
HAL Id: hal-00636122
https://hal.science/hal-00636122v1

Submitted on 26 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling Self-Suspending Periodic Real-Time Tasks
Using Model Checking

Yasmina Abdeddaïm, Damien Masson

To cite this version:
Yasmina Abdeddaïm, Damien Masson. Scheduling Self-Suspending Periodic Real-Time Tasks Using
Model Checking. RTSS 2011 WiP, Nov 2011, Vienne, Austria. pp.37–40. �hal-00636122�

https://hal.science/hal-00636122v1
https://hal.archives-ouvertes.fr


Scheduling Self-Suspending Periodic Real-Time Tasks Using
Model Checking

Yasmina Abdeddaı̈m and Damien Masson
Université Paris-Est, LIGM UMR CNRS 8049, ESIEE Paris,

2 bld Blaise Pascal, BP 99, 93162 Noisy-le-Grand CEDEX, France
Email: {y.abdeddaim/d.masson}@esiee.fr

Abstract—In this paper, we address the problem of scheduling
periodic, possibly self-suspending, real-time tasks. We provide
schedulability tests for PFP and EDF and a feasibility test using
model checking. This is done both with and without the restric-
tion of work-conserving schedules. We also provide a method to
test the sustainability w.r.t the execution and suspension durations
of the schedulability and feasibility properties within a restricted
interval. Finally we show how to generate an on-line scheduler
for such systems when they are feasible.

I. INTRODUCTION

A real-time task can suspend itself when it has to com-
municate, to synchronize or to perform external input/output
operations. Classical models neglect self-suspensions, consid-
ering them as a part of the task computation time [1]. Models
that explicitly consider suspension durations exist but their
analysis is proved difficult: in [2], the authors present three
negative results on systems composed by hard real-time self-
suspending periodic tasks scheduled on-line. We propose in
this paper the use of model checking on timed automata to
address these three negative results: 1) the scheduling problem
for self-suspending tasks is NP-hard in the strong sense, 2)
classical algorithms do not maximize tasks completed by their
deadlines and 3) scheduling anomalies can occur at run-time.
Result 1) means that there cannot exist a non-clairvoyant on-
line algorithm that takes its decisions in a polynomial time and
always successfully schedules a feasible self-suspending task
set. We so propose to use model checking to generate off-line
a feasible scheduler for each specific instances of the problem,
i.e. for each task sets. Result 2) implies that traditional on-line
schedulers are not optimal, whereas our approach is. Result 3)
points out that changing the properties of a feasible task set in
a positive way (e.g. reducing an execution or a suspension
duration, extending a period) can affect its feasibility. We
prove that our approach is sustainable w.r.t execution and
suspension durations.
Related work: In [3], the authors prove that the critical
scheduling instant characterization is easier in the context of
sporadic real-time tasks. They provide, for systems scheduled
under a rate-monotonic priority assignment rule, a pseudo-
polynomial response-time test. The rest of the literature on
self-suspending tasks focus on the multiprocessor context [4],
[5]. Our approach addresses the problem for periodic tasks,
and is not restricted to RM. The timed automata approach
has been already used to solve job shop scheduling problems
[6], [7]. In [8], the authors present a model based on timed
automata to solve real-time scheduling problems, but this

model cannot be applied to self-suspending tasks because of
the way the preemptions are modeled. Moreover, it intrinsi-
cally considers work-conserving schedules and cannot handle
uncertain times.
Contributions: In this paper, we propose a timed-automata-
based model for hard real-time periodic self-suspending tasks.
We show how to use model checking to obtain both a
necessary and sufficient feasibility test, and a schedulability
test for classical scheduling policy (RM, DM, EDF). When
these algorithms fail to schedule a feasible system, we show
how to generate an appropriate scheduler. We also consider the
cases where both the execution time and the suspension time
of each task are uncertain. The generated schedulers then have
an important property: the feasibility of a task set is sustainable
w.r.t the execution and suspension durations.

Sect. II presents the task model, Sect. III introduces the self-
suspending task automaton, Sect. IV exposes how to check
the feasibility and the schedulability with PFP and EDF, and
how to generate a sustainable scheduler. Sect. V presents
experiments and finally we conclude.

II. SELF-SUSPENDING TASK MODEL

Task Model and assumptions: We consider the problem of
scheduling a system Σ = {τ1, ..., τn} of n independent possi-
bly self-suspending periodic tasks synchronously activated on
one processor. A task which does not suspend itself is charac-
terized by the tuple τi = (Ci, Ti, Di) where Ci is its execution
time, Ti its period and Di its relative deadline with Di ≤ Ti.
A task which suspends itself is characterized by the tuple τi =
(Pi, Ti, Di) where Pi is its execution pattern. An execution
pattern is a tuple Pi = (C1

i , E
1
i , C

2
i , E

2
i , ..., C

m
i ) where each

Cji is an execution time and each Eji a suspension time. When
these parameters can take values within an interval, we refer to
the tasks as uncertain tasks and the execution pattern becomes
Pi = ([C1

i l, C
1
i u], [E1

i l, E
1
i u], [C2

i l, C
2
i u], ..., [Cmi l, C

m
i u]). To

simplify the notations, when there is no ambiguity, the task id
is not mentioned and the tuples becomes τ = (C, T,D) etc.
This model and notations are inspired by existing literature on
self suspending tasks [4], [1], [3], [2].
Sustainability: The schedulability of a task set with a given
algorithm is said sustainable w.r.t. a parameter when a schedu-
lable task set remains schedulable when this parameter is
changed in a positive way. The sustainability is an important
property since it permits to study the worst case scenario. In
our task model, execution and suspension durations can be
bounded within intervals. In the remaining of the paper, we

ha
l-0

06
36

12
2,

 v
er

si
on

 1
 - 

26
 O

ct
 2

01
1

Author manuscript, published in "Work-in-Progress Session of 32nd IEEE Real-Time Systems Symposium (WIP-RTSS'11), Vienne :
Austria (2011)"

http://hal-univ-mlv.archives-ouvertes.fr/hal-00636122/fr/
http://hal.archives-ouvertes.fr


i = m

cτ = C − 1 ∧ xτ = 1

xτ ≤ 1

cτ = C − 1 ∧ xτ = 1 ∧ i < m

xτ = E

e p

xτ ≤ E

f

xτ := 0

s

sp id

C := C0 ∧ i := 0

E := Ei ∧ xτ := 0

i := i+ 1 ∧ C := Ci ∧ cτ := 0

xτ := 0 ∧ cτ := 0 ∧ z := 1

cτ < C ∧ xτ = 0 ∧ z = 0

xτ := 0 ∧ z := 1

cτ := cτ + 1 ∧ xτ := 0 ∧ z := 0

cτ < C − 1 ∧ xτ = 1

Figure 1. Self-Suspending Task. UPPAAL model is available in [11]

say that the schedulability is sustainable when the task set
is feasible with all the possible values in the intervals. By
extension we say that an algorithm is sustainable when the
schedulability of a task set with this algorithm is sustainable.

III. THE SELF-SUSPENDING TIMED AUTOMATON MODEL

A timed automaton [9], is an automaton augmented with a
set of real variables X , called clocks. The firing of a transition
can be controled by a clock constraint called guard and a
location can be constrained by a staying condition called
invariant. A clock valuation is a function that associates
to a clock x its value v(x) and a configuration is a pair
(q, v) where q is a state of the automaton and v a vector of
clock valuations. A run is a sequence of timed and discrete
transitions, timed transitions representing the elapse of time
in a state, and discrete ones the transitions between states.
Synchronous communication between timed automata can be
done using input actions (a?) and output actions (a!).
Self-Suspending Timed Automaton: Let τ = (P, T,D)
be a self-suspending task. We associate to τ a timed au-
tomaton Aτ (Fig. 1) with one clock xτ and of states Q =
{s, e, f, p, sp, id}. State s is the waiting state where the task
is active, e the execution state, p the state where the task
is preempted, f is the one where the task has finished its
execution, sp the suspension state and id is an idle state used
to model a possible idle step. To compute the execution time
of a task, we use the clock xτ and a variable cτ as follows: the
automaton can stay in the execution state exactly one time unit
and the variable cτ keeps track of how many time units have
been performed. This is represented by an invariant xτ ≤ 1
on state e and a loop transition that increments cτ . The guard
cτ < C − 1 restricts the number of loop transitions. The
preemption of the task is modeled using transitions from e
to p and from p to e. Note that the modeling of preemption
at any time is not possible using timed automata because
clock variables cannot be stopped. Thus, it is supposed in this
model that a task can be preempted only at integer times. The
transition from e to id is enabled when the total time spent
in the active state is equal to C and the number of performed
step is less than m. To model the suspension of a task we use
the state sp. The automaton can stay in the state sp exactly E
time units. This is modeled using an invariant xτ ≤ E on the
state and a guard xτ = E. The task finishes when all the steps
have been computed. This is modeled using the guard i = m
from state e to state f . To make this task periodic of period
T , we use a second timed automaton AT with one state and
a loop transition enabled every T time units. This transition

is labeled with an output action T ! and synchronizes with
the transition from waiting state (f ) to active state (s) of the
automaton Aτ . Finally, we introduce a third automaton AD,
which models the deadline of the task using an output action
D! fired every D time units. We call the tuple (Aτ ,AT ,AD)
a A self-suspending automata model.

IV. SCHEDULABILITY USING MODEL CHECKING

Model checking is an automatic verification technique used
to prove formally whether a model satisfies a property or
not. In this section, we present how we use CTL [12] model
checking to test the feasibility of a task set, its schedulability
with PFP and EDF, and the sustainability of a schedule.

A. Feasibility and Schedulability

Let Σ = {τ1 . . . τn} be a finite set of self-suspending
tasks. We associate to every task τi a self-suspending automata
model (Aiτ ,AiT ,AiD). We use a global variable proc to ensure,
using a guard, that only one task is executing at once. We
introduce a new state STOPi for each automaton Aiτ , which
is reached if a task misses its deadline. For every non final
state of Aiτ , a transition labeled by an input action Di? leads to
state STOPi. These transitions synchronize with the deadline
automaton. Thus, if an instance of a task does not terminate
before its deadline, the automaton goes to the state STOPi.

Proposition 1 (feasibility): Let Σ = {τ1 . . . τn} be a set
of self-suspending tasks. Σ is feasible iff CTL Formula 1 is
satisfied.

φSched : EG¬(
∨

i∈[1,n]

STOPi)
1 (1)

Sketch of Proof: Proposition 1 states that the self-
suspending problem is feasible iff there exists a feasible
scheduling run i.e a run that never reached a STOP state.
Suppose that the scheduling problem Σ is feasible and Formula
1 is not satisfied. If the problem is feasible, then there exists a
schedule where all the instances of all tasks never miss their
deadline. This schedule corresponds in the self-suspending
automaton to a feasible scheduling run. This contradicts the
hypothesis that Proposition 1 is not satisfied. Suppose now
that Formula 1 is satisfied and the scheduling problem is not
feasible. If the formula is not satisfied, then all scheduling
runs are not feasible i.e all the scheduling run lead to a STOP
state. This contradicts the fact that the problem is feasible, the
contradiction comes from the fact that the automaton capture
all possible behaviors of task instances.

An on-line scheduling algorithm can be obtained using a
feasible run satisfying Formula 1 by simply reading sequen-
tially the configurations of the feasible run until reaching the
one where all active tasks have terminated their execution
without missing their deadline.

Proposition 2 (PFP Schedulability): Let Σ be a set of self-
suspending tasks sorted according to a priority function, with
τ1 ≤ . . . ≤ τn. Σ is feasible according to a fixed priority
scheduler iff CTL Formula 2 is satisfied.

1The operator A means for all paths, E there exists a path and G globally
in the future [12].

ha
l-0

06
36

12
2,

 v
er

si
on

 1
 - 

26
 O

ct
 2

01
1



i = m

e p

f

xτ := 0

s

sp id

Cu := C0
u ∧ Cl := C0

l ∧ i := 0

cτ ≥ Cl − 1 ∧ xτ = 1 ∧ i < m

cτ ≥ Cl − 1 ∧ xτ = 1

cτ < Cu ∧ xτ = 0 ∧ z = 0

xτ := 0 ∧ cτ := 0 ∧ z := 1

xτ ≤ 1 xτ := 0 ∧ z := 1

xτ ≥ El

Eu := Ei
u ∧ El := Ei

l ∧ xτ := 0

xτ ≤ Eu

i := i+ 1 ∧ Cu := Ci
u ∧ Cl := Ci

l ∧ cτ := 0

cτ := cτ + 1 ∧ xτ := 0 ∧ z := 0

cτ < Cu − 1 ∧ xτ = 1

Figure 2. Uncertain Self-Suspending Task. UPPAAL-TIGA model is available
at [11]. Uncontrollable transitions are represented using dashed lines.

φFP :EG¬(
∨

i∈[1,n−1]

(si
∧

j∈[i,n]

ej) ∨
∨

i∈[1,n−1]

(pi
∧

j∈[i,n]

ej)∨

(
∨

i∈[1,n]

STOPi))
(2)

Formula 2 states that there exists a feasible run where, in
all the configurations, a task cannot be in its execution state
if a less priority task is active i.e. in state s or p. The idea of
the proof is similar to the one of Proposition 1.

Proposition 3 (EDF Schedulability): Let Σ be a set of self-
suspending tasks. Σ is schedulable according to EDF iff CTL
Formula 3 is satisfied.

φedf :EG¬(
∨

i∈[1,n]

∨
j 6=i∈[1,n]

(si ∧ ej ∧ Pij)∨
i∈[1,n]

∨
j 6=i∈[1,n]

(pi ∧ ej ∧ Pij) ∨ (
∨

i∈[1,n]

STOPi))
(3)

Pij is a state of an observer automaton reachable when
xDi − xDj > Di − Dj with xDi and xDj the clocks of the
deadline automata AiD and AjD.

Formula 3 states that there exists a run where, in all the
configurations, a task cannot be in its execution state if a task
with a closer deadline is active. The idea of the proof is similar
to the one of Proposition 1.

B. Sustainable Scheduler

In a timed game automaton (TGA)[10], the set of transitions
is split into controllable (∆c) and uncontrollable (∆u) ones.
Solving a timed game consists in finding a strategy f s.t. a
TGA supervised by f always satisfies a given formula. Fig.
2 represents our model adapted to uncertain self-suspending
tasks. The start and preemption transitions are controlled by
the scheduler, while the transitions from state e to f , from e
to id and from sp to p are controlled by the environment. The
guard cτ ≥ Cl − 1 on transitions e to id and e to f models
that the task can terminate after Cl time units and the guard
cτ < Cu − 1 models that the task terminates before Cu time
units. The invariant xτ ≤ Cu and the guard xτ ≥ El from sp
to p models a suspension of a duration within [El, Eu].

Definition 1 (Scheduling strategy): Let A be a set of n
uncertain self-suspending task automata. A scheduling strategy
is a function f from the set of configurations of A to the set
∆1
c ∪ . . .∆n

c ∪{λ}. s.t. if f((q, v)) = e ∈ ∆c then execute the
controllable transition e and if f((q, v)) = λ then wait in the
configuration (q, v).

Proposition 4 (Sustainability): Let Σ = {τ1 . . . τn} be a
finite set of uncertain self-suspending tasks. A sustainable
scheduling algorithm exists for Σ iff there exists a scheduling
strategy f s.t the self-suspending timed game automata model
of Σ supervised by f satisfies the safety CTL Formula 4.

φsust : AG¬(
∨

i∈[1,n]

STOPi) (4)

Sketch of Proof: Formula 4 states that there exists a
strategy function f s.t. for every configuration of the task set
and every possible execution duration or suspension duration,
there is a way to avoid the STOP states. Let Σ be a set
of uncertain self-suspending tasks. Suppose that there exists
a sustainable feasible scheduler for Σ. Then, the strategy f
can be simply computed by defining a strategy that mimic
the decisions of the sustainable scheduler. Consider now that
there exists a feasible scheduling strategy for the timed game
satisfying Formula 4, then there exists a way for all the tasks
to not miss their deadline whatever are the execution and
the suspension durations. Thus this strategy can be used as
a sustainable scheduling algorithm.

Algorithm 1 Scheduling Strategy Algorithm
1: (q, v) ← (q0, v0), t ← 0

2: while q 6= q0 or t = 0 do
3: while f((q, v)) = λ or no task finished or no end of suspension do
4: Wait: increase v
5: end while
6: if f((q, v)) = tr ∈ ∆

j
c then

7: (qk, vk) is the successor of (q, v) while taking the transition tr

8: if ∃qj
k
6= qj and qj

k
= ej then

9: execute task τj at time t ← tk

10: end if
11: if ∃qj

k
6= qj and qj

k
= pj then

12: preempt task τj at time t ← tk

13: end if
14: if ∃qj

k
6= qj and qj

k
= spj then

15: suspend task τj at time t ← tk

16: end if
17: end if
18: if a task τj has finished then

19: (qk, vk) is the configuration (q, v) where qj
k
← fj, vk(x

j
τ ) ← 0

20: end if
21: if a task τj has terminate the suspension then

22: (qk, vk) is the configuration (q, v) where qj
k
← pj, vk(x

j
τ ) ← 0

23: end if
24: (q, v) ← (qk, vk)

25: end while

To provide a sustainable scheduling algorithm we need to
construct a feasible strategy if one exists. Such a strategy is
finite, because of the decidability of the timed game problem
[13]. Then an on-line scheduler is an algorithm that executes
the pre-computed strategy. This is formalized by Algorithm
12. According to the actual configuration, the scheduling
algorithm can decide 1) to stay in this configuration, i.e to
continue the execution of a task or let the processor idle (lines
3-5) ; or 2) to execute, preempt or suspend a task (lines 6-
17). Finally when an execution or a suspension terminates, the
algorithm computes the new configuration (lines 18-25).

Note that if the presented methods generate possibly idle
schedules, we can compute work-conserving schedules by
specifying this property in CTL Formulas 1, 2, 3 and 4.

2qji is the state of the automaton j in the configuration (qi, vi) ; q0 is the
initial configuration ; t is an additional global clock which is never reset ; ti
the valuation of the clock t in the configuration (qi, vi).

ha
l-0

06
36

12
2,

 v
er

si
on

 1
 - 

26
 O

ct
 2

01
1



���� ����

��
��
��
��

�
�
�

�
�
�
�
�
�
�

��
��
��
��

05 10 15 200 35 4025 30

τ2

τ1

DLM!

(a) RM−1: unfeasible

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���� ���
�
�
�

�
�
�

�
�
�

05 10 15 200 35 4025 30

τ1

τ2

DLM!

(b) RM : unfeasible

���� ���� �� ������ ���� �� ������ ���� �� ��

���� ���� �� ���� �� �� ������ ������ ���� �� ��

�
�
�
�

�
�
�

�
�
�

05 10 15 200 35 4025 30

τ1

τ2

DLM!

(c) EDF : unfeasible

���� ���� �� ������ ���� �� �� ��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��

��
��
��
��

����

��
��
��
��

����

�
�
�
�

�
�
�
�

05 10 15 200 35 4025 30

τ1

τ2

(d) TAAS: feasible

Figure 3. Feasible schedule exists but neither pfp or EDF is able to find it

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���� ����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�� �� �� ��

���� ���� ���� ���� ����

τ1

τ2

τ3

10 20 30 40 50 600

(a) Fixed priority preemptive policy:
feasible

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���� ����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�� ��

���� ���� ����

��
��
��
��
��
��
��
��

����

���� ����

���� ��

τ1

τ2

τ3

10 20 30 40 50 600

(b) But not sustainable

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���� ����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�� ��

���� ���� ��������

�
�
�
�

�� ��

����

�
�
�
�

��
��
��
��

��
��
��
��

τ1

τ2

τ3

10 20 30 40 50 600

(c) Sustainability can be enforced

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���� ����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�� ��

���� ���� ����

��
��
��
��

����

��
��
��
��

�� ����

��

τ1

τ2

τ3

10 20 30 40 50 600

(d) TAAS found a work-conserving
schedule

Figure 4. Sustainability

V. EXPERIMENTS

We used UPPAAL[14] and UPPAAL-TIGA[15] to implement
our model [11]. We tested it on two examples. The first is
composed by two regular self-suspending tasks. The second
is composed by three uncertain self-suspending tasks. Fig. 3
and Fig. 4 present the obtained results. White squares represent
suspension durations and hatched ones execution durations.
Example 1 (regular self-suspending tasks) In this exper-
iment, we have modeled the system Σ = {τ1, τ2} with
τ1 = ((1, 4, 1), 7, 7) and τ2 = ((1, 3, 1), 6, 6). We have first
used Formula 2 with RM priority assignments. The property
is not verified, this result permits us to conclude that the task
set is not schedulable according to RM. The same result is
obtained with the inversed priority assignment. Sub-Fig. 3(a)
and 3(b) validate these results: we see that τ2 effectively
misses a deadline at time 6 with inverse RM, and that τ1
misses a deadline at time 7 with RM. We have then used
Formula 3 to test the feasibility with EDF. The property is not
verified, this can be confirmed by Sub-Fig. 3(c) that shows
that τ2 misses a deadline at time 42 under EDF. Finally we
have used Formula 1 to test the unconstrained feasibility. The
property is verified, thus a feasible schedule exists for this task
problem. Using the produced feasible scheduling run, we are
effectively able to produce the schedule presented by Sub-Fig.
3(c) (TAAS stands for Timed-Automata-Assisted Scheduler).
Example 2 (uncertain self-suspending tasks) In this ex-
periment, we have modeled the system Σ = {τ1, τ2, τ3}
with τ1 = ((2, 2, 4), 10, 10), τ2 = ((2, 8, 2), 20, 20) and
τ3 = ((2), 11, 11), where τ1 has the highest priority and τ3
the lowest. We first have verified Formula 2: the property is
verified, the system is then feasible with a fixed priority sched-
uler. We then have modeled the system Σ∗ = {τ∗1 , τ2, τ3},
with τ∗1 = (([1, 2], [1, 2], 4), 10, 10). We have verified Formula
4 restricted to fixed priority schedulers on our model, the
property is not verified. We conclude that feasibility with a

fixed priority scheduler is not sustainable for this system. Sub-
figure 4(a) presents the schedule obtained with Σ. Sub-figure
4(b) presents the schedule with Σ∗ where the third instance
of τ1 executes with the pattern P1 = (

C1
1

2 ,
E1

1

2 , C
2
1 ). It results

in a deadline missed for τ3 at time 49. However, we have
tested Formula 4. The outcome is positive in both cases: valid
schedules restricted and non restricted to work-conserving
ones. The feasibility of the system is then sustainable (within
the intervals [Cil , C

i
u] and [Eil , E

i
u]) in the general case and

with a work-conserving scheduler. Indeed, there exists a simple
way to enforce the sustainability: forcing the system to insert
idle times when a task completes earlier than it was supposed
to. Fig. 4(c) shows the resulting schedule of this strategy. Fig.
4(d) presents a work-conserving feasible schedule which can
be obtained using the strategy generated by UPPAAL-TIGA.

VI. CONCLUSION

In this paper, we present how to use model checking to
solve a difficult scheduling problem: the scheduling of periodic
self-suspending tasks. We provide a feasibility test and schedu-
lability tests with PFP and EDF. We also provide a method
to test the sustainability of schedules w.r.t the execution and
suspension durations. This is done both with the restriction of
work-conserving schedules and in the general case. Finally our
approach permits to generate a scheduler for such systems.
Work in progress:

We first have to implement the scheduler generation and to
formalize the memory complexity of generated on-line sched-
ulers. Then we have to improve the way our automata handle
preemptions. Finally we have to extend our model to consider
multiprocessor platforms and tasks sporadic activation and
compare the results with the ones presented in [3].

REFERENCES

[1] J. W. S. W. Liu, Real-Time Systems, 1st ed. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2000.

[2] F. Ridouard, P. Richard, and F. Cottet, “Negative results for scheduling
independent hard real-time tasks with self-suspensions,” in RTSS, 2004.

[3] K. Lakshmanan and R. Rajkumar, “Scheduling self-suspending real-time
tasks with rate-monotonic priorities,” in RTAS’10, 2010.

[4] C. Liu and J. H. Anderson, “Task scheduling with self-suspensions in
soft real-time multiprocessor systems,” in RTSS’09, 2009.

[5] ——, “Improving the schedulability of sporadic self-suspending soft
real-time multiprocessor task systems,” in RTCSA’10, 2010.

[6] Y. Abdeddaı̈m, E. Asarin, and O. Maler, “On optimal scheduling under
uncertainty,” in TACAS’03, 2003.

[7] A. Fehnker, “Scheduling a steel plant with timed automata,” in
RTCSA’99, 1999.

[8] E. Fersman, P. Krcal, P. Pettersson, and W. Yi, “Task automata:
Schedulability, decidability and undecidability,” Inf. Comput., vol. 205,
pp. 1149–1172, August 2007.

[9] R. Alur and D. Dill, “Automata for modeling real-time systems.” in
ICALP’90, 1990.

[10] O. Maler, A. Pnueli, and J. Sifakis, “On the synthesis of discrete
controllers for timed systems,” in STACS’95, 1995.

[11] Y. Abdeddaı̈m and D. Masson, “Uppaal and uppaal-tiga
implementations.” [Online]. Available: http://igm.univ-mlv.fr/∼masson/
Softwares/SelfSuspending/

[12] D. Kozen, Ed., Logics of Programs, Workshop, ser. Lecture Notes in
Computer Science, vol. 131. Springer, 1982.

[13] T. A. Henzinger and P. W. Kopke, “Discrete-time control for rectangular
hybrid automata,” Theor. Comput. Sci., vol. 221, pp. 369–392, June 1999.

[14] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” STTT,
vol. 1, no. 1-2, 1997.

[15] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen, and
D. Lime, “Uppaal-tiga: Time for playing games!” in CAV’07, 2007.

ha
l-0

06
36

12
2,

 v
er

si
on

 1
 - 

26
 O

ct
 2

01
1


