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A SEMISMOOTH NEWTON METHOD FOR A CLASS OF SEMILINEAROPTIMAL CONTROL PROBLEMS WITH BOX AND VOLUMECONSTRAINTSSAMUEL AMSTUTZ AND ANTOINE LAURAINAbstrat. In this paper we onsider optimal ontrol problems subjet to a semilinear elliptistate equation together with the ontrol onstraints 0 ≤ u ≤ 1 and ∫
u = m. Optimalityonditions for this problem are derived and reformulated as a nonlinear, nonsmooth equationwhih is solved using a semismooth Newton method. A regularization of the nonsmooth equationis neessary to obtain the superlinear onvergene of the semismooth Newton method. We provethat the solutions of the regularized problems onverge to a solution of the original problem anda path-following tehnique is used to ensure a onstant derease rate of the residual. We showthat, in ertain situations, the optimal ontrols take 0 − 1 values, whih amounts to solving atopology optimization problem with volume onstraint.1. IntrodutionThis paper is dediated to the numerial solution of minimization problems of the form

min
(u,y)∈Uad×Y

J(u, y) subjet to E(u, y) = 0, (1.1)where J : L2(D)× Y → R and E : U × Y → Z are appropriate funtionals, Y and Z are Banahspaes, the sets U and Uad are de�ned by
U :={u ∈ L2(D), 0 ≤ u ≤ 1 a.e. in D},

Uad :={u ∈ U,

∫

D

u = m}, 0 < m < |D|,and D is a bounded domain of RN , N ∈ {2, 3}, with N -dimensional Lebesgue measure |D|. In [2℄ asemismooth Newton method was introdued for a ontrol problem subjet to a linear ellipti stateequation and an L1 ontrol ost, with the feature that the ontrol u, a priori searhed for within
U , eventually takes 0−1 values. Suh a problem is atually a topology optimization problem [1, 4℄sine u may be written as the harateristi funtion of a measurable domain Ω ⊂ D. We speak oftopology optimization rather than shape optimization sine the topology of Ω is not imposed andmay be quite ompliated. The ontrol ost ∫

D u is interpreted as a volume penalization, whihis of very standard use in topology optimization. In the present paper we extend this point ofview in two diretions. Firstly, the volume term is now treated as an equality onstraint insteadof a simple penalization. Seondly, we onsider a lass of semilinear state equations, for whih theoptimal ontrols are not neessarily binary.Nonsmooth ontrol osts or onstraints suh as the L1-norm usually lead to optimal ontrolswhose struture is fundamentally di�erent than when using smooth ontrol osts suh as Lp normswith p > 1. Nonsmooth ontrol osts have reeived a great deal of attention reently and havebeen used for di�erent purposes. The bounded variation norm has been employed primarily in2010 Mathematis Subjet Classi�ation. 35J61,49K20,49M05,49M15,49Q10.Key words and phrases. optimal ontrol, topology optimization, semilinear equation, semismooth Newtonmethod, volume onstraint. 1



2image proessing and inverse problems [10, 16, 21℄ in order to preserve sharp edges and reovernonsmooth data. Reently, it has been shown that the L1-norm [20, 22, 24℄ or the measure normof the ontrol [12℄ provide sparse optimal ontrols. Sparsity is a property that may be desirable inertain appliations where simple struture or easy storage are required for instane. The L1-normis also a more natural measure of the ost of the ontrol in appliations. In shape and topologyoptimization, L1 or total variation ontrol osts are the natural regularizations as they orrespondto volume and perimeter onstraints on the geometry, respetively.Unlike smooth, for instane L2, regularizations, the treatment of the nonsmooth ontrol ostis tehnial but nevertheless well-understood nowadays from the theoretial and numerial pointof view for linear PDE-onstraints. Using onvex duality, one onsiders the predual problemwhih orresponds to the minimization of a smooth funtional with box onstraints, for whihstandards optimization tehniques are available [12℄. For the numerial solution, a Moreau-Yosidaapproximation of the predual problem may be employed and an be solved using a semismoothNewton method. A ontinuation tehnique is then neessary to obtain the solution of the non-regularized dual problem. Alternatively, the problem an be regularized by adding the L2-norm ofthe ontrol to the funtional to be minimized, without losing the sparse properties of the L1-norm;see [22, 25℄ for details.The main ontribution of our paper is to develop a fast and e�ient algorithm to solve (1.1)when E is nonlinear. In partiular we study the ase where E(u, y) = 0 is a ertain lass ofsemilinear equations. Our algorithm is based on a reformulation of the optimality onditions forProblem (1.1) in the form Φ(u, y, p, λ) = 0, where (p, λ) are Lagrange multipliers appearing inthe optimality onditions and Φ is a nonsmooth, nonlinear vetor funtion. Although the L1-norm is in our ase di�erentiable due to the box onstraint 0 ≤ u ≤ 1, this onstraint itselfleads to a non-smoothness and the generalized Jaobian of Φ exhibit singularities whih all for aregularization. The nonlinearity of the state equation does not allow to have a onvenient reduedproblem formulation where the ontrol is the only variable as in [2, 22℄, and the problem beomesonsiderably more involved. To ope with the nonsmoothness of Φ some tools of nonsmooth analysisare needed. In partiular we rely here on the use of a semismooth Newton method [14, 23℄ whihexploits generalized di�erentiability properties of Φ, the so-alled Newton di�erentiability, relatedto the notion of semismoothness. In some partiular ases whih are relevant for appliations,we show that we obtain binary solutions, in other words the problem is equivalent to a topologyoptimization problem. In this ase the onstraint ∫
D
u = m allows to exatly ontrol the sparsityof u, whose support dereases with m. In the general ase, one annot expet binary solutionsto (1.1). However, we observe in numerial experiments that the optimal ontrol often presents apieewise onstant nature.The paper is organized as follows. First of all we write in Setion 2 the optimality onditions forthe general optimization problem (1.1) under reasonable assumptions on E and J . These onditionsare rewritten as a nonlinear, nonsmooth equation. In Setion 3 we desribe the semismooth Newtonmethod employed to solve the nonlinear equation. We speialize then the problem in Setion 4 byonsidering a semilinear ellipti problem. We prove the superlinear onvergene of the semismoothNewton method applied to an approprialety regularized problem, and, at the end of the setion,we also prove the onvergene of the regularized solutions to the solution of the original problem(1.1). In Setion 5 the numerial algorithm is desribed, and a path-following strategy to steerthe regularization parameter so as to ensure a onstant rate of derease of some merit funtionis given. Finally, numerial results whih illustrate both the onvergene of the method and thebinary or pieewise onstant nature of the optimal ontrols are given in Setion 6.



32. Problem statement and optimality onditionsIn order to derive optimality onditions in a general setting, we make the following assump-tions on the funtionals and spaes appearing in Problem (1.1). These assumptions over a largespetrum of appliations.Assumption 2.1. (a) J : L2(D) × Y → R and E : U × Y → Z are ontinuously Fréhet-di�erentiable and Y, Z are Banah spaes with Y re�exive.(b) The equation E(u, y) = 0 has a single-valued solution operator u ∈ V 7→ y(u) ∈ Yad, where Vis a neighborhood of Uad in U and Yad is a bounded subset of Y .() (u, y) ∈ Uad × Yad 7→ E(u, y) ∈ Z is ontinuous under weak onvergene.(d) The partial Fréhet-derivative of E with respet to y at the point (u, y(u)), denoted by
Ey(u, y(u)) ∈ L(Y, Z), has a bounded inverse for all u ∈ V .(e) J is sequentially weakly lower semiontinuous.Subsequently we denote, given any normed vetor spae X , by X ′ the ontinuous dual spae of

X , by 〈., .〉 the duality pairing between X ′ and X , and by f∗ the adjoint of a linear map f . Thefollowing result is easily proved by standards arguments of the alulus of variations, see e.g. [17℄(Theorem 1.45 and Corollary 1.3).Theorem 2.2. Let Assumption 2.1 hold. Then Problem (1.1) has an optimal solution (ū, ȳ).Moreover, there exists p̄ ∈ Z ′ suh that
Ey(ū, ȳ)

∗p̄ = −Jy(ū, ȳ), (2.1)
〈Ju(ū, ȳ) + Eu(ū, ȳ)

∗p̄, u− ū〉 ≥ 0 ∀u ∈ Uad. (2.2)We shall reformulate the onditions (2.1) and (2.2) in a more onvenient way. To this aim weintrodue the Lagrangian L : U × Y × Z ′ → R de�ned by
L(u, y, p) = J(u, y) + 〈p,E(u, y)〉,and whose partial derivatives are
Lu(u, y, p) = Ju(u, y) + Eu(u, y)

∗p, (2.3)
Ly(u, y, p) = Jy(u, y) + Ey(u, y)

∗p, (2.4)
Lp(u, y, p) = E(u, y). (2.5)For every u ∈ Uad we de�ne the one K(u) ⊂ L2(D) by

∀v ∈ L2(D), v ∈ K(u) ⇐⇒







v = 0 a.e. in [0 < u < 1],
v ≥ 0 a.e. in [u = 0],
v ≤ 0 a.e. in [u = 1].Theorem 2.3. Let Assumption 2.1 hold and (ū, ȳ) be an optimal solution of (1.1). Then thereexists (λ̄, p̄) ∈ R× Z ′ suh that

Lu(ū, ȳ, p̄) + λ̄ ∈ K(ū), (2.6)
Ly(ū, ȳ, p̄) = 0, (2.7)
Lp(ū, ȳ, p̄) = 0, (2.8)

∫

D

ū = m. (2.9)



4Proof. In view of (2.4) and (2.5), the equations (2.7)-(2.9) are straightforward onsequenes of (2.1)together with the onstraints. Therefore we fous on (2.6). For simpliity we set ḡ := Lu(ū, ȳ, p̄) ∈
L2(D). From (2.2) and (2.3) we infer

〈ḡ, u− ū〉 ≥ 0 ∀u ∈ Uad.With v = u− ū we get
〈ḡ, v〉 ≥ 0 ∀v ∈ C subjet to ∫

D

v = 0, (2.10)with the onvex set
C = {v ∈ L2(D), 0 ≤ ū+ v ≤ 1}.We introdue the set

Ξ =

{(

〈ḡ, v〉+ α,

∫

D

v

)

, α ≥ 0, v ∈ C

}

.Sine Ξ is the image of R+ ×C by the linear map (α, v) 7→ (〈ḡ, v〉+ α,
∫

D
v), it follows that Ξ is aonvex subset of R2. Let us show that (0, 0) /∈ Int(Ξ). Suppose the ontrary. There exists ρ > 0suh that B((0, 0), ρ) ⊂ Ξ. This means that, for all (s, t) ∈ B((0, 0), ρ), there exist α ≥ 0, v ∈ Csuh that

s = 〈ḡ, v〉+ α, t =

∫

D

v.Choose t = 0 and s ∈]− ρ, 0[. Then ∫

D v = 0 and 〈ḡ, v〉 = s− α < 0, whih ontradits (2.10).Let us now show that Int(Ξ) 6= ∅. As 0 <
∫

D ū < |D|, there exist θ−, θ+ ∈]0, 1[ suh that
|[ū ≤ θ+]| > 0 and |[ū ≥ θ−]| > 0. Indeed, for this latter inequality for instane, we have

0 < |[0 < ū ≤ 1]| =

∣

∣

∣

∣

∣

∞
⋃

n=1

[

1

n+ 1
< ū ≤

1

n

]

∣

∣

∣

∣

∣

=

∞
∑

n=1

∣

∣

∣

∣

[

1

n+ 1
< ū ≤

1

n

]∣

∣

∣

∣

,hene there exists n ≥ 1 suh that
0 <

∣

∣

∣

∣

[

1

n+ 1
< ū ≤

1

n

]∣

∣

∣

∣

≤

∣

∣

∣

∣

[

1

n+ 1
≤ ū

]∣

∣

∣

∣

.We will show that (s, 0) ∈ Int(Ξ) for any s ≥ 2max(1− θ+, θ−)‖ḡ‖L1(D), s > 0. Set
ρ = min

(s

2
, (1 − θ+)|[ū ≤ θ+]|, θ−|[ū ≥ θ−]|

)

> 0.Take (a, b) ∈ B((s, 0), ρ), i.e., |a− s| < ρ and |b| < ρ. We de�ne
v =

{

1[ū≤θ+]
b

|[ū≤θ+]| if b ≥ 0,

1[ū≥θ−]
b

|[ū≥θ−]| if b < 0.We have in both ases v ∈ C and ∫

D v = b. Set now
α = a− 〈ḡ, v〉 ≥

s

2
− ‖ḡ‖L1(D)‖v‖L∞(D).We have by onstrution

‖v‖L∞(D) ≤ max(1− θ+, θ−),whih yields α ≥ 0 and (a, b) ∈ Ξ.We separate Ξ and {(0, 0)} (see, e.g., [7, Theorem 2.13℄): there exists (γ, ξ) ∈ R
2 \ {(0, 0)} suhthat

γs+ ξt ≥ 0 ∀(s, t) ∈ Ξ.This is equivalent to
γ(〈ḡ, v〉+ α) + ξ

∫

D

v ≥ 0 ∀α ≥ 0, ∀v ∈ C.



5In partiular we obtain for α = 0

γ〈ḡ, v〉+ ξ

∫

D

v ≥ 0 ∀v ∈ C.In addition, if γ = 0, then ξ 6= 0 hene ∫

D v ≥ 0 ∀v ∈ C whih is not true (take v = −ū). Setting
λ̄ = ξ/γ we obtain

〈ḡ, v〉+ λ̄

∫

D

v ≥ 0 ∀v ∈ C.Equivalently we an write 〈ḡ + λ̄, v〉 ≥ 0 for all v ∈ C, i.e. ḡ + λ̄ ∈ C+, the positive dual one of
C in L2(D).It remains to show that C+ = K(ū). Take ϕ ∈ K(ū). For all v ∈ C we have

〈ϕ, v〉 =

∫

[ū=0]

ϕv +

∫

[ū=1]

ϕv +

∫

[0<ū<1]

ϕv.The �rst two terms are nonnegative, the last one is zero, thus ϕ ∈ C+. Take now ϕ ∈ C+. Forany α ∈ [0, 1[ set
vα = (1 − α)1[ū≤α]1[ϕ≤0] ∈ C.We have

0 ≤ 〈vα, ϕ〉 = (1− α)

∫

[ū≤α]

min(0, ϕ) ≤ 0.We dedue that ϕ ≥ 0 a.e. in [ū ≤ α]. Similarly we obtain that, for every β ∈]0, 1], ϕ ≤ 0 a.e. in
[ū ≥ β], whih yields ϕ ∈ K(ū). The proof is now omplete. �For all (u, y, p, λ, g) ∈ L2(D)× Y × Z ′ ×R× L2(D) we set

T (u, g) := umax(0, g) + (1− u)min(0, g),and
Φ(u, y, p, λ) :=









T (u, Lu(u, y, p) + λ)
Ly(u, y, p)
Lp(u, y, p)
∫

D u−m









.Proposition 2.4. Let (ū, ȳ, p̄, λ̄) ∈ L2(D)×Y ×Z ′×R. The onditions (2.6)-(2.9) are equivalentto
Φ(ū, ȳ, p̄, λ̄) = 0.Proof. We only have to hek that g ∈ K(u) if and only if T (u, g) = 0, whih is straightforward. �3. Solution strategy3.1. Standard results on semismoothNewton methods. We brie�y reall a few useful resultsonerning semismooth Newton methods [9, 14, 17, 19℄. Let X ,Y be Banah spaes and U be anopen subset of X .De�nition 3.1. A funtion F : U → Y is alled Newton di�erentiable if there exists a map

G : U → L(X ,Y), referred to as Newton derivative, suh that
lim
h→0

1

‖h‖X
‖F (u+ h)− F (u)−G(u+ h)h‖Y = 0for all U ∈ V .Note that the Newton derivative is not neessarily unique. Of ourse, funtions whih are C1in the sense of Fréhet are Newton di�erentiable. The following theorem [14, Proposition 4.1℄provides another partiularly useful example for our purposes.



6Theorem 3.2. The maps max(0, ·) and min(0, ·) : Lq(D) → Lp(D) with 1 ≤ p < q ≤ +∞ areNewton di�erentiable on Lq(D), and
G

+
µ : u 7→ 1[u>0] + µ1[u=0],

G
−
µ : u 7→ 1[u<0] + µ1[u=0],are their respetive Newton derivatives for any µ ∈ R.The following theorem [14, Theorem 1.1℄ asserts the loal onvergene of the semismooth Newtonmethod applied to a Newton di�erentiable funtion.Theorem 3.3. Suppose that u∗ solves F (u∗) = 0 and that F : X → Y is Newton di�erentiable inan open set U ontaining u∗, with Newton derivative G. If G(u) is nonsingular for all u ∈ U and

{‖G(u)−1‖L(Y,X ), u ∈ U} is bounded, then the Newton iteration
un+1 = un −G(un)

−1F (un)onverges superlinearly to u∗, provided that ‖u0 − u∗‖X is su�iently small.3.2. Di�erentiability properties of the optimality system and regularization. In spei�ases, provided that attention is paid to the hoie of the norms, the funtion Φ will be well Newtondi�erentiable. However, we shall see in the example detailed later that the generalized Jaobianof Φ may be non-invertible, whih of ourse prevents the use of the semismooth Newton method.For this reason we regularize Φ by introduing
Φε(u, y, p, λ) :=









T ε(u, Lu(u, y, p) + λ)
Ly(u, y, p)
Lp(u, y, p)
〈1, u〉 −m









,with
T ε(u, g) = umax(0, g + ε) + (1− u)min(0, g − ε). (3.1)We have
T ε(u, g) =







(1− u)(g − ε) in [g < −ε],
2uε+ g − ε in [−ε ≤ g ≤ ε],
u(g + ε) in [g > ε],hene

T ε(u, g) = 0 ⇐⇒







u = 1 in [g < −ε],
u = 1

2 (1−
g
ε ) in [−ε ≤ g ≤ ε],

u = 0 in [g > ε].
(3.2)Our strategy is to apply the semismooth Newton method to the solution of Φε(u, y, p, λ) = 0,then let ε go to zero by a ontinuation tehnique.Remark 3.4. In [18℄ the funtion

T (u, g) := g −max(0, g − cu)−min(0, g − c(u− 1)) (3.3)was suggested and the resulting algorithm was analyzed for an objetive funtional of the type
J(u, y) =

1

2
‖y − y†‖2L2 +

α

2
‖u‖2L2and onstraints of the form

E(u, y) = 0 ⇐⇒ y = S(u).Global as well as loal onvergene results were established for α large enough. However, here weare typially interested in the ase α = 0. Thus a ontinuation proedure for dereasing valuesof α would be an option, whih is studied in [25℄ for linear problems inluding an additional L1



7ontrol ost. An issue would then be how to adjust c in (3.3). It is shown in [14℄ that, whenthe ontrol-to-state mapping S is linear, the algorithm is equivalent to the primal dual ative setmethod and is therefore independent of c. But this is no more the ase for nonlinear problems. In[18℄ the value c = α was hosen, but numerial tests showed instabilities when α tends to zero.Remark 3.5. In [2℄ the funtion
T ε(u, g) =

√

ε2 + g2 +min(0, g) (3.4)was used for unonstrained linear problems. Its properties are similar to that of (3.1), exept thatthe two bound onstraints are treated in a non symmetri way.4. Study of a semilinear ellipti problem4.1. Problem formulation. Using the framework developed in the previous setions, we speial-ize to the following spaes
Y = H1

0 (D), Z = H−1(D),and funtionals
J(u, y) =

1

2

∫

D

(y − y†)2,

E(u, y) = Ay + ψ(y)− u,where y† ∈ L2(D), A denotes the negative Dirihlet Laplaian on D, and the funtion ψ is in
C2(R), non-dereasing, and suh that

‖ψ(k)‖L∞ ≤Mk
ψ, k = 1, 2, 3, (4.1)for some positive onstantsMk

ψ. More preisely, we have for all (u, y, z) ∈ L2(D)×H1
0 (D)×H1

0 (D)

〈E(u, y), z〉 =

∫

D

∇y · ∇z + ψ(y)z − uz.We assume that D is of lass C2 or onvex. Then, aording to lassial results on semilinearpartial di�erential equations, see [5, 8, 13℄ for instane, we get, for all u ∈ L2(D), the existeneof a unique solution y(u) ∈ H2(D) ∩ H1
0 (D) to the equation E(u, y(u)) = 0. Moreover, the map

u ∈ L2(D) 7→ y(u) ∈ H2(D) is of lass C2, and we have the following estimate.Lemma 4.1. There exist onstants a, b > 0 suh that, for all f ∈ L2(D), the solution of
Ay + ψ(y) = fsatis�es

‖y‖H2 ≤ a+ b‖f‖L2.Proof. By [17, Theorem 1.25℄, we have
‖y‖H1 ≤ c‖f − ψ(0)‖L2 . (4.2)Next, from

Ay = f − ψ(y),we obtain by ellipti regularity
‖y‖H2 ≤ c‖f − ψ(y)‖L2 ≤ c(‖f‖L2 + ‖ψ(y)‖L2), (4.3)where, here and throughout the paper, c denotes a generi positive onstant. Using that

|ψ(t)| ≤ |ψ(0)|+M1
ψ|t|we infer

‖ψ(y)‖L2 ≤ c+ c‖y‖L2. (4.4)



8Combining (4.2)-(4.4) ompletes the proof. �We obtain for the Lagrangian and its derivatives:
L(u, y, p) =

1

2

∫

D

(y − y†)2 + 〈p,Ay + ψ(y)− u〉, (4.5)
Lu(u, y, p) = −p, (4.6)
Ly(u, y, p) = B(y)p+ y − y†, (4.7)
Lp(u, y, p) = Ay + ψ(y)− u, (4.8)where B(y) := A + ψ′(y). We state the following useful lemma onerning the ontinuity of theoperator B(y)−1.Lemma 4.2. For all (y, f) ∈ L1(D) × L2(D), there exists a unique z ∈ (H1

0 ∩H2)(D) suh that
B(y)z = f . The solution operator mapping f to z, denoted by B(y)−1, satis�es

‖B(y)−1(f)‖H2 ≤ c‖f‖L2, (4.9)where c is a onstant independent of y.Proof. The funtion z must satisfy
∫

D

∇z · ∇ϕ+ ψ′(y)zϕ = 〈f, ϕ〉 ∀ϕ ∈ H1
0 (D).The bilinear form on the left-hand side of the above equation is learly ontinuous on H1

0 (D) ×
H1

0 (D), and oerive by virtue of the nonnegativity of ψ′ and the Poinaré inequality. The existeneand uniqueness of z results from the Lax-Milgram theorem. We have for some onstant c > 0

c‖z‖2H1 ≤

∫

D

|∇z|2 + ψ′(y)z2 = 〈f, z〉 ≤ ‖f‖L2‖z‖L2,from whih we dedue
‖z‖H1 ≤ c‖f‖L2. (4.10)To obtain the H2 estimate we write
Az = f − ψ′(y)z,whih implies

‖z‖H2 ≤ c‖f − ψ′(y)z‖L2 ≤ c(‖f‖L2 +M1
ψ‖z‖L2).Using (4.10) ompletes the proof. �With the help of the above results we straightforwardly hek that Assumption 2.1 is ful�lled.Therefore, by Theorem 2.2, we get the existene of optimal solutions. For later purposes, we needanother tehnial assumption.Assumption 4.3. There exists γ > 0 suh that, for all (u, y, p) ∈ U ×H1

0 (D)×H1
0 (D) satisfying

Ay + ψ(y) = u, (4.11)
B(y)p = −(y − y†), (4.12)there holds
1 + ψ′′(y)p ≥ γ.By lemma 4.1 the norm ‖y‖H2 is uniformly bounded when u ∈ U . Using Lemma 4.2 andthe Sobolev embedding of H2 into L∞, we get that the norm ‖p‖L∞ is also uniformly bounded.Therefore Assumption 4.3 is realisti, one may just require that M2

ψ is small enough for instane.In what follows we denote by (y(u), p(u)) the solution (y, p) of (4.11)-(4.12) for a given u ∈
L2(D).



94.2. Binary ontrols. In this setion we show that, in some important partiular ases, theoptimal ontrols neessarily take their values in {0, 1}. Therefore these problems fall into theframework of topology optimization [1, 4℄, with the onstraint ∫

D
u = m ating as a volumeonstraint.We shall use the following �almost everywhere� de�nition of the interior:

x ∈ Int[0 < u < 1] ⇐⇒ ∃r > 0 | 0 < u(x′) < 1 a.e. x′ ∈ B(x, r) ∩D.Theorem 4.4. Suppose that ψ ≡ 0 and −∆y† = 0 in D. Then every solution (u, y) of (1.1)satis�es
Int[0 < u < 1] = ∅.Proof. Let (u, y) be a solution of (1.1), and assume that x ∈ Int[0 < u < 1]. By de�nition thereexists r > 0 suh that

0 < u(x′) < 1 a.e. x′ ∈ B(x, r) ∩D.We denote by p and λ the adjoint state and the Lagrange multiplier assoiated to (u, y), aordingto Theorem 2.3. Thus we have −p + λ = 0 a.e. in B(x, r) ∩ D in view of (2.6). Yet there holds
−∆p + y − y† = 0, whih implies y = y† a.e. in B(x, r) ∩ D. Sine y† is harmoni we also have
−∆y = 0 a.e. in B(x, r) ∩ D. Then the state equation implies u = 0 a.e. in B(x, r) ∩ D, whihleads to a ontradition with x ∈ Int[0 < u < 1]. �4.3. Existene of regularized solutions. In this setion, we prove (Theorem 4.7) the existeneof solutions to the equation Φε(u, y, p, λ) = 0. In Lemma 4.5 we provide two useful estimates forthe adjoint state p(u). In Lemma 4.6 we show the existene of solutions to the system deprivedof the volume onstraint, for a �xed Lagrange multiplier λ, and in Theorem 4.7 we show that thisvolume onstraint is ahieved for a ertain λ, whih provides a solution to Φε(u, y, p, λ) = 0.Lemma 4.5. Let u, ū ∈ U and Assumption 4.3 hold. For all t ∈ [0, 1] set ut = ū + t(u − ū),
yt = y(ut), pt = p(ut). Then we have

−〈p(u)− p(ū), u− ū〉 ≥ γ

∫ 1

0

∥

∥B(yt)
−1(u− ū)

∥

∥

2

L2 dt, (4.13)
‖p(u)− p(ū)‖H1(D) ≤ β

∫ 1

0

∥

∥B(yt)
−1(u− ū)

∥

∥

L2 dt, (4.14)where the above onstant β > 0 is independent of u and ū.Proof. We have already said that the map u ∈ L2(D) 7→ y(u) ∈ H1
0 (D) is Fréhet-di�erentiable.By omposition, and using the impliit funtion theorem, the map u ∈ L2(D) 7→ p(u) ∈ H1

0 (D) isalso Fréhet-di�erentiable. Di�erentiating (4.11) in the diretion δu ∈ L2(D) yields
B(y)

dy

du
δu = δu,and di�erentiating (4.12) in the diretion δy ∈ H1
0 (D) yields

B(y)
dp

dy
δy + ψ′′(y)pδy = −δy.Then the hain rule entails

dp

du
δu =

dp

dy

(

dy

du
δu

)

= −B(y)−1 [1 + ψ′′(y)p]B(y)−1δu. (4.15)We now write
p(u)− p(ū) =

∫ 1

0

dp

du
(ū+ t(u− ū))(u − ū)dt. (4.16)



10We have by the Fubini theorem
〈p(u)− p(ū), u− ū〉 =

∫ 1

0

〈

dp

du
(ū+ t(u − ū))(u − ū), u − ū

〉

dt.Then using (4.15) we get
−〈p(u)− p(ū), u− ū〉 =

∫ 1

0

〈

B(yt)
−1 [1 + ψ′′(yt)pt]B(yt)

−1(u− ū), u− ū
〉

dt.Sine B(yt) is self-adjoint we arrive at
−〈p(u)− p(ū), u− ū〉 =

∫ 1

0

〈

[1 + ψ′′(yt)pt]B(yt)
−1(u− ū), B(yt)

−1(u− ū)
〉

dt.Using Assumption 4.3 we obtain (4.13). Going bak to (4.16), we have
‖p(u)− p(ū)‖H1(D) ≤

∫ 1

0

∥

∥B(yt)
−1 [1 + ψ′′(yt)pt]B(yt)

−1(u− ū)
∥

∥

H1(D)
dt.By Lemma 4.2 and the uniform boundedness of ‖pt‖L∞ we obtain (4.14). �We de�ne the funtion θε : R → R by

θε(t) =
−min(0, t− ε)

max(0, t+ ε)−min(0, t− ε)
,or alternatively

θε(t) = min

(

1,max

(

0,
ε− t

2ε

))

=







1 if t ≤ −ε,
1
2 (1−

t
ε ) if −ε ≤ t ≤ ε,

0 if t ≥ ε.
(4.17)By (3.2) we have the equivalene

T ε(u, g) = 0 ⇐⇒ u = θε(g).Lemma 4.6. Let Assumption 4.3 hold. For all λ ∈ R there exists a unique u(λ) ∈ L2(D) suhthat u(λ) = θε(−p(u(λ)) + λ). In addition, the map λ 7→
∫

D u(λ) is ontinuous.Proof. As a preliminary remark we note that the funtion θε maps R into [0, 1], it is noninreasingand 1/2ε-Lipshitz-ontinuous.Existene. We �x λ ∈ R. The superposition operator
Θε : L2(D, [0, 1]) → L2(D, [0, 1])

u 7→ θε(−p(u) + λ)is learly Lipshitz-ontinuous, as u ∈ L2 7→ p(u) ∈ L2 is itself Lipshitz-ontinuous. In addition,if u ∈ L2(D), then p(u) ∈ H1(D) and
∇[Θε(u)] =

−1

2ε
[∇p(u)]1[−ε≤−p(u)+λ≤ε] ∈ L2(D).Therefore Θε(u) ∈ H1(D). Furthermore, there exists c > 0 suh that ‖Θε(u)‖H1 ≤ c for all

u ∈ L2(D, [0, 1]). It follows by the Rellih theorem that Θε(L2(D, [0, 1])) is a relatively ompatsubset of L2(D, [0, 1]). By the Shauder �xed point theorem, there exists u ∈ L2(D, [0, 1]) suhthat Θε(u) = u.



11Uniqueness. Assume that λ, λ̄ ∈ R and u, ū ∈ L2(D) satisfy θε(−p(u) + λ) = u and θε(−p(ū) +
λ̄) = ū. We have

−〈p(u)− p(ū), u− ū〉 = −〈p(u)− p(ū), θε(−p(u) + λ)− θε(−p(ū) + λ̄)〉

= 〈(−p(u) + λ)− (−p(ū) + λ̄), θε(−p(u) + λ)− θε(−p(ū) + λ̄)〉

−〈λ− λ̄, θε(−p(u) + λ)− θε(−p(ū) + λ̄)〉.As θε is noninreasing, the �rst term is nonpositive. Using also that θε is 1/2ε-Lipshitz ontinuouswe obtain
−〈p(u)− p(ū), u− ū〉 ≤

1

2ε
‖(−p(u) + λ) − (−p(ū) + λ̄)‖L1 |λ− λ̄|.Using the triangle inequality and the Cauhy-Shwarz inequality yields

−〈p(u)− p(ū), u− ū〉 ≤
1

2ε

(

√

|D|‖p(u)− p(ū)‖L2 + |D||λ− λ̄|
)

|λ− λ̄|.Using (4.13) and (4.14) from Lemma 4.5 we get
∫ 1

0

∥

∥B(yt)
−1(u− ū)

∥

∥

2

L2 dt ≤ c1|λ− λ̄|

∫ 1

0

∥

∥B(yt)
−1(u− ū)

∥

∥

L2 dt+ c2|λ− λ̄|2for some onstants c1, c2 > 0, possibly depending on ε. By the Cauhy-Shwarz inequality weobtain
∫ 1

0

∥

∥B(yt)
−1(u− ū)

∥

∥

2

L2 dt ≤ c1|λ− λ̄|

[∫ 1

0

∥

∥B(yt)
−1(u− ū)

∥

∥

2

L2

]1/2

dt+ c2|λ− λ̄|2.The Young inequality yields for any κ > 0
∫ 1

0

∥

∥B(yt)
−1(u− ū)

∥

∥

2

L2 dt ≤
c1κ

2

∫ 1

0

∥

∥B(yt)
−1(u − ū)

∥

∥

2

L2 dt+
( c1
2κ

+ c2

)

|λ− λ̄|2.Choosing κ small enough we infer the existene of a positive onstant c suh that
∫ 1

0

∥

∥B(yt)
−1(u− ū)

∥

∥

2

L2 dt ≤ c|λ− λ̄|2. (4.18)When λ = λ̄, we derive B(yt)
−1(u− ū) = 0 for almost every t ∈ [0, 1], and onsequently u = ū.Continuity. Assume that λn → λ̄. We have un := u(λn) ∈ L2(D, [0, 1]) for every n, thus thesequene (un) is weakly ompat in L2(D). Let ũ ∈ L2(D, [0, 1]) be a luster point of (un). Thereexists a subsequene, not relabeled, suh that un ⇀ ũ weakly in L2(D). By (4.18), denoting

ū := u(λ̄), we obtain
∫ 1

0

∥

∥B(y(ū+ t(un − ū)))−1(un − ū)
∥

∥

2

L2 dt ≤ c|λn − λ̄|2 → 0.Hene there exists a subsequene, still not relabeled, suh that
∥

∥B(y(ū+ t(un − ū)))−1(un − ū)
∥

∥

L2 → 0for almost every t ∈ [0, 1]. Thus there exists t0 ∈ [0, 1] suh that
∥

∥B(yn)
−1(un − ū)

∥

∥

L2 → 0, (4.19)with yn = y(ū+ t0(un− ū)). Sine ‖yn‖H2 is bounded, there exists a subsequene and ỹ ∈ Hs(D),
s < 2, suh that yn → ỹ in Hs. Therefore, hoosing the appropriate s, we may apply Lemma B.1to obtain, for all η ∈ L2(D),

〈B(yn)
−1(un)−B(ỹ)−1(ũ), η〉 = 〈[B(yn)

−1 −B(ỹ)−1](un) +B(ỹ)−1(un − ũ), η〉

= 〈un, [B(yn)
−1 −B(ỹ)−1]η〉+ 〈un − ũ, B(ỹ)−1η〉

→ 0.



12Hene B(yn)
−1(un)⇀ B(ỹ)−1(ũ) weakly in L2(D). By ompatness of {B(yn)

−1(un)} in L2(D),the onvergene holds atually strongly. The onvergene B(yn)
−1ū → B(ỹ)−1ū in L∞(D) alsofollows from Lemma B.1. Using (4.19) we obtain B(ỹ)−1(ũ) = B(ỹ)−1(ū) and subsequently ũ = ū.The uniqueness of the luster point implies that the whole sequene {un} onverges to ū weaklyin L2(D). We derive straightforwardly that ∫

D
un →

∫

D
ū. �Theorem 4.7. Let Assumption 4.3 hold. For eah ε > 0 there exists (u, y, p, λ) ∈ L2(D) ×

H1
0 (D) × H1

0 (D) × R suh that Φε(u, y, p, λ) = 0. In addition, every suh solution belongs to
L2(D, [0, 1])× (H2 ∩H1

0 )(D)× (H2 ∩H1
0 )(D)×R.Proof. With the notation introdued before, we have

Φε(u, y, p, λ) = 0 ⇐⇒







∫

D

u(λ) = m,

u = u(λ), y = y(u), p = p(u).In view of Lemma 4.6, for all λ ∈ R, there exists u(λ) ∈ L2(D) suh that u(λ) = θε(−p(u(λ))+λ).In addition ‖p(u(λ))‖L∞(D) is uniformly bounded with respet to λ, thus we derive the existeneof λ0 > 0 suh that
∀λ > λ0, u(λ) ≡ 0 and u(−λ) ≡ 1.It follows that

∀λ > λ0,

∫

D

u(λ) = 0 and ∫

D

u(−λ) = |D|.As 0 ≤ m ≤ |D| and the map λ 7→
∫

D u(λ) is ontinuous, the intermediate value theorem impliesthe existene of λ ∈ R suh that ∫D u(λ) = m. �4.4. Convergene of the Newton algorithm. For simpliity we subsequently denote by ζ =
(u, y, p, λ) the primal-dual variable. We de�ne the spaes

E := L2(D)× (H2 ∩H1
0 )(D)× (H2 ∩H1

0 )(D)×R,

F := L2(D)× L2(D)× L2(D)×R,so that Φε maps E into F . We endow E and F with arbitrary produt norms, simply denoted by
‖.‖ when no onfusion is possible. Reall that

T ε(u, g) = umax(0, g + ε) + (1− u)min(0, g − ε).Aording to Theorem 3.2, the Newton partial derivatives of T ε are given by
T εu(u, g) = max(0, g + ε)−min(0, g − ε) ≥ 2ε, (4.20)
T εg (u, g) = uG +

µ (g + ε) + (1− u)G −
µ (g − ε). (4.21)Then the hain rule for Newton di�erentiability, see [15℄ for instane, provides the Newton deriv-ative of Φε

DΦε(ζ) =









T εu + T εgLuu T εgLyu T εgLpu T εg
Luy Lyy Lpy 0
Lup Lyp Lpp 0
Λ 0 0 0









=









T εu 0 −T εg T εg
0 ψ′′(y)p+ 1 A+ ψ′(y) 0
−1 A+ ψ′(y) 0 0
Λ 0 0 0









.(4.22)Above Λ denotes the integral operator
Λ : L1(D) ∋ f 7→

∫

D

f ∈ R.



13Note that DΦε and T εg atually depend on µ through G ±
µ although this does not appear in thenotation for the sake of simpliity. In what follows we hoose an arbitrary µ ∈ [0, 1]. The reasonfor this hoie will appear within the proofs and also in Setion 5.The main result of our paper is stated in the following Theorem, where the loal onvergeneof the Newton algorithm is establishedTheorem 4.8. Assume that Assumption 4.3 holds. Let ε > 0 be �xed and ζε be a solution of

Φε(ζε) = 0. Then the Newton iteration
ζn+1 = ζn −DΦε(ζn)

−1Φε(ζn) (4.23)is well-de�ned and onverges superlinearly to ζε as long as ‖ζ0 − ζε‖ is su�iently small.Proof. In order to apply Theorem 3.3 we need to prove the invertibility of the generalized Jaobian
DΦε(ζ) : E → F and to obtain a uniform bound on the norm ‖DΦε(ζ)−1‖L(F ,E ) in a neighborhoodof ζε = (uε, yε, pε, λε). Let ζ = (u, y, p, λ) ∈ E be for the moment arbitrary, and set

h := T εu(u, Lu(u, y, p) + λ) = T εu(u,−p+ λ) ≥ 2ε, (4.24)
g := −p+ λ, w :=

T εg (u, g)

h
.Given an arbitrary right-hand side (ũ, ỹ, p̃, λ̃) ∈ F , we study the solvability of the system

DΦε(ζ)









δu
δy
δp
δλ









=









ũ
ỹ
p̃

λ̃









,with unknown (δu, δy, δp, δλ) ∈ E . This leads to the following equations
δu− wδp+ wδλ = h−1ũ,

(ψ′′(y)p+ 1)δy + (A+ ψ′(y))δp = ỹ,

−δu+ (A+ ψ′(y))δy = p̃,

Λ(δu) = λ̃.For simpliity we de�ne the diagonal operator
C(y, p) := 1 + ψ′′(y)p.Reall that B(y) = A+ ψ′(y) is invertible by virtue of Lemma 4.2. Substitution leads to

δy = B−1(δu+ p̃), (4.25)
δp = −B−1CB−1(δu + p̃) +B−1ỹ, (4.26)

(I + wB−1CB−1)δu+ wδλ = h−1ũ− wB−1CB−1p̃+ wB−1ỹ, (4.27)
Λ(δu) = λ̃. (4.28)We shall fous on solving Equations (4.27)-(4.28), whih are deoupled from (4.25)-(4.26). Webegin by studying the operator I + wB−1CB−1.Step 1 (invertibility): We have for all ϕ ∈ L2(D)

〈(I + wB−1CB−1)ϕ,B−1CB−1ϕ〉 = 〈B−1CB−1ϕ, ϕ〉+ 〈wB−1CB−1ϕ,B−1CB−1ϕ〉

≥ 〈CB−1ϕ,B−1ϕ〉 − ‖min(0, w)‖L2‖B−1CB−1ϕ‖2L4 .The operator C is diagonal and thus self-adjoint. It is positive de�nite as well if ‖ζ − ζε‖ is smallenough. To see this, we introdue the sets
Yε := {y ∈ H1

0 (D) ∩H2(D), ‖y − yε‖H2 ≤MY },
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Pε := {p ∈ H1

0 (D) ∩H2(D), ‖p− pε‖H2 ≤MP},with MY ,MP > 0 to be �xed later. Thanks to the Sobolev embedding H2(D) ⊂ L∞(D) whih isvalid for N ∈ {2, 3}, (y, p) ∈ Yε × Pε implies ‖y − yε‖L∞ ≤ cMY and ‖p − pε‖L∞ ≤ cMP , with
c > 0 depending only on D. Using Assumption 4.3, we have then the estimates

1 + ψ′′(y)p = 1 + ψ′′(yε)pε + [ψ′′(y)− ψ′′(yε)]p+ ψ′′(yε)[p− pε]

≥ γ − ‖ψ′′(y)− ψ′′(yε)‖L∞‖p‖L∞ − ‖ψ′′(yε)‖L∞‖p− pε‖L∞

≥ γ −M3
ψ‖y − yε‖L∞‖p‖L∞ −M2

ψ‖p− pε‖L∞

≥ γ −M3
ψ‖y − yε‖L∞(‖pε‖L∞ + ‖p− pε‖L∞)−M2

ψ‖p− pε‖L∞

≥ γ −M3
ψcMY (‖pε‖L∞ + cMP )−M2

ψcMP .Therefore, when MY and MP are hosen su�iently small, we have
1 + ψ′′(y)p ≥ c > 0 ∀(y, p) ∈MY ×MP ,and thus, assuming heneforth that (y, p) ∈MY ×MP , C is positive de�nite. We an then de�nethe squareroot C1/2 of C whih is also self-adjoint and write

〈(I + wB−1CB−1)ϕ,B−1CB−1ϕ〉 ≥ ‖C1/2B−1ϕ‖2L2 − ‖min(0, w)‖L2‖B−1CB−1ϕ‖2L4 .Next we utilize the estimate
‖B−1CB−1ϕ‖L4 ≤ ‖B−1C1/2‖L(L2,L4)‖C

1/2B−1ϕ‖L2 .Going bak to the main inequality we obtain
〈(I + wB−1CB−1)ϕ,B−1CB−1ϕ〉 ≥ (1− ‖min(0, w)‖L2‖B−1C1/2‖2L(L2,L4))‖C

1/2B−1ϕ‖2L2 .Using Lemma 4.2 and the above onsiderations on the uniform boundedness of C, we have
‖B−1C1/2‖L(L2,L4) ≤MC for some onstant MC . Therefore, whenever (w, p) ∈W−

ε × Pε with
W−
ε := {w ∈ L2(D), ‖min(0, w)‖L2 ≤MW−},and 0 < MW− < (MC)

−2, the operator I + wB−1CB−1 : L2(D) → L2(D) is injetive, and subse-quently invertible by virtue of the Fredholm alternative.Step 2 (olletive ompatness): We �rst examine under whih ondition on ζ we have w ∈
W−
ε . Let u ∈ L2(D). Using Theorem 4.7 whih asserts that 0 ≤ uε ≤ 1, we obtain

−|u− uε| ≤ u ≤ 1 + |u− uε|.It follows that
w ≥ h−1

[

−|u− uε|G +
µ (g + ε)− |u− uε|G −

µ (g − ε)
]

≥ −
G +
µ (g + ε) + G −

µ (g − ε)

h
|u− uε|.Then we derive from (4.24) and Theorem 3.2, for any µ ∈ [0, 1],

w ≥ −
1

ε
|u− uε|,whih results in

‖min(0, w)‖L2 ≤
1

ε
‖u− uε‖L2. (4.29)We de�ne the set

Uε = {u ∈ L2(D), ‖u− uε‖L2 ≤ εMW−}, (4.30)so that
u ∈ Uε =⇒ w ∈ W−

ε .



15Furthermore, there holds for all u ∈ Uε

‖w‖L2 ≤
1

2ε
‖T εg (u, g)‖L2 =

1

2ε
‖uG+

µ (g + ε) + (1− u)G −
µ (g − ε)‖L2

≤
1

2ε
(‖1‖L2 + ‖u‖L2) ≤

1

2ε
(‖1‖L2 + ‖uε‖L2 + ‖u− uε‖L2)

≤
1

2ε
(2
√

|D|+ εMW−) =:MW+ .We then de�ne
W+
ε := {w ∈ L2(D), ‖w‖L2 ≤MW+}, Wε :=W+

ε ∩W−
ε ,so that

u ∈ Uε =⇒ w ∈Wε.We now introdue the operator
K(y, p, w) : ϕ ∈ L2 7→ wB(y)−1C(y, p)B(y)−1(ϕ) ∈ L2,whose adjoint is
K(y, p, w)∗ : ϕ ∈ L2 7→ B(y)−1C(y, p)B(y)−1(wϕ) ∈ L2.Here, B(y)−1 denotes in fat the adjoint of B(y)−1 : L2 → H2 ∩ H1

0 , whih in partiular de�nesa ompat operator from L1 into L2. The same notation has been kept sine it is an extension of
B(y)−1. We de�ne the set of operators

K := {K(y, p, w)∗, w ∈ Wε, y ∈ Yε, p ∈ Pε}.We obtain for all (w, y, p) ∈Wε × Yε × Pε

‖K(y, p, w)∗ϕ‖H1 ≤ c‖[C(y, p)B(y)−1](wϕ)‖L2 ≤ c‖B(y)−1(wϕ)‖L2 ≤ c‖wϕ‖L1 ≤ c‖ϕ‖L2.(4.31)This implies by the Rellih theorem that K is olletively ompat; see Appendix A.Step 3 (uniform bound on the inverse operator): We now hek the remaining hypothesisof Theorem A.3, i.e., the pointwise sequential ompatness of K. Let (wn, yn, pn) be a sequeneof Wε × Yε × Pε. Sine Wε is bounded, onvex and losed in L2(D), there exists a subsequene,not relabeled, suh that wn ⇀ w ∈Wε weakly in L2(D). By ompat Sobolev embedding, for any
s < 2, we have for subsequenes

(yn, pn) → (y, p) in Hs ×Hs.Choosing s appropriately we get yn → y in L∞. Applying Lemma B.1 leads to
∀η ∈ L2(D), B(yn)

−1η = [A+ ψ′(yn)]
−1η → [A+ ψ′(y)]−1η := B̄−1η in L∞(D). (4.32)For all (ϕ, η) ∈ L2 × L2 we have

〈B(yn)
−1(wnϕ)− B̄−1(wϕ), η〉 = 〈[B(yn)

−1 − B̄−1](wnϕ) + B̄−1((wn − w)ϕ), η〉

= 〈wnϕ, [B(yn)
−1 − B̄−1]η〉+ 〈wn − w,ϕB̄−1η〉

→ 0.Hene B(yn)
−1(wnϕ) ⇀ B̄−1(wϕ) weakly in L2. By ompatness of {B(yn)

−1(wnϕ)} in L2, theonvergene holds atually strongly.We have trivially the onvergene in operator norm
C(yn, pn) = I + ψ′′(yn)pn → I + ψ′′(y)p =: C̄ in L(L2, L2).Let us �x an arbitrary ϕ ∈ L2. We have

zn := C(yn, pn)B(yn)
−1(wnϕ) → C̄B̄−1(wϕ) =: z in L2.



16From K(yn, pn, wn)
∗ϕ = B(yn)

−1zn we write
‖K(yn, pn, wn)

∗ϕ− B̄−1z‖L∞ ≤ ‖B(yn)
−1(zn − z)‖L∞ + ‖(B(yn)

−1 − B̄−1)z‖L∞

≤ ‖B(yn)
−1‖L(L2,L∞)‖zn − z‖L2 + ‖(B(yn)

−1 − B̄−1)z‖L∞.By Lemma B.1 and the Banah-Steinhaus theorem, ‖B(yn)
−1‖L(L2,L∞) is uniformly bounded,hene, using also (4.32),

K(yn, pn, wn)
∗ϕ→ B̄−1z = B̄−1C̄B̄−1(wϕ) in L∞. (4.33)We have seen that I +wB−1CB−1 is invertible for every w ∈Wε, therefore Theorem A.3 provides

sup
(w,y,p)∈Wε×Yε×Pε

‖(I +K(y, p, w)∗)−1‖L(L2,L2) < +∞.Passing to the adjoint yields
sup

(w,y,p)∈Wε×Yε×Pε

‖(I +K(y, p, w))−1‖L(L2,L2) < +∞.In other words, there exists τ > 0 suh that
‖(I + wB(y)−1C(y, p)B(y)−1)−1‖L(L2,L2) ≤ τ ∀(w, y, p) ∈ Wε × Yε × Pε. (4.34)Step 4 (uniform bound on the Jaobian): From (4.27) and the invertibility of I + K weobtain

δu = −δλ(I +K)−1w + (I +K)−1
(

h−1ũ−Kp̃+ wB−1ỹ
)

,and using (4.28)
δλ

∫

D

(I +K)−1w = −λ̃+

∫

D

(I +K)−1
(

h−1ũ−Kp̃+ wB−1ỹ
)

. (4.35)In order to obtain δλ, we need to show that
I(w) :=

∫

D

(I +K)−1wis nonzero. More preisely we look for a uniform lower bound for I(w) when ζ is lose enough to
ζε. We write

I(w) = 〈(I + wB−1CB−1)−1w, 1〉

= 〈w, (I +B−1CB−1(w·))−11〉,and we set
ξ = (I +B−1CB−1(w·))−11, i.e. ξ +B−1CB−1(wξ) = 1, ξ ∈ L2(D).Therefore we have

I(w) = 〈w, ξ〉 = 〈wξ, 1〉

= 〈wξ, ξ〉 + 〈B−1CB−1(wξ), wξ〉

=

∫

D

wξ2 + ‖C1/2B−1(wξ)‖2L2 .We now use
‖1− ξ‖L2 = ‖B−1CB−1(wξ)‖L2 ≤ ‖B−1C1/2‖L(L2,L2)‖C

1/2B−1(wξ)‖L2 ,whih entails
I(w) ≥

∫

D

wξ2 + ‖B−1C1/2‖−2
L(L2,L2)‖1− ξ‖2L2 .



17Using that uε = θε(gε), gε = −pε + λε and (4.17), we obtain
∫

D

min

(

1,
ε− gε

2ε

)

≤

∫

D

uε = m ≤

∫

D

max

(

0,
ε− gε

2ε

)

.Yet we have
∫

D

min

(

1,
ε− gε

2ε

)

=

∫

D

[

min

(

0,
ε− gε

2ε
− 1

)

+ 1

]

=

∫

D

min

(

0,
−ε− gε

2ε

)

+ |D|

= −

∫

D

max

(

0,
ε+ gε

2ε

)

+ |D|.We arrive at
∫

D

max(0, ε− gε) ≥ 2εm > 0,
∫

D

max(0, ε+ gε) ≥ 2ε(|D| −m) > 0.Therefore there exist x−, x+ ∈ D suh that gε(x−) < ε and gε(x+) > −ε. By ontinuity of gε,we dedue the existene of x̄ ∈ D suh that −ε < gε(x̄) < ε. In addition, there exists an openneighborhood ω of x̄ and δ > 0 suh that
−ε+ δ < gε(x) < ε− δ ∀x ∈ ω.Thus, there exists α > 0 suh that

‖ζ − ζε‖ ≤ α ⇒ −ε < g(x) < ε ∀x ∈ ω.As a onsequene we infer
‖ζ − ζε‖ ≤ α ⇒ w(x) =

1

2ε
∀x ∈ ω.Assume that u ∈ Uε and ‖ζ − ζε‖ ≤ α. We have

I(w) ≥

∫

D\ω

wξ2 +

∫

ω

[

wξ2 + ‖B−1C1/2‖−2
L(L2,L2)(1 − ξ)2

]

.We estimate the �rst integral by
∫

D\ω

wξ2 ≥

∫

D

min(0, w)ξ2

≥ −‖min(0, w)‖L2‖ξ‖2L4To estimate the seond integral we study the funtion
f : t ∈ R 7→

1

2ε
t2 + ‖B−1C1/2‖L(L2,L2)(1− t)2,and we easily show that

f(t) ≥
1

‖B−1C1/2‖2L(L2,L2) + 2ε
∀t ∈ R.This implies that

∫

ω

f(ξ) ≥
|ω|

‖B−1C1/2‖2L(L2,L2) + 2ε
.We arrive at

I(w) ≥
|ω|

‖B−1C1/2‖2L(L2,L2) + 2ε
− ‖min(0, w)‖L2‖ξ‖2L4.



18In view of (4.31) and (4.33), the set of operators K is also olletively ompat and pointwisesequentially ompat in L(L4, L4), thus, arguing as in Step 3, we have that
sup

(w,y,p)∈Wε×Yε×Pε

‖(I +K(y, p, w)∗)−1‖L(L4,L4) < +∞,whih entails
‖ξ‖2L4 ≤ cfor some onstant c. Therefore we get using also (4.29)

I(w) ≥
|ω|

‖B−1C1/2‖2L(L2,L2) + 2ε
−
c

ε
‖u− uε‖L2 .For y ∈ Yε we have ‖B−1C1/2‖L(L2,L2) ≤ c by Lemma 4.2. Thus the above inequality implies

I(w) ≥
|ω|

c2 + 2ε
−
c

ε
‖u− uε‖L2 .Hene, there exists β, ν > 0 suh that

‖ζ − ζε‖ ≤ β ⇒ I(w) ≥ ν.Suppose now that ‖ζ − ζε‖ ≤ β. From (4.35) we get
δλ = I(w)−1

(

−λ̃+

∫

D

(I +K)−1
(

h−1ũ−Kp̃+ wB−1ỹ
)

)

.Then from (4.27), (4.25) and (4.26), respetively, we derive expliit expressions for δu, δy and δp.This means that DΦε(ζ) is invertible. In addition, we obtain by the Cauhy-Shwarz inequality
|δλ| ≤ ν−1

(

|λ̃|+ ‖(I +K)−1(h−1ũ−Kp̃+ wB−1ỹ)‖L2

)

.Then using (4.34) we get
|δλ| ≤ ν−1

(

|λ̃|+ τ‖(h−1ũ−Kp̃+ wB−1ỹ)‖L2

)

≤ c(|λ̃|+ ‖ũ‖L2 + ‖p̃‖L2 + ‖ỹ‖L2).We dedue straightforwardly using (4.27), (4.25) and (4.26) that
‖(δu, δy, δp, δλ)‖ ≤ c‖(ũ, ỹ, p̃, λ̃)‖,whih in turn implies

‖DΦε(ζ)−1‖L(F ,E ) ≤ c,where c is a onstant whih may depend on ε. �4.5. Convergene of the regularized solutions. In this setion we study the onvergene ofthe regularized solution ζε = (uε, yε, pε, λε) as ε→ 0.Lemma 4.9. Let ζε = (uε, yε, pε, λε) be suh that Φε(ζε) = 0. Then, with the notation gε =
−pε + λε, we have

Φ(ζε) =









T (uε, gε)
0
0
0









with −
ε

2
≤ T (uε, gε) ≤

ε

2
.



19Proof. Sine Φε(ζε) = 0 we have Ly(uε, yε, pε) = 0, Lp(uε, yε, pε) = 0 and 〈1, uε〉−m = 0, thereforethe last three entries of Φ(ζε) vanish.In view of the de�nitions of T and T ε we have
T (uε, gε) =

{

0 in [gε < −ε],
0 in [gε > ε].In [−ε ≤ gε ≤ ε] we get from (3.2) that gε = ε(1 − 2uε). One one hand, if uε ≤ 1/2 then gε ≥ 0and T (uε, gε) = uεgε. If on the other hand uε ≥ 1/2, then gε ≤ 0 and T (uε, gε) = (1 − uε)gε.Sine 0 ≤ uε ≤ 1 (by Theorem 4.7) and −ε ≤ gε ≤ ε we get

−
ε

2
≤ T (uε, gε) ≤

ε

2
in [−ε ≤ gε ≤ ε].Therefore we have proved the laim. �Theorem 4.10. Let {εk}k∈N be a sequene of positive numbers suh that εk → 0 as k → ∞.Denote by ζεk = (uεk , yεk , pεk , λεk) a solution of Φεk(ζεk ) = 0. Then(1) For any s < 2 there exists a subsequene {εkl}l∈N and (u∗, λ∗) ∈ L2(D, [0, 1]) × R suhthat

uεkl ⇀ u∗ weakly in L2(D), yεkl → y∗ strongly in Hs(D),

pεkl → p∗ strongly in Hs(D), λεkl → λ∗ in R,where y∗, p∗ are given by
Ay∗ + ψ(y∗) = u∗,

B(y∗)p∗ = −(y∗ − y†).(2) Every luster point ζ∗ := (u∗, y∗, p∗, λ∗) of the sequene {ζεk}k∈N for the above produttopology (for s < 2 large enough) satis�es Φ(ζ∗) = 0.Proof. The weak onvergene of a subsequene {uεkl}l∈N stems from u ∈ L2(D, [0, 1]) as stated byTheorem 4.7. Sine the solution yεkl of Ayεkl +ψ(yεkl ) = uεkl is uniformly bounded in H2(D), for
s < 2, there exists a y∗ ∈ Hs(D) ∩H1

0 (D) suh that yεkl → y∗ in Hs. Passing to the limit in theequation Ayεkl +ψ(yεkl ) = uεkl we obtain Ay∗+ψ(y∗) = u∗. Sine pεkl is also uniformly boundedin H2(D), there exists p∗ ∈ Hs(D) ∩ H1
0 (D) for s < 2 suh that pεkl → p∗ in Hs. We atuallyhave the equation

pεkl = −B(yεkl )−1(yεkl − y†), (4.36)and yεkl → y∗ in L∞ due to Sobolev embedding. Applying Lemma B.1 we obtain, for all η ∈ L2,
〈B(yεkl )−1(yεkl )−B(y∗)−1(y∗), η〉 = 〈[B(yεkl )−1 −B(y∗)−1](yεkl ) +B(y∗)−1(yεkl − y∗), η〉

= 〈yεkl , [B(yεkl )−1 −B(y∗)−1]η〉+ 〈yεkl − y∗, B(y∗)−1η〉

→ 0.Hene B(yεkl )−1(yεkl )⇀ B(y∗)−1(y∗) weakly in L2. By ompatness of {B(yεkl )−1(yεkl )} in L2,the onvergene holds atually strongly. The onvergene of B(yεkl )−1y† in (4.36) also follows fromLemma B.1. Thus, letting l → ∞ in (4.36) we obtain p∗ = −B(y∗)−1(y∗ − y†).Now we show that λεk is uniformly bounded. Assume for instane that there exists a subsequene
λεkl → +∞. In view of Lemma 4.6, we have

uεkl = min

(

1,max

(

0,
εkl − (−pεkl + λεkl )

2εkl

))

. (4.37)Sine ‖pεkl‖L∞(D) is uniformly bounded, we get uεkl → 0 almost everywhere, but this implies
∫

D
uεkl → 0 sine 0 ≤ uεkl ≤ 1 whih ontradits the volume onstraint ∫

D
uεkl = m. Therefore

λεk is bounded from above and with a similar argument, also from below. Thus we have found



20that λεk is uniformly bounded and it follows that there exists a subsequene λεkl and λ∗ suh that
λεkl → λ∗ in R.The seond assertion of the theorem is a diret onsequene of Lemma 4.9 and the ontinuityproperties of T . �5. Algorithmi issues5.1. Disretization. In this setion we onsider the disrete ounterpart of the minimizationproblem (1.1), i.e. where the funtion spaes Uad and Y as well as the funtionals J and E aredisretized. For simpliity we keep the notation of the in�nite-dimensional setting. We plaeourselves in the ontext of Setion 4. We use for A the standard �nite di�erene approximation ofthe Dirihlet Laplaian. The funtion spaes beome

U = Y = Z = R
n,and the integrals are replaed by disrete sums. The �nite-dimensional ounterpart of E and F ,de�ned in Setion 4.4, is given by

E = F = R
n ×R

n ×R
n ×R,so that Φε maps E into F . Then the disrete ounterparts of Theorems 4.7, 4.8 and 4.10 an bereadily dedued, and heked by inspetion of the proofs.5.2. Initialization. We initialize the ontrol and the Lagrange multiplier by the values u ≡ 1/2and λ = 0. Then we �x y and p by solving the diret and adjoint problems (4.11)-(4.12), and weset ζε0 = (u, y, p, λ). For the �rst value of the regularization parameter we hoose ε1 = ‖g‖L∞,with g = −p+ λ.5.3. Implementation of the semismooth Newton method. The Newton algorithm orre-sponding to the regularization parameter εk, k ≥ 1, is initialized by the variable ζεk−1 and pro-vides at onvergene the new iterate ζεk . The Newton iteration is desribed in Theorem 4.8, where

DΦε(ζ) is now a generalized Jaobian matrix whose blok struture is given by (4.22). It dependsin priniple on the arbitrary parameter µ appearing in G ±
µ , whih we �x to 0. In order to speedup the numerial solving of the linear system (4.23), by exploiting the speial struture of theJaobian, we use the so-alled dual approah desribed in [6, Setion 14.4℄. The stopping riterionis related to the inrement between two Newton steps, namely

‖ζk − ζk−1‖E

‖ζk−1‖E

< κN .5.4. Update of ε. We would like to ensure a onstant rate of onvergene of some merit funtiondepending on ζε and whih should be driven to zero. To this end we de�ne
R(ε) :=

1

2
‖Φ(ζε)‖2Fand look for a sequene {εk} suh that

R(εk+1)

R(εk)
≈ τ, (5.1)where 0 < τ < 1 is a user-given oe�ient. To get suh a sequene, we need �rst to prove that ζεsatis�es an appropriate di�erentiability property with respet to ε. To this end, we use an impliitfuntion theorem for semismooth mappings. Some preliminaries on the notion of semismoothnessare neessary. Let F : Rn1 → R

n2 be a loally Lipshitz mapping. Aording to Rademaher's



21theorem, F is almost everywhere di�erentiable. Let DF denote the set of all di�erentiable pointsof F . Then we all
∂BF (x) :=

{

H ∈ R
n1×n2

∣

∣∃{xk} ⊆ DF : xk → x, F ′(xk) → H
}the B-subdi�erential of F at x. Its onvex hull

∂F (x) := conv ∂BF (x)is Clarke's generalized Jaobian of F at x; see [11℄. Note that ∂BF ⊆ ∂F . We will say that F issemismooth if it is diretionally di�erentiable and satis�es
‖F (x+ d)− F (x) −Hd‖ = o(‖d‖)for all d→ 0 and all H ∈ ∂F (x+d). Note that this is not the lassial de�nition of semismoothness,but an equivalent one (see [23℄).Now onsider a mapping Ψ : Rn1 × R

n2 → R
n2 . Then the projetion πy∂Ψ(x, y) denotes theset of all n2 × n2 matries M suh that, for some n2 × n1 matrix N , the n2 × (n1 + n2) matrix

[N,M ] belongs to ∂Ψ(x, y). The following impliit funtion theorem is taken from [23, Theorem2.3℄.Theorem 5.1. Suppose that Ψ : R
n1 × R

n2 → R
n2 is loally Lipshitz and semismooth in aneighborhood of a point (x̄, ȳ) satisfying Ψ(x̄, ȳ) = 0, and assume that all matries in πy∂Ψ(x̄, ȳ)are nonsingular. Then there exists an open neighborhood X of x̄ and a funtion y : X → R

n2whih is Lipshitz and semismooth on X suh that y(x) = ȳ and Ψ(x, y(x)) = 0 for all x ∈ X.We apply Theorem 5.1 to the funtion Ψ de�ned by Ψ : R × E ∋ (ε, ζ) 7→ Φε(ζ) ∈ F . Weobtain the following orollary.Corollary 5.2. Let (ε̄, ζ̄) satisfying Φε̄(ζ̄) = 0. Then there exists an open neighborhood Υ of ε̄ anda funtion ζ : Υ → E whih is Lipshitz and semismooth on Υ suh that ζ(ε̄) = ζ̄ and Φε(ζ(ε)) = 0for all ε ∈ Υ.Proof. We essentially need to verify that the assumptions of Theorem 5.1 are satis�ed. First,aording to Theorem 4.7, there exists (ε̄, ζ̄) suh that ψ(ε̄, ζ̄) = 0. We denote byΨi(ε, ζ), 1 ≤ i ≤ 4,the omponents of Ψ(ε, ζ), i.e.
Ψ(ε, ζ) =:









Ψ1(ε, ζ)
Ψ2(ε, ζ)
Ψ3(ε, ζ)
Ψ4(ε, ζ)









=









T ε(u,−p+ λ)
(A+ ψ′(y))p+ y − y†

Ay + ψ(y)− u
〈1, u〉 −m









.Sine the max and min funtions are loally Lipshitz, Ψ1(ε, ζ) is also loally Lipshitz by ompo-sition. Using that ψ ∈ C2(R) and ψ′ ∈ W 2,∞(R) we get that Ψi(ε, ζ) for 2 ≤ i ≤ 4 are also loallyLipshitz.Now we hek that Ψ is semismooth. Similarly to Φε, Ψ admits the Newton derivative
DΨ(ε, ζ) =









T εε T εu On,n −T εg T εg
On,1 On,n ψ′′(y)p+ 1 A+ ψ′(y) On,1

On,1 −1 A+ ψ′(y) On,n On,1

O1,1 Λ O1,n O1,n O1,1









, (5.2)where On1,n2
denotes the n1 × n2 matrix with zero oe�ients, T εu, T εg , T εε are given by

T εu(u, g) = max(0, g + ε)−min(0, g − ε),

T εg (u, g) = uG+
µ (g + ε) + (1− u)G −

µ (g − ε),

T εε (u, g) = uG+
µ (g + ε)− (1− u)G −

µ (g − ε)



22and G +
µ ,G

−
µ are the matrix-valued funtions Rn → R

n×R
n de�ned, for an arbitrarily �xed µ ∈ R

n,by
G

+
µ (g) = diag({1[gi>0] + µi1[gi=0]}

n
i=1),

G
−
µ (g) = diag({1[gi<0] + µi1[gi=0]}

n
i=1).The Newton derivatives G +

µ ,G
−
µ are the �nite-dimensional ounterparts [14, Lemma 3.1℄ of theNewton derivatives in Theorem 3.2. Note that DΨ(ε, ζ) is a (3n+1)× (3n+2) blok matrix whihdepends on µ ∈ R

n. A quik alulation indiates that
∂Ψ(ε, ζ) = {DΨ(ε, ζ), 0 ≤ µi ≤ 1 ∀i} .The fat that DΨ(ε, ζ) ats as Newton derivative of Ψ for every 0 ≤ µi ≤ 1 implies that Ψ issemismooth. It also follows that

πζ∂Ψ(ε, ζ) = ∂Φε(ζ) = {DΦε(ζ), 0 ≤ µi ≤ 1 ∀i} ,where DΦε(ζ) denotes here the disrete ounterpart of the Jaobian omputed in (4.22), i.e.
DΦε(ζ) =









T εu On,n −T εg T εg
On,n ψ′′(y)p+ 1 A+ ψ′(y) On,1

−1 A+ ψ′(y) On,n On,1

Λ O1,n O1,n O1,1









.In Theorem 4.8, we have proved that DΦε(ζε) is invertible for any ε > 0 and 0 ≤ µ ≤ 1 in thein�nite dimensional setting. From inspetion of the proof we an hek that this result remainstrue in the �nite dimensional setting for any 0 ≤ µi ≤ 1, and therefore also for all matriesin ∂Φε̄(ζ̄) = πζ∂Ψ(ε̄, ζ̄) if ε̄ > 0. Thus, we may apply Theorem 5.1 and the orollary followsimmediately. �Now we turn to the update of the regularization parameter εk. We would like to ahieve thederease (5.1) with a reasonably small τ . On one hand, by Corollary 5.2, there exists a seletion ofsolutions ζε = ζ(ε) for whih the funtion ε 7→ ζ(ε) is semismooth, thus in partiular diretionallydi�erentiable. As the funtion ζ 7→ ‖Φ(ζ)‖2 is C1, we dedue that ε 7→ R(ε) is loally Lipshitzas well as diretionally di�erentiable, and the hain rule applies; see [7, Proposition 2.47℄. On theother hand, in view of Lemma 4.9, we have R(ε) ≤ cε2 for some onstant c. Thus, in order to getan a�ne relation, it makes sense to use a logarithmi sale for both R(ε) and ε. Therefore we set
ρ(ln ε) := lnR(ε)and, for a given εk, we are now looking for εk+1 satisfying

ρ(ln εk+1)− ρ(ln εk) ≈ ln τ.We now linearize ρ about ln εk in the diretion of dereasing arguments, whih leads to
ρ′(ln εk)(ln εk+1 − ln εk) ≈ ln τ.Thus we take the following update for εk+1

εk+1 = εkτ
ρ′(ln εk)

−1

.We now ompute ρ′(ln εk). For simpliity, we plae ourselves in the (generi) ase where thefuntion ε 7→ ζ(ε) is di�erentiable at the onsidered point. We have by the hain rule
ρ′(ln εk) = εk

R′(εk)

R(εk)
(5.3)and

R′(εk) = 〈DΦ(ζεk )Dζ(εk),Φ(ζ
εk )〉F
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Figure 1. Linear ase: optimal ontrol for y† = y†1 (left), onvergene history of
log10R(ε) for y† = y†1 (middle), and optimal ontrol for y† = y†2 (right).where 〈·, ·〉F denotes the salar produt in F and DΦ(ζεk) is an arbitrary Newton derivative of Φat ζεk . In addition, by (Newton) di�erentiating Ψ(ε, ζ(ε)) = 0 we arrive at

Dζ(εk) = −DζΨ(εk, ζ(εk))
−1DεΨ(εk, ζ(εk))

= −DΦεk(ζεk )−1DεΨ(εk, ζ
εk).Finally we obtain the update

εk+1 = εkτ
βk with βk =

−R(εk)

εk〈DΦ(ζεk)DΦεk (ζεk)−1DεΨ(εk, ζεk),Φ(ζεk )〉F
.Note that DεΨ is given by the �rst olumn of (5.2).5.5. Stopping riterion. As the equation Φε(ζε) = 0 is solved only approximately, one annotexpet that the residual R(ε) an be driven to zero exatly. We rather strive to minimize R(ε).Therefore, a natural stopping riterion is the smallness of its derivative. In the logarithmi salethis reads

ρ′(ln ε) < κE .Note that, in view of (5.3), the user-given onstant κE is dimensionless.6. Numerial experimentsWe onsider a two dimensional problem on the unit square D =]0, 1[2. The target volume is
m = 0.5. The disretization is done with n = 39601 nodes. We hoose the parameters τ = 0.1,
κN = 10−8, κE = 10−3. For eah of the following omputations, performed in Matlab, the CPUtime is of the order of 5 minutes on a standard PC.6.1. The linear problem. To begin with we hoose ψ ≡ 0 and two funtions y†:

y†1 = 0.01,

y†2(x1, x2) = sin(2πx1) sin(2πx2).The obtained optimal ontrols u are depited in Figure 1, where white orresponds to u = 0 andblak to u = 1. Note that the absene of intermediate regions is, for y† = y†1 , a onsequeneof Theorem 4.4. The onvergene history of the residual R(ε) is also shown, in semi-logarithmisale, with the number of updates of ε along the x-axis. We point out that the �nal residual, lessthan 10−20 in both ases while u and the domain's size are of the order of 1, ensures a very goodauray. For instane, the volume onstraint is ahieved with |
∫

D u−m|/m < 10−13.
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Figure 2. Nonlinear ases: optimal ontrol for ψ = ψ1 (left), onvergene historyof log10R(ε) for ψ = ψ1 (middle), and optimal ontrol for ψ = ψ2 (right).6.2. Examples of nonlinear problems. We �x y† = y†1, and onsider two funtions ψ:
ψ1(t) = eat − 1, a = 103,

ψ2(t) = arctan(at), a = 102.Note that ψ2 satis�es (4.1), but not ψ1. The orresponding results are shown on Figure 2. Weobserve from the onvergene history that the auray of the solution is maintained. The e�etof the nonlinearity is learly emphasized by the appearane of intermediate regions.Appendix A. Colletively ompat sets of operatorsLet X be a Banah spae and K be a subset of L(X ), where L(X ) is the set of bounded linearoperators from X into itself.De�nition A.1. We say that K is olletively ompat if the set {Kx, x ∈ X , ‖x‖ ≤ 1,K ∈ K} isrelatively ompat.Obviously, if K is olletively ompat, every K ∈ K is ompat. The following result may befound in [3, Theorem 1.6℄.Theorem A.2. Let K, (Kn)n∈N ∈ L(X ). Assume Kn → K pointwise, {Kn} is olletivelyompat and K is ompat. Then (I −K)−1 exists if and only if for some n0 and all n ≥ n0 theoperators (I − Kn)
−1 exist and are uniformly bounded, in whih ase (I − Kn)

−1 → (I − K)−1pointwise.The following result an be easily dedued from Theorem A.2; see [2℄.Theorem A.3. Let K be a olletively ompat set of bounded linear operators of X . Assumefurther that K is pointwise sequentially ompat, i.e., for every sequene (Kn) of K there exists asubsequene (Knp
) and K ∈ K suh that Knp

x → Kx for all x ∈ X . If I −K is invertible for all
K ∈ K, then

sup
K∈K

‖(I −K)−1‖ <∞. (A.1)Appendix B. Operator onvergeneLemma B.1. If yn → y in L∞(D) then, for all η ∈ L2(D),
B(yn)

−1η = [A+ ψ′(yn)]
−1η → [A+ ψ′(y)]−1η = B(y)−1η in L∞(D). (B.1)



25Proof. With yn → y in L∞(D) and using ‖ψ′′‖L∞ ≤M2
ψ we obtain

ψ′(yn) → ψ′(y) in L∞(D). (B.2)We write
B(yn)

−1 = A−1[I + ψ′(yn)A
−1]−1.The family of operators {ψ′(yn)A

−1 : L2 → L2} is olletively ompat due to the ompatness of
A−1 and the uniform boundedness of ‖ψ′(yn)‖L∞ . We have for all ϕ ∈ L2(D)

〈(I + ψ′(y)A−1)ϕ,A−1ϕ〉 = 〈A−1ϕ, ϕ〉+ 〈ψ′(y)A−1ϕ,A−1ϕ〉 ≥ 〈A−1ϕ, ϕ〉,hene I + ψ′(y)A−1 is injetive and subsequently invertible by the Fredholm alternative. In viewof (B.2), we also have the pointwise onvergene ψ′(yn)A
−1 → ψ′(y)A−1, we may thus applyTheorem A.2 to obtain

[I + ψ′(yn)A
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