
HAL Id: hal-00636164
https://hal.science/hal-00636164v1

Submitted on 26 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robot Self-Initiative and Personalization by Learning
through Repeated Interactions

Martin Mason, Manuel Lopes

To cite this version:
Martin Mason, Manuel Lopes. Robot Self-Initiative and Personalization by Learning through Re-
peated Interactions. 6th ACM/IEEE International Conference on Human-Robot, Mar 2011, Switzer-
land. pp.111111, �10.1145/1957656.1957814�. �hal-00636164�

https://hal.science/hal-00636164v1
https://hal.archives-ouvertes.fr

Robot Self-Initiative and Personalization by Learning
through Repeated Interactions

Martin Mason
Mt. San Antonio College,USA

profmason@gmail.com

Manuel Lopes
∗

Flowers Team, INRIA, France
manuel.lopes@inria.fr

ABSTRACT

We have developed a robotic system that interacts with
the user, and through repeated interactions, adapts to the
user so that the system becomes semi-autonomous and acts
proactively. In this work we show how to design a system to
meet a user’s preferences, show how robot pro-activity can
be learned and provide an integrated system using verbal
instructions. All these behaviors are implemented in a real
platform that achieves all these behaviors and is evaluated
in terms of user acceptability and efficiency of interaction.

Categories and Subject Descriptors

I.2.9 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE—Robotics

General Terms

Algorithms

Keywords

Human-Robot Interaction, Learning by Demonstration

1. INTRODUCTION
The aim of this project is to create an efficient personal,

or service, robot. This robot should be able to: accept com-
mands from a user to achieve general tasks; and to accom-
plish tasks autonomously. In particular, the robot can an-
ticipate the user’s needs by selecting appropriate tasks ac-
cording to a user profile and context, and then planning the
execution of these tasks without an explicit user request.
We envision a robot that comes out-of-the-box with the fol-
lowing capabilities: accept user commands, solve complex
tasks, learn and create profiles to anticipate user needs and
pro-actively fulfill them using its own reasoning methods.
This project takes a learning approach to the problem of

autonomous task selection by modeling the goals of the user

∗Research partially funded by INRIA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HRI’11, March 6–9, 2011, Lausanne, Switzerland.
Copyright 2011 ACM 978-1-4503-0561-7/11/03 ...$10.00.

during learning and then achieving autonomous execution of
the task by selecting relevant goals and planning sequences
of actions to achieve them. Learning can be used to allow
the robot to autonomously adapt known tasks to new sit-
uations but it can also be implemented in the case where
new tasks are desired. The problem of solving new tasks
is complex and can even be an ill-posed one and past re-
searchers have considered social guidance [21] as a tool to
address this complexity. In the social guidance approach,
a human reward signal is combined with environmental re-
wards in order to program a robot to solve new tasks and so
adapt it to its own desires and action preferences. The fields
of robot imitation, learning from demonstration [14, 2] and
most generally social guided learning [19, 5] have addressed
the problem of learning new and ill-posed tasks.

In personal and service robots the level of autonomy re-
quired, and expected, by the user must take into account
the capabilities of the user, the difficulty of the task, the
amount of training time, and other user factors. The con-
cept of semi-autonomy has been already analyzed in terms
of the tasks that require different levels of autonomy [12]
and it has been proposed that higher levels of autonomy
can be achieved through user adaptation. Search and rescue
scenarios have considered changing degrees of autonomy, a
mixed initiative of decision making dependent on the con-
text[8], to allow a reduced number of operators to control a
large number of robots. Other aspects of adaptation have
considered how to learn the preferences for scheduling or
shopping behavior [7, 4].

1.1 Approach
Figure 1 shows an overview of our system. We consider

two main behaviors of the system: a) user instructed be-
havior (teleoperation) and b) self-initiated behavior (auton-
omy). Initially the user instructs the robot verbally to ac-
complish a task. Every time an action is executed the robot
memorizes a description of that state and the classification
(good or bad) made by the user. If the user does not clas-
sify the state, it is assumed to be a bad state. After several
interactions, the robot creates a user profile that it can use
autonomously. In the second situation, the robot already
has a user profile and so can select its own goals without
need for user command. After the robot has moved the
world to what it considers a desirable state, the user has the
option of correcting the robot and classifying that resulting
state as a bad state. This new feedback is used to update
the user profile and allows the robot to re-select its goal and
try to achieve a state that correctly corresponds to a desired

state for the user. Having acquired this background knowl-
edge, the robot will be able to start acting as required by
the user without an explicit user command, e.g. a vacuum
cleaner would automatically clean a dirty floor at the time
of the day the user typically prefers.
Our system is thus composed of three main components:

a) interaction system that allows for an intuitive interaction;
b) a user adaptation module that models the user behaviors
and task requirements and c) a goal selection system and
task planning and execution algorithm to achieve the goals
as defined from the user profile. We validate our system

Robot

Perception
Sound

User Profile

Natural

Language

System

Interpretation of

user command

Scene

Interpretation

World State

Self Initiative

Planner

Action Execution

Figure 1: System overview

using different user studies. A first study evaluates if our
representation is able to describe the user’s preferences for
our chosen task. A second study studies how the interaction
is able to efficiently acquire the required data. The final
study evaluates the amount of data required to acquire a
good profile and the amount of corrective feedback needed
to improve it.

1.2 Related Work
Several studies have considered how a robot can learn from

humans and achieve increasing levels of autonomy. The most
common setting is that where an explicit training phase
exists with a large demonstration and an offline learning
method that is followed by full autonomy of the robot with-
out further adaptation ([14, 2]).
Recent approaches have consider a more efficient way to

provide such training information to either increase the sam-
ple efficiency, e.g. reduce the amount and time required for
training, and the quality of the solution, e.g. warranty that
the number of errors is low. In the case of known tasks,
several works have considered how a reinforcement learning

agent can be given extra “shaping” information to increase
the speed of learning [11, 21]. In these works an extra re-
ward signal is given, asynchronously, to the robot and re-
sults showed several interesting aspects of the differences
in users’ feedback. Other approaches considered the case
of unknown tasks where either the policy is directly esti-
mated using either regression or classification methods [3, 6]
or using inverse reinforcement learning techniques [15, 9]. In
these approaches, the user provides an initial demonstration
to the learner and at runtime the user can directly correct
the learner either after a learner’s request [3, 6] or on their
own initiative [11, 21]. The request, or the user’s guidance,
always refers to the current state. In the work of [15] the
learner itself guides the learning process and requests infor-
mation on states that might differ from the current one. This
last approach has the potential benefit of directly obtaining
the most useful information but, in particular for the case
of physical agents, it can lead to requests for information
about unreachable situations.

Our work follows this line of research and shares several
features in relation to previous works in terms of acquiring
data from a user and accepting correction during acquisition
and runtime. Our training system is inspired by a mixed ini-
tiative system [8] where at first the robot is tele-operated us-
ing verbal commands and with experience it becomes able to
select its goals and execute its actions. At any time the user
can stop the robot and verbally operate it. We consider the
case where the robot is able to solve complex tasks but that
it does not know what particular task the user is interested
in. Our robot will be initially “micro-managed” through the
steps of a given process, but in the end it only considers the
high-level results as important for the user profile.

Our system can thus be seen as an inverse reinforcement
learning problem with a simplified reward structure, where
the final state of a task is achieved but the robot is left free
to achieve that final state by its own means using built-in
task solving methods [18, 13]. This contrasts with other ex-
plicit inverse reinforcement learning approaches, e.g. [1, 20],
where a reward is found to explain not only the final state
but also the trajectory to reach such state. Such approaches
require full trajectories to learn the task and cannot infer
a task from simple state classifications. Thus our approach
requires less information to be acquired from the user. Also,
those projects were developed in an offline setting where a
demonstration is acquired and latter processed, not in an
interactive scenario.

2. DIALOG SYSTEM
A dialog system is used to receive the users’ commands

and clarification responses and to provide cooperative super-
vision of the task execution. The system is not limited to a
fixed sentence structure and allows users to speak naturally
to the system. The grammar is defined from the concepts
that can be grounded in the robot’s own perceptual and mo-
tor skills. The system implements an optional confirmation
and clarification request system. Although such confirma-
tions must be ensured in critical systems, for personal robots
it is a cause of fatigue and makes the interaction very un-
natural.

Upon hearing a command the robot executes the most
probable inference from the information available, not only
the most probable spoken sentence but the one that is more
probable taking into account the current world state. This

can be seen as a primitive form of self-initiative where the
robot executes the most likely command. Initially the robot
will behave within the constraints imposed by the average
profile we created for the task at hand. After some time
decisions by the robot will be aligned with the particular
user.
The decision was made to have the system always provide

a motor response to any user input without relying on ver-
bal clarification requests. As a result the system will require
techniques for dealing with situations where either the user
provides incomplete information or the natural language sys-
tem fails to recognize part of the user’s speech. In the do-
main of the cleaning problem, three techniques were em-
ployed to fill in incomplete information. The first technique
was to maintain an interaction history and fill in unknown
information with values from the previous interaction. The
second was to have the robot search for the closest object
to the robot and to have the robot interact with that ob-
ject. Finally, a planner can be used to determine the best
possible action (see Section 4 for details of this planner).
The current world state was analyzed and an optimal world
state was generated. The next step in transitioning from the
current world state to the optimal state was used to fill in
the incomplete information. All three of these approaches
resulted in the robot taking some form of smart action.

3. WORLD REPRESENTATION AND USER

PROFILING
This Section presents the method for acquiring user pro-

files from interaction data. We start by describing the world
representation and its consequences in terms of generaliz-
ing knowledge and transfer between different environments.
Then we define what a user profile is and how can it be
learned. The following section illustrates how this profile
gives robots self-initiative that takes into account user pref-
erences.

3.1 World Representation
A very important aspect of the way a robot can adapt to a

user is the model the robot uses to represent the world. Most
research in human-robot interaction consider a propositional
representation of the world with a fixed number of objects,
each with a known number of properties. This representa-
tion is the one typically used in robotics due to the com-
putational efficiency of the algorithms used for learning and
planning. Yet such representations are very limiting when
the environment changes either in its geometry or in the
number and types of objects it contains. A representation
that instead considers predicates or relations between enti-
ties can more easily generalize between different domains.
In this work we consider a middle ground and represent

the state of the environment as a vector in a feature space.
For this we created a large bank of features and used the
results of an online survey to select the relevant ones for a
particular task. We do not restrict ourselves to having the
robot copy the final state of the environment by memorizing
the desired locations of objects, but rather have it learn what
makes a desired state and what does not. This approach is as
rich and as general as the feature set used and so a great deal
of expert knowledge goes into the creation of such features.
Another option is to create a large bank of features and allow
the learning system to automatically select the relevant ones.

In our work we consider several levels of representation.
At a low level we consider the locations of objects in world
coordinates x. This representation is acquired from the
robot’s sensors and is mainly used for the control and naviga-
tion system. At a medium level we consider discrete regions
of the world s to plan sequences of actions in a more effi-
cient way. At the higher level we consider the description
of the configuration of the objects as a feature vector f().
We consider thus that the environment geometry, the ob-
jects’ locations and properties and all the relations between
the entities is encoded in that set of features. A particular
configuration is represent as a point in this feature space

f = f(x) =
[

f1(x) . . . fn(x)
]T

Within this representation the specific coordinates of ob-
jects are lost and so the system will not be able to replicate,
in a metric way, an observed configuration. We want a sys-
tem that is able to generalize among different environments
and number of objects. For example, if we have a knife,
fork, plate and spoon, we would not store the geometric co-
ordinates of any of the items, but rather that the knife and
fork are close together and that the plate is always between
the knife and spoon. This would allow for generalization in
cases where additional knives, forks or spoons were added
to the system and the robot could then organize these items
according to the same relational rules.

3.2 User Profiling
Each user’s request is a demand for the robot to move

the world from state x to a new state y, implicitly from a
less to a more desired state. Reaching the desired state may
require several intermediate steps, where the intermediate
states may be less desired than the initial state and where
the final state is preferred to any of the other. From such
sequences we acquire a database of what each user considers
to be a good (l = 1) or a bad state (l = 0). Computationally
speaking we have a dataset consisting feature-label pairs,
D = {(f(x1), l1), . . . , (f(xi), li), . . . (f(xn), ln)}. We assume
that the user’s preferences can be described as a function
that defines whether a given world state is good or bad.

With carefully designed features it is possible to adapt to
a great variety of different user preferences. An advantage
of this approach is that it is easy to map between different
environments as long as the features themselves are able to
cope with such variety. For instance if the user explains
how to set a table for four people, the robot should be able
to set a table for any number of people. In this case the
features would describe the relations between each of the
objects, cutlery, glasses and plates. We note that this user
profile considers only the final results of the tasks that the
user instructs the robot to do and ignores the particular
sequence of actions the user use to achieve it.

3.3 Learning and Generalization
To be able to generalize the information from the user

profile to different environments and object configurations
we need to learn a classifier. We are interested in comput-
ing a classifier that varies along the feature-space previously
described. Possible methods for this include kernel logistic
regression [23], beta regression [16] and others. We adopt
beta regression due to its computational efficiency and its
ability to include prior information such as the proportion
of good versus bad states.

At each feature vector extracted from a particular world

state, the desired classifier is simply a Beta distribution. Us-
ing a standard Bayesian approach, we compute a posterior
distribution over the probability of that feature being a good
state using the corresponding conjugate prior, the Binomial
distribution. For notational convenience, let us for the mo-
ment denote the parameters of the binomial at a state x as
a vector p(f) as a short notation for p(f(x)). Using this
notation, we want to estimate P (p(f)). This posterior dis-
tribution describes not only the probability of being a good
state but also the confidence on that prediction. Let fi be
some state observed in the demonstration D, and let α(f)
and β(f) denote, respectively the number of times that, in
the demonstration, the feature state was classified as a good
state, or a bad state, respectively. We have:

P (p(f)) ∝ Bin(α(f);α(f) + β(f))Beta(α0, β0)

= Beta(p(f);α(f) + α0, β(f) + β0)

In other words, the posterior distribution of p(fq) is also a
Beta distribution with parameters α(f)+α0 and β(f)+β0.
In order to generalize P (p(f)) to unvisited states, and fol-
lowing the approach in [16], we assume that the parameters
of the Beta distribution depend smoothly on f . For this we
define a kernel, k(·, ·), and use standard kernel regression
to extrapolate the parameters of the Beta from the training
dataset to unvisited states. Specifically, for any query point
f(xq) and a given training set, we have

α̂(fq) =
∑

g∈D

k(fq, g)α(g) + α0

β̂(fq) =
∑

g∈D

k(fq, g)β(g) + β0

Finally, the posterior mean of the distribution over the pa-
rameters p(f) – that we will henceforth use as our classifier

at fq, is given by p̂ =
α̂fq

α̂fq
+β̂fq

. The algorithm requires

setting the parameters θ that define the kernel k(·, ·). We
estimate these parameters from the training data using a
cross-validation approach. For each point, we compute the
posterior distribution. Then, we use a minimum least square
criterion between the predicted mean p̂ at each point and the
observed empirical one p̄ = ᾱ

ᾱ+β̄
.

Lθ(D) =
n
∑

i=1

(p̂i − p̄i)
2
.

By minimizing this criteria we can optimize the kernel pa-
rameters. In our experiments, we used a Gaussian kernel
with a diagonal covariance matrix, that is, with independent
bandwidths for each dimension of the features. The function
was minimized using the L-BFGS-B algorithm [22] method
and positive constraints for the kernel bandwidths. This
step is very important to do feature selection. As described
before, our system will rely on a large bank of features to
allow it to adapt to a wider variety of user’s preferences. By
optimizing the kernels the system is automatically selecting
which dimensions provide relevant information and which di-
mensions are redundant. To improve efficiency, dimensions
with very narrow bandwidth can be removed.

4. TASK EXECUTION
This Section discusses how the robot plans and executes

its actions. We note that even when the robot is following

directly the instructions of the user, the robot still requires
a high-level of autonomy. Since the user is only able to pro-
vide high-level verbal commands, the robot requires complex
perceptual and motor actions to understand the commands
(as was discussed in 2). When encountering a new situation
the robot should proactively act in the world to change it to
a more desirable state according to a given user profile.

A user’s preferences are described as a function V that
assigns to each feature vector f(x), a probability V (f(x))
that this feature vector represents a good state for that user.
Our problem can then be defined as follows: Taking into
account an initial state f(x), find a plan that reaches a more
desirable state f(y) such that V (f(y) > V (f(x)). In other
words, the goal state is any state where the probability of it
being a desirable state is high. Within this formulation we
can use different optimization methods to find such maxima,
either global or local. Different methods will entail different
compromises in terms of efficiency and requirements on the
motor primitives of the system. The two main methods we
consider are to either to just find good (optimal) desired
states or to search for a realizable path to a desired state.

4.1 Unrestricted Planner
We can consider first a case where we have to find a

(global) maximum of the function V (f(x)). Note that this
is a problem of dimension NM where N is the number of
objects in the space and M is the number of possible lo-
cations. A brute force approach will not work because the
number of possible solutions grows exponentially. We thus
use simulated annealing [10], a global optimization method.
This method is able to search the solution space and find a
good solution for the problem.

Local methods such as the L-BFGS-B algorithm [22] or
other gradient method approaches can also be used but are
subject to more local minima as solutions. Choosing be-
tween the two approaches (global vs local) involves a com-
promise between the efficiency (speed) of finding a solution
and the quality of the solution found.

4.2 Restricted Planner
Unrestricted planners are more efficient because they ig-

nore the restrictions caused by the world dynamics and robot
capabilities, and so assume that the robot is able to plan how
to reach any goal. After a goal state is selected, a planner
must determine a path for the robot to move from its cur-
rent state to this goal state. If the planner can’t find a valid
path, then a slightly less optimal goal state must be chosen
and the process repeated. In order to avoid this process of
having to repeatedly evaluate optimal states to see if they
are reachable, a planner that is restricted to only reachable
states can be implemented. This second class of methods
are much slower but when a desired goal is found, the path
to reach it is also found. Another distinction between the
two methods is in whether they yield a local maximum or a
global maximum.

We consider that we want to find a state that is considered
good by the user. Several search methods can be considered
[18]. We considered a depth-first search problem where each
node represents the locations of objects in discrete cells of
the world. If the objects are located in cells ci, then their
coordinates are given by x(ci). The value of each node is
the probability that a given node represents a desired world
state, V (f(x(ci))). Figure 2 shows the search method be-

...

V (f(x1)) V (f(x2))

V (f(x3))V (f(x4))

Figure 2: Search tree. Each square represents a
world state with obstacles (black squares) and ob-
jects (dark circles), the search system proceeds by
generating valid states from previous ones until a
state is found that has a high probability of being a
target state.

havior. When a solution is found, the plan to move the world
state from the initial state to the final one is just the path
of the search. Informed search methods could speed up this
process but if the problem has many local minima then it is
difficult to create heuristics to guide the search.

5. EXPERIMENTAL SETUP
A deliberate decision was made to demonstrate self initia-

tion and autonomous goal selection using a physical system
and not a simulation. In a physical system, the robot is able
to grasp, move and release objects and the user receives
visual and kinesthetic confirmation of the system’s perfor-
mance which increases the engagement of the user with the
system. Relying on simulated environments does not allow
effective measurement of the quality of interactions due to
the different user modalities and expectations. This section
presents the experimental setup, the environment, the per-
ceptual and motor capabilities of the robot and the human-
robot verbal interface.

5.1 Robot and Environment
We consider a robot with a holonomic base and a hu-

manoid torso that is able to grasp and transport release
objects, navigate and avoid obstacles, see Figure 3. We rely
on an overhead camera and on-board sensors to perform
the navigation and object interactions tasks. We consid-
ered a simplified context consisting on a simple “Cleaning”
task which consists of taking randomly distributed baskets
or blocks and redistributing them into a clean or “Tidy”
state.
In order to create a simplified relational representation

of the world state, we selected a set of thirty six features
which were sufficiently rich to represent a wide variety of
possible states, yet constrained enough that they could be
searched using the power of a modern desktop computer.
With three classes of objects the total number of features is
30, and they include: Intra Class position (x and y); Intra

Figure 3: Environment and robotic setup

Class dispersion(x and y); Class Distance to four landmarks
(x and y); Inter Class distance(x and y).

5.2 Dialog System
The Dialog system is implemented using the Nuance SDK

[17]. The task domain greatly restricts the dialog. From
each utterance the Natural Language Interface (NLI) only
needs to extract the following information: Action, Object,
Object Description, Target, and Target Description. This
information is divided up into the slots by the Natural Lan-
guage parser of the Nuance system. Due to the self initia-
tion aspect of this project and the Task Based dialog system,
each communication does not require all information to be
available.

6. EXPERIMENTS AND RESULTS
This section shows a series of experiments that validate

our approach. We consider four validations: a) the richness
of the representation used, b) the effectiveness of the inter-
action, c) the efficiency of acquisition of a user profile and
d) the user’s evaluation of the autonomously selected goals.

6.1 Establishing User Preferences and Profiles
Since each user could have a different definition of success-

ful goal completion, a survey was designed to establish com-
mon features among tidy scenes. This will allow us to know
if there is a common concept of ”tidiness”and also if our rep-
resentation is rich enough to separate the different classes.
For the survey ten images were prepared using a mixture
of structured scenes and randomly generated scenes. The
ten images were presented in random order. Twenty six re-

Figure 4: The tidiness score for each image is calcu-
lated. The error bars show the inter-rater reliability
of that image.

Figure 5: The two tidiest (top) and least tidy (bot-
tom) images in the survey sample.

spondents completed the survey selected from past students
and members of the Robotics Society of Southern California.
The survey respondents ranged in age from six to seventy
two with an average age of 41 years and standard deviation
of 12 years. The respondents were 82% male. Each partici-
pant was asked to rank the 10 images based on the neatness
of the scene from very tidy (4) to very untidy (0). After the
data was collected, a tidiness score was calculated for each
image. Figure 4 shows the results of the survey.
The two tidiest and least tidy images are shown in Figure

5 below. The first image showed an extremely small disper-
sion between objects. The second image showed all the im-
ages located in the corners which meant that the dispersion
was maximized while the distance between the objects and
the perimeter was minimized. The untidiest images have the
objects randomly distributed. A set of feature vectors using
the features previously described was calculated for each of
the images. It was determined that these features were suf-
ficient to distinguish all the images in the sample using the
learning algorithm.

6.2 Interaction Validation
This experiment investigated how well a user can instruct

the robot. Table 1 summarizes the results. In two separate
trials, users were asked to interact with the robot to get it
to transition a scene from the same initial state of scattered
objects to a tidy state defined as having all the objects in the
corner of the scene. In third and fourth trials, users were
asked to interact with the robot to transition a simplified
scene from an untidy to a tidy state. Survey participants
varied in age between 21 and 43, evenly split between male
and female, with three of the participants being university
students and one a homemaker.
Each participant was told that their goal was to instruct

the robot to tidy up the room and that the system could
understand a variety of voice prompts. In each of the trials,
participants were given the sample prompt “Please pickup
the yellow block” as an example of something they could in-
struct the robot to do. After this prompt, users were allowed
to instruct the robot on their own. Below is a portion of one
user’s dialog:

Table 1: Validation of the Human Machine Interac-
tion system

User Gender Male Male Female Female
Language Native N Y Y Y
Interactions 17 17 10 9
Robot Failures 4 2 1 1
Language Failures 4 1 1 0
Efficiency 0.53 0.82 0.8 0.89
Inter. Time (sec) 301 276 309 289

• User: “Get me a block”

• Robot: Proceeds to nearest block and picks it up.

• User: “Put it in the corner”

• Robot: Proceeds to top left corner and drops the block

• User: “Get me the yellow block”

• Robot: Moves to the yellow block and picks it up.

• User: “Put it in the corner, put it in the corner”

• Robot: Proceeds again to the top left corner and drops the
block.

• User: “This is tidy”’

Another user chose to issue more detailed commands.

• User: “Get the Pink block and put it in the upper left hand
corner.’

• Robot: Moves to the pink block and picks it up.

• User: “Put it in the upper left hand corner”

• Robot: Proceeds to the top left hand corner and drops the
block.

The efficiency of the interaction was measured by the ratio
of the successful interactions to the total number of interac-
tions required to complete the task. The robot was deemed
to have failed the interaction if it either failed to complete
the task, the user asked the robot to do something that was
outside of its domain, or the robot did something that did
not match the users’ intention. Each participant rated each
interaction as a success or failure. Language failures are
defined as failures of the natural language system to parse
the user input into usable commands. The exit survey asked
users to rate their satisfaction with the system’s performance
on a scale from zero to four with four being Very Satisfied,
and resulted in an average user rating of 3.25. We saw that
the users were able to command the robot and were satisfied
with the behavior of the robot.

6.3 Acquiring User Profiles
This experiment evaluated the amount of data required to

create a good user profile. We defined two profiles: a) All the
objects in the top right corner; b)Pink objects go to the top
right corner and all the other objects go to the bottom left
corner. To train the profiles, the objects were randomly dis-
tributed about the scene and then the robot was instructed
to transition the random state, step by step until the scene
was in a final state that the user judged matched one of the
profile definitions. After each user instruction, the profile
was updated and when the user judged that the state was
tidy according to the profile definition, the interaction was
complete. These interactions were repeated several times
to determine how much training was required to generate a
good profile. A profile is good if, for a give user and a large
set of world states, the system is able to use the profile to

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

10

20

30

40

50

60

70

80

90

100

number of interactions

c
o
rr

e
c
t
c
la

s
s
if
ic

a
ti
o
n
s

profile 1

profile 2

Figure 6: Profile acquisition

automatically find a good world state that matches the user
classification. After each interaction, the self initiative sys-
tem was used with the generated profile to find good world
states for a set of thirteen test images. The users rated each
world state so generated according to how well they matched
the original profile. Figure 6 shows the evolution for both
profiles. We see that, for our domain, around 10 − 13 in-
teractions are sufficient to acquire a good profile where each
interaction consists of between 8− 10 user’s instructions.

6.4 Using User profiles
This experiment validated how well the robot could utilize

user profiles to perform the task uninstructed and achieve a
final state that corresponds to each particular user prefer-
ences. Based on the profiles acquired before, we presented
the robot with an initial world configuration and the robot
determined a plan to reach a suitable final state. The dif-
ferent profiles produced substantially different results that
corresponded to the users’ preferences, see Figure 7. To
achieve the desired state, the robot needed to move all the
four objects.
Taking into account our current Python implementation,

the unrestricted planner was much more effective. With this
planner a good plan is found in less than 8 seconds. Using
the restricted planner with a breath-first search method (see
[18]) we were able to plan tasks with 4 objects in an envi-
ronment where each object could be at 45 different loca-
tions, corresponding to more than 3 million states. Typical
plans consisted of a sequence of nine actions. However, the
restricted planner often took several minutes to find a so-
lution which rendered it inappropriate for use in a human
interaction setting. Informed search methods should lead to
substantial speed gains for this restricted planner.

7. CONCLUSIONS AND DISCUSSION
In this work we presented a robotic system that interacts

naturally with a user. The robot is able to learn user profiles
(defined as a database of good and bad world states) by ac-
quiring knowledge from the different interactions episodes it
has with the user. Using such knowledge the robot is able to
pro-actively act in different environments and world config-
urations taking into account the user’s preferences. We have
demonstrated results using a real robot platform performing

room tidying tasks. Such autonomy goes beyond previous
work where autonomy was only considered at the execution
level and not at the goal selection level.

We note that this scenario is very simplistic in terms of
robotic complexity but no assumptions is made about the
particular scenario. The description of the world in terms
of features is very general, particularly when considering
that we automatically perform feature selection, and current
planning systems and optimization methods can easily deal
with problems much larger than the one showed. Our phys-
ical implementation tested the learning system with user
interactions in the presence of motor and perceptual errors
that, if large, might reduce the user acceptability and the
quality of the learning profiles. Results showed that the sys-
tem worked even with such sources of noise. In a simulated
world such evaluation would be difficult to make.

There exits systems that learn using information from in-
teractions with a user. The choice among the different ap-
proaches will have to take into account the capabilities of the
user, the type of task and the a-priori knowledge and skills
of the robot. If the system needs to learn not only the task
but also how to solve it then our approach can not be used
and approaches such as [1, 20] or [3, 6] will better if, respec-
tively, the reward or the policy have simpler representations.
In those approaches it is also assumed that the user is able
to provide either trajectories and/or the correct action. Our
approach assumes that the robot is equipped with planning
skills and that the user is only able to provide information
about the required goal states. For instance learning how
to grasp an object will be much better addressed with other
methods because they include a more detailed trajectory
matching. On the other side, learning the preferences about
travel destinations, shopping bags contents, or the comfort
levels of light and temperature in a room will be better ad-
dressed with our system because the means to achieve such
goals are irrelevant to the preferences of the users.

As future work we intend to improve the efficiency of the
restricted planner using other hybrid methods, preferably
allowing the robot to learn the world model. Adding more
modalities, such as pointing, to the interface will increase the
efficiency of the system. Another interesting new prospect
for this approach is to consider a joint-work problem where
the robot and the human must accomplish the task coopera-
tively. Finally, this work can be adapted to a wide variety of
human interactions where the task can be defined in terms
of relationships between objects or primitives and their en-
vironment.

8. REFERENCES

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via
inverse reinforcement learning. In Proceedings of the
21st International Conference on Machine Learning
(ICML’04), pages 1–8, 2004.

[2] B. Argall, S. Chernova, and M. Veloso. A survey of
robot learning from demonstration. Robotics and
Autonomous Systems, 57(5):469–483, 2009.

[3] S. Chernova and M. Veloso. Learning equivalent action
choices from demonstration. In Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, pages 1216–1221. IEEE, 2008.

[4] M. desJardins, E. Eaton, and K. Wagstaff. Learning
user preferences for sets of objects. In Proceedings of

Figure 7: Final states reached by the robot from the same initial state (top) taken into account two different
user profiles: (middle) all object in a corner, and (right) pink objects in bottom left and all other in top corner.

the 23rd international conference on Machine learning,
page 280. ACM, 2006.

[5] T. W. Fong, I. Nourbakhsh, and K. Dautenhahn. A
survey of socially interactive robots. Robotics and
Autonomous Systems, 2003.

[6] D. Grollman and O. Jenkins. Dogged learning for
robots. In Robotics and Automation, 2007 IEEE
International Conference on, pages 2483–2488, 2007.

[7] Y. Guo and C. Gomes. Learning optimal subsets with
implicit user preferences. In Proceedings of the 21st
international joint conference on Artifical intelligence,
pages 1052–1057, 2009.

[8] B. Hardin and M. Goodrich. On using mixed-initiative
control: a perspective for managing large-scale robotic
teams. In Proceedings of the 4th ACM/IEEE
international conference on Human robot interaction,
pages 165–172. ACM, 2009.

[9] R. Jaulmes, J. Pineau, and D. Precup. Active learning
in partially observable markov decision processes. In
NIPS Workshop on Value of Information in Inference,
Learning and Decision-Making, 2005.

[10] S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi.
Optimization by simulated annealing. Science,
220(4598):671, 1983.

[11] W. B. Knox and P. Stone. Combining manual
feedback with subsequent mdp reward signals for
reinforcement learning. In Proceedings of the 9th
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS’10), pages 5–12, 2010.

[12] C. Lachi, G. Teti, G. Tambumni, E. Datteri, and
P. Dario. Adaptable semi-autonomy in personal
robots. In IEEE International Worksop on Robot and
Human Interactive Communication, 2001.

[13] S. LaValle. Planning algorithms. Cambridge Univ Pr,
2006.

[14] M. Lopes, F. Melo, L. Montesano, and
J. Santos-Victor. Abstraction levels for robotic
imitation: Overview and computational approaches.
In O. Sigaud and J. Peters, editors, From Motor to
Interaction Learning in Robots. Springer, 2009.

[15] M. Lopes, F. S. Melo, and L. Montesano. Active
learning for reward estimation in inverse reinforcement
learning. In European Conference on Machine
Learning (ECML/PKDD), Bled, Slovenia, 2009.

[16] L. Montesano and M. Lopes. Learning grasping
affordances from local visual descriptors. In IEEE
8TH International Conference on Development and
Learning, China, 2009.

[17] Nuance. Nuance Speech Recognition System Version
8.5, 2004.

[18] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, second edition, 2003.

[19] K. Severinson-Eklundh, A. Green, and
H. Hüttenrauch. Social and collaborative aspects of
interaction with a service robot. Robotics and
Autonomous Systems, 42(3-4):223–234, 2003.

[20] D. Silver, J. A. Bagnell, and A. Stentz. Learning from
demonstration for autonomous navigation in complex
unstructured terrain. International Journal of
Robotics Research, 29(1):1565 – 1592, October 2010.

[21] A. L. Thomaz and C. Breazeal. Teachable robots:
Understanding human teaching behavior to build
more effective robot learners. Artificial Intelligence
Journal, 172:716–737, 2008.

[22] C. Zhu, R. Byrd, P. Lu, and J. Nocedal. Algorithm
778: L-BFGS-B: Fortran subroutines for large-scale
bound-constrained optimization. ACM Transactions
on Mathematical Software, 23(4):550–560, 1997.

[23] J. Zhu and T. Hastie. Kernel logistic regression and
the import vector machine. In Adv. Neural
Information Proc. Systems, pages 1081–1088, 2002.

