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Abstract It is well known that if h is a nonnegative harmonic function in the ball

of R
d+1 or if h is harmonic in the ball with integrable boundary values, then the

radial limit of h exists at almost every point of the boundary. In this paper, we are

interested in the exceptional set of points of divergence and in the speed of divergence

at these points. In particular, we prove that for generic harmonic functions and for any

β ∈ [0,d], the Hausdorff dimension of the set of points ξ on the sphere such that h(rξ )
looks like (1− r)−β is equal to d−β .
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1 Introduction

The story of this paper begins in 1906, when P. Fatou proved in [9] that bounded har-

monic functions in the unit disk have nontangential limits almost everywhere on the

circle. Later on, this result was improved by Hardy and Littlewood in dimension 2,

and by Wiener, Bochner and many others in arbitrary dimension (a complete histori-

cal account can be found in [13]). Let us also mention R. Hunt and R. Wheeden who

proved that a similar result holds for nonnegative harmonic functions in Lipschitz
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domains ([10,11]). To state the result of the nontangential convergence of harmonic

functions in the ball, we need to introduce some terminology.

Let d ≥ 1 and let Sd (resp. Bd+1) be the (euclidean) unit sphere (resp. the unit

ball) in R
d+1. The euclidean norm in R

d+1 will be denoted by ‖ ·‖. For µ ∈M (Sd),
the set of complex Borel measures on Sd , the Poisson integral of µ , denoted by P[µ ],
is the function on Bd+1 defined by

P[µ ](x) =

∫

Sd

P(x,ξ )dµ(ξ ),

where P(x,ξ ) is the Poisson kernel,

P(x,ξ ) =
1−‖x‖2

‖x− ξ‖d+1
.

When f is a function in L1(Sd), we denote simply by P[ f ] the function P[ f dσ ].
Here and elsewhere, dσ denotes the normalized Lebesgue measure on Sd . For any

µ ∈ M (Sd), P[µ ] is a harmonic function in Bd+1 and it is well known that, for

instance, every bounded harmonic function in Bd+1 is the Poisson integral P[ f ] of a

certain f ∈ L∞(Sd). It is also well known that every nonnegative harmonic function

in Bd+1 is the Poisson integral P[µ ] of a positive finite measure µ ∈ M (Sd).
The Fatou theorem for Poisson integrals of L1-functions says that, given a func-

tion f ∈ L1(Sd), then P[ f ](ry) tends to f (y) for almost every y∈Sd when r increases

to 1. More generally, if µ ∈M (Sd), P[µ ](ry) tends to
dµ
dσ (y) almost everywhere and

in fact, the limit exists for nontangential access.

In this paper, we are interested in the radial behaviour on exceptional sets, and es-

pecially in the following questions. How quickly can P[ f ](ry) grow? For a prescribed

growth τ(r), how big can be the sets of y∈Sd such that limsupr→1 |P[ f ](ry)|/τ(r) =
+∞? It is easy to see that the growth cannot be too fast. Indeed, the Poisson kernel

satisfies, for any y,ξ ∈ Sd ,

P(ry,ξ )≤
2

(1− r)d
,

so that for any f ∈ L1(Sd), for any y ∈ Sd and any r ∈ (0,1),

P[ f ](ry)≤
2‖ f‖1

(1− r)d
.

This motivates us to introduce, for a fixed β ∈ (0,d) and any f ∈ L1(Sd), the excep-

tional set

E (β , f ) =

{

y ∈ Sd ; limsup
r→1

|P[ f ](ry)|

(1− r)−β
=+∞

}

,

and we ask for the size of E (β , f ). To measure the size of subsets of Sd , we shall use

the notion of Hausdorff dimension (see Section 2 for precise definitions). Our first

main result is the following.
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Theorem 1 Let β ∈ [0,d] and let f ∈ L1(Sd). Then dimH

(

E (β , f )
)

≤ d−β . Con-

versely, given a subset E of Sd such that dimH (E)< d−β , there exists f ∈ L1(Sd)
such that E ⊂ E (β , f ).

The first part of Theorem 1 has already been obtained by D. Armitage in [1] in the

context of Poisson integrals on the upper half-space (see also [14] for analogous re-

sults regarding solutions of the heat equation). However, we will produce a complete

proof of Theorem 1. Our method of proof differs substantially from that of [1]. More-

over, it provides a more general result (see Theorem 3 below). It seems that this last

statement cannot be obtained from Armitage’s work without adding assumptions on

φ and τ .

Our second task is to perform a multifractal analysis of the radial behaviour of

harmonic functions, as is done in [4], [5] for the divergence of Fourier series. For a

given function f ∈ L1(Sd) and a given y ∈Sd , we define the real number β (y) as the

infimum of the real numbers β such that |P[ f ](ry)| = O
(

(1− r)−β
)

. The level sets

of the function β are defined by

E(β , f ) = {y ∈ Sd ; β (y) = β}

=

{

y ∈ Sd ; limsup
r→1

log |P[ f ](ry)|

− log(1− r)
= β

}

.

We can ask for which values of β the sets E(β , f ) are non-empty. This set of val-

ues will be called the domain of definition of the spectrum of singularities of f .

If β belongs to the domain of definition of the spectrum of singularities, it is also

interesting to estimate the Hausdorff dimension of the sets E(β , f ). The function

β 7→ dimH (E(β , f )) will be called the spectrum of singularities of the function f .

Theorem 1 ensures that dimH (E(β , f )) ≤ d − β and our second main result is

that a typical function f ∈ L1(Sd) satisfies dimH (E(β , f )) = d − β for any β ∈
[0,d]. In particular, such a function f has a multifractal behavior, in the sense that

the domain of definition of its spectrum of singularities contains an interval with

non-empty interior.

Theorem 2 For quasi-all functions f ∈ L1(Sd), for any β ∈ [0,d],

dimH

(

E(β , f )
)

= d −β .

The terminology ”quasi-all” used here is relative to the Baire category theorem. It

means that this property is true for a residual set of functions in L1(Sd).

NOTATIONS. Throughout the paper, N = (0, . . . ,0,1) will denote the north pole of

Sd . The letter C will denote a positive constant whose value may change from line

to line. This value may depend on the dimension d, but it will never depend on the

other parameters which are involved.

ACKNOWLEDGEMENTS. We thank the referee for his/her careful reading and for

having provided to us references [1] and [14].
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2 Preliminaries

In this section, we survey some results regarding Hausdorff measures. We refer to [8]

and to [12] for more on this subject. Let (X ,d) be a metric space such that, for every

ρ > 0, the space X can be covered by a countable number of balls with diameter less

than ρ . If B = B(x,r) is a ball in X and λ > 0, |B| denotes the diameter of B and λ B

denotes the ball B scaled by a factor λ , i.e. λ B = B(x,λ r).
A dimension function φ : R+ → R+ is a continuous nondecreasing function sat-

isfying φ(0) = 0. Given E ⊂ X , the φ -Hausdorff outer measure of E is defined by

H
φ (E) = lim

ε→0
inf

r∈Rε (E)
∑
B∈r

φ(|B|),

where Rε(E) is the set of countable coverings of E with balls B with diameter |B| ≤ ε .

When φs(x) = xs, we write for short H s instead of H φs . The Hausdorff dimension

of a set E is

dimH (E) := sup{s > 0; H
s(E)> 0}= inf{s > 0; H

s(E) = 0}.

We will need to construct on Sd a family of subsets with prescribed Hausdorff

dimension. For this we shall use results of [6]. Recall that a function φ : R+ → R+

is doubling provided there exists λ > 1 such that, for any x > 0, φ(2x) ≤ λ φ(x).
From now on, we suppose that the metric space (X ,d) supports a doubling dimension

function φ such that
1

C
φ(|B|)≤ H

φ (B)≤Cφ(|B|)

where C is a positive constant independent of B.

The previous assumption is satisfied when X = Sd , endowed with the distance

inherited from R
d+1, and φ(x) = xd .

Given a dimension function ψ and a ball B = B(x,r), we denote by Bψ the ball

Bψ = B(x,ψ−1 ◦φ(r)). The following mass transference principle of [6] will be used.

Lemma 1 (The mass transference principle) Let (Bi) be a sequence of balls in

X whose radii go to zero. Let ψ be a dimension function such that ψ(x)/φ(x) is

monotonic and suppose that, for any ball B in X,

H
φ

(

B∩ limsup
i→+∞

Bi

)

= H
φ (B).

Then, for any ball B in X,

H
ψ

(

B∩ limsup
i→+∞

B
ψ
i

)

= H
ψ (B).

Finally, the following basic covering lemma due to Vitali will be required (see

[12]).

Lemma 2 (The 5r-covering lemma) Every family F of balls with uniformly bounded

diameters in a separable metric space (X ,d) contains a disjoint subfamily G such

that
⋃

B∈F

B ⊂
⋃

B∈G

5B.
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3 Majorisation of the Hausdorff dimension

Let f ∈ L1(Sd). We intend to show that P[ f ](r·) cannot grow too fast on sets with

large Hausdorff dimension. More generally, we shall do this for µ ∈ M (Sd) and

P[µ ] instead of P[ f ]. If y ∈ Sd and δ > 0, we introduce

κ(y,δ ) =
{

ξ ∈ Sd ; ‖ξ − y‖< δ
}

the open spherical cap on Sd with center y and radius δ > 0. The set κ(y,δ ) is just

the ball with center y and radius δ in the metric space (Sd ,‖ · ‖). Let us also define

the slice

S (y,δ1,δ2) =
{

ξ ∈ Sd ; δ1 ≤ ‖ξ − y‖< δ2

}

where 0 ≤ δ1 < δ2.

The starting point of our argument is a result linking the radial behaviour of P[µ ]
to the Hardy-Littlewood maximal function. More precisely, it is well known that if

y ∈ Sd , then

sup
r∈(0,1)

∣

∣P[µ ](ry)
∣

∣≤ sup
δ>0

|µ |(κ(y,δ ))

σ(κ(y,δ ))

(see for example [3]). Our aim is to control, for a fixed r close to 1, the minimal size

of the caps which come into play on the right-hand side.

Lemma 3 Let µ ∈ M (Sd), r ∈ (0,1) and y ∈ Sd . There exists δ ≥ 1− r such that

∣

∣P[µ ](ry)
∣

∣≤C
|µ |(κ(y,δ ))

σ(κ(y,δ ))
,

where C is a constant independent of µ , r and y.

Proof Replacing µ by |µ |, we may assume that µ is positive. Moreover, without loss

of generality, we may assume that y = N is the north pole. Observe that

P[µ ](rN) =

∫

Sd

P(rN,ξ )dµ(ξ ),

with

P(rN,ξ ) =
1− r2

‖rN− ξ‖d+1

=
1− r2

(1− 2rξd+1+ r2)(d+1)/2
.

Observe also that ‖ξ −N‖2 = 2(1− ξd+1) if ξ ∈ Sd . In particular, P(rN,ξ ) just

depends on ‖ξ −N‖ and r. Moreover, P(rN,ξ ) decreases when ‖ξ −N‖ increases,

ξ keeping on Sd .

We shall approximate ξ 7→ P(rN,ξ ) by functions which are constant on slices.

The function ξ 7→ P(rN,ξ ) is harmonic and nonnegative in the ball

{ξ ∈R
d+1; ‖ξ −N‖< 1− r}.
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By the Harnack inequality, there exists C0 > 0 (which does not depend on r) such

that, for any ξ ∈ R
d+1 with ‖ξ −N‖ ≤ (1− r)/2,

P(rN,ξ )≥C0P(rN,N).

Necessarily, C0 belongs to (0,1). We then define an integer k > 0 and a finite sequence

δ0, . . . ,δk by

– δ0 = 0;

– δ1 = (1− r)/2;

– δ j+1 (if it exists) is the real number in [δ j,2] such that P(rN,ξ j+1) =C0P(rN,ξ j)
where ξ j (resp. ξ j+1) is an arbitrary point of Sd such that ‖ξ j −N‖ = δ j (resp.

‖ξ j+1−N‖= δ j+1) (remember that P(rN,ξ ) only depends on ‖ξ −N‖);

– δ j+1 = 2 and k = j+ 1 otherwise.

Observe that the sequence is well defined and that, by compactness, the process ends

up after a finite number of steps. We set c j = P(rN,ξ j), 0 ≤ j ≤ k− 1 where ξ j is

an arbitrary point in Sd such that ‖N−ξ j‖= δ j. Let us also remark that, if ξ ∈ Sd ,

ξ 6=−N,

C0

k−1

∑
j=0

c j1S (N,δ j ,δ j+1)(ξ )≤ P(rN,ξ )≤
k−1

∑
j=0

c j1S (N,δ j ,δ j+1)(ξ ).

The sequence (c j) j≥0 is decreasing. Thus, we can rewrite the step function using only

caps as
k−1

∑
j=0

c j1S (N,δ j ,δ j+1) =
k

∑
j=1

d j1κ(N,δ j)

where the real numbers d j are positive. In fact, d1 = c0 and d j = c j−1 − c j if j ≥ 2.

Then we get

C0

k

∑
j=1

d j1κ(N,δ j) ≤ P(rN,ξ )≤
k

∑
j=1

d j1κ(N,δ j). (1)

We integrate the right-hand inequality with respect to µ to obtain

P[µ ](rN) ≤
k

∑
j=1

d jµ(κ(N,δ j))

≤ sup
j=1,...,k

µ(κ(N,δ j))

σ(κ(N,δ j))

k

∑
j=1

d jσ(κ(N,δ j))

≤ C−1
0 sup

j=1,...,k

µ(κ(N,δ j))

σ(κ(N,δ j))

∫

Sd

P(rN,ξ )dσ(ξ )

where the last inequality is obtained by integrating the left part of (1) over Sd with

respect to the surface measure σ . This yields the lemma, since
∫

Sd
P(rN,ξ )dσ(ξ ) =

1, except that we have found a cap with radius greater than (1− r)/2 instead of 1− r.

Fortunately, it is easy to dispense with the factor 1/2. Indeed,

µ(κ(N,δ ))

σ(κ(N,δ )
) ≤C

µ(κ(N,δ ))

σ(κ(N,2δ ))
≤C

µ(κ(N,2δ ))

σ(κ(N,2δ ))
.
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The previous lemma is the main step to obtain an upper bound of the Hausdorff

dimension of the sets where P[µ ](r·) behaves badly.

Theorem 3 Let µ ∈ M (Sd) and let τ : (0,1) → (0,+∞) be nonincreasing, with

limx→0+ τ(x) = +∞. Let us define

E (τ,µ) =

{

y ∈ Sd ; limsup
r→1

|P[µ ](ry)|

τ(1− r)
= +∞

}

.

Let φ : (0,+∞)→ (0,+∞) be a dimension function satisfying φ(s) =O(τ(s)sd). Then

H
φ
(

E (τ,µ)
)

= 0.

Proof For any M > 1, we introduce

EM =

{

y ∈ Sd ; limsup
r→1

|P[µ ](ry)|

τ(1− r)
> M

}

.

Let ε > 0 and y ∈ EM. The definition of EM and Lemma 3 ensure that we can find

ry ∈ (0,1), as close to 1 as we want, and a cap κy = κ(y,δy) such that δy ≥ 1− ry

satisfying

Mτ(1− ry)≤ |P[µ ](ryy)| ≤C
|µ |(κy)

σ(κy)
. (2)

Observe that

σ(κy)≤
C|µ |(Sd)

Mτ(1− ry)
.

It follows that δy → 0 when ry → 1. We can then always ensure that |κy| ≤ ε . The

family (κy)y∈EM
is an ε-covering of EM. By the 5r-covering lemma, one can extract

from it a countable family of disjoint caps (κyi
)i∈N such that EM ⊂

⋃

i 5κyi
. Inequality

(2) implies that

M ∑
i

τ(1− ryi
)σ(κyi

)≤C‖µ‖.

If we remark that |5κyi
| ≥ δyi

≥ 1− ryi
, we can conclude that

∑
i

τ(|5κi|)|5κi|
d ≤

C

M
‖µ‖.

Our assumption on φ ensures that H φ (EM) ≤ C(φ ,µ)/M. The result follows from

the equality E (τ,µ) =
⋂

M>1 EM .

Applying this to the function τ(s) = s−β , we get the first half of Theorem 1.

Corollary 1 For any β ∈ [0,d], for any µ ∈ M (Sd), dimH

(

E (β ,µ)
)

≤ d −β .

Remark 1 The corresponding result for the divergence of Fourier series was obtained

in [2] using the Carleson-Hunt theorem (see also [5] for the L1-case). Our proof in

this context is much more elementary, since we do not need the maximal inequality

for the Hardy-Littlewood maximal function.
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4 Minorisation of the Hausdorff dimension

In this section, we prove the converse part of Theorem 1. We first need a technical

lemma on the Poisson kernel.

Lemma 4 There exists a constant C > 0 such that, for any r ∈ (1/2,1) and any

y ∈ Sd ,

∫

κ(y,1−r)
P(ry,ξ )dσ(ξ )≥C.

Proof We may assume y = N. Let ρ = 1− r. A generic point x = (x1, · · · ,xd+1) ∈
R

d+1 will be denoted by x = (x′,xd+1) with x′ ∈R
d . In particular, x ∈ κ(N,ρ) if and

only if ‖x′‖2 + x2
d+1 = 1 and ‖x′‖2 +(1− xd+1)

2 < ρ2. Let C be the cylinder

C =
{

x ∈ R
d+1 ; ‖x′‖2 < ρ2/2 and 1− 2ρ < xd+1 < 1

}

.

It is not hard to show that Sd ∩C ⊂ κ(N,ρ) when 1/2 < r < 1. We now define

two harmonic functions: h is the harmonic function in C such that h(x) = 1 if x ∈
∂C ∩{xd+1 = 1} and h(x) = 0 if x ∈ ∂C ∩{xd+1 < 1}; u is the harmonic function

in Bd+1 such that u = 1 on κ(N,ρ) and u = 0 elsewhere on Sd (h and u are the

Perron-Wiener-Brelot solutions of the Dirichlet problem with the given boundary

data). We claim that h ≤ u on ∂ (C ∩Bd+1). Indeed, we can decompose ∂ (C ∩Bd+1)
into E ∪F , with E ⊂ Sd ∩C and F ⊂ ∂C ∩{xd+1 < 1}. Now, u = 1 ≥ h on E and

u ≥ 0 = h on F . By the maximum principle in C ∩Bd+1, we deduce that u(x)≥ h(x)
for any x ∈ C ∩Bd+1. In particular this holds for x = (1−ρ)N = rN, so that

∫

κ(N,ρ)
P(rN,ξ )dσ(ξ )≥ h(rN).

On the other hand, C is just the translation and dilation of a fixed domain : C =
N+ρU , where

U =
{

x ∈ R
d+1 ; ‖x′‖2 < 1/2 and − 2 < xd+1 < 0

}

.

Thus the quantity h(rN) is strictly positive and independent of r. We can then take

C = h(rN).
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Here is the converse part of Theorem 1.

Theorem 4 Let E ⊂ Sd , let φ be a dimension function and let τ : (0,1)→ (0,+∞)
be nonincreasing with limx→0+ τ(x) =+∞. Suppose that H φ (E) = 0 and that τ(s) =
O
(

s−dφ(s)
)

. Then there exists f ∈ L1(Sd) such that, for any y ∈ E,

limsup
r→1

P[ f ](ry)

τ(1− r)
= +∞.

A remarkable feature of Theorem 3 and Theorem 4 is that they are sharp: if φ(s) =
τ(s)sd is a dimension function and

E (τ, f ) =

{

y ∈ Sd ; limsup
r→1

|P[ f ](ry)|

τ(1− r)
= +∞

}

,

then

1. for any f ∈ L1(Sd), H φ
(

E (τ, f )
)

= 0;

2. if E is a set satisfying H φ (E) = 0, we can find f ∈ L1(Sd) such that E (τ, f )⊃E .

Proof (Proof of Theorem 4) Let j ≥ 1. Since H φ (E) = 0, we can find a covering

R j of E by caps with diameter less than 2− j and such that ∑κ∈R j
φ(|κ |) ≤ 2− j. We

collect together the caps with approximately the same size. Precisely, if n ≥ 1, let

Cn =

{

κ ∈
⋃

j

R j; 2−(n+1) < |κ | ≤ 2−n

}

.

Let also En =
⋃

κ∈Cn
κ so that E ⊂ limsupn En and

∑
n≥1

∑
κ∈Cn

φ(|κ |)≤ ∑
j≥1

∑
κ∈R j

φ(|κ |)≤ 1.
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In particular, there exists a sequence (ωn)n≥1 tending to infinity such that

∑
n≥1

∑
κ∈Cn

ωnφ(|κ |)<+∞.

For any n ≥ 1, let xn,1, . . . ,xn,mn be the centers of the caps appearing in Cn and let

κn,i = κ(xn,i,2 ·2
−n). We define

f = ∑
n≥1

mn

∑
i=1

ωnτ(2−n)1κn,i .

f belongs to L1(Sd). Indeed,

‖ f‖1 ≤ C ∑
n≥1

mn

∑
i=1

ωnτ(2−n)(2−n)d

≤ C ∑
n≥1

mn

∑
i=1

ωnφ(2−n)

≤ C ∑
n≥1

∑
κ∈Cn

ωnφ(|κ |)<+∞.

Moreover, let y ∈ En and let r = 1− 2−n. Let also κy = κ(xn,i,δn,i) ∈ Cn such that y

belongs to κy. It is clear that ‖y− xn,i‖ ≤ δn,i ≤ 2−n so that κ(y,2−n) ⊂ κn,i. By the

positivity of f and of the Poisson kernel,

P[ f ](ry) ≥

∫

κ(y,2−n)
ωnτ(2−n)P(ry,ξ )dσ(ξ )

≥ Cωnτ(1− r)

where C is the constant that appears in Lemma 4. Thus, provided y belongs to limsupn En,

we get

limsup
r→1

P[ f ](ry)

τ(1− r)
= +∞,

which is exactly what we need.

5 Construction of saturating functions

In this section, we turn to the construction of functions in L1(Sd) having multifractal

behaviour. Our first step is a construction of a sequence of nets in Sd which play the

same role as dyadic numbers in the interval.

Lemma 5 There exists a sequence (Rn)n≥1 of finite subsets of S d satisfying

– Rn ⊂ Rn+1;

–
⋃

x∈Rn
κ(x,2−n) = Sd;

– card(Rn)≤C2nd;

– For any x,y in Rn, x 6= y, then |x− y| ≥ 2−n.
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Proof Let R0 = ∅ and let us explain how to construct Rn+1 from Rn. Rn+1 is a

maximal subset of Sd containing Rn and such that any distinct points in Rn+1 have

their distance greater than or equal to 2−(n+1). Then
⋃

x∈Rn+1
κ
(

x,2−(n+1)
)

= Sd by

maximality of Rn+1. Then, taking the surface and using that the caps κ
(

x,2−(n+2)
)

,

x ∈ Rn+1, are pairwise disjoint, we get

card(Rn+1)×C2−(n+2)d ≤ 1.

From now on, we fix a sequence (Rn)n≥0 as in the previous lemma. Our sets with big

Hausdorff dimension will be based on open caps centered at points of Rn. Precisely,

let α > 1 and let Nn,α = [n/α]+ 1 where [n/α] denotes the integer part of n/α . We

introduce

Dn,α =
⋃

x∈RNn,α

κ
(

x,2−n
)

.

Lemma 6 Let α > 1 and let (nk)k≥0 be a sequence of integers growing to infinity.

Then

H
d/α

(

limsup
k→+∞

Dnk,α

)

=+∞.

Proof This follows from an application of the mass transference principle (Lemma

1), applied with the function ψ(x) = xd/α and φ(x) = xd . The key points are that

⋃

x∈RNn,α

κ
(

x,2−Nn,α
)

= Sd

and that κ (x,2−n)⊃ κ
(

x,ψ−1 ◦φ(2−Nn,α )
)

since αNn,α ≥ n.

We now construct saturating functions step by step.

Lemma 7 Let n ≥ 1. There exists a nonnegative fonction fn ∈ L1(Sd), satisfying

‖ fn‖1 = 1, such that, for any α > 1, for any y ∈ Dn,α ,

P[ fn](rny)≥
C

n
2(n−Nn,α)d ,

where 1− rn = 2−n, Nn,α = [n/α]+ 1 and C is independent of n and α .

Proof We define f̃n by

f̃n :=
1

n+ 1

n+1

∑
N=1

∑
x∈RN

2(n−N)d1κ(x,2·2−n).

The triangle inequality ensures that

‖ f̃n‖1 ≤
C

n+ 1

n+1

∑
N=1

card(RN)2
(n−N)d2−nd

≤ C.



12 Frédéric Bayart, Yanick Heurteaux

Let y ∈ Dn,α and let x ∈ RNn,α such that y ∈ κ (x,2−n). Observe that κ (y,2−n) ⊂
κ (x,2.2−n). Moreover, 1 ≤ Nn,α ≤ n+ 1. Using the positivity of the Poisson kernel,

we get

P[ f̃n](ry)≥
∫

κ(y,2−n)

2(n−Nn,α )d

n+ 1
P(ry,ξ )dσ(ξ ).

Lemma 4 ensures that

P[ f̃n](rny)≥
C

n+ 1
2(n−Nn,α )d

and it suffices to take fn =
f̃n

‖ f̃n‖1
.

We are now ready for the proof of our second main theorem.

Proof (Proof of Theorem 2) Let (gn)n≥1 be a dense sequence of L1(Sd) such that

each gn is continuous and ‖gn‖∞ ≤ n. The maximum principle ensures that for any

r ∈ (0,1) and for any ξ ∈ Sd ,

|P[gn](rξ )| ≤ n.

Let ( fn) be the sequence given by Lemma 7 and let us set

hn = gn +
1

n
fn.

(hn)n≥1 remains dense in L1(Sd). Moreover, if rn = 1− 2−n, α > 1 and y ∈ Dn,α ,

P[hn](rny) ≥ C
2(n−Nn,α)d

n2
− n

≥ C
2(n−Nn,α)d

2n2

provided n is sufficiently large. Let us finally consider δn > 0 sufficiently small such

that

‖P[ f ](rn·)‖∞ ≤ 1 if ‖ f‖1 ≤ δn.

The residual set we will consider is the dense Gδ -set

A =
⋂

l≥1

⋃

n≥l

BL1(hn,δn).

Pick any f ∈ A. One can find an increasing sequence of integers (nk) such that f ∈
BL1(hnk

,δnk
) for any k. Let α > 1 and let y ∈ limsupk Dnk,α =: Dα( f ). Then we can

find integers n, picked in the sequence (nk)k≥1, as large as we want such that

P[ f ](rny)≥ P[hn](rny)− 1 ≥C
2(n−Nn,α)d

2n2
− 1.

Observe that for such values of n,

log |P[ f ](rny)|

− log(1− rn)
≥

(n−Nn,α)d

n
+ o(1).
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Hence,

limsup
r→1

log |P[ f ](ry)|

− log(1− r)
≥ lim

n→+∞

(

1−
Nn,α

n

)

d =

(

1−
1

α

)

d.

Furthermore, Lemma 6 tells us that H d/α(Dα( f )) = +∞. We divide Dα( f ) into two

parts:

D
(1)
α ( f ) =

{

y ∈ Dα( f ); limsup
r→1

log |P[ f ](ry)|

− log(1− r)
=

(

1−
1

α

)

d

}

D
(2)
α ( f ) =

{

y ∈ Dα( f ); limsup
r→1

log |P[ f ](ry)|

− log(1− r)
>

(

1−
1

α

)

d

}

.

Let (βn)n≥0 be a sequence of real numbers such that

βn >

(

1−
1

α

)

d and lim
n→+∞

βn =

(

1−
1

α

)

d.

Then

D
(2)
α ( f )⊂

⋃

n≥0

E (βn, f ).

Observe that d
α > d−βn. Then, by Corollary 1, H d/α(E (βn, f )) = 0. We get

H
d/α(D

(2)
α ( f )) = 0 and H

d/α(D
(1)
α ( f )) = +∞.

Finally,

E

((

1−
1

α

)

d, f

)

⊃ D
(1)
α ( f )

and

dimH

(

E

((

1−
1

α

)

d, f

))

≥
d

α
.

By Corollary 1 again, this inequality is necessarily an equality, and we conclude that

f satisfies the conclusion of Theorem 2 by setting

(

1−
1

α

)

d = β ⇐⇒
d

α
= d−β .

One can also ask whether the Poisson integral of a typical Borel measure on Sd

has a multifractal behaviour. Here, we have to take care of the topology on M (Sd).
We endow it with the weak-star topology, which turns the unit ball BM (Sd) of the

dual space M (Sd) into a compact space. We need the following folklore lemma:

Lemma 8 The set of measures f dσ , with f ∈C (Sd), is weak-star dense in M (Sd).
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Proof The set of measures with finite support is weak-star dense in M (Sd) (see for

instance [7]). Thus, let ξ ∈ Sd , let ε > 0 and let g1, . . . ,gn ∈ C (Sd). It suffices to

prove that one can find f ∈ C (Sd) such that, for any ε > 0, for any i ∈ {1, . . . ,n},
∣

∣

∣

∣

gi(ξ )−

∫

Sd

gi(y) f (y)dσ(y)

∣

∣

∣

∣

< ε.

Since each gi is continuous at ξ , one can find δ > 0 such that |ξ − y| < δ implies

|gi(ξ )− gi(y)| < ε . Let f be a continuous and nonnegative function on Sd with

support in κ(ξ ,δ ) and whose integral is equal to 1. Then
∣

∣

∣

∣

gi(ξ )−
∫

Sd

gi(y) f (y)dσ(y)

∣

∣

∣

∣

≤
∫

κ(ξ ,δ )
|gi(ξ )− gi(y)| f (y)dσ(y)

≤ ε.

Mimicking the proof of Theorem 2, we can prove the following result.

Theorem 5 For quasi-all measures µ ∈ BM (Sd)
, for any β ∈ [0,d],

dimH

(

E(β ,µ)
)

= d−β .

Proof Let (gn)n≥1 be a dense sequence of the unit ball of C (Sd) such that ‖gn‖∞ ≤
1− 1

n
. The sequence (gndσ)n≥1 is weak-star dense in BM (Sd)

. Let ( fn)n≥1 be the

sequence given by Lemma 7 and let us set

hn = gn +
1

n
fn

so that (hndσ)n≥1 lives in the unit ball BM (Sd)
and is always a weak-star dense

sequence in BM (Sd). For any α > 1 and any y ∈ Dn,α ,

P[hn](rny) ≥ C
2(n−Nn,α)d

n2
− 1

with rn = 1− 2−n. The function (y,ξ ) 7→ P(rny,ξ ) is uniformly continuous on Sd ×
Sd . In particular, using the compactness of Sd , one may find y1, . . . ,ys ∈ Sd such

that, for any y ∈ Sd , there exists j ∈ {1, . . . ,s} satisfying

∀ξ ∈ Sd ,
∣

∣P(rny,ξ )−P(rny j,ξ )
∣

∣≤ 1.

Let Un be the following weak-star open neighbourhood of hndσ in BM (Sd):

Un =

{

µ ∈ BM (Sd)
; for all j ∈ {1, . . . ,s},

∣

∣

∣

∣

∫

Sd

P(rny j,ξ )dµ −
∫

Sd

P(rny j,ξ )hn(ξ )dσ

∣

∣

∣

∣

< 1

}

.

By the triangle inequality, for any y ∈ Sd and any µ ∈ Un,

|P[µ − hndσ ]|(rny)| ≤ 3.

We now define A =
⋂

l≥1

⋃

n≥l Un which is a dense Gδ -subset of BM (Sd)
, and we

conclude as in the proof of Theorem 2.
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If we remember that µ 7→ P[µ ] is a bijection between the set of nonnegative finite

measures on the sphere Sd and the set of nonnegative harmonic functions in the ball

Bd+1 we can also obtain the following result.

Theorem 6 For quasi-all nonnegative harmonic functions h in the unit ball Bd+1, for

any β ∈ [0,d],
dimH

(

E(β ,h)
)

= d−β

where E(β ,h) is defined here by E(β ,h) =

{

y ∈ Sd ; limsup
r→1

logh(ry)

− log(1− r)
= β

}

.

The set H +(Bd+1) of nonnegative harmonic functions in the unit ball Bd+1 is en-

dowed with the topology of the locally uniform convergence. It is a closed cone in

the complete vector space of all continous functions in the ball. So it satisfies the

Baire’s property.

Proof (Proof of Theorem 6.) We begin with the following lemma.

Lemma 9 The set of nonnegative functions which are continuous in the closed unit

ball Bd+1 and harmonic in the open ball Bd+1 is dense in H +.

Proof Let h ∈ H + and ρn < 1 be a sequence of real number that increases to 1. Set

fn(ξ ) = h(ρnξ ) if ξ ∈ Sd and hn(x) = h(ρnx) = P[ fn](x) if x ∈ Bd+1. The functions

hn are nonnegative, harmonic and continuous on the closed ball Bd+1. Moreover, let

ρ < 1. The uniform continuity of h in the closed ball B̄(0,ρ) = {x ; ‖x‖≤ ρ} ensures

that hn converges uniformly to h in the compact set B̄(0,ρ).

We can now prove Theorem 6, using the same way as in Theorem 2. Let (gn)n≥1

be a dense sequence in the set of nonnegative continuous functions in Sd . Lemma 9

ensures that the sequence (P[gn])n≥1 is dense in H +. Moreover, we can suppose that

‖gn‖∞ ≤ n so that by the maximum principle, 0 ≤ P[gn](x)≤ n for any x ∈ Bd+1. Let

( fn)n≥1 be the sequence given by Lemma 7 and observe that if ‖x‖ ≤ ρ ,
∣

∣

∣

∣

1

n
P[ fn](x)

∣

∣

∣

∣

≤
2

n(1−ρ)d
‖ fn‖1 =

2

n(1−ρ)d
.

It follows that 1
n
P[ fn] goes to 0 in H +. Define

hn = P[gn]+
1

n
P[ fn]

so that (hn)n≥1 is always dense in H +. Let α > 1, y∈ Dn,α and rn = 1−2−n. Lemma

7 ensures that

hn(rny) ≥ C
2(n−Nn,α)d

n2
− n.

We can define

A =
⋂

l≥1

⋃

n≥l

{

h ∈ H
+ ; sup

‖x‖≤rn

|h(x)− hn(x)|< 1

}

which is a dense Gδ -set in H + and we can conclude as in the proof of Theorem 2.
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