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A SEMISMOOTH NEWTON METHOD FOR A CLASS OF SEMILINEAR

OPTIMAL CONTROL PROBLEMS WITH BOX AND VOLUME

CONSTRAINTS

SAMUEL AMSTUTZ AND ANTOINE LAURAIN

Abstract. In this paper we consider optimal control problems subject to a semilinear elliptic
state equation together with the control constraints 0 ≤ u ≤ 1 and

∫
u = m. Optimality

conditions for this problem are derived and reformulated as a nonlinear, nonsmooth equation
which is solved using a semismooth Newton method. A regularization of the nonsmooth equation

is necessary to obtain the superlinear convergence of the semismooth Newton method. We prove
that the solutions of the regularized problems converge to a solution of the original problem and
a path-following technique is used to ensure a constant decrease rate of the residual. We show
that, in certain situations, the optimal controls take 0 − 1 values, which amounts to solving a
topology optimization problem with volume constraint.

1. Introduction

This paper is dedicated to the numerical solution of minimization problems of the form

min
(u,y)∈Uad×Y

J(y) subject to E(u, y) = 0, (1.1)

where J : Y → R and E : U × Y → Z are appropriate functionals, Y and Z are Banach spaces,
the sets U and Uad are defined by

U :={u ∈ L2(D), 0 ≤ u ≤ 1 a.e. in D},

Uad :=

{
u ∈ U,

∫

D

u = m

}
, 0 < m < |D|,

and D is a bounded domain of RN , N ∈ {2, 3}, with N -dimensional Lebesgue measure |D|. In [2] a
semismooth Newton method was introduced for a control problem subject to a linear elliptic state
equation and an L1 control cost, with the feature that the control u, a priori searched for within
U , eventually takes 0−1 values. Such a problem is actually a topology optimization problem [1, 4]
since u may be written as the characteristic function of a measurable domain Ω ⊂ D. We speak
of topology optimization rather than shape optimization since the topology of Ω is not imposed
and may be complex. The control cost

∫
D
u is interpreted as a volume penalization, which is

standard in topology optimization. In the present paper we extend the approach of [2] mainly in
two directions. Firstly, the volume term is now treated as an equality constraint instead of a simple
penalization. Secondly, we consider a class of semilinear state equations, for which the optimal
controls are not necessarily in 0− 1.

Nonsmooth control costs or constraints such as the L1-norm usually lead to optimal controls
whose structure is fundamentally different than when using smooth control costs such as Lp norms
with p > 1. Nonsmooth control costs have received a great deal of attention recently and have
been used for different purposes. The bounded variation norm has been employed primarily in
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image processing and inverse problems [11, 17, 24] in order to preserve sharp edges and recover
nonsmooth data. Recently, it has been shown that the L1-norm [21, 25, 28] or the measure norm
of the control [13] provide sparse optimal controls. Sparsity is a property that may be desirable
in certain applications where simple structure or easy storage are required for instance. The L1-
norm is also a more natural measure of the cost of the control in some applications. In shape and
topology optimization, L1 or total variation control costs are the natural regularizations as they
correspond to volume and perimeter constraints on the geometry, respectively.

Unlike smooth, for instance L2, regularizations, the treatment of the nonsmooth control cost
is technical but nevertheless well-understood nowadays from the theoretical and numerical point
of view for linear PDE-constraints. Using convex duality, one considers the predual problem
which corresponds to the minimization of a smooth functional with box constraints, for which
standards optimization techniques are available [13]. For the numerical solution, a Moreau-Yosida
approximation of the predual problem may be employed and can be solved using a semismooth
Newton method. A continuation technique is then necessary to obtain the solution of the non-
regularized dual problem. Alternatively, the problem can be regularized by adding the L2-norm of
the control to the functional to be minimized, without loosing the sparse properties of the L1-norm;
see [9, 25, 29] for details.

The main contribution of our paper is to develop a fast and efficient algorithm to solve (1.1)
when E is nonlinear. In particular we study the case where E(u, y) = 0 is a certain class of
semilinear equations. Our algorithm is based on a reformulation of the optimality conditions for
Problem (1.1) in the form Φ(u, y, p, λ) = 0, where (p, λ) are Lagrange multipliers appearing in
the optimality conditions and Φ is a nonsmooth, nonlinear vector function. Although the L1-
norm is in our case differentiable due to the box constraint 0 ≤ u ≤ 1, this constraint itself
leads to a non-smoothness and the generalized Jacobian of Φ exhibit singularities which call for a
regularization. The nonlinearity of the state equation does not allow to have a convenient reduced
problem formulation where the control is the only variable as in [2], and the problem becomes
considerably more involved. To cope with the nonsmoothness of Φ some tools of nonsmooth analysis
are needed. In particular we rely here on the use of a semismooth Newton method [15, 23] which
exploits generalized differentiability properties of Φ, the so-called Newton differentiability, related
to the notion of semismoothness. In some particular cases which are relevant for applications,
we show that we obtain binary solutions, in other words the problem is equivalent to a topology
optimization problem. In this case the constraint

∫
D
u = m allows to exactly control the sparsity

of u, whose support decreases with m. In the general case, one cannot expect binary solutions
to (1.1). However, we observe in numerical experiments that the optimal control often presents a
piecewise constant behavior.

The paper is organized as follows. First of all we write in Section 2 the optimality conditions for
the general optimization problem (1.1) under reasonable assumptions on E and J . These conditions
are rewritten as a nonlinear, nonsmooth equation. In Section 3 we describe the semismooth Newton
method employed to solve the nonlinear equation. We specialize then the problem in Section 4 by
considering a semilinear elliptic problem. We prove the superlinear convergence of the semismooth
Newton method applied to an approprialety regularized problem, and, at the end of the section,
we also prove the convergence of the regularized solutions to the solution of the original problem
(1.1). In Section 5 the numerical algorithm is described, and a path-following strategy to steer
the regularization parameter so as to ensure a constant decrease rate of some merit function is
explained. Finally, numerical results which illustrate both the convergence of the method and the
binary or piecewise constant nature of the optimal controls are given in Section 6.
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2. Problem statement and optimality conditions

In order to derive optimality conditions in a general setting, we make the following assump-
tions on the functionals and spaces appearing in Problem (1.1). These assumptions cover a large
spectrum of applications.

Assumption 2.1. (a) J : Y → R and E : U ×Y → Z are continuously Fréchet-differentiable and
Y, Z are Banach spaces with Y reflexive.

(b) The equation E(u, y) = 0 has a single-valued solution operator u ∈ V 7→ y(u) ∈ Yad, where V
is a neighborhood of Uad in U and Yad is a bounded subset of Y .

(c) (u, y) ∈ Uad × Yad 7→ E(u, y) ∈ Z is continuous under weak convergence.
(d) The partial Fréchet-derivative of E with respect to y at the point (u, y(u)), denoted by

Ey(u, y(u)) ∈ L(Y, Z), has a bounded inverse for all u ∈ V .
(e) J is sequentially weakly lower semicontinuous.
(f) The partial Fréchet-derivative of E with respect to u, denoted by Eu, can be extended in a

continuous linear map from L1(D) into Z.

Subsequently we denote, given any normed vector space X , by X ′ the continuous dual space of
X , by 〈., .〉 the duality pairing between X ′ and X , and by f∗ the adjoint of a linear map f . The
following result is easily proved by standards arguments of the calculus of variations, see e.g. [18]
(Theorem 1.45 and Corollary 1.3).

Theorem 2.2. Let Assumption 2.1 hold. Then Problem (1.1) has an optimal solution (ū, ȳ).
Moreover, there exists p̄ ∈ Z ′ such that

Ey(ū, ȳ)
∗p̄ = −Jy(ȳ), (2.1)

〈Eu(ū, ȳ)∗p̄, u− ū〉 ≥ 0 ∀u ∈ Uad. (2.2)

We shall reformulate the conditions (2.1) and (2.2) in a more convenient way. To this aim we
introduce the Lagrangian L : U × Y × Z ′ → R defined by

L(u, y, p) = J(y) + 〈p,E(u, y)〉,
and whose partial derivatives are

Lu(u, y, p) = Eu(u, y)
∗p, (2.3)

Ly(u, y, p) = Jy(y) + Ey(u, y)
∗p, (2.4)

Lp(u, y, p) = E(u, y). (2.5)

For every u ∈ Uad we define the cone K(u) ⊂ L2(D) by

∀v ∈ L2(D), v ∈ K(u) ⇐⇒





v = 0 a.e. in [0 < u < 1],
v ≥ 0 a.e. in [u = 0],
v ≤ 0 a.e. in [u = 1].

Theorem 2.3. Let Assumption 2.1 hold and (ū, ȳ) be an optimal solution of (1.1). Then there
exists (λ̄, p̄) ∈ R× Z ′ such that

Lu(ū, ȳ, p̄) + λ̄ ∈ K(ū), (2.6)

Ly(ū, ȳ, p̄) = 0, (2.7)

Lp(ū, ȳ, p̄) = 0, (2.8)∫

D

ū = m. (2.9)
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Proof. In view of (2.4) and (2.5), the equations (2.7)-(2.9) are straightforward consequences of (2.1)
together with the constraints. Therefore we focus on (2.6). For simplicity we set ḡ := Lu(ū, ȳ, p̄) ∈
L2(D). From (2.2) and (2.3) we infer

〈ḡ, u− ū〉 ≥ 0 ∀u ∈ Uad.

In other words,

ū ∈ argmin
u∈Uad

〈ḡ, u− ū〉.

By standard Lagrangian duality theory (see e.g. [7, Theorem 3.6]), the constraint
∫
D
ū = m can

be eliminated by means of a Lagrange multiplier, namely, there exists λ̄ ∈ R such that

ḡ + λ̄ ∈ −NU (ū) where NU (ū) := {v ∈ L2(D) : 〈v, u − ū〉 ≤ 0, ∀u ∈ U}
is the normal cone of U at ū. According to [7, Lemma 6.34] we actually have −NU (ū) = K(ū)
which leads to ḡ + λ̄ ∈ K(ū). �

In order to reformulate the conditions (2.6)-(2.9) in a tractable way we consider a functional

T : R×R → R (2.10)

(s, t) 7→ T (s, t) (2.11)

which satisfies the following assumption.

Assumption 2.4. (a) For all (s, t) ∈ [0, 1]×R

T (s, t) = 0 ⇐⇒ s ∈ Θ(t), (2.12)

with the set-valued mapping

Θ : t ∈ R 7→





{1} if t < 0,
[0, 1] if t = 0,
{0} if t > 0.

(b) The superposition operator made from T maps L2(D)× L∞(D) onto L2(D).

We give two examples of functions T satisfying Assumption 2.4. The first one, introduced in
[19], is

T(1)(s, t) := t−max(0, t− cs)−min(0, t− c(s− 1)),

for some arbitrary constant c > 0. The second one, proposed in [2], is

T(2)(s, t) = smax(0, t) + (1− s)min(0, t).

Also, for all (u, y, p, λ) ∈ L2(D)× Y × Z ′ ×R we set

Φ(u, y, p, λ) :=




T (u, Lu(u, y, p) + λ)
Ly(u, y, p)
Lp(u, y, p)∫
D u−m


 .

Note that, by Assumption 2.1 we have Lu(u, y, p) ∈ L∞(D) for all (u, y, p) ∈ L2(D) × Y × Z ′.
Therefore, with Assmption 2.4, Φ maps L2(D)× Y × Z ′ ×R into L2(D)× L2(D)× Z ×R.

Proposition 2.5. Let (ū, ȳ, p̄, λ̄) ∈ U × Y × Z ′ ×R. The conditions (2.6)-(2.9) are equivalent to

Φ(ū, ȳ, p̄, λ̄) = 0.

Proof. We only have to prove that g ∈ K(u) ⇔ T (u, g) = 0, which, by virtue of (2.12), amounts
to proving that g ∈ K(u) ⇔ u ∈ Θ(g). This is a straightforward consequence of the definition of
Θ. �
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3. Solution strategy

3.1. Standard results on semismooth Newton methods. We briefly recall a few useful results
concerning semismooth Newton methods [10, 15, 18, 20]. Let X ,Y be Banach spaces and U be an
open subset of X .

Definition 3.1. A function F : U → Y is called Newton differentiable if there exists a map
G : U → L(X ,Y), referred to as Newton derivative, such that

lim
h→0

1

‖h‖X
‖F (u+ h)− F (u)−G(u+ h)h‖Y = 0

for all u ∈ U .

Note that the Newton derivative is not necessarily unique. Of course, functions which are C1

in the sense of Fréchet are Newton differentiable. The following theorem [15, Proposition 4.1]
provides another particularly useful example for our purposes.

Theorem 3.2. The maps max(0, ·) and min(0, ·) : Lq(D) → Lp(D) with 1 ≤ p < q ≤ +∞ are
Newton differentiable on Lq(D), and

G
+
̟ : u 7→ 1[u>0] +̟1[u=0],

G
−
̟ : u 7→ 1[u<0] +̟1[u=0],

are their respective Newton derivatives for any ̟ ∈ R.

The following theorem [15, Theorem 1.1] asserts the local convergence of the semismooth Newton
method applied to a Newton differentiable function.

Theorem 3.3. Suppose that u∗ solves F (u∗) = 0 and that F : X → Y is Newton differentiable in
an open set U containing u∗, with Newton derivative G. If G(u) is nonsingular for all u ∈ U and
{‖G(u)−1‖L(Y,X ), u ∈ U} is bounded, then the Newton iteration

un+1 = un −G(un)
−1F (un)

converges superlinearly to u∗, provided that ‖u0 − u∗‖X is sufficiently small.

3.2. Differentiability properties of the optimality system and regularization. In specific
cases, provided that attention is paid to the choice of the norms, the function Φ will be indeed
Newton differentiable. However, we shall see in Section 4 that the Newton derivative of Φ may
fail to be invertible. This is typical of the absence of quadratic control cost

∫
D
u2 in the objective

functional or in the constraint [15, 19]. For this reason we regularize Φ by introducing

Φε(u, y, p, λ) :=




T ε(u, Lu(u, y, p) + λ)
Ly(u, y, p)
Lp(u, y, p)
〈1, u〉 −m


 ,

where the locally Lipschitz function T ε : R × R → R is an appropriate regularization of T .
Specifically, it is assumed the following.

Assumption 3.4. (a) The superposition operator T ε : L2(D)×L∞(D) → L2(D) is well-defined,
locally Lipschitz and Newton-differentiable.

(b) There exists a non-increasing function θε ∈ W 1,∞(R, [0, 1]) with limt→−∞ θε(t) = 1 and
limt→+∞ θε(t) = 0 such that, for all (s, t) ∈ [0, 1]×R,

T ε(s, t) = 0 ⇐⇒ s = θε(t).
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In addition, there holds for every t ∈ R

lim
ε→0

θε(t) = θ(t) :=






1 if t < 0,
θ0 ∈ [0, 1] if t = 0,
0 if t > 0,

and the convergence is monotone in the sense that, when ε decreases, θε(t) is nondecreasing if
t < 0 and nonincreasing if t > 0.

(c) There exists αε > 0 such that, for a.e. (s, t) ∈ R × R, the partial derivative of T ε w.r.t. s
satisfies

T εs (s, t) ≥ αε.

(d) There exists βε > 0 such that, for a.e. (s, t) ∈ R × R, the partial derivative of T ε w.r.t. t
satisfies

T εt (s, t) ≥ −βε dist(s, [0, 1]).
(e) There exists aε, bε > 0 such that, for a.e. (s, t) ∈ R×R,

|T εt (s, t)| ≤ aε|s|+ bε.

(f) For all δ > 0 there exists η > 0 such that, for a.e. s ∈ R,

δ ≤ θε(s) ≤ 1− δ ⇒ (θε)′(s) ≤ −η.
(g) For all τ > 0 there exists ks, kt > 0 such that, for a.e. (s1, s2, t) ∈ R×R× [−τ, τ ],

|T εs (s1, t)− T εs (s2, t)| ≤ ks|s1 − s2|,
|T εt (s1, t)− T εt (s2, t)| ≤ kt|s1 − s2|.

Let us give some examples.

(1) The standard Tikhonov regularization of (1.1) consists in replacing J(y) by Jε(u, y) :=
J(y) + ε

2‖u − 1
2‖2L2. The corresponding optimality system is the same as in Proposition

2.5, with T (s, t) replaced by T
(
s, t+ ε(s− 1

2 )
)
. For T = T(1) we have

T(1)

(
s, t+ ε(s− 1

2
)

)
=

t+ ε

(
s− 1

2

)
−max

(
0, t+ (ε− c)s− ε

2

)
−min

(
0, t+ (ε− c)s+ c− ε

2

)
.

We immediately observe that, when choosing T ε(1)(s, t) = T(1)
(
s, t+ ε(s− 1

2 )
)
, items (a)

and (g) of Assumption 3.4 will be satisfied only if c = ε. We then arrive at

T ε(1)(s, t) = t+ ε

(
s− 1

2

)
−max

(
0, t− ε

2

)
−min

(
0, t+

ε

2

)
.

In this case all the other items of Assumption 3.4 are also fulfilled, with (see Figure 1)

θε(1)(t) =
1

2
− t

ε
+max

(
0,
t

ε
− 1

2

)
+min

(
0,
t

ε
+

1

2

)
.

Convergence results of the semismooth Newton method applied to the solution of the
corresponding system Φε(1)(u, y, p, λ) = 0 for ε fixed and without the constraint

∫
D
u = m

(i.e. with λ = 0 fixed) are established in [19]. The convergence of the solutions when ε→ 0
is studied in [29] for linear problems including an L1 control cost.
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Figure 1. From left to right: functions θε(1), θ
ε
(2a) and θε(2b) for ε = 1.

(2) Noticing that T(2)(s, t) = s|t|+min(0, t), it has been proposed in [2] the function

T ε(2a)(s, t) = s
√
ε2 + t2 +min(0, t).

Of course, many other regularizations of the absolute value would be possible. In order
to preserve the symmetric role played by the bounds 0 and 1, noting that T(2)(s, t) =
t
2 + (s− 1

2 )|t|, one may prefer

T ε(2b)(s, t) =
t

2
+

(
s− 1

2

)√
ε2 + t2.

Both functions T ε(2a) and T ε(2b) satisfy Assumption 3.4, with (see Figure 1)

θε(2a)(t) = −min(0, t)√
ε2 + t2

, θε(2b)(t) =
1

2
− t

2
√
ε2 + t2

.

Our strategy is to apply the semismooth Newton method to the solution of Φε(u, y, p, λ) = 0, then
let ε go to zero by a continuation technique.

4. Study of a semilinear elliptic problem

4.1. Problem formulation. Using the framework developed in the previous sections, we special-
ize to the following spaces

Y = (H2 ∩H1
0 )(D), Z = (H2 ∩H1

0 )(D)′,

and functionals

J(y) =
1

2

∫

D

(y − y†)2,

E(u, y) = Ay + ψ(y)− u,

where y† ∈ L2(D), A denotes the negative Dirichlet Laplacian on D and the function ψ : R → R

is continuous, non-decreasing and has bounded derivatives up to the order 3. More precisely, we
have for all (u, y, z) ∈ L2(D)×H1

0 (D) ×H1
0 (D)

〈E(u, y), z〉 =
∫

D

∇y · ∇z + ψ(y)z − uz.

We set

Mk
ψ := ‖ψ(k)‖L∞ , k = 1, 2, 3. (4.1)

We assume that D is of class C2 or convex. Then, according to classical results on semilinear
partial differential equations, see [5, 8, 14] for instance, we get, for all u ∈ L2(D), the existence
of a unique solution y(u) ∈ H2(D) ∩ H1

0 (D) to the equation E(u, y(u)) = 0. Moreover, the map
u ∈ L2(D) 7→ y(u) ∈ H2(D) is of class C2, and we have the following estimate.
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Lemma 4.1. There exist constants a, b > 0 such that, for all f ∈ L2(D), the solution of

Ay + ψ(y) = f

satisfies

‖y‖H2 ≤ a+ b‖f‖L2.

Proof. By [18, Theorem 1.25], we have

‖y‖H1 ≤ c‖f − ψ(0)‖L2 . (4.2)

Next, from

Ay = f − ψ(y),

we obtain by elliptic regularity, using that D is of class C2 or convex,

‖y‖H2 ≤ c‖f − ψ(y)‖L2 ≤ c(‖f‖L2 + ‖ψ(y)‖L2), (4.3)

where, here and throughout the paper, c denotes a generic positive constant. Using that

|ψ(t)| ≤ |ψ(0)|+M1
ψ|t|

we infer

‖ψ(y)‖L2 ≤ c+ c‖y‖L2. (4.4)

Combining (4.2)-(4.4) completes the proof. �

We obtain for the Lagrangian and its derivatives:

L(u, y, p) =
1

2

∫

D

(y − y†)2 + 〈p,Ay + ψ(y)− u〉, (4.5)

Lu(u, y, p) = −p, (4.6)

Ly(u, y, p) = B(y)p+ y − y†, (4.7)

Lp(u, y, p) = Ay + ψ(y)− u, (4.8)

where

B(y) := A+ ψ′(y).

We have the following useful lemma concerning the continuity of the operator B(y)−1.

Lemma 4.2. For all (y, f) ∈ L1(D) × L2(D), there exists a unique z ∈ (H1
0 ∩H2)(D) such that

B(y)z = f . The solution operator mapping f to z, denoted by B(y)−1, satisfies

‖B(y)−1(f)‖H2 ≤ c‖f‖L2, (4.9)

where c is a constant independent of y.

Proof. The function z must satisfy
∫

D

∇z · ∇ϕ+ ψ′(y)zϕ = 〈f, ϕ〉 ∀ϕ ∈ H1
0 (D).

The bilinear form on the left-hand side of the above equation is clearly continuous on H1
0 (D) ×

H1
0 (D), and coercive by virtue of the nonnegativity of ψ′ and the Poincaré inequality. The existence

and uniqueness of z results from the Lax-Milgram theorem. Due to the assumption ψ′(y) ≥ 0 we
have for some constant c > 0

c‖z‖2H1 ≤
∫

D

|∇z|2 + ψ′(y)z2 = 〈f, z〉 ≤ ‖f‖L2‖z‖L2,

from which we deduce

‖z‖H1 ≤ c‖f‖L2. (4.10)
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To obtain the H2 estimate we write

Az = f − ψ′(y)z,

which implies, using that D is of class C2 or convex,

‖z‖H2 ≤ c‖f − ψ′(y)z‖L2 ≤ c(‖f‖L2 +M1
ψ‖z‖L2).

Using (4.10) completes the proof. �

With the help of the above results we straightforwardly check that Assumption 2.1 is fulfilled.
Therefore, by Theorem 2.2, we get the existence of optimal solutions. For later purposes, we need
another technical assumption.

Assumption 4.3. There exists γ > 0 such that, for all (u, y, p) ∈ U×(H2∩H1
0 )(D)×(H2∩H1

0 )(D)
satisfying

Ay + ψ(y) = u, (4.11)

B(y)p = −(y − y†), (4.12)

there holds

1 + ψ′′(y)p ≥ γ.

By lemma 4.1 the norm ‖y‖H2 is uniformly bounded when u ∈ U . Using Lemma 4.2 and
the Sobolev embedding of H2 into L∞, we get that the norm ‖p‖L∞ is also uniformly bounded.
Therefore, to fulfill Assumption 4.3, one may just require that M2

ψ is small enough for instance.

In what follows we denote by (y(u), p(u)) the solution (y, p) of (4.11)-(4.12) for a given u ∈
L2(D).

4.2. Binary controls. In this section we show that, in some important particular cases, the
optimal controls necessarily take their values in {0, 1}. Therefore these problems fall into the
framework of topology optimization [1, 4], with the constraint

∫
D u = m acting as a volume

constraint.
We shall use the following “almost everywhere” definition of the interior:

x ∈ Int[0 < u < 1] ⇐⇒ ∃r > 0 | 0 < u(x′) < 1 a.e. x′ ∈ B(x, r) ∩D.

Theorem 4.4. Suppose that ψ ≡ 0 and −∆y† = 0 in D. Then every solution (u, y) of (1.1)
satisfies

Int[0 < u < 1] = ∅.

Proof. Let (u, y) be a solution of (1.1), and assume that x ∈ Int[0 < u < 1]. By definition there
exists r > 0 such that

0 < u(x′) < 1 a.e. x′ ∈ B(x, r) ∩D. (4.13)

We denote by p and λ the adjoint state and the Lagrange multiplier associated to (u, y), according
to Theorem 2.3. Thus we have −p + λ = 0 a.e. in B(x, r) ∩ D in view of (2.6). Yet there holds
−∆p + y − y† = 0, which implies y = y† a.e. in B(x, r) ∩ D. Since y† is harmonic we also have
−∆y = 0 a.e. in B(x, r) ∩ D. Then the state equation implies u = 0 a.e. in B(x, r) ∩ D, which
contradicts (4.13). �
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4.3. Existence of regularized solutions. In this section, we prove (Theorem 4.7) the existence
of solutions to the equation Φε(u, y, p, λ) = 0. In Lemma 4.5 we provide two useful estimates for
the adjoint state p(u). In Lemma 4.6 we show the existence of solutions to the system deprived
of the volume constraint, for a fixed Lagrange multiplier λ, and in Theorem 4.7 we show that this
volume constraint is achieved for a certain λ.

Lemma 4.5. Let u, ū ∈ U and Assumption 4.3 hold. For all t ∈ [0, 1] set ut = ū + t(u − ū),
yt = y(ut), pt = p(ut). Then we have

−〈p(u)− p(ū), u− ū〉 ≥ γ

∫ 1

0

∥∥B(yt)
−1(u− ū)

∥∥2
L2 dt, (4.14)

‖p(u)− p(ū)‖H1(D) ≤ β

∫ 1

0

∥∥B(yt)
−1(u− ū)

∥∥
L2 dt, (4.15)

where the above constant β > 0 is independent of u and ū.

Proof. We have already seen that the map u ∈ L2(D) 7→ y(u) ∈ H1
0 (D) is Fréchet-differentiable.

By composition, and using the implicit function theorem, the map u ∈ L2(D) 7→ p(u) ∈ H1
0 (D) is

also Fréchet-differentiable. Differentiating (4.11) in the direction δu ∈ L2(D) yields

B(y)
dy

du
δu = δu,

and differentiating (4.12) in the direction δy ∈ H1
0 (D) yields

B(y)
dp

dy
δy + ψ′′(y)pδy = −δy.

Then the chain rule entails

dp

du
δu =

dp

dy

(
dy

du
δu

)
= −B(y)−1 [1 + ψ′′(y)p]B(y)−1δu. (4.16)

We now write

p(u)− p(ū) =

∫ 1

0

dp

du
(ū+ t(u− ū))(u − ū)dt. (4.17)

We have by the Fubini theorem

〈p(u)− p(ū), u− ū〉 =
∫ 1

0

〈
dp

du
(ū+ t(u − ū))(u − ū), u − ū

〉
dt.

Then using (4.16) we get

−〈p(u)− p(ū), u− ū〉 =
∫ 1

0

〈
B(yt)

−1 [1 + ψ′′(yt)pt]B(yt)
−1(u− ū), u− ū

〉
dt.

Since B(yt) is self-adjoint we arrive at

−〈p(u)− p(ū), u− ū〉 =
∫ 1

0

〈
[1 + ψ′′(yt)pt]B(yt)

−1(u− ū), B(yt)
−1(u− ū)

〉
dt.

Using Assumption 4.3 we obtain (4.14). Going back to (4.17), we have

‖p(u)− p(ū)‖H1(D) ≤
∫ 1

0

∥∥B(yt)
−1 [1 + ψ′′(yt)pt]B(yt)

−1(u− ū)
∥∥
H1(D)

dt.

By Lemma 4.2 and the uniform boundedness of ‖pt‖L∞ we obtain (4.15). �

Lemma 4.6. Let Assumption 4.3 hold. For all λ ∈ R there exists a unique u(λ) ∈ L2(D) such
that u(λ) = θε(−p(u(λ)) + λ). In addition, the map λ 7→

∫
D
u(λ) is continuous.
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Proof. Existence. We fix λ ∈ R. The superposition operator

θ̃ε : L2(D, [0, 1]) → L2(D, [0, 1])

u 7→ θε(−p(u) + λ)

is clearly Lipschitz-continuous, as L2 ∋ u 7→ p(u) ∈ L2 is itself Lipschitz-continuous and θε is also
Lipschitz. In addition, if u ∈ L2(D), then p(u) ∈ H1(D) and since [θε]′ is in L∞ we have

∇[θ̃ε(u)] = −[θε]′(−p(u) + λ)∇p(u) ∈ L2(D).

Therefore θ̃ε(u) ∈ H1(D). Furthermore, there exists c > 0 such that ‖θ̃ε(u)‖H1 ≤ c for all

u ∈ L2(D, [0, 1]). It follows by the Rellich theorem that θ̃ε(L2(D, [0, 1])) is a relatively compact
subset of L2(D, [0, 1]). By the Schauder fixed point theorem, there exists u ∈ L2(D, [0, 1]) such

that θ̃ε(u) = u.
Uniqueness. Assume that λ, λ̄ ∈ R and u, ū ∈ L2(D) satisfy θε(−p(u) + λ) = u and θε(−p(ū) +
λ̄) = ū. We have

−〈p(u)− p(ū), u− ū〉 = −〈p(u)− p(ū), θε(−p(u) + λ)− θε(−p(ū) + λ̄)〉
= 〈(−p(u) + λ)− (−p(ū) + λ̄), θε(−p(u) + λ)− θε(−p(ū) + λ̄)〉

−〈λ− λ̄, θε(−p(u) + λ)− θε(−p(ū) + λ̄)〉.
As θε is nonincreasing, the first term is nonpositive. Using also that θε is Lθ-Lipschitz continuous
we obtain

−〈p(u)− p(ū), u− ū〉 ≤ Lθ‖(−p(u) + λ)− (−p(ū) + λ̄)‖L1 |λ− λ̄|.
Using the triangle inequality and the Cauchy-Schwarz inequality yields

−〈p(u)− p(ū), u− ū〉 ≤ Lθ

(√
|D|‖p(u)− p(ū)‖L2 + |D||λ− λ̄|

)
|λ− λ̄|.

Using (4.14) and (4.15) from Lemma 4.5 we get
∫ 1

0

∥∥B(yt)
−1(u− ū)

∥∥2
L2 dt ≤ c1|λ− λ̄|

∫ 1

0

∥∥B(yt)
−1(u− ū)

∥∥
L2 dt+ c2|λ− λ̄|2

for some constants c1, c2 > 0, possibly depending on ε. By the Cauchy-Schwarz inequality we
obtain

∫ 1

0

∥∥B(yt)
−1(u− ū)

∥∥2
L2 dt ≤ c1|λ− λ̄|

[∫ 1

0

∥∥B(yt)
−1(u− ū)

∥∥2

L2

]1/2
dt+ c2|λ− λ̄|2.

The Young inequality yields for any κ > 0
∫ 1

0

∥∥B(yt)
−1(u− ū)

∥∥2

L2 dt ≤
c1κ

2

∫ 1

0

∥∥B(yt)
−1(u − ū)

∥∥2

L2 dt+
( c1
2κ

+ c2

)
|λ− λ̄|2.

Choosing κ small enough we infer the existence of a positive constant c such that
∫ 1

0

∥∥B(yt)
−1(u− ū)

∥∥2
L2 dt ≤ c|λ− λ̄|2. (4.18)

When λ = λ̄, we derive B(yt)
−1(u− ū) = 0 for almost every t ∈ [0, 1], and consequently u = ū.

Continuity. Assume that λn → λ̄. We have un := u(λn) ∈ L2(D, [0, 1]) for every n, thus the
sequence (un) is weakly compact in L2(D). Let ũ ∈ L2(D, [0, 1]) be a cluster point of (un). There
exists a subsequence, not relabeled, such that un ⇀ ũ weakly in L2(D). By (4.18), denoting
ū := u(λ̄), we obtain

∫ 1

0

∥∥B(y(ū+ t(un − ū)))−1(un − ū)
∥∥2

L2 dt ≤ c|λn − λ̄|2 → 0.
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Hence there exists a subsequence, still not relabeled, such that
∥∥B(y(ū+ t(un − ū)))−1(un − ū)

∥∥
L2 → 0

for almost every t ∈ [0, 1]. Thus there exists t0 ∈ [0, 1] such that
∥∥B(yn)

−1(un − ū)
∥∥
L2 → 0, (4.19)

with yn = y(ū+ t0(un− ū)). Since ‖yn‖H2 is bounded, there exists a subsequence and ỹ ∈ Hs(D),
s < 2, such that yn → ỹ in Hs. Therefore, choosing the appropriate s, we may apply Lemma B.1
to obtain, for all η ∈ L2(D),

〈B(yn)
−1(un)−B(ỹ)−1(ũ), η〉 = 〈[B(yn)

−1 −B(ỹ)−1](un) +B(ỹ)−1(un − ũ), η〉
= 〈un, [B(yn)

−1 −B(ỹ)−1]η〉+ 〈un − ũ, B(ỹ)−1η〉
→ 0.

Hence B(yn)
−1(un)⇀ B(ỹ)−1(ũ) weakly in L2(D). By compactness of {B(yn)

−1(un)} in L2(D),
the convergence holds actually strongly. The convergence B(yn)

−1ū → B(ỹ)−1ū in L∞(D) also
follows from Lemma B.1. Using (4.19) we obtain B(ỹ)−1(ũ) = B(ỹ)−1(ū) and subsequently ũ = ū.
The uniqueness of the cluster point implies that the whole sequence {un} converges to ū weakly
in L2(D). We derive straightforwardly that

∫
D un →

∫
D ū. �

Theorem 4.7. Let Assumption 4.3 hold. For each ε > 0 there exists (u, y, p, λ) ∈ L2(D) ×
H1

0 (D) × H1
0 (D) × R such that Φε(u, y, p, λ) = 0. In addition, every such solution belongs to

L2(D, [0, 1])× (H2 ∩H1
0 )(D)× (H2 ∩H1

0 )(D)×R.

Proof. With the notation introduced before, we have

Φε(u, y, p, λ) = 0 ⇐⇒





∫

D

u(λ) = m,

u = u(λ) = θε(−p(u(λ)) + λ), y = y(u), p = p(u).

In view of Lemma 4.6, for all λ ∈ R, there exists u(λ) ∈ L2(D) such that u(λ) = θε(−p(u(λ))+λ).
In addition ‖p(u(λ))‖L∞(D) is uniformly bounded with respect to λ. Thus we have

lim
λ→−∞

u(λ) = 1 and lim
λ→+∞

u(λ) = 0 a.e. in D.

By the dominated convergence theorem it follows that

lim
λ→−∞

∫

D

u(λ) = |D| and lim
λ→+∞

∫

D

u(λ) = 0.

As 0 < m < |D| and the map λ 7→
∫
D
u(λ) is continuous, the intermediate value theorem implies

the existence of λ ∈ R such that
∫
D u(λ) = m. �

4.4. Convergence of the Newton algorithm. For simplicity we subsequently denote by ζ =
(u, y, p, λ) the primal-dual variable. We define the spaces

E := L2(D)× (H2 ∩H1
0 )(D)× (H2 ∩H1

0 )(D)×R,

F := L2(D)× L2(D)× L2(D)×R,

so that Φε maps E into F . We endow E and F with arbitrary product norms, simply denoted by
‖.‖ when no confusion is possible. Assumption 3.4 and the chain rule for Newton differentiability
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(see e.g. [16]) provide the Newton derivative of Φε

DΦε(ζ) =




T εs + T εt Luu T εt Lyu T εt Lpu T εt
Luy Lyy Lpy 0
Lup Lyp Lpp 0
Λ 0 0 0


 =




T εs 0 −T εt T εt
0 ψ′′(y)p+ 1 A+ ψ′(y) 0
−1 A+ ψ′(y) 0 0
Λ 0 0 0


 .

(4.20)
Above Λ denotes the integral operator

Λ : L1(D) ∋ f 7→
∫

D

f ∈ R.

One of the main results of our paper is stated in the following theorem, where the local conver-
gence of the Newton algorithm is established.

Theorem 4.8. Assume that Assumption 4.3 holds. Let ε > 0 be fixed and ζε be a solution of
Φε(ζε) = 0. Then the Newton iteration

ζn+1 = ζn −DΦε(ζn)
−1Φε(ζn) (4.21)

is well-defined and converges superlinearly to ζε as long as ‖ζ0 − ζε‖ is sufficiently small.

Proof. In order to apply Theorem 3.3 we need to prove the invertibility of the generalized Jacobian
DΦε(ζ) : E → F and to obtain a uniform bound on the norm ‖DΦε(ζ)−1‖L(F ,E ) in a neighborhood
of ζε = (uε, yε, pε, λε). Let ζ = (u, y, p, λ) ∈ E be for the moment arbitrary, and set

h := T εs (u, Lu(u, y, p) + λ) = T εs (u,−p+ λ) ≥ αε, (4.22)

g := −p+ λ, w :=
T εt (u, g)

h
∈ L2(D).

Given an arbitrary right-hand side (ũ, ỹ, p̃, λ̃) ∈ F , we study the solvability of the system

DΦε(ζ)




δu
δy
δp
δλ


 =




ũ
ỹ
p̃

λ̃


 ,

with unknown (δu, δy, δp, δλ) ∈ E . This leads to the following equations

δu− wδp+ wδλ = h−1ũ,

(ψ′′(y)p+ 1)δy + (A+ ψ′(y))δp = ỹ,

−δu+ (A+ ψ′(y))δy = p̃,

Λ(δu) = λ̃.

For simplicity we define the diagonal operator

C(y, p) := 1 + ψ′′(y)p.

Recall that B(y) = A+ ψ′(y) is invertible by virtue of Lemma 4.2. Substitution leads to

δy = B−1(δu+ p̃), (4.23)

δp = −B−1CB−1(δu + p̃) +B−1ỹ, (4.24)

(I + wB−1CB−1)δu+ wδλ = h−1ũ− wB−1CB−1p̃+ wB−1ỹ, (4.25)

Λ(δu) = λ̃. (4.26)

We shall focus on solving Equations (4.25)-(4.26), which are decoupled from (4.23)-(4.24). We
begin by studying the operator I + wB−1CB−1.
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Step 1 (invertibility): We have for all ϕ ∈ L2(D)

〈(I + wB−1CB−1)ϕ,B−1CB−1ϕ〉 = 〈B−1CB−1ϕ, ϕ〉+ 〈wB−1CB−1ϕ,B−1CB−1ϕ〉
≥ 〈CB−1ϕ,B−1ϕ〉 − ‖min(0, w)‖L2‖B−1CB−1ϕ‖2L4 .

The operator C is diagonal and thus self-adjoint. It is positive definite as well if ‖ζ − ζε‖ is small
enough. To see this, we introduce the sets

Yε := {y ∈ H1
0 (D) ∩H2(D), ‖y − yε‖H2 ≤MY },

Pε := {p ∈ H1
0 (D) ∩H2(D), ‖p− pε‖H2 ≤MP},

with MY ,MP > 0 to be fixed later. Thanks to the Sobolev embedding H2(D) ⊂ L∞(D) which is
valid for N ∈ {2, 3}, (y, p) ∈ Yε × Pε implies ‖y − yε‖L∞ ≤ cMY and ‖p − pε‖L∞ ≤ cMP , with
c > 0 depending only on D. Using Assumption 4.3, we have then the estimates

1 + ψ′′(y)p = 1 + ψ′′(yε)pε + [ψ′′(y)− ψ′′(yε)]p+ ψ′′(yε)[p− pε]

≥ γ − ‖ψ′′(y)− ψ′′(yε)‖L∞‖p‖L∞ − ‖ψ′′(yε)‖L∞‖p− pε‖L∞

≥ γ −M3
ψ‖y − yε‖L∞‖p‖L∞ −M2

ψ‖p− pε‖L∞

≥ γ −M3
ψ‖y − yε‖L∞(‖pε‖L∞ + ‖p− pε‖L∞)−M2

ψ‖p− pε‖L∞

≥ γ −M3
ψcMY (‖pε‖L∞ + cMP )−M2

ψcMP .

Therefore, when MY and MP are chosen sufficiently small, we have

1 + ψ′′(y)p ≥ c > 0 ∀(y, p) ∈MY ×MP ,

and thus, assuming henceforth that (y, p) ∈MY ×MP , C is positive definite. We can then define
the squareroot C1/2 of C which is also self-adjoint and write

〈(I + wB−1CB−1)ϕ,B−1CB−1ϕ〉 ≥ ‖C1/2B−1ϕ‖2L2 − ‖min(0, w)‖L2‖B−1CB−1ϕ‖2L4 .

Next we utilize the estimate

‖B−1CB−1ϕ‖L4 ≤ ‖B−1C1/2‖L(L2,L4)‖C1/2B−1ϕ‖L2 .

Going back to the main inequality we obtain

〈(I + wB−1CB−1)ϕ,B−1CB−1ϕ〉 ≥ (1− ‖min(0, w)‖L2‖B−1C1/2‖2L(L2,L4))‖C1/2B−1ϕ‖2L2 .

Using Lemma 4.2 and the above considerations on the uniform boundedness of C, we have
‖B−1C1/2‖L(L2,L4) ≤MC for some constant MC . Therefore, whenever (w, p) ∈W− × Pε with

W− := {w ∈ L2(D), ‖min(0, w)‖L2 ≤MW−},
and 0 < MW− < (MC)

−2, the operator I + wB−1CB−1 : L2(D) → L2(D) is injective, and subse-
quently invertible by virtue of the Fredholm alternative.

Step 2 (collective compactness): We first examine under which condition on ζ we have w ∈
W−. Let u ∈ L2(D). In view of Assumption 3.4(d) we have

T εt (u, g) ≥ −βε dist(u, [0, 1]).
Using Theorem 4.7 which asserts that 0 ≤ uε ≤ 1, we obtain that dist(u, [0, 1]) ≤ |u − uε| almost
everywhere. This yields that

w ≥ −βε
αε

|u− uε| a.e. in D,

and subsequently

‖min(0, w)‖L2 ≤ βε
αε

‖u− uε‖L2 . (4.27)
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We define the set
Uε := {u ∈ L2(D), ‖u− uε‖L2 ≤ αε

βε
MW−}, (4.28)

so that
u ∈ Uε =⇒ w ∈ W−.

Furthermore, there holds for all u ∈ Uε, using assumption 3.4(e)

‖w‖L2 ≤ 1

αε
‖T εt (u, g)‖L2 ≤ 1

αε
(aε‖u‖L2 + bε‖1‖L2)

≤ 1

αε
(aε‖uε‖L2 + aε‖u− uε‖L2 + bε‖1‖L2)

≤ aε + bε
αε

√
|D|+ aε

βε
MW− =:MW+ .

We then define

W+
ε := {w ∈ L2(D), ‖w‖L2 ≤MW+}, Wε :=W+

ε ∩W−,

so that
u ∈ Uε =⇒ w ∈Wε.

We now introduce the operator

K(y, p, w) : ϕ ∈ L2 7→ wB(y)−1C(y, p)B(y)−1ϕ ∈ L2,

whose adjoint is
K(y, p, w)∗ : ϕ ∈ L2 7→ B(y)−1C(y, p)B(y)−1(wϕ) ∈ L2.

Here, B(y)−1 denotes in fact the adjoint of B(y)−1 : L2 → H2 ∩ H1
0 , which in particular defines

a compact operator from L1 into L2. The same notation has been kept since it is an extension of
B(y)−1. We define the set of operators

K := {K(y, p, w)∗, w ∈ Wε, y ∈ Yε, p ∈ Pε}.
We obtain for all (w, y, p) ∈Wε × Yε × Pε

‖K(y, p, w)∗ϕ‖H1 ≤ c‖[C(y, p)B(y)−1](wϕ)‖L2 ≤ c‖B(y)−1(wϕ)‖L2 ≤ c‖wϕ‖L1 ≤ c‖ϕ‖L2.
(4.29)

This implies by the Rellich theorem that K is collectively compact; see Appendix A.

Step 3 (uniform bound on the inverse operator): We now check the remaining hypothesis
of Theorem A.3, i.e., the pointwise sequential compactness of K. Let (wn, yn, pn) be a sequence
of Wε × Yε × Pε. Since Wε is bounded, convex and closed in L2(D), there exists a subsequence,
not relabeled, such that wn ⇀ w ∈Wε weakly in L2(D). By compact Sobolev embedding, for any
s < 2, we have for subsequences

(yn, pn) → (y, p) strongly in Hs ×Hs.

Choosing s appropriately we get yn → y in L∞. Applying Lemma B.1 leads to

∀η ∈ L2(D), B(yn)
−1η = [A+ ψ′(yn)]

−1η → [A+ ψ′(y)]−1η := B̄−1η in L∞(D). (4.30)

For all (ϕ, η) ∈ L2 × L2 we have

〈B(yn)
−1(wnϕ)− B̄−1(wϕ), η〉 = 〈[B(yn)

−1 − B̄−1](wnϕ) + B̄−1((wn − w)ϕ), η〉
= 〈wnϕ, [B(yn)

−1 − B̄−1]η〉+ 〈wn − w,ϕB̄−1η〉
→ 0.

Hence B(yn)
−1(wnϕ) ⇀ B̄−1(wϕ) weakly in L2. By compactness of {B(yn)

−1(wnϕ)} in L2, the
convergence holds actually strongly.



16

We have trivially the convergence in operator norm

C(yn, pn) = I + ψ′′(yn)pn → I + ψ′′(y)p =: C̄ in L(L2, L2).

Let us fix an arbitrary ϕ ∈ L2. We have

zn := C(yn, pn)B(yn)
−1(wnϕ) → C̄B̄−1(wϕ) =: z in L2.

From K(yn, pn, wn)
∗ϕ = B(yn)

−1zn we write

‖K(yn, pn, wn)
∗ϕ− B̄−1z‖L∞ ≤ ‖B(yn)

−1(zn − z)‖L∞ + ‖(B(yn)
−1 − B̄−1)z‖L∞

≤ ‖B(yn)
−1‖L(L2,L∞)‖zn − z‖L2 + ‖(B(yn)

−1 − B̄−1)z‖L∞.

By Lemma B.1 and the Banach-Steinhaus theorem, ‖B(yn)
−1‖L(L2,L∞) is uniformly bounded,

hence, using also (4.30),

K(yn, pn, wn)
∗ϕ→ B̄−1z = B̄−1C̄B̄−1(wϕ) in L∞. (4.31)

We have seen that I +wB−1CB−1 is invertible for every w ∈ Wε, therefore I +K(y, p, w)∗ is also
invertible and Theorem A.3 provides

sup
(w,y,p)∈Wε×Yε×Pε

‖(I +K(y, p, w)∗)−1‖L(L2,L2) < +∞.

Passing to the adjoint yields

sup
(w,y,p)∈Wε×Yε×Pε

‖(I +K(y, p, w))−1‖L(L2,L2) < +∞.

In other words, there exists τ > 0 such that

‖(I + wB(y)−1C(y, p)B(y)−1)−1‖L(L2,L2) ≤ τ ∀(w, y, p) ∈ Wε × Yε × Pε. (4.32)

Step 4 (uniform bound on the Jacobian): From (4.25) and the invertibility of I + K we
obtain

δu = −δλ(I +K)−1w + (I +K)−1
(
h−1ũ−Kp̃+ wB−1ỹ

)
,

and using (4.26)

δλ

∫

D

(I +K)−1w = −λ̃+

∫

D

(I +K)−1
(
h−1ũ−Kp̃+ wB−1ỹ

)
. (4.33)

In order to obtain δλ, we need to show that

I(w) :=
∫

D

(I +K)−1w

is nonzero. More precisely we look for a uniform lower bound for I(w) when ζ is close enough to
ζε. We write

I(w) = 〈(I + wB−1CB−1)−1w, 1〉
= 〈w, (I +B−1CB−1(w·))−11〉,

and we set

ξ := (I +B−1CB−1(w·))−11, i.e. ξ +B−1CB−1(wξ) = 1, ξ ∈ L2(D).

Therefore we have

I(w) = 〈w, ξ〉 = 〈wξ, 1〉
= 〈wξ, ξ〉 + 〈B−1CB−1(wξ), wξ〉

=

∫

D

wξ2 + ‖C1/2B−1(wξ)‖2L2 .
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We now use

‖1− ξ‖L2 = ‖B−1CB−1(wξ)‖L2 ≤ ‖B−1C1/2‖L(L2,L2)‖C1/2B−1(wξ)‖L2 ,

which entails

I(w) ≥
∫

D

wξ2 + ‖B−1C1/2‖−2
L(L2,L2)‖1− ξ‖2L2 .

By Lemma 4.2 there exists a constant µ > 0 such that ‖B−1C1/2‖−2
L(L2,L2) ≥ µ therefore

I(w) ≥
∫

D

wξ2 + µ(1− ξ)2 dx.

For all (s, t) ∈ R×R we set

W
ε(s, t) =

T εt (s, t)

T εs (s, t)
.

When ζ is in a neighborhood of ζε, ‖g‖L∞ remains bounded, say ‖g‖L∞ ≤ τ . Using Assumption
3.4 we obtain that, whenever |t| ≤ τ ,

|W ε(s1, t)− W
ε(s2, t)| ≤

ks
α2
ε

(aε|s2|+ bε)|s1 − s2|+
kt
αε

|s1 − s2|.

This implies by substitution

‖W ε(u, g)− W (uε, g)‖L2 ≤ ks
α2
ε

‖aε|uε|+ bε‖L∞‖u− uε‖L2 +
kt
αε

‖u− uε‖L2 .

As 0 ≤ uε ≤ 1 we have
‖W ε(u, g)− W (uε, g)‖L2 ≤ kW ‖u− uε‖L2 ,

for some kW > 0. Now, we use that

W
ε(uε, g) = W

ε(θε(gε), g).

Arguing as previously we get

‖W ε(θε(gε), g)− W
ε(θε(g), g)‖L2 ≤ kW ‖θε(gε)− θε(g)‖L2,

and since θε is Lipschitz of constant kθ > 0,

‖W ε(θε(gε), g)− W
ε(θε(g), g)‖L2 ≤ kW kθ‖gε − g‖L2.

We arrive at
w = W

ε(u, g) = w̄ +R

with w̄ = W ε(θε(g), g) and

‖R‖L2 ≤ kW ‖u− uε‖L2 + kW kθ‖gε − g‖L2 ≤ kζ‖ζ − ζε‖. (4.34)

Next we write the decomposition

I(w) ≥
∫

D

w̄ξ2 + µ(1 − ξ)2 +

∫

D

Rξ2. (4.35)

As 0 <
∫
D u

ε = m < |D| and uε = θε(gε) is continuous, there exists x̄ ∈ D such that 0 <
θε(gε(x̄)) < 1. By continuity, there exists δ > 0 and a neighborhood ω of x̄ such that

δ ≤ θε(gε(x)) ≤ 1− δ ∀x ∈ ω.

As θε is Lipschitz, we also have for ‖g − gε‖L∞ sufficiently small

δ/2 ≤ θε(g(x)) ≤ 1− δ/2 ∀x ∈ ω.

By Assumption 3.4(f), there exists η > 0 such that

(θε)′(g(x)) ≤ −η ∀x ∈ ω.
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On differentiating with respect to t the equality T ε(θε(t), t) = 0 we derive

W
ε(θε(t), t) = −(θε)′(t) ∀t ∈ R.

This entails w̄ = −(θε)′(g) ≥ 0 and also w̄(x) ≥ η for all x ∈ ω. Therefore we have
∫

D

w̄ξ2 + µ(1 − ξ)2 ≥
∫

ω

ηξ2 + µ(1− ξ)2.

We easily show that for all ξ ∈ R,

ηξ2 + µ(1− ξ)2 ≥ ηµ

η + µ
,

whereby ∫

D

w̄ξ2 + µ(1− ξ)2 ≥ |ω| ηµ

η + µ
.

As to the second integral in (4.35) we have by the Cauchy-Schwarz inequality
∣∣∣∣
∫

D

Rξ2
∣∣∣∣ ≤ ‖R‖L2‖ξ‖2L4.

In view of (4.29) and (4.31), the set of operators K is also collectively compact and pointwise
sequentially compact in L(L4, L4), thus, arguing as in Step 3, we have that

sup
(w,y,p)∈Wε×Yε×Pε

‖(I +K(y, p, w)∗)−1‖L(L4,L4) < +∞,

which yields ‖ξ‖L4 ≤ σ for some constant σ > 0. Using (4.34) we infer
∣∣∣∣
∫

D

Rξ2
∣∣∣∣ ≤ σ2kζ‖ζ − ζε‖.

Altogether we arrive at

I(w) ≥ |ω| ηµ

η + µ
− σ2kζ‖ζ − ζε‖.

Therefore, there exist β, ν > 0 such that

‖ζ − ζε‖ ≤ β ⇒ I(w) ≥ ν.

Suppose now that ‖ζ − ζε‖ ≤ β. From (4.33) we get

δλ = I(w)−1

(
−λ̃+

∫

D

(I +K)−1
(
h−1ũ−Kp̃+ wB−1ỹ

))
.

Then from (4.25), (4.23) and (4.24), respectively, we derive explicit expressions for δu, δy and δp.
This means that DΦε(ζ) is invertible. In addition, we obtain by the Cauchy-Schwarz inequality

|δλ| ≤ ν−1
(
|λ̃|+ ‖(I +K)−1(h−1ũ−Kp̃+ wB−1ỹ)‖L2

)
.

Then using (4.32) we get

|δλ| ≤ ν−1
(
|λ̃|+ τ‖(h−1ũ−Kp̃+ wB−1ỹ)‖L2

)
≤ c(|λ̃|+ ‖ũ‖L2 + ‖p̃‖L2 + ‖ỹ‖L2).

We deduce straightforwardly using (4.25), (4.23) and (4.24) that

‖(δu, δy, δp, δλ)‖ ≤ c‖(ũ, ỹ, p̃, λ̃)‖,
which in turn implies

‖DΦε(ζ)−1‖L(F ,E ) ≤ c,

where c is a positive constant which may depend on ε. �
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4.5. Convergence of the regularized solutions. In this section we study the convergence of
the regularized solution ζε = (uε, yε, pε, λε) as ε→ 0.

Theorem 4.9. Let {εk}k∈N be a sequence of positive numbers such that εk → 0 as k → ∞. Denote
by ζεk = (uεk , yεk , pεk , λεk) a solution of Φεk(ζεk) = 0. Then

(1) For any s < 2 there exists a subsequence {εkl}l∈N and (u∗, λ∗) ∈ L2(D, [0, 1]) × R such
that

uεkl ⇀ u∗ weakly in L2(D), yεkl → y∗ strongly in Hs(D),

pεkl → p∗ strongly in Hs(D), λεkl → λ∗ in R,

where y∗, p∗ are given by

Ay∗ + ψ(y∗) = u∗, (4.36)

B(y∗)p∗ = −(y∗ − y†). (4.37)

(2) Every cluster point ζ∗ := (u∗, y∗, p∗, λ∗) of the sequence {ζεk}k∈N for the above product
topology (for s < 2 large enough) satisfies Φ(ζ∗) = 0, and u∗ is a strong cluster point of
{uεk} in L2([−p∗ + λ∗ 6= 0]).

Proof. Theorem 4.7 asserts that uεk ∈ L2(D, [0, 1]) for each k, which implies the weak convergence
of a subsequence {uεkl}l∈N. We denote by u∗ the weak limit. Since the solution yεkl of Ayεkl +
ψ(yεkl ) = uεkl is uniformly bounded in H2(D), for s < 2, there exists a y∗ ∈ Hs(D) ∩ H1

0 (D)
such that yεkl → y∗ in Hs (for a further subsequence). Passing to the limit in the equation
Ayεkl + ψ(yεkl ) = uεkl integrated against a test function z ∈ H1

0 (D) we obtain Ay∗ + ψ(y∗) = u∗.
Since pεkl is also uniformly bounded in H2(D), there exists p∗ ∈ Hs(D) ∩ H1

0 (D) for s < 2 such
that pεkl → p∗ in Hs. We actually have the equation

pεkl = −B(yεkl )−1(yεkl − y†), (4.38)

and yεkl → y∗ in L∞ due to Sobolev embedding. Applying Lemma B.1 we obtain, for all η ∈ L2,

〈B(yεkl )−1(yεkl )−B(y∗)−1(y∗), η〉 = 〈[B(yεkl )−1 −B(y∗)−1](yεkl ) +B(y∗)−1(yεkl − y∗), η〉
= 〈yεkl , [B(yεkl )−1 −B(y∗)−1]η〉+ 〈yεkl − y∗, B(y∗)−1η〉
→ 0.

Hence B(yεkl )−1(yεkl )⇀ B(y∗)−1(y∗) weakly in L2. By compactness of {B(yεkl )−1(yεkl )} in L2,
the convergence holds actually strongly (for a subsequence). The convergence of B(yεkl )−1y† in
(4.38) also follows from Lemma B.1. Thus, letting l → ∞ in (4.38) we obtain p∗ = −B(y∗)−1(y∗−
y†).

Now we show that λεk is uniformly bounded. Assume for instance that there exists a subsequence
λεkl → +∞. In view of Lemma 4.6, we have

uεkl = θεkl (−pεkl + λεkl ). (4.39)

Since ‖pεkl ‖L∞(D) is uniformly bounded, (4.39) and Assumption (3.4) provide uεkl → 0 almost

everywhere, but this implies
∫
D u

εkl → 0 since 0 ≤ uεkl ≤ 1 which contradicts the volume constraint∫
D
uεkl = m. Therefore λεk is bounded from above and with a similar argument, also from below.

Thus we have found that λεk is uniformly bounded and it follows that there exists a subsequence
λεkl and λ∗ such that λεkl → λ∗ in R.

We now turn to the second assertion of the theorem. Due to (4.36) and (4.37), we already
have Ly(u

∗, y∗, p∗) = 0 and Lp(u
∗, y∗, p∗) = 0. Passing to the weak limit in 〈1, uεk〉 = m yields

〈1, u∗〉 = m. Set gεk := −pεk + λεk and g∗ := −p∗ + λ∗. For a subsequence we have gεk → g∗

almost everywhere in D. In addition, T εk(uεk , gεk) = 0 entails uεk(x) = θεk(gεk(x)) for almost
every x ∈ D. Assume for instance that g∗(x) > 0 for some x ∈ D. Then, for k large enough,
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gεk(x) stays in a compact subset of (0,+∞). Yet, by Dini’s theorem, θεk → 0 uniformly on
compact subsets of (0,+∞). This entails uεk(x) = θεk(gεk(x)) → 0. Similarly, if g∗(x) < 0,
then uεk(x) = θεk(gεk(x)) → 1. Thus uεk(x) → θ(g∗(x)) for a.e. x ∈ [g∗ 6= 0]. By dominated
convergence, since 0 ≤ uεk ≤ 1, this limit holds also strongly in L2([g∗ 6= 0]). By uniqueness, we
infer that u∗ = θ(g∗) on [g∗ 6= 0]. This implies that u∗ ∈ Θ(g∗), and subsequently, by Assumption
2.4, that T (u∗, g∗) = 0. �

5. Algorithmic issues

5.1. Discretization. In this section we consider the discrete counterpart of the minimization
problem (1.1), i.e. where the function spaces Uad and Y as well as the functionals J and E are
discretized. For simplicity we keep the notation of the infinite-dimensional setting. We place
ourselves in the context of Section 4. We use for A the standard finite difference approximation of
the Dirichlet Laplacian. The function spaces become

U = Y = Z = R
n,

and the integrals are replaced by discrete sums. The finite-dimensional counterpart of E and F ,
defined in Section 4.4, is given by

E = F = R
n ×R

n ×R
n ×R,

so that Φε maps E onto F . Then the discrete counterparts of Theorems 4.7, 4.8 and 4.9 can be
readily deduced, and checked by inspection of the proofs.

5.2. Initialization. We initialize the control and the Lagrange multiplier by the values u ≡ 1/2
and λ = 0. Then we fix y and p by solving the direct and adjoint problems (4.11)-(4.12), and we
set ζε0 = (u, y, p, λ). For the first value of the regularization parameter we choose ε1 = ‖g‖L∞,
with g = −p+ λ.

5.3. Implementation of the semismooth Newton method. The Newton algorithm corre-
sponding to the regularization parameter εk, k ≥ 1, is initialized by the variable ζεk−1 and pro-
vides at convergence the new iterate ζεk . The Newton iteration is described in Theorem 4.8, where
DΦε(ζ) is now a generalized Jacobian matrix whose block structure is given by (4.20). It may de-
pend on the arbitrary parameter ̟ appearing in G ±

̟ if we use a functional T ε involving max(0, ·)
or min(0, ·), in which case we choose ̟ = 0. In order to speed up the numerical solving of the
linear system (4.21), by exploiting the special structure of the Jacobian, we use the so-called dual
approach described in [6, Section 14.4]. The stopping criterion is related to the increment between
two Newton steps, namely

‖ζk − ζk−1‖E

‖ζk−1‖E

< κN .

5.4. Update of ε. We would like to ensure a constant rate of convergence of some merit function
depending on ζε and which should be driven to zero. To this end we define

R(ε) :=
1

2
‖Φ(ζε)‖2F

and look for a sequence {εk} such that

R(εk+1)

R(εk)
≈ τ, (5.1)

where 0 < τ < 1 is a user-given coefficient. A preliminary information on the behavior of the
merit function is given by the following lemma. It applies for instance to the function T(2) and its
regularizations T ε(2a) and T ε(2b), which will be those considered in the sequel.
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Lemma 5.1. Suppose that, for all ε > 0 and all (s, t) ∈ R×R, there holds

T (s, t) = εT (s,
t

ε
), T ε(s, t) = εT 1(s,

t

ε
). (5.2)

Then we have

sup
t∈R

|T (θε(t), t)| = ε sup
t∈R

|T (θ1(t), t)|. (5.3)

If in addition supt∈R |T (θ1(t), t)| <∞, then there exists a constant c > 0 such that

R(ε) ≤ cε2. (5.4)

Proof. We derive from (5.2) that s = θε(t) ⇔ s = θ1(t/ε), whereby θε(t) = θ1(t/ε). Then, we have
for all t ∈ R

T (θε(t), t) = εT

(
θε(t),

t

ε

)
= εT

(
θ1(

t

ε
),
t

ε

)
,

which implies (5.3). From R(ε) = 1
2‖T (uε, gε)‖2 = 1

2‖T (θε(gε), gε)‖2, with gε = −pε + λε, we get
(5.4). �

To get a sequence verifying (5.1), we need first to prove that ζε satisfies an appropriate dif-
ferentiability property with respect to ε. To this end, we use an implicit function theorem for
semismooth mappings. Some preliminaries on the notion of semismoothness are necessary. Let
F : Rn1 → R

n2 be a locally Lipschitz mapping. According to Rademacher’s theorem, F is almost
everywhere differentiable. Let DF denote the set of all differentiable points of F . Then we call

∂BF (x) :=
{
H ∈ R

n1×n2

∣∣∃{xk} ⊆ DF : xk → x, F ′(xk) → H
}

the B-subdifferential of F at x. Its convex hull

∂F (x) := conv ∂BF (x)

is Clarke’s generalized Jacobian of F at x; see [12]. Note that ∂BF ⊆ ∂F . We will say that F is
semismooth if it is directionally differentiable and satisfies

‖F (x+ d)− F (x) −Hd‖ = o(‖d‖)
for all d→ 0 and all H ∈ ∂F (x+d). Note that this is not the classical definition of semismoothness,
but an equivalent one; see [22, 23].

Now consider a mapping Ψ : Rn1 × R
n2 → R

n2 . Then the projection πy∂Ψ(x, y) denotes the
set of all n2 × n2 matrices M such that, for some n2 × n1 matrix N , the n2 × (n1 + n2) matrix
[N,M ] belongs to ∂Ψ(x, y). The following implicit function theorem is taken from [27, Theorem
2.3]; see also [26, Theorem 2.1].

Theorem 5.2. Suppose that Ψ : R
n1 × R

n2 → R
n2 is locally Lipschitz and semismooth in a

neighborhood of a point (x̄, ȳ) satisfying Ψ(x̄, ȳ) = 0, and assume that all matrices in πy∂Ψ(x̄, ȳ)
are nonsingular. Then there exists an open neighborhood X of x̄ and a function y : X → R

n2

which is Lipschitz and semismooth on X such that y(x) = ȳ and Ψ(x, y(x)) = 0 for all x ∈ X.

We apply Theorem 5.2 to the function Ψ defined by Ψ : R × E ∋ (ε, ζ) 7→ Φε(ζ) ∈ F . We
obtain the following corollary.

Corollary 5.3. Let T ε ∈ {T ε(1), T ε(2a), T ε(2b)} and (ε̄, ζ̄) be such that Φε̄(ζ̄) = 0. Then there exists

an open neighborhood Υ of ε̄ and a function ζ : Υ → E which is Lipschitz and semismooth on Υ
such that ζ(ε̄) = ζ̄ and Φε(ζ(ε)) = 0 for all ε ∈ Υ.
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Proof. We present the proof for the operator T ε(2a) only, as the operator T ε(1) can be treated likewise

and the standard implicit function theorem applies to T ε(2b). We essentially need to verify that the

assumptions of Theorem 5.2 are satisfied. By construction we have Ψ(ε̄, ζ̄) = 0. We denote by
Ψi(ε, ζ), 1 ≤ i ≤ 4, the components of Ψ(ε, ζ), i.e.

Ψ(ε, ζ) =:




Ψ1(ε, ζ)
Ψ2(ε, ζ)
Ψ3(ε, ζ)
Ψ4(ε, ζ)


 =




T ε(u,−p+ λ)
(A+ ψ′(y))p+ y − y†

Ay + ψ(y)− u
〈1, u〉 −m


 .

Since T ε is locally Lipschitz, Ψ1 is also locally Lipschitz by composition. Using that ψ ∈ W 3,∞(R)
we get that Ψi is also locally Lipschitz for 2 ≤ i ≤ 4.

Let us now check that Ψ is semismooth. Similarly to Φε, Ψ admits the Newton derivative

DΨ(ε, ζ) =




[T εε (u, g)]n,1 [T εs (u, g)]n,n On,n [−T εt (u, g)]n,n [T εt (u, g)]n,1
On,1 On,n [ψ′′(y)p+ 1]n,n A+ [ψ′(y)]n,n On,1

On,1 −In A+ [ψ′(y)]n,n On,n On,1

O1,1 11,n O1,n O1,n O1,1


 ,

(5.5)
where g = −p + λ, On1,n2

and 1n1,n2
denote the n1 × n2 matrices filled with zeros and ones,

respectively, and In is the n × n identity matrix. Also, the notation [v]n1,n2
stands for a block

of size n1 × n2, which is obtained by arranging the components of the vector v columnwise when
n2 = 1 and diagonalwise when n1 = n2 = n. For the chosen function T ε, the vectors T εs (u, g),
T εt (u, g) and T εε (u, g) are given by

T εs (u, g) =
√
ε2 + g2,

T εt (u, g) = ug(ε2 + g2)−1/2 + G
−
̟ (g),

T εε (u, g) = uε(ε2 + g2)−1/2.

Of course, in the above expressions, the products, powers and square roots apply componentwise.
The vector-valued function G −

̟ : Rn → R
n is defined, for an arbitrarily fixed ̟ ∈ R

n, by

G
−
̟ (g) = {1[gi<0] +̟i1[gi=0]}ni=1.

The Newton derivative G −
̟ is the finite-dimensional counterpart [15, Lemma 3.1] of the Newton

derivative in Theorem 3.2. Note that DΨ(ε, ζ) is a (3n+ 1)× (3n+ 2) matrix which depends on
̟ ∈ R

n. A quick calculation indicates that

∂Ψ(ε, ζ) = conv ∂BΨ(ε, ζ) = {DΨ(ε, ζ), 0 ≤ ̟i ≤ 1 ∀i} .
The fact that DΨ(ε, ζ) acts as Newton derivative of Ψ for every 0 ≤ ̟i ≤ 1 implies that Ψ is
semismooth.

It also follows that

πζ∂Ψ(ε, ζ) = ∂Φε(ζ) = conv ∂BΦ
ε(ζ) = {DΦε(ζ), 0 ≤ ̟i ≤ 1 ∀i} ,

where ∂BΦ
ε(ζ) is the set of directional derivatives DΦε(ζ) and DΦε(ζ) denotes here the discrete

counterpart of the Jacobian computed in (4.20), i.e.

DΦε(ζ) =




[T εs (u, g)]n,n On,n [−T εt (u, g)]n,n [T εt (u, g)]n,1
On,n [ψ′′(y)p+ 1]n,n A+ [ψ′(y)]n,n On,1

−In A+ [ψ′(y)]n,n On,n On,1

11,n O1,n O1,n O1,1


 .

In Theorem 4.8, we have proved that DΦε(ζε) is invertible for any ε > 0 and 0 ≤ ̟ ≤ 1 in the
infinite dimensional setting. From inspection of the proof we can check that this result remains
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true in the finite dimensional setting for any 0 ≤ ̟i ≤ 1, and therefore for all matrices in ∂Φε̄(ζ̄) =
πζ∂Ψ(ε̄, ζ̄) if ε̄ > 0. Thus, we can apply Theorem 5.2 and the corollary follows immediately. �

Now we turn to the update of the regularization parameter εk. We would like to achieve the
decrease (5.1) with a reasonably small τ . On one hand, by Corollary 5.3, there exists a selection of
solutions ζε = ζ(ε) for which the function ε 7→ ζ(ε) is semismooth, thus in particular directionally
differentiable. As the function ζ 7→ ‖Φ(ζ)‖2 is C1, we deduce that ε 7→ R(ε) is locally Lipschitz
as well as directionally differentiable, and the chain rule applies; see [7, Proposition 2.47]. On the
other hand, in the cases of application of Lemma 5.1, we have R(ε) ≤ cε2 for some constant c.
Thus, in order to make a proper linearization, it makes sense to use a logarithmic scale for both
R(ε) and ε. Therefore we set

ρ(ln ε) := lnR(ε)

and, for a given εk, we are now looking for εk+1 satisfying

ρ(ln εk+1)− ρ(ln εk) ≈ ln τ.

We now linearize ρ about ln εk in the direction of decreasing arguments, which leads to

ρ′(ln εk)(ln εk+1 − ln εk) ≈ ln τ.

Thus we take the following update for εk+1:

εk+1 = εkτ
ρ′(ln εk)

−1

.

We now compute ρ′(ln εk). For simplicity, we place ourselves in the (generic) case where the
function ε 7→ ζ(ε) is differentiable at the considered point. We have by the chain rule

ρ′(ln εk) = εk
R′(εk)

R(εk)
(5.6)

and

R′(εk) = 〈DΦ(ζεk )ζ′(εk),Φ(ζ
εk )〉F

where 〈·, ·〉F denotes the scalar product in F and DΦ(ζεk) is an arbitrary Newton derivative of Φ
at ζεk . In addition, by (Newton) differentiating Ψ(ε, ζ(ε)) = 0 we arrive at

ζ′(εk) = −DζΨ(εk, ζ(εk))
−1DεΨ(εk, ζ(εk))

= −DΦεk(ζεk )−1DεΨ(εk, ζ
εk).

Finally we obtain the update

εk+1 = εkτ
βk with βk =

−R(εk)
εk〈DΦ(ζεk)DΦεk (ζεk)−1DεΨ(εk, ζεk),Φ(ζεk )〉F

.

Note that DεΨ is given by the first column of (5.5).

5.5. Stopping criterion. The stopping criterion we choose is related to the logarithmic derivative
of the function ε 7→ ζ(ε), namely

∥∥∥∥
dζ

d ln ε
(ε)

∥∥∥∥ < κE‖ζ(ε)‖,

or equivalently

ε ‖ζ′(ε)‖ < κE‖ζ(ε)‖.
Note that the user-given constant κE is dimensionless.



24

0 5 10 15 20
−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

Figure 2. Linear case: optimal control for y† = y†1 (left), convergence history of

log10R(ε) for y† = y†1 (middle), and optimal control for y† = y†2 (right).

6. Numerical experiments

We consider a two dimensional problem on the unit square D =]0, 1[2. The target volume is
m = 0.5. The discretization is done with n = 39601 nodes. We choose the function T ε(2b) given in

Section 3.2 and the parameters τ = 0.1, κN = 10−8, κE = 10−3. We have also tested the functions
T ε(1) and T ε(2a), and our experiments tend to indicate that the algorithm is in average slightly slower

with the function T ε(2a), while it may be less stable for small values of ε with the function T ε(1).

For each of the following computations performed in Matlab, the CPU time is of the order of 2
minutes on a standard desktop computer.

6.1. The linear problem. To begin with we choose ψ ≡ 0 and two functions y†:

y†1(x1, x2) = 0.01,

y†2(x1, x2) = sin(2πx1) sin(2πx2).

The obtained optimal controls u are depicted in Figure 2, where white corresponds to u = 0 and

black to u = 1. Note that the absence of intermediate regions is, for y† = y†1 , a consequence of
Theorem 4.4. The convergence history of the residual R(ε) is also shown, in semi-logarithmic scale,
with the number of updates of ε along the x-axis.

6.2. Examples of nonlinear problems. We fix y† = y†1, and consider two functions ψ:

ψ1(t) = eat − 1, a = 103,

ψ2(t) = arctan(at), a = 102.

Note that ψ2 has bounded first, second and third derivatives, but it is not the case for ψ1. The
corresponding results are shown on Figure 3. The effect of the nonlinearity is clearly emphasized
by the appearance of intermediate regions. We point out that in each case the volume constraint
is realized with |

∫
D
u−m|/m < 10−13.

Appendix A. Collectively compact sets of operators

Let X be a Banach space and K be a subset of L(X ), where L(X ) is the set of bounded linear
operators from X into itself.

Definition A.1. We say that K is collectively compact if the set {Kx, x ∈ X , ‖x‖ ≤ 1,K ∈ K} is
relatively compact.

Obviously, if K is collectively compact, every K ∈ K is compact. The following result may be
found in [3, Theorem 1.6].
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Figure 3. Nonlinear cases: optimal control for ψ = ψ1 (left), convergence history
of log10R(ε) for ψ = ψ1 (middle), and optimal control for ψ = ψ2 (right).

Theorem A.2. Let K, (Kn)n∈N ∈ L(X ). Assume Kn → K pointwise, {Kn} is collectively
compact and K is compact. Then (I −K)−1 exists if and only if for some n0 and all n ≥ n0 the
operators (I − Kn)

−1 exist and are uniformly bounded, in which case (I − Kn)
−1 → (I − K)−1

pointwise.

The following result can be easily deduced from Theorem A.2; see [2].

Theorem A.3. Let K be a collectively compact set of bounded linear operators of X . Assume
further that K is pointwise sequentially compact, i.e., for every sequence (Kn) of K there exists a
subsequence (Knp

) and K ∈ K such that Knp
x → Kx for all x ∈ X . If I −K is invertible for all

K ∈ K, then

sup
K∈K

‖(I −K)−1‖ <∞. (A.1)

Appendix B. Operator convergence

Lemma B.1. If yn → y in L∞(D) then, for all η ∈ L2(D),

B(yn)
−1η = [A+ ψ′(yn)]

−1η → [A+ ψ′(y)]−1η = B(y)−1η in L∞(D). (B.1)

Proof. With yn → y in L∞(D) and using ‖ψ′′‖L∞ ≤M2
ψ we obtain

ψ′(yn) → ψ′(y) in L∞(D). (B.2)

We write

B(yn)
−1 = A−1[I + ψ′(yn)A

−1]−1.

The family of operators {ψ′(yn)A
−1 : L2 → L2} is collectively compact due to the compactness of

A−1 and the uniform boundedness of ‖ψ′(yn)‖L∞ . We have for all ϕ ∈ L2(D)

〈(I + ψ′(y)A−1)ϕ,A−1ϕ〉 = 〈A−1ϕ, ϕ〉+ 〈ψ′(y)A−1ϕ,A−1ϕ〉 ≥ 〈A−1ϕ, ϕ〉,

hence I + ψ′(y)A−1 is injective and subsequently invertible by the Fredholm alternative. In view
of (B.2), we also have the pointwise convergence ψ′(yn)A

−1 → ψ′(y)A−1, we may thus apply
Theorem A.2 to obtain

[I + ψ′(yn)A
−1]−1 → [I + ψ′(y)A−1]−1 pointwise in L2(D),

which in turn implies (B.1) by composition with A−1. �
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