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Abstract

This paper presents a three-level structuring of multiword terms (MWTs) basing
on lexical inclusion, WordNet similarity and a clustering approach. Term cluster-
ing by automatic data analysis methods offers an interesting way of organizing a
domain’s knowledge structures, useful for several information-oriented tasks like
science and technology watch, textmining, computer-assisted ontology population,
Question Answering(Q-A). This paper explores how this three-level term structuring
brings to light the knowledge structures from a corpus of genomics and compares the
mapping of the domain topics against a hand-built ontology (the GENIA ontology).
Ways of integrating the results into a Q-A system are discussed.

Key words: Term variation, Automatic terminology structuring, Clustering
technique, Topic maps, Knowledge discovery, Question Answering.

1 Introduction

Technical domains represent specialist knowledge gained through training or ex-
perience. Such specialization uses the foundation of general knowledge to build a
level of expertise within a given domain necessitating an expansion in vocabulary to
include domain specific objects and concepts. This results in the abundance of tech-
nical terms, realized linguistically as nominal compounds. Technical writing is an
attractive domain in which to explore compounds for two reasons. First, it presents
many examples 1 and secondly, it restricts semantic interpretation by excluding
compounds with an idiomatic interpretation. This results in multiword terms which
are both compositional, their formation is a function of their constituent elements
(Kageura, 2002) and endocentric, the compound is a hyponym of its head (Barker

1 78.5% occurrences of simplex NPs in the GENIA corpus used in this study are
terms (Kim et al., 2003).
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and Szpakowicz, 1998). An extracted list of multi-word terms (MWTs) brings dra-
matic improvements for syntactic analysis but little else in solving the problems
MWTs create for many natural language processing applications. To this end, a
wealth of research has been directed toward identifying and organizing semanti-
cally related terms for different applications. The two families of approaches used
for this task are distributional (statistical) and symbolic (Corpus-based linguistics)
methods.

Distributional Similarity is taken as an indication of semantic similarity. The
focus of many studies has been in relating single words statistically: (Church and
Hanks, 1990; Ushioda, 1996; Nenadić et al., 2002; Lin, 1998). All these methods
result in a quantified similarity measure with the exact nature of the relations left
undefined, and so heterogeneous or even antonymous concepts may end up in the
same cluster. For instance, in Lin (1998), the most frequent words associated with
the noun “brief” were “affidavit, petition, memorandum, motion, lawsuit, deposi-
tion, slight, prospectus, document, paper” which all hold different relations with the
initial word, including collocational ones.

Corpus-based Linguistic analysis is used to identify linguistic markers which
point to certain morphological, syntactic or semantic relations between MWTs
(Morin and Jacquemin, 2003; Nenadic et al., 2004; Grabar and Zweigenbaum, 2004).
The dominant methodology is shallow, bottom-up parsing around contextual clues
like word insertion for syntactic variations or the use of phrases like “such as” or
“also known as” for hypernym/hyponyms and synonyms identification respectively.
For instance, in the sentence

“In contrast to the purely enhancer-dependent effect of cytokines such as TNF
on the activity of the HIV regulatory region (LTR), we observed that okadaic acid
(OKA) activates HIV transcription through both the enhancer, responding to the
factor NF-kappa B, and the promoter domain of the LTR”,

a hypernym relation will be acquired between “purely enhancer-dependent effect
of cytokines” and “TNF”. This approach has the advantage of computational
tractability but is inherently limited to uncovering only relations explicitly identified
through the targeted lexico-syntactic patterns. For example, (Morin and Jacquemin,
2003) report discovering 884 hypernyms relations in a corpus of almost 430,000
words (Jacquemin et al., 2002), with an average precision of 79% and an average
recall of 46% (average F-score 58%).

MWT Variation has been explored for a variety of applications such as building
lexical resources from corpora (Daille, 2003; Hamon and Nazarenko, 2001; Grabar
and Zweigenbaum, 2004), automatic thesaurus enrichment (Morin and Jacquemin,
2003), domain knowledge mapping and textmining (Ibekwe-SanJuan, 1998; Ibekwe-
SanJuan and SanJuan, 2004), terminology knowledge base construction (Condamines
and Reyberolle, 1998) and ontology building (Aussenac-Gilles and Séguéla, 2000).
Syntactic variations involve basically three types of linguistic operations in a term:
the addition of modifier or head words to an existing term, the substitution of a
word in a term or the structural transformation of a term. The first type of operation
is diversely called lexical inclusion (Nenadic et al., 2004; Grabar and Zweigenbaum,
2004), expansions (Jacquemin, 2001; Ibekwe-SanJuan, 1998) or modification (Daille,
2003). It denotes the simple fact that a term A is a subpart of term B (“gene expres-
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sion → human beta globin gene expression”). The resulting term is a variant of the
more generic term. Substitutions denote a change of a modifier or head word in a
term (“immature bone marrow cell ↔ murine bone marrow cell”), while structural
transformation (also called permutation) involves the passage from a syntagmatic
structure with a PP attachment (“system for database file transfer”) to a compound
one (“database file transfer system”).

Current research on computational terminology has reached the consensus that sim-
ple lists of terms extracted from corpora are not very useful for many applications.
Indeed, it is very fastidious and quite inefficient to labor through lists of thousands
of terms in a database or even to try to grasp the conceptual organization of terms
in the domain if no synthesis of the information contained therein is offered. There
are different ways in which this synthesis can be approached. The most classical and
well known tools for organizing the conceptual structures of a field are thesauri, tax-
onomies and ontologies. Yet these resources require considerable human effort and
resources as well as time. As such, they are hardly readily available for every field
and are rapidly overtaken by the constant appearance of new concepts. Although a
huge effort is being dedicated towards semi- or fully-automated ontology building,
the balk of the structuring still falls on the domain expert (Aussenac-Gilles and
Séguéla, 2000; Biébow and Szulman, 1999). Also, these resources cannot synthesize
the information contained in a huge corpus because every term is listed, albeit in a
hierarchy. Ontology expansion by populating an existing ontology with novel con-
cepts provides a partial solution to the domain vocabulary coverage and structuring
problem. Ontology populating tasks naturally utilize the existing conceptual struc-
ture. For the UMLS (Humphreys et al., 1998), where the majority of related terms
are identified manually, the thesaurus simply defines the set of possible relations.
This process can be automated through compositional analysis of the MWTs by
projecting relations between tokens onto relations between MWTs (Navigli and Ve-
lardi, 2004). However, for this technique to be successful, the ontology must already
contain all of the tokens of a novel MWT. This is an unrealistic assumption in the
case of GENIA corpus used in this study, where only 35.7% terminological tokens
are in WordNet and 28.9% are in the UMLS.

The need to structure domain concepts is even more acute for applications like sci-
entific and technological watch or textmining where experts are required to grasp
the topic emergence, shifts and obsolescence in limited time. Research on methods
to this end, known as domain knowledge mapping (DKM) rely on powerful visu-
alization tools for result presentation. While a lot of research has been carried out
separately on computational terminology (see Jacquemin and Bourigault (2003) for
a review) and on DKM (see Schiffrin and Börner (2004) for a review), very few
attempts have, to our knowledge, been made to bring the two domains together.
Research on DKM has always relied heavily on statistical models (co-occurrence
models) to build clusters of frequently co-occurring item sets (Mane and Börner,
2004; Hearst, 1999; Small, 1999; Feldman et al., 1998). The challenge in our ap-
proach lies in combining symbolic representations (variations) and a data cluster-
ing algorithm. Parts of this methodology have been published in (Ibekwe-SanJuan,
1998; Ibekwe-SanJuan and SanJuan, 2004). Here we aim to test it on a technical
corpus, the GENIA corpus and to compare the clusters against a gold standard, the
hand built GENIA ontology. The idea is to evaluate how close the clusters come
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to reflecting a human semantic organization of domain concepts. The outcome of
such an evaluation will determine if the methodology has uses for other knowledge
organization tasks such as terminology knowledge base or ontology population. We
also explore the possibilities of using such a structuring in a Question Answering
(Q-A) system focused on technical domains.

The rest of the paper is organized as follows: after an overview of the methodol-
ogy (Section 1.1), we briefly describe the corpus used in this experiment and the
normalization of the MWTs contained therein (Section 1.2). Section 2 describes
the three-level structuring of the MWTs. Section 3 evaluates the similarity of the
automatic structuring against the hand-built GENIA ontology. Section 4 is devoted
to discussions on the potentials of the term variant clustering for Q-A.

1.1 Overview of the methodology

First, MWTs are extracted from a corpus (see Section 1.2) before subjecting them
to a three-level structuring. Normally, MWT extraction is performed in our system
using the LTPOS and LT CHUNK package developed by the University of Edin-
burgh. LTPOS is a probabilistic part-of-speech tagger based on Hidden Markov
Models. It uses the Penn Treebank tag set which ensures the portability of the
output with many other systems. Since LT CHUNK only identifies simplex NPs
without prepositional attachments, we wrote contextual rules 2 to identify complex
terminological NPs. In the current experiment however, the result of our extraction
module was not used in further processing since the biological terms were already
manually annotated in the corpus (see Section 1.2). Our main objective in this ex-
periment is to evaluate our MWTs structuring against the GENIA ontology. Hence,
it was necessary to adopt the same term list. Extracting the terms ourselves would
have distorted the comparison of the two structurings and weakened its conclusions.
On a more lexical note, using the MWTs annotated by domain experts creates the
ideal situation for further processing as the MWTs are not influenced by a partic-
ular extraction technique. Furthermore, BioMedical Entity Recognition for which
the GENIA corpus provides an interesting annotated resource, is a challenging task
receiving ongoing attention.

The first level structuring consists in establishing binary “term-term” relations us-
ing the variation relations. Basing on these relations, connected components are
formed by grouping together terms that share some modifier relations, i.e, terms
that have the same head and a subset of common modifier words. Before this group-
ing is performed, noisy relations are filtered out using WordNet. Components thus
obtained are sets of terms formed around a particular domain paradigm or a mono-
thematic family (see examples below). This constitutes the second-level of structur-
ing. The components are grouped into clusters iteratively according to the number of
shared head variation links. This produces clusters of related domain topics that are
mapped onto a 2D space using the AiSee 3 graphic display package. This constitutes
the third level structuring. The whole methodology is embodied in the TermWatch
system (Ibekwe-SanJuan and SanJuan, 2004) and relies on a hierarchical clustering
algorithm specifically adapted to the linguistic nature of the variation relations. A

2 Based on the POS information surrounding an NP structure
3 www.aisee.com
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detailed description is given in Section 2.3.1. Below is an example of a cluster formed
by four components. Terms within a component share modifier relations “CD11b+
bone marrow cell” is a modifier substitution of “immature bone marrow cell”. Com-
ponents are linked by head variation relations, i.e., “bone marrow transplantation”
is a head expansion of “bone marrow”.

• Comp1: CD11b+ bone marrow cell; immature bone marrow cell; mouse bone
marrow cell; normal bone marrow cell; normal bone marrow myeloid cell; normal
CD34+ bone marrow cell; transgenic bonne marrow cell; murine bone marrow
cell; primary murine bone marrow cell.

• Comp2: bone marrow transplantation; autologous bone marrow transplantation

• Comp3: bone marrow; adult bone marrow; normal bone marrow

• Comp4: bone marrow derived macrophage; murine bone marrow derived macrophage

What this cluster is suggesting is that research word around bone marrow deals
with the following topics (the added or substituted head words): transplantation,
cell, macrophage whereas the modifier relations suggest the different “types” of bone
marrow which are being studied (CD11b+, immature, mouse, transgenic, murine,
autologous, normal, adult, etc.)

1.2 Normalizing the MWTs from the GENIA corpus

The GENIA project (Kim et al., 2003) is an annotated corpus built to facilitate
textmining in the field of genomics and thus promote bioinformatics using NLP
techniques. It is also aimed, according to its authors, as a “gold standard for the
evaluation of textmining systems” (Kim et al., 2003). This corpus deals with bio-
logical reactions concerning transcription factors in human blood cells. Utilizing the
MEDLINE database and the MeSH headings “human”, “blood cell” and “transcrip-
tion factor”, the titles and abstracts of 2 000 articles 4 were collected comprising
more than 400 000 tokens. The corpus was manually enriched in XML by two do-
main experts. This led to almost 100 000 semantic annotations of which 26 789
unique terms were explicitly identified. Each biological term is assigned a semantic
category from an embryon of a humanly constructed ontology, the GENIA ontology
(see Figure 3). This is an example of a sentence from the GENIA corpus:

<cons lex="IL-2_gene_expression" sem="G#other_name">

<cons lex="IL-2_gene" sem="G#DNA_domain_or_region">

<w c="NN">IL-2</w><w c="NN">gene</w></cons>

<w c="NN">expression</w></cons>

<w c="CC">and</w>

<cons lex="NF-kappa_B_activation" sem="G#other_name">

<cons lex="NF-kappa_B" sem="G#protein_molecule">

<w c="NN">NF-kappa</w> <w c="NN">B</w></cons>

<w c="NN">activation</w></cons>

4 Version 3.0x, http://www-tsujii.is.s.u-tokyo.ac.jp/∼genia/topics/Corpus/
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Notice that the underlying XML markup of the terms facilitates the identification
of constituent MWTs, so “IL-2 gene” is a term in its own right which modifies
the head “expression” to produce the full term in this instance, “IL-2 gene expres-
sion”. Similarly, the GENIA annotation scheme disambiguates ellipsis in coordi-
nated clauses by making explicit the terms involved. However, the GENIA corpus
was not devoid of problems from an NLP perspective. There were many morpho-
logical variants amongst the terms which, unless corrected, would lead to spuri-
ous analyses in later stages. It was necessary to handle these variations in order
to identify synonymous MWTs. We thus performed some normalizations on the
terms which consisted in lower-case form of every word whenever it exists in the
corpus, harmonizing arbitrary punctuation use (for instance, “gamma C chain” &
“gamma (c) chain”), harmonizing the irregular use of special characters (hyphens,
slash, parenthesis, etc) and retaining the singular form of each word. For instance,
“Ca(2+)-dependent pathway” becomes “Ca(2+) dependent pathway”. This is an ad-
hoc processing which will have to be adapted to each corpus, especially in technical
domains where variation phenomena are frequent.

2 Structuring MultiWord Terms

We describe in detail the types of variations used to relate the MWTs (Section
2.1), the filtering process performed for certain variation types (Section 2.2). These
variations then serve as basis for the three-level structuring effected on MWTs in
order to map them into domain topics (Section 2.3).

2.1 Lexical structuring of MWTs

The structuring capability of variation relations for a domain terminology has been
attested in several studies. Under certain lexico-grammatical constraints 5 , syntac-
tic variations yield conceptual relations between terms. This hypothesis is current
in computational terminology studies. Nenadic et al. (2004); Grabar and Zweigen-
baum (2004) measured the “lexical similarity” between terms, i.e., “the number of
commonly shared words between a pair of terms”. In our study, we considered two
types of syntactic variations: the addition (expansion) or substitution of nominal
elements within a MWT. The two operations take place in the two syntactic struc-
tures: compound or syntagmatic (with a PP attachment) and can be viewed along
the grammatical axis depending on whether they affect the head or modifier words.
These variations have been described in (Ibekwe-SanJuan, 1998), we will recall them
briefly here.

Expansions (or lexical inclusion) are subdivided into three types according to the
position of the added words: left-expansion (L-Exp) is the addition of new modifier
words and right-expansion (R-Exp) the addition of a new head. The combination of
these two types results in left-right expansions (LR-Exp). The addition of modifier
words within a term results in an Insertion (Ins). Expansions (lexical inclusion)
engender asymmetrical relations in that they relate MWTs of different lengths, one
being a subpart of the other. They are further constrained because we consider the

5 The position, the morphological category and the grammatical role of inserted
words in a term variant
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addition of adjacent nominal elements (nouns, adjectives). This lessens the possi-
bility of relating as variants, terms which are semantically distant.

Substitutions also subdivide into two types, modifier substitution (M-Sub) and
head substitution (H-Sub) and identify variants of the same length (symmetrical
links). This relation holds only between MWTs where one and only one word is
different. An example of the rule identifying M-Sub is :

(t2 is a M-Sub of t1)⇐⇒ ((t1 = M1mM2 h) and (t2 = M1m
′M2 h) with m′ 6= m)

where t1, t2 are multiword terms, M1,M2 are strings of optional modifier words,
m,m′ are non-empty modifier words and h is the head noun.

Table (1) gives some examples of the syntactic variants found for “blood cell”. The
last two columns indicate the number of MWTs exhibiting each relation and the
number of links this creates across the document collection.

Types Example: blood cell Terms Links

Expansions L-Exp mononuclear blood cell 10 153 5352
R-Exp blood cell receptor 7337 6641
LR-Exp white blood cell count 3767 3698
Ins blood mononuclear cell 6133 4821

Substitutions M-Sub stromal cell 14 865 437 291
H-Sub blood pressure 11 702 111 068

Table 1. Types and proportion of syntactic variations found in the GENIA corpus.

86% (23 314) of the MWTs found in the Genia corpus are involved in one or more
types of syntactic variations. These represent general linguistic operations which
can relate a high proportion of terms within the corpus, thus their coverage is very
satisfactory.

2.2 Analyzing and filtering syntactic relations

The rationale in distinguishing modifier and head variations is that they do not
convey the same linguistic information. Modifier variations affect the qualifiers
whereas head variations fundamentally change the concept family. For this reason,
left-expansion (L-Exp) naturally reflects the fact that more specific MWTs have
more modifiers. However, the resulting conceptual relations are not straightforward
for insertions (Ins) as changing the head-modifier relations of a MWT creates a
structural (and therefore conceptual) ambiguity. For example, “HIV 1 expression”
IS A kind of “HIV expression” but this certainty diminishes as the number of in-
serted modifiers increases, “HIV 2 gene expression” and “HIV LTR driven luciferase
expression”. With this in mind, insertions that involve only a single additional (Ins-
1) modifier and left-expansions are used to create IS A hierarchies around concept
families. This permits a MWT to have more than one parent (see Figure 1).

These observations suggest that among the variations that do not change the head
word, left-expansions (L-Exp) and (Ins-1) should be given priority for building com-
ponents (2nd level structuring) if we want to obtain homogeneous clusters vis-à-vis
the Genia ontology.
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Fig. 1. Fragment of the conceptual hierarchy

Substitutions engender transversal relations between terms. Therefore, the resulting
conceptual relation is a more general RELATEDNESS. Modifier substitutions (M-Sub)
can denote members of the same concept family with alternative qualifications,
siblings in an IS A hierarchy. The conceptual shift engendered by head substitutions
(H-Sub), on the other hand, links different IS A hierarchies at the same level of
specificity.

For example, in Figure 1, “gene expression” and “gene transcription” are head
substitutions and the conceptual link is close: the “expression” of a “gene” is the
result of its “transcription”. However, the same variation also links “gene” as it
modifies the two word MWTs headed by “regulation”, “knockout”, “activation”
and “product”, to name only a few. As Table (1) shows, substitutions are by far the
most frequent type of variations with the vast majority of the links. For this reason,
they are further filtered using WordNet’s lexical taxonomy (Fellbaum, 1998).

WordNet Substitutions (WN-Sub) are those in which the substituted words belong
to the same synset. These variations follow the head/modifier distinction but, unlike
syntactic substitutions, both the head and modifier can be substituted between two
MWTs as in hormone effect and endocrine event.

WordNet Example MWT 1 Example MWT 2

M-Sub strong transcriptional repressor potent transcriptional repressor

H-Sub inflammatory reaction inflammatory response

HM-Sub hormone effect endocrine event

Table 2. Semantic variations identified through WordNet

Using a general lexical resource like WordNet to relate the MWTs identifies those
words that are both related in a general vocabulary. Evaluating the overlap in
“general knowledge” and “specialized knowledge” brings two observations. First,
the coverage of WordNet over the Genia corpus is limited with the result that WN-
Subs are relatively rare. Second, the actual conceptual relation they produce in a
specialized field can differ from the generic one suggested by a general language re-
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source. For instance, within the genomic domain, “strong” refers to the degree to
which a “repressor” binds to the DNA whereas “potent” refers to the degree of its
effect. Similarly, an “inflammatory response” causes an “inflammatory reaction”
(the process of becoming inflamed). These are clearly more related than the syntac-
tic substitutions but they are not synonyms as WordNet synsets seem to suggest.
However, the fact that WordNet relates them is good enough for the clustering task
because they will end up in the same component, and thus be strongly related in
the resulting domain knowledge structure. Despite the fact that general resources
cannot capture the explicit conceptual relation between specialized domain terms,
we still highly improved the precision of the substitutions variants using WordNet,
in the sense that 97% of the WN-Subs linked semantically related terms. Of course,
such high precision score implies very low recall. Only 304 links were present in
WordNet among the 548 359 possible substitutions found in the corpus. This low
recall score does not seem to be a major drawback in our approach. On the con-
trary, we will see later in Section 2.3.2 that we need to severely restrict the set of
substitutions in other to avoid the chain effect, well known in clustering approaches
that compute connected components.

2.3 Mapping a Domain Terminology

The aim is to produce knowledge maps of important clusters reflecting domain
topics and their associations. We first describe the clustering algorithm (Section
2.3.1) and its application to the GENIA MWTs (Section 2.3.2).

2.3.1 Term variant clustering

The variation relations used as basis for the clustering are represented as a graph. We
recall briefly the functioning of the algorithm. Clustering is a two-stage process. First
the algorithm builds connected components using a subset of the variation relations,
usually the modifier relations (L-Exp, Ins, M-Sub) but observations made in Section
2.2 induced the choice of only constrained expansions and WordNet Substitutions
(see Section 2.3.2 for more details) in the present experiment. We call these COMP
relations.

The transitive closure COMP* of COMP partitions the whole set of MWTs into
components. These connected components are sub-graphs of MWT variants that
share the same head word or a synonym attested by WordNet synsets. At the
second stage, the connected components are clustered into classes using the head
relations (R-Exp, LR-Exp, H-sub), this subset of relations is called CLAS. At this
stage, components whose terms are in one of the CLAS relations are grouped basing
on a similarity coefficient s computed thus:

s(i, j) =
∑

R∈CLAS

NR(i, j)

|R|

where R is a variation relation in CLAS, |R| is the number of pairs of terms related
by R and NR(i, j) is the number of these pairs between components i and j. More
details can be found in (Ibekwe-SanJuan and SanJuan, 2004).
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Fig. 2. Graphs of Term Variant clusters displayed with AiSee

2.3.2 Clustering the GENIA term variants

Preliminary clustering tests and the observations made in Section 2.2 led us to
modify the roles usually assigned to the syntactic variations in the TermWatch
system for the Genia corpus. Following observations in this section, we further split
L-Exp into two sub-relations: strong-L-Exp and weak-L-Exp according to if there
was a unique or more appended modifiers. We selected WN-Sub and strong-L-
Exp as COMP relations whereas Ins, weak-L-Exp, R-Exp, LR-Exp served as CLAS
variations. Consequently, terms sharing the same connected component can have
different heads, semantically related through WordNet synsets. Conversely, weak-
expansions and insertions were excluded from the COMP set of relations because
they led to too big components (≥ 2 000 terms) on this corpus.

Empirical tests showed the clusters produced at the 2nd iteration of the algorithm
to be the most legible in terms of size and content. This produced 1 664 clusters,
6 151 components and a total of 10 285 MWTs in the clusters. The output of the
clustering module is automatically formatted in the Graph description language
(GDL) used by AiSee for visualization. To visualize the underlying structure of the
network of clusters, the user can temporarily hide very weak links between them.
This gives Figure 2(a). Each cluster is labelled automatically by the term that shares
the most number of variation links outside the cluster. The global image obtained
exhibits a star shape with a central core, related to a cyclic subgraph (see Figure
2(a) that shows the structure of this graph). By order of importance, the central
position is occupied by a big cluster labeled “T-Cell” with 374 terms. A second
smaller sub network is formed around the cluster labelled “gene expression” with
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235 terms.

Each cluster can be unfolded to show its internal structure: the connected compo-
nents, the most active term variants. The user can thus immediately perceive the
most salient features of a cluster. In Figure 2 (b), we unfolded the cluster “blood
cell” to show an internal link between the main component “blood cell” (that gave
its name to the cluster) and other related topics like “white blood cell count”, “cord
blood”. This kind of interactive manipulations using the AiSee interface allows the
user to access simultaneously the three levels of the clustering results: clusters, com-
ponents and terms. The length of an arc has a straightforward meaning here. The
higher is the number of variants between two clusters, the shorter is the arc between
them. The sub-network labelled “T lymphocyte”, “B lymphocyte”, “T lymphocyte
activation mechanism” forms a linear graph, that is chains of relatively long vertices
starting from a central class to the border of the graph which have rarely more than
one outgoing link. The visualization interface naturally aligns the elements of these
linear graphs, thus highlighting them.

The two clusters “T lymphocyte” and “B lymphocyte” contain respectively terms
like “activated T lymphocyte”, “human peripheral lymphocyte”, “activated peripheral
blood lymphocyte”, “B lymphocyte specific mb 1 gene”, “normal B lymphocyte” and
“B lymphocyte growth transformation”. Their link with the clusters dealing with the
“blood cell” and “white blood cell” or “leucocytes” is coherent because a “lymphocyte
is a form of leucocyte occurring in the blood”, “in the lymph” and a “lymph is
a colourless fluid containing white blood cells” 6 . TermWatch thus seems to have
effected coherent thematic associations in the domain via syntactic variations and
few WN-Subs found in the corpus. We will now examine to what extent the clusters
are consistent with the hand-built GENIA ontology.

3 Evaluation of the clusters against the GENIA ontology

A clustering process is supposed to group together similar objects basing on some
criteria. For domain knowledge mapping (DKM) and text mining systems, the cri-
teria are usually statistical (co-occurrence) of text units. Here we relied on symbolic
criteria: the number and type of variation relations between terms which result in
iteratively grouping sets of related MWTs. Although, we produce a sort of hierarchy
(the inclusion of one cluster into another), it is a formal hierarchy stemming from
a clustering algorithm, fundamentally different from the semantic hierarchy in an
ontology. Mapped onto a 2D space, results from a clustering algorithm are meant
to highlight spatial structures whose interpretations hold a strategic dimension, 7

for science and technology watch. This is quite different from the interpretations
made on the hierarchy resulting from an ontology or any other semantic organiza-
tion of domain concepts. However, any ontology induces an idea of similarity. The
comparison of the two structures are based on the following assumptions:

Assumption 1: two terms from the GENIA ontology can be considered close if they
were assigned the same semantic category, or if the level of the common subsuming

6 Concise Oxford Dictionary, Allen R.E. (eds.). 8th Edition, 708-709
7 The notions of “central” vs “border” topics, topic “growth” and “obsolescence”
are crucial here.
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concept is not too far from the nodes considered.

Assumption 2: TermWatch’s clusters supposes a weaker “semantic proximity”
between terms in the same component and by extension, in the same cluster.

Assumption 3: for the evaluation task, we hypothesize that the distance between
the two structurings may not be as big as the underlying organizing principles in
both structures may suggest.

To test these assumptions, we try to answer the following question: i f two terms
are close in the GENIA ontology (according to “assumption 1”), do they tend to
appear in the same cluster in the TermWatch output ?

For that purpose, let us call atomic category the categories at the leaves of the
GENIA ontology that are different from “other name”. Then we map the set of
clusters into the GENIA ontology by associating each cluster with its dominant
atomic category, i.e. the atomic category that has the highest number of terms in
the cluster.

By way of example, component 363 has five terms. Four of them: “NF kappaB”,
“lung NF kappaB”, “mammalian NF kappaB”, “nuclear NF kappaB” are in the
“protein complex” category, and only the fifth one: “cytoplasmic NF kappaB” comes
from a different category: “protein molecule”. Since four terms out of five in this
component belong to category “protein complex” in the GENIA ontology, this is
the category associated with this component which clearly has a high degree of
homogeneity (80%) vis-à-vis the GENIA ontology. This component is an element of
cluster 646 that has the same label “NF kappaB” but is not associated to the same
dominant GENIA group as shown in Table 3.

Indeed, this table shows the categories associated with the nine clusters having more
than 50 terms in categories different from “other name”. The numbers and labels of
the clusters are given in the fourth and the fifth columns. The associated category
(the dominant one) is given in the last column. The first column “NbG” shows the
number of terms in the cluster that share the dominant category, the second column
“NbC” shows the total number of terms in the cluster and the third column gives
the ratio between the previous two numbers.

NBG NBC rate cluster label category

32 81 0.39 646 NF kappaB protein molecule
30 67 0.44 1700 mouse gene DNA domain or region
43 96 0.44 1791 DNA binding protein family or group
31 54 0.57 1260 response element DNA domain or region
218 364 0.59 628 cell line T-cell
47 72 0.65 1561 E-Box DNA domain or region
42 63 0.66 618 human enhancer DNA domain or region
78 111 0.70 336 binding site DNA domain or region
45 61 0.73 808 N-terminal domain protein domain or region

Table 3. GENIA categories associated with the biggest clusters

Hence, table 3 shows that the biggest clusters produced by TermWatch have more
than 40% of their terms in the same GENIA category, except for cluster 646. These
categories are also the most frequent in the GENIA corpus. However, we show in the
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sequel that other categories also appear in the clustering output, notwithstanding
their low frequency. A low score does not however signify that a cluster is an error
with regard to the GENIA ontology. Analyzing cluster 646 whose dominant GENIA
category (“protein molecule”) represents only 39% of its terms, we find out that all
the GENIA categories of terms in this cluster are subsumed under the same common
father concept in the ontology, namely “protein”. We present now some statistics
to verify if these local observations apply for to the majority of the components and
clusters.

First, we compute the number of components and clusters associated to each atomic
category of the GENIA ontology. For that purpose we consider :

• the distribution dG of the most frequent GENIA categories in the original corpus
over the total number of term occurrence in the GENIA corpus.

• the distributions dcomp and dclass of dominant categories in components and in
clusters respectively.

Thus, for a given category c like “protein molecule” which is the most frequent
category in the GENIA ontology,

dG(c) is the number of term occurrence in the GENIA corpus having the category
“c”= “protein molecule” which is 15 348 in this case, divided by the total number
of occurrences.

dcomp(c) is the number of components in TermWatch output, of which the majority
of the terms are in category c (4 493 in this case), divided by the total number
of components.

dclass(c) is the same as dcomp(c) except that we consider clusters instead of compo-
nents. 778 clusters are associated with “protein molecule”.

The right topmost graphic in Figure 3 (“Distribution of categories in GENIA corpus,
TermWatch components and classes”) allows us to compare the 12 topmost values
of dG (represented by the upper black bars) with the corresponding values of dcomp
and dclass respectively represented by the middle grey bars and the lowest white
bars respectively.

This figure shows that clusters, more than components, lessens the deviation from
the distribution of GENIA categories in the corpus (except for the small category
“lipid”. In fact, dcomp(c) is much lower than dG(c) whenever category c contains
terms like “T-cell” that generate huge components which only account for one oc-
currence of the category.

Now we use the concepts of precision and recall to analyze the quality of these
mappings. Since we are not evaluating here a Q-A performance but the ability of a
clustering algorithm to discern terms from different semantic categories, we defined
recall and precision slightly differently from the way in which they are used in
Information Retrieval. This is more suited to evaluating the clustering performance
of a system when a reference classification is known. We define formally the precision
and recall functions we computed.
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GENIA ontology

Fig. 3. Mapping GENIA categories onto TermWatch clusters.

We identify each GENIA categoryG with the set of included terms. Let G be a family
of GENIA categories and let X be a family of clusters (components or classes). Using
these notations we clearly have the equality: |GX ∩X| = max{|G ∩X| : G ∈ G}.
Precision p can be defined for any a cluster X as the proportion of terms in X that
are in GX :

p(X) =
|GX ∩X|
|X|

Hence, knowing that a term t is in a cluster X, the value v = p(X) is the conditional
probability GX |X of finding effectively t in the category GX .

The recall r is defined for any precision value v = p(X) as the proportion of clusters
whose precision is higher than v:

r(v) =
|{X ∈ X : p(X) ≥ v}|

|X |

Precision/recall functions associate with each value v ∈ [0, 1] the corresponding
recall value. They are decreasing one-to-one functions. In fact, the precision/recall
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functions defined here roughly correspond to those induced by the following the-
oretical IR system where documents are assumed to be the terms in the clusters,
and the set of categories is viewed as a set of queries. Then for each category, the
system would retrieve the list of terms in clusters where this category is dominant.
The analogy would be perfect if all the clusters had the same size. Let us now apply
these concepts to the clusters. The right bottom graphic in Figure 3 shows three
precision/recall functions computed using different families of clusters X and dif-
ferent families G of categories. The uppermost bold line curve shows the function
obtained by setting X to the whole set of components, and G to the whole set of
GENIA atomic categories. It shows that the syntactic variations used to cluster
terms into components link essentially terms in the same GENIA category. For in-
stance, 48% of the components have terms from the same GENIA category, thus a
100% inclusion in one semantic type, while 95% of the components still attain 70%
inclusion in one category. This is not entirely surprising as components are formed
by variations affecting the modifier elements in a term, thus components have the
same head word or a synonym attested by WordNet synsets.

Clusters on the other hand group several components, thus variants with different
heads. The lowest dashed curve shows the precision/recall function by setting X
to the clusters and naturally, the semantic inclusion in one category is much lower
than for the components. Still a comparable proportion of classes (46%) have a
100% semantic inclusion in one GENIA category but as we consider more classes,
this figure drops. When we consider practically all the clusters (95%), only 41%
(683 clusters) of them show 100% semantic inclusion in one GENIA category.

We then considered the upper categories in the GENIA taxonomy by merging to-
gether terms belonging to the same common parent category, thus by changing the
previous G family of considered categories. For instance, we merged on the one hand,
terms on the super categories “DNA” and “RNA”, and on the other hand, terms
from categories containing “cell” (“cell type”, “cell components”, “cell line”) into
their super category: “source”. We then mapped these upper-level categories onto
the clusters. We observed that the semantic inclusion of the clusters increased and
moved closer to the distribution of the ontology categories in the components. This
is represented by the middle dotted curve on the Figure 3.

Hence the evaluation of the clusters against the GENIA ontology showed the con-
tents to be thematically coherent. These findings suggest:

• that forming clusters by syntactic variations is a sound linguistic approach which
links together conceptually related terms,

• that naturally, components tend to be monolithic in terms of semantic class, i.e,
they link together one family of concepts sharing different attributes,

• that TermWatch’s clusters, while not being monolithic in terms of semantic class
still group together coherent domain topics which are logically associated,

• that finally, whilst not targeting specifically the construction of a taxonomy or
an ontology, the map of domain topics generated reflects this structure to a cer-
tain extent and thus offers a graphic and synthetic way of exploring a domain’s
knowledge structures.
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4 Discussion

Structuring multiword terms using symbolic criteria is a promising research concern
as it enables us to discover automatically meaningful associations between domain
concepts which are useful for several tasks. We are currently seeking ways to inte-
grate this multi-level structuring in a Question Answering (Q-A) application. We
briefly describe the Q-A system and discuss ways of integrating the two approaches
as well as other points of improvement.

ExtrAns is a Question Answering system aimed at restricted domains, in particu-
lar terminology-rich domains (Rinaldi et al., 2004b). While open domain Question
Answering systems are targeted at large text collections and use relatively little
linguistic information, ExtrAns answers questions over such domains by exploiting
linguistic knowledge from the documents and terminological knowledge about a spe-
cific domain. Various applications of the ExtrAns system have been developed, from
the original prototype aimed at the Unix documentation files to a version targeting
the Aircraft Maintenance Manuals (AMM) of the Airbus A320 (Mollá et al., 2003).
Recently the system has been applied to document collections based on scientific
literature in the “Life Sciences” area (Rinaldi et al., 2004a). ExtrAns’s approach to
Question Answering is particularly computationally intensive: this allows a deeper
linguistic analysis to be performed, at the cost of higher processing time. The docu-
ments are analyzed in an off-line stage and transformed in a semantic representation,
based on logical forms which is stored in a Knowledge Base (KB). Documents (and
queries) are subjected to the same processing stages: first they are tokenized, then
they go through a terminology-processing module. If a term belonging to a synset
in the terminological knowledge base is detected, then the term is replaced by a
synset identifier in the logical form. This results in a canonical form, where the
synset identifier denotes the concept that each of the terms in the synset names.
In this way any term contained in a user query is automatically mapped to all its
variants. This approach amounts to an implicit “terminological normalization” for
the domain, where the synset identifier can be taken as a reference to the “concept”
that each of the terms in the synset describes.

Unlike sentences in documents, user queries are processed on-line and the resulting
semantic representations are proved by deduction over the contents of the KB. When
no direct answer for a user query can be found, the system is able to relax the proof
criteria in a stepwise manner. First, hyponyms are added to the query terms. This
makes the query more general but maintains its logical correctness. If no answers
can be found or the user determines that they are not good answers, the system will
attempt approximate matching, in which the sentence that has the highest overlap
of predicates with the query is retrieved. The matching sentences are scored and
the best matches are returned.

The multi-level terminology structuring scheme presented here can be effectively
exploited in locating answers. The answer strategy that we are considering can be
summarized as: 8

8 While steps (1-3) are actually implemented, step (4) is currently under experi-
mentation.
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(1) First, extract potential answers that involve strictly synonymous MWTs.

(2) Second, look for potential answers with WordNet related MWTs.

(3) Third, try hypernyms/hyponyms acquired through lexico-syntactic patterns.

(4) Finally, allow the user to browse the clusters of MWTs to comprehend the
conceptual organization of the research topics and identify which terms are of
interest to his query.

This set then becomes the basis of a second round of answering specific questions.
In this way the system can provide useful access to users by facilitating navigation
through a domain of unfamiliar MWTs. For example, when looking for general
information on “blood cell” a user may well be interested in its “count”, the second
different head word in this cluster (see Figure 2). By presenting the graph of clusters,
the user can also browse related topics (T lymphocyte, Peripheral blood, Peripheral
blood mononuclear leucocyte, cord blood, T lymphocyte, B lymphocyte) and thus
grasp the different topics addressed in the corpus in connection with “blood cell”
before deciding on more precise terms for the query. The clusters can thus assist
the query refinement process. However, experiments involving real users are still to
be carried out in order to test these hypotheses.

Other areas of improvement on the current work are the acquisition of semantically
related terms through the use of lexico-syntactic patterns found in the corpus. We
have seen that some of the syntactic variations needed to be filtered through se-
mantic constraints, and that using an external resource is often limited in terms
of corpus vocabulary coverage. This resulted in a drastic drop in the number of
semantically related terms recovered. To overcome this handicap, we identified se-
mantically related terms using the lexico-syntactic cues basing on works done by
Hearst (1992) and Morin & Jacquemin (2003) for hypernym/hyponym relations.
In this case, the evidence for a semantic relation between MWTs comes from the
corpus itself. The underlying hypothesis is that semantic relations can be expressed
via a variety of surface lexical and syntactic patterns. These relations will aug-
ment the ones already used for clustering and will constitute a higher order level of
structuring which selects semantically related terms from amongst the other lexical
associations. They are yet to be integrated into the clustering algorithm. This will
involve a re-ordering of the whole set of relations according to a scale of “semantic
proximity” they engender between two terms. Following the outcome, each relation
type will be assigned a role (COMP or CLAS) during the classification.

Lastly, there is need to compare the output of the clustering algorithm used in
TermWatch with other existing algorithms based on statistical criterion (co-occur-
rence). To this end, we tried clustering the list of GENIA terms using a standard
clustering method 9 . It takes as input the number of co-occurrence of terms in GE-
NIA corpus. We also computed the resulting precision/recall functions as in Figure
3, but none of them reached 35% of recall for 50% of precision. This poor perfor-
mance is due to very low co-occurrence values (more than 33% of terms have less

9 FASTCLUST and CLUSTER procedures in SAS system for Windows ’V8 SAS
Institute Inc., Cary, NC, USA.)
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than two occurrences in the abstracts). To increase these values, it is necessary to
take into account the variation phenomena. This can be done only by taking into
account symbolic relations between the clustered units. Further and more profound
experiments need to be carried out to compare TermWatch’s output to other sta-
tistical clustering methods. Meanwhile, from this experiment, it appears that the
co-occurrence paradigm is not suited to uncovering, from the corpus, the semantic
links annotated in the GENIA ontology.
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