx = 0, (33a)

−

∫

Ω×(0,T )

[
ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ

]
dxdt−

∫

Ω

ρ(x, 0)u(x, 0)ϕ(x, 0) dx = 0, (33b)

−

∫

Ω×(0,T )

[
ρE ∂tϕ+ (ρE + p)u ∂xϕ

]
dxdt−

∫

Ω

ρ(x, 0)E(x, 0)ϕ(x, 0) dx = 0, (33c)

ρ = ̺(p, e), E =
1

2
u2 + e. (33d)
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Once again, since the test function ϕ vanishes at the boundary, these relations do not imply anything about
the boundary conditions, but imply the Rankine-Hugoniot conditions. The scheme consistency result that we
are seeking for is stated in the following theorem.

Theorem 4.3. Let Ω be an open bounded interval of R. Let (M(m), δt(m))m∈N be a sequence of meshes and
time steps, such that h(m) and δt(m) tend to zero as m tends to infinity. Let

(
ρ(m), p(m), e(m), u(m), ũ(m)

)
m∈N

be the corresponding sequence of solutions. We suppose that this sequence satisfies (29)–(32) and converges in

Lr
(
(0, T )× Ω

)5
, for 1 ≤ r <∞, to a limit (ρ̄, p̄, ē, ū, ¯̃u) ∈ L∞

(
(0, T )× Ω

)5
.

Then ¯̃u = ū and the limit (ρ̄, p̄, ē, ū) satisfies the system (33).

4.3. Numerical tests

We now assess the behaviour of the scheme on a one dimensional Riemann problem. We choose initial condi-
tions such that the structure of the solution consists in two shock waves, separated by the contact discontinuity,
with sufficiently strong shocks to allow to easily discrimate between convergence to the correct weak solution
or not. These initial conditions are those proposed in [55, chapter 4], for the test referred to as Test 5:

left state:




ρL
uL
pL



 =




5.99924
19.5975
460.894



 right state:




ρR
uR
pR



 =




5.99242

−6.19633
46.0950





The problem is posed over Ω = (−0.5, 0.5), and the discontinuity is initially located at x = 0.

Since numerical experiments addressing barotropic flows (see Section 2.2.4) show that, at least for one
dimensional computations, it is not necessary to use upwinding in the momentum balance equation, we only
employ a centered approximation of the velocity at the dual faces.

The density fields obtained with h = 1/2000 (or a number of cells n = 2000) at t = 0.035, with and without
assembling the corrective source term in the internal energy balance, are shown together with the analytical
solution on Figure 4. The density and the pressure obtained, still with and without corrective terms, for various
meshes, are plotted on Figure 5 and 6 respectively. For these computations, we take δt = h/20, which yields a
CFL number, with respect to the material velocity only, close to one. The first conclusion is that both schemes
seem to converge, but the corrective term is necessary to obtain the correct solution. In this case, for instance,
we obtain the correct intermediate state for the pressure and velocity up to four digits in the essential part of
the corresponding zone:

(analytical) intermediate state:

[
p∗

u∗

]
=

[
1691.65
8.68977

]
for x ∈ (0.028, 0.428)

numerical results:

∣∣∣∣∣
p ∈ (1691.6, 1691.8)

u ∈ (8.689, 8.690)
for x ∈ (0.032, 0.417)

One can check that the solution obtained without the corrective term is not a weak solution to the Euler system.

We also observe that the scheme is rather diffusive, specially at the contact discontinuity, where the beneficial
compressive effect of the shocks does not apply.

5. Conclusion and perspectives

We developed a class of schemes for barotropic and non-barotropic flows, based on staggered space discretiza-
tions and on a fractional time-stepping technique falling in the class of pressure correction methods. Upwinding
is performed in an equation-by-equation way, and only with respect to the material velocity; for non-barotropic
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Figure 4. Test 5 of [55, chapter 4] - Density obtained with n = 2000 cells, with and without
corrective source terms, and analytical solution.
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Figure 5. Test 5 of [55, chapter 4] - Density obtained with various meshes, with (left) and
without (right) corrective source terms.

equations, the energy equation is the internal energy balance. All of these characteristics ensure that the schemes
boil down to usual incompressible flow solvers for a vanishing Mach number; therefore they are hoped to be
stable and accurate in the whole incompressible to compressible range. Numerical tests performed here focus
on compressible flows, and assess the fact that weak solution to inviscid problems are correctly computed; they
are supported by theoretical arguments. These tests will be continued, adressing complex multi-dimensional
geometries.

From an algorithmic point of view, let us first mention that, for high Mach number flows, explicit versions
of these schemes are now under development [47]; this would provide efficient algorithms (in particular, with
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Figure 6. Test 5 of [55, chapter 4] - pressure obtained with various meshes, with (left) and
without (right) corrective source terms.

an immediate construction of the fluxes at the cell faces), well suited to fast transient regimes, and offering,
if necessary, the possibility of a partial implicitation without loosing any stability features (by the schemes
studied in this work). In explicit schemes, less diffusive space discretizations, such as MUSCL-like or adaptative
numerical viscosity [21, 22] techniques, are easy to implement; this will be done in a near future.

A lot of theoretical questions are suggested by the present study. First, the passage to the limit in the schemes
in the multi-dimensional case raises only technical problems, which should not be so difficult to fix. A more
intricate question is that of the boundary conditions (see eg. some numerical experiments described in [37]):
the decoupling of pressure correction schemes is known to produce inherent spurious boundary conditions, the
effect of which is extensively discussed for incompressible flows; for compressible problems, this question seems
to remain largely open, and should deserve to be studied in the future. We did not prove in this work that
the solutions obtained for non-barotropic Euler equations, if they converge, tend to the entropy weak solution;
this is another issue to be addressed in the near future. Yet another topic is to analyse more indepth the
behaviour of the proposed schemes in the low Mach number regime. In particular, since these algorithms satisfy
stability estimates, it seems possible, at least with a fixed mesh and using the norm equivalence property of finite
dimensional problems, to pass to the limit for a vanishing Mach number. This is interesting both theoretically
and from an engineering point of view, to get some insight in what physical model is indeed solved by the code
in such situations. Last but not least, we performed here some parts of the convergence analysis; this should
be continued as far as possible, in particular for barotropic viscous flows.

A. Some results associated to finite volume convection operators

We gather in this section some results concerning the discretization by the finite volume method of two
convection operators:

- the first one reads, at the continuous level, ρ→ C(ρ) = ∂tρ+div(ρu), where u stands for a given velocity
field, which is not assumed to satisfy any divergence constraint,

- the second one is z → Cρ(z) = ∂t(ρz) + div(ρzu), where ρ and u stands for two given scalar and vector
fields, which are supposed to satisfy ∂tρ+ div(ρu) = 0.

Multiplying these operators by functions depending on the unknown is currently used to obtain convection
operators acting over different variables, possibly with residual terms: one may think, for instance, to the
theory of renormalized solutions (for the first one), or, in mechanics, to the derivation of the so-called kinetic
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energy transport identity (for the second one). The results provided in this section are discrete variants of such
relations.

We begin with a property of C, which, at the continuous level, may be formally obtained as follows. Let ψ
be a regular function from (0,+∞) to R; then:

ψ′(ρ) C(ρ) = ψ′(ρ) ∂t(ρ) + ψ′(ρ)u · ∇ρ+ ψ′(ρ) ρ divu = ∂t(ψ(ρ)) + u · ∇ψ(ρ) + ρψ′(ρ) divu,

so adding and subtracting ψ(ρ) divu yields:

ψ′(ρ) C(ρ) = ∂t
(
ψ(ρ)

)
+ div

(
ψ(ρ)u

)
+

(
ρψ′(ρ) − ψ(ρ)

)
divu. (34)

Obtaining a proof of this last identity, in a weak sense and with minimal regularity assumptions for ρ and u

and increasing properties of ψ is the object of the theory of renormalized solutions. The following lemma states
a discrete analogue to (34).

Lemma A.1. Let K ∈ M. Let ρ∗K and ρK be two positive real numbers. For σ ∈ E(K), let Fσ be a quantity
associated to the face σ and the control volume K, defined by

∀σ ∈ E(K), Fσ = ρσ Vσ.

where ρσ and Vσ are a positive real number and a real number respectively, both associated to the edge σ. Let ψ
be a twice continuously differentiable function, defined over (0,+∞).

Then the following identity holds:

[ |K|

δt
(ρK − ρ∗K) +

∑

σ∈E(K)

Fσ

]
ψ

′

(ρK) =
|K|

δt

[
ψ(ρK) − ψ(ρ∗K)

]
+

∑

σ∈E(K)

ψ(ρσ) Vσ

+
[
ρKψ

′

(ρK) − ψ(ρK)
] ∑

σ∈E(K)

Vσ +Rσ, dt (35)

where

Rσ, dt =
1

2

|K|

δt
ψ

′′

(ρK)(ρK − ρ∗K)2 −
1

2

∑

σ∈E(K)

Vσ ψ
′′(ρσ)(ρσ − ρK)2, (36)

and, ∀σ ∈ E(K), ρK ∈ [min(ρK , ρ
∗
K),max(ρK , ρ

∗
K)] and ρσ ∈ [min(ρσ, ρK),max(ρσ, ρK)].

If we now suppose that the function ψ is once differentiable and convex, and that ρσ = ρK as soon as Vσ ≥ 0,
then expression (36) in no-more valid but the residual Rσ, dt is non-negative.

We now turn to the second operator, for which we have, at the continuous level and formally, using twice
the assumption ∂tρ+ div(ρu) = 0:

ψ′(z) Cρ(z) = ψ′(z)
[
∂t(ρ z) + div(ρ z u)

]
= ψ′(z)ρ

[
∂tz + u · ∇z

]

= ρ
[
∂tψ(z) + u · ∇ψ(z)

]
= ∂t

(
ρψ(z)

)
+ div

(
ρψ(z)u

)
.

Taking for z a component of the velocity field and ψ(s) = s2/2, this relation is the central argument used to
derive the kinetic energy balance. The following lemma states a discrete counterpart of this identity.



26

Lemma A.2. Let K ∈ M. Let ρ∗K and ρK be two positive real numbers. For σ ∈ E(K), let Fσ be a quantity
associated to the face σ, such that the following identity holds:

|K|

δt
(ρK − ρ∗K) +

∑

σ∈E(K)

Fσ = 0. (37)

Let u∗K and uK be two real numbers, and, to each σ ∈ E(K), we associate a rela number uσ. Let ψ be a twice
continuously differentiable function, defined over (0,+∞). Then the following relation holds:

[ |K|

δt

(
ρK uK − ρ∗K u

∗
K

)
+

∑

σ∈E(K)

Fσ uε

]
ψ′(uK)

=
|K|

δt

[
ρK ψ(uK) − ρ∗K ψ(u∗K)

]
+

∑

σ∈E(K)

Fσ ψ(uσ) + RK,δt (38)

where:

RK,δt =
1

2

|K|

δt
ρ∗K ψ′′(uK)(uK − u∗K)2 −

1

2

∑

σ∈E(K)

Fσ ψ
′′(uσ) (uσ − uK)2, (39)

with, uK ∈ [min(uK , u
∗
K),max(uK , u

∗
K)] and, ∀σ ∈ E(K), uσ ∈ [min(uσ, uK),max(uσ, uK)].

If we now suppose that the function ψ is once continuously differentiable and convex, and that uσ = uK as soon
as Fσ ≥ 0, then expression (39) is no more valid but the residual Rσ,δt is non-negative.

If we now take for ψ the function ψ(s) = s2/2 and write, ∀σ ∈ E(K), uσ = (uK + uK |
σ·)/2 (or, in other

words, define uK |
σ· as uK |

σ· = 2 uσ − uK), we get the following identity:

[ |K|

δt

(
ρK uK − ρ∗K u

∗
K

)
+

∑

σ∈E(K)

Fσ uε

]
uK

=
1

2

|K|

δt

[
ρK u

2
K − ρ∗K (u∗K)2

]
+

∑

σ∈E(K)

Fσ uK uK |
σ· +RK,δt, (40)

with RK,δt =
1

2

|K|

δt
ρ∗K (uK − u∗K)2.
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[28] R. Herbin, W. Kheriji, and J.-C. Latché. Consistent staggered schemes for compressible flows – Part I: barotopic Navier-Stokes
equations. submitted, 2011.
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[59] D. Vidović, A. Segal, and P. Wesseling. A superlinearly convergent Mach-uniform finite volume method for the Euler equations

on staggered unstructured grids. Journal of Computational Physics, 217:277–294, 2006.
[60] C. Wall, C.D. Pierce, and P. Moin. A semi-implicit method for resolution of acoustic waves in low Mach number flows. Journal

of Computational Physics, 181:545–563, 2002.
[61] I. Wenneker, A. Segal, and P. Wesseling. A Mach-uniform unstructured staggered grid method. International Journal for

Numerical Methods in Fluids, 40:1209–1235, 2002.
[62] P. Wesseling. Principles of computational fluid dynamics. volume 29 of Springer Series in Computational Mathematics.

Springer, 2001.
[63] O.C. Zienkiewicz and R. Codina. A general algorithm for compressible and incompressible flow – Part I. The split characteristic-

based scheme. International Journal for Numerical Methods in Fluids, 20:869–885, 1995.


