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Existence of global strong solution and vanishing

capillarity-viscosity limit in one dimension for the Korteweg

system

Frédéric Charve∗, Boris Haspot †‡

Abstract

In the first part of this paper, we prove the existence of global strong solution for
Korteweg system in one dimension. In the second part, motivated by the processes of
vanishing capillarity-viscosity limit in order to select the physically relevant solutions
for a hyperbolic system, we show that the global strong solution of the Korteweg
system converges in the case of a γ law for the pressure (P (ρ) = aργ , γ > 1) to
entropic solution of the compressible Euler equations. In particular it justifies that
the Korteweg system is suitable for selecting the physical solutions in the case where
the Euler system is strictly hyperbolic. The problem remains open for a Van der
Waals pressure because in this case the system is not strictly hyperbolic and in
particular the classical theory of Lax and Glimm (see

Lax,G
[21, 11]) can not be used.

1 Introduction

We are concerned with compressible fluids endowed with internal capillarity. The model
we consider originates from the XIXth century work by Van der Waals and Korteweg
VW,fK
[38, 22] and was actually derived in its modern form in the 1980s using the second gradient
theory, see for instance

fDS,fJL,fTN
[9, 20, 37]. The first investigations begin with the Young-Laplace

theory which claims that the phases are separated by a hypersurface and that the jump in
the pressure across the hypersurface is proportional to the curvature of the hypersurface.
The main difficulty consists in describing the location and the movement of the interfaces.
Another major problem is to understand whether the interface behaves as a discontinuity
in the state space (sharp interface) or whether the phase boundary corresponds to a
more regular transition (diffuse interface, DI). The diffuse interface models have the
advantage to consider only one set of equations in a single spatial domain (the density
takes into account the different phases) which considerably simplifies the mathematical
and numerical study (indeed in the case of sharp interfaces, we have to treat a problem
with free boundary).
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Let us consider a fluid of density ρ ≥ 0, velocity field u ∈ R, we are now interested in the
following compressible capillary fluid model, which can be derived from a Cahn-Hilliard
like free energy (see the pioneering work by J.- E. Dunn and J. Serrin in

fDS
[9] and also in

fA,fC,fGP,HM
[1, 3, 12, 17]). The conservation of mass and of momentum write:

∂

∂t
ρε + ∂x(ρεuε) = 0,

∂

∂t
(ρεuε) + ∂x(ρε(uε)2)− ε∂x(ρε∂xu

ε) + ∂x(a(ρε)γ) = ε2∂xK,

(1.1) 3systeme

where the Korteweg tensor reads as following:

divK = ∂x
(
ρεκ(ρε)∂xxρ

ε +
1

2
(κ(ρε) + ρεκ

′
(ρε))|∂xρε|2

)
− ∂x

(
κ(ρε)(∂xρ

ε)2
)
. (1.2) divK

κ is the coefficient of capillarity and is a regular function of the form κ(ρ) = ε2ρα with

α ∈ R. In the sequel we shall assume that κ(ρ) = ε2

ρ . The term ∂xK allows to describe
the variation of density at the interfaces between two phases, generally a mixture liquid-
vapor. P = aργ with γ ≥ 1 is a general γ law pressure term. ε corresponds to the
controlling parameter on the amplitude of the viscosity and of the capillarity. When we
set vε = uε + ε∂x(ln ρε), we can write (

3systeme
1.1) on the following form (we refer to

Hprepa
[13] for the

computations):
∂

∂t
ρε + ∂x(ρεvε)− ε∂xxρε = 0,

∂

∂t
(ρεvε) + ∂x(ρε(uε)(vε))− ε∂x(ρε∂xv

ε) + ∂x(a(ρε)γ) = 0,

(1.3) 1.1

We now consider the Cauchy problem of (
1.1
1.3) when the fluid is away from vacuum.

Namely, we shall study (
1.1
1.3) with the following initial data:

ρε(0, x) = ρε0(x) > 0, uε(0, x) = uε0(x), (1.4) 1.2

such that:
lim

x→+,−∞
(ρε0(x), uε0(x)) = (ρ+,−, u+,−), with ρ+,− > 0.

We would like to study in the sequel the limit process of system (
1.1
1.3) when ε goes to 0

and to prove in particular that we obtain entropic solutions of the Euler system:
∂

∂t
ρ+ ∂x(ρv) = 0,

∂

∂t
(ρv) + ∂x(ρv2) + ∂x(aργ) = 0,

(1.5) 1.3

Let us now explain the interest of the capillary solutions for the hyperbolic systems of
conservation laws.

1.1 Viscosity capillarity processes of selection for the Euler system

In addition of modeling a liquid-vapour mixture, the Korteweg also shows purely the-
oretical interests consisting in the selection of the physically relevant solutions of the
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Euler model (in particular when the system is not strictly hyperbolic). The typical case
corresponds to a Van der Waals pressure: indeed in this case the system is not strictly
hyperbolic in the elliptic region (which corresponds to the region where the phase change
occurs).
In the adiabatic pressure framework (P (ρ) = ργ with γ > 1), the system is strictly hy-
perbolic and the theory is classical. More precisely we are able to solve the Riemann
problem when the initial Heaviside data is small in the BV space. Indeed we are in the
context of the well known Lax result as the system is also genuinely nonlinear (we refer
to

Lax
[21]). It means we have existence of global C1-piecewise solutions which are unique in

the class of the entropic solutions.
This result as been extent by Glimm in the context of small initial data in the BV-space
by using a numerical scheme and approximating the initial BV data by a C1-piecewise
function (which implies to locally solve the Riemann problem via the Lax result). For
the uniqueness of the solution we refer to the work of Bianchini and Bressan (

BB1
[2]) who

use a viscosity method.
In the setting of the Van der Waals pressure, the existence of global solutions and the
nature of physical relevant solutions remain completely open. Indeed the system is not
strictly hyperbolic anymore.

If we rewrite the compressible Euler system in Lagrangian coordinates by using the
specific volume τ = 1/ρ in (1

b ,∞) and the velocity u, the system satisfies in (0,+∞)×R
the equations:

∂tτ − ∂xu = 0,

∂tu− ∂x(P̃ (τ)) = 0,
(1.6) euler

with the function P̃ : (1
b ,∞)→ (0,∞) given by:

P̃ (τ) = P (
1

τ
), τ ∈ (

1

b
,∞).

The two eigenvalues of the system are:

λ1(τ, v) = −
√
−P̃ ′(τ), λ2(τ, v) = −

√
−P̃ ′(τ). (1.7) vp

The corresponding eigenvectors r1, r2 are:

w1(τ, v) =

(
1√
−P̃ ′(τ)

)
, w2(τ, v) =

(
1

−
√
−P̃ ′(τ)

)
(1.8)

Furthermore by calculus we obtain:

∇λ1(τ, v) · w1(τ, v) =
P̃
′′
(τ)

2

√
−P̃ ′(τ)

, ∇λ2(τ, v) · w2(τ, v) =
−P̃ ′′(τ)

2

√
−P̃ ′(τ)

(1.9)

We now recall the definition of a standard conservation law in the sense of Lax (it means
entropy solutions):

• The system is strictly entropic if the eigenvalues are distinct and real.
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• The characteristics fields are genuinely nonlinear if we have for all (τ, v),

∇λ1(τ, v) · w1(τ, v) 6= 0 and ∇λ2(τ, v) · w2(τ, v) 6= 0,

for more details we refer to
Serre
[33]. The definition of genuine nonlinearity is some kind

of extension of the notion of convexity to vector-valued functions (in particular when
we consider the specific case of the traveling waves). The previous assumptions aim at
ensuring the existence and the uniqueness of the Riemann problem ( see

Evans
[10] and

Serre
[33]).

When P is a Van der Waals pressure, we observe that the first conservation law
(
Serre,Evans
[33, 10]) is far from being a standard hyperbolic system, indeed:

• It is not hyperbolic (but elliptic) in ( 1
α1
, 1
α2

)× R,

• the characteristic fields are not genuinely nonlinear in the hyperbolic part of the
state space.

Here the classical Lax-Glimm theory cannot be applied. In particular there doesn’t exist
any entropy-flux pair, which suggests that the entropy framework is not adapted for
selecting the physically relevant solutions. In order to deal with this problem, Van der
Waals and Korteweg began by considering the stationary problem with null velocity, and
solving ∇P (ρ) = 0. For more details we refer to

Rohdehdr
[31]. It consists in minimizing in the

following admissible set

A0 = {ρ ∈ L1(Ω)/W (ρ) ∈ L1(Ω),

∫
Ω
ρ(x)dx = m},

the following functionnal

F [ρ] =

∫
Ω
W (ρ(x))dx.

Unfortunately this minimization problem has an infinity of solutions, and many of them
are physically irrelevant. In order to overcome this difficulty, Van der Waals in the XIX-
th century was the first to regularize the previous functional by adding a quadratic term
in the density gradient. More precisely he considered the following functional:

F εlocal =

∫
Ω

(
W (ρε(x)) + γ

ε2

2
|∇ρε|2

)
dx,

with:
Alocal = H1(Ω) ∩A0.

This variational problem has a unique solution and its limit (as ε goes to zero) converge
to a physical solution of the equilibrium problem for the Euler system with Van der Waals
pressure, that was proved by Modica in

REF
[28] with the use of gamma-convergence.

By the Euler-Lagrange principle, the minimization of the Van der Waals functional
consists in solving the following stationary problem:

∇P (ρε) = γε2ρε∇∆ρε,

where the right-hand side can be expressed as the divergence of the capillarity tensor.
Heuristically, we also hope that the process of vanishing capillarity-viscosity limit

selects the physical relevant solutions as it does for the stationary system. This problem
actually remains open.
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1.2 Existence of global entropic solutions for Euler system

Before presenting the results of this paper let us recall the results on this topic in these
last decades. We shall focus on the case of a γ pressure law P (ρ) = aργ with γ > 1
and a positive. Let us mention that these cases are the only ones well-known (essentially
because the system is strictly hyperbolic in this case and that we can exhibit many
entropy-flux pairs). Here the Lax-Glimm theory can be applied, however at the end of
the 70’s, one was interested in relaxing the conditions on the initial data by only assuming
ρ0 and u0 in L∞.

In the beginning of the 80’s Di Perna initiated this program, consisting in obtaining
global entropic solutions for L∞ initial data.

Indeed in
Di1, Di2
[7, 8], Di Perna prove the existence of global weak entropy solution of (

1.3
1.5)

for γ = 1 + 2
2d+1 and γ = 2k + 3

2k + 1 (with k ≥ 1), d ≥ 2 by using the so-called
”compensated compactness” introduced by Tartar in

Ta
[35]. This result was extended by

Chen in
Chen
[4] in the case γ ∈ (1, 5

3 ] and by Lions et al in
35
[26] in the case γ ∈ [3,∞). In

36
[25],

Lions et al generalize this result to the general case γ ∈ (1, 3), and finally the case γ = 1
is treated by

Hu1
[18]. We would like to mention that these results are obtained through a

vanishing artificial viscosity on both density and velocity.
The problem of vanishing physical viscosity limit of compressible Navier-Stokes equations
to compressible Euler equations was until recently an open problem. However Chen and
Perepelista in

10
[5] proved that the solutions of the compressible Navier-Stokes system

with constant viscosity coefficients converge to a entropic solution of the Euler system
with finite energy. This result was extended in

Hu2
[19] to the case of viscosity coefficients

depending on the density.
Inspired by

10
[5] and

Hu2
[19], we would like to show that the solution of the Korteweg system

(
1.1
1.3) converges to a entropic solution of the Euler system with finite energy when the

pressure is a γ law. To do this, we will prove for the first time up our knowledge the
existence of global strong solution for the Korteweg system in one dimension in the case
of Saint-Venant viscosity coefficients. By contrast, the problem of global strong solutions
for compressible Navier-Stokes equations remains open (indeed one of the main difficulties
consists in controlling the vacuum). This result justifies that the Korteweg system allows
us to select the relevant physical solutions of the compressible Euler system at least when
the pressure is adiabatic (P (ρ) = aργ with γ > 1). The problem remains open in the
case of a Van der Waals pressure.

1.3 Results

Let us now describe our main result. In the first theorem we prove the existence of global
strong solution for the Korteweg system (

1.1
1.3).

Theorem 1.1 Let ρ̄ > 0. Assume that the initial data ρ0 and u0 satisfy:

0 < m0 ≤ ρ0 ≤M0 < +∞, ρ0 − ρ̄ ∈ H1(R), v0 ∈ H1(R) ∩ L∞(R). (1.10) 2.5

Then there exists a global strong solution (ρ, v) of (
1.1
1.3) on R+ × R such that for every

T > 0:

ρ− ρ̄ ∈ L∞(0, T,H1(R)), ρ ∈ L∞(0, T, L∞(R)),

v ∈ L∞(0, T,H1(R)) ∩ L2(0, T,H2(R)) and v ∈ L∞(0, T, L∞(R)).
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Finally this solution is unique in the class of weak solutions satisfying the usual energy
inequality.theo

Remark 1 We would like to point out that the problem remains open in the case of the
Saint-Venant system, which corresponds to system (

1.1
1.3) without capillarity.

In the following theorem, we are interested in proving the convergence of the global
solutions of system (

1.1
1.3) to entropic solutions of the Euler system (

1.3
1.5).

Theorem 1.2 Let γ > 5
3 and (ρε, vε) with mε = ρεvε be the global solution of the Cauchy

problem (
1.1
1.3) with initial data (ρε0, v

ε
0) as in theorem (

theo
1.1).Then, when ε→ 0, there exists

a subsequence of (ρε,mε) that converge almost everywhere to a finite entropy solution
(ρ, ρv) to the Cauchy problem (

1.3
1.5) with initial data (ρ0, ρ0v0).theo1

Remark 1 We would like to point out that Lions et al in
36
[25] had obtained the existence

of global entropic solution for γ > 1 by a viscosity vanishing process, and the consid-
ered regularizing system was exactly the Korteweg system modulo the introduction of the
effective velocity.

One important basis of our problem for theorem
theo1
1.2 is the following compactness theorem

established in
10
[5].

Theorem 1.3 (Chen-Perepelitsa
10
[5]) Let ψ ∈ C2

0 (R), (ηψ, qψ) be a weak entropy pair
generated by ψ. Assume that the sequences (ρε(x, t), vε(x, t)) defined on R × R+ with
mε = ρεvε, satisfies the following conditions:

1. For any −∞ < a < b < +∞ and all t > 0, it holds that:∫ t

0

∫ b

a
(ρε)γ+1dxdτ ≤ C(t, a, b), (1.11) 1.8

where C(t) > 0 is independent of ε.

2. For any compact set K ⊂ R, it holds that∫ t

0

∫
K

(
(ρε)γ+θ + ρε|vε|3

)
dxdτ ≤ C(t,K), (1.12) 1.9

where C(t,K) > 0 is independent of ε.

3. The sequence of entropy dissipation measures

ηψ(ρε,mε)t + qψ(ρε,mε)x are compact in H−1
loc (R2

+). (1.13) 1.10

Then there is a subsequence of (ρε,mε) (still denoted (ρε,mε)) and a pair of mea-
surable functions (ρ,m) such that:

(ρε,mε)→ (ρ,m), a.e as ε→ 0. (1.14) 1.11

theo2

Remark 2 We would like to recall that the estimate (
1.9
1.12) was first derived by Lions et

al in
35
[26] by relying the moment lemma introduced by Perthame in

Per
[30].

The paper is arranged as follows. In section
section2
2 we recall some important results on the

notion of entropy enrtopy-flux pair for Euler system and on the kinetic formulation of
Lions et al in

35
[26]. In section

section3
3, we show theorem

theo
1.1 and in the last section

section4
4.1 we prove

theorem
theo1
1.2.
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2 Mathematical tools
section2

Definition 2.1 A pair of functions (η(ρ, v), H(ρ, v)) or (η(ρ,m), q(ρ,m)) for m = ρv,
is called an entropy-entropy flux pair of system (

1.1
1.3), if the following holds:

[η(ρ, v)]t + [H(ρ, v)]x = 0,

for any smooth solution of (
1.3
1.5). Furthermore (η(ρ, v) is called a weak entropy if:

η(0, u) = 0, for any fixed v.

Definition 2.2 An entropy η(ρ,m) is convex if the Hessian ∇2η(ρ,m) is nonnegative
definite in the region under consideration.

Such η satisfy the wave equation:

∂ttη = θ2ργ−3∂xxη.

From
35
[26], we obtain an explicit representation of any weak entropy (η, q) under the

following form:

ηψ(ρ,m) =

∫
R
χ(ρ, s− v)ψ(s)ds,

Hψ(ρ,m) =

∫
R

(θs+ (1− θ)u)χ(ρ, s− v)ψ(s)ds,

(2.15) 1.4

where the kernel χ is defined as follows:

χ(ρ, v) = [ρ2θ − v2]λ+, λ =
3− γ

2(γ − 1)
> −1

2
, and θ =

γ − 1

2
,

and here:
tλ+ =tλ for t > 0,

=0 for t ≤ 0,

Proposition 2.1 (see
35
[26])

For instance, when ψ(s) = 1
2s

2, the entropy pair is the mechanical energy and the asso-
ciated flux:

η∗(ρ,m) =
m2

2ρ
+ e(ρ), q∗(ρ,m) =

m3

2ρ2
+ e

′
(ρ), (2.16) 1.5

where e(ρ) = κ
γ−1ρ

γ represents the gas internal energy in physics.

In the sequel we will work far away of the vacuum that it why we shall introduce equi-
librium states such that we avoid the vacuum. Let (ρ̄(x), v̄(x)) be a pair of smooth
monotone functions satisfying (ρ̄(x), v̄(x)) = (ρ−,+, v−,+) when − + x ≥ L0 for some
large L0 > 0. The total mechanical energy for (

1.1
1.3) in R with respect to the pair of

reference function (ρ̄(x), v̄(x)) is:

E[ρ, v](t) =

∫
R

(1

2
ρ(t, x)|v(t, x)− v̄(x)|2 + e∗(ρ(t, x), ρ̄(x))

)
dx (2.17) 1.7
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where e∗(ρ, ρ̄) = e(ρ)e(ρ̄)− e′(ρ̄(ρ− ρ̄) ≥ 0. The total mechanical energy for system (
3system
??)

with κ(ρ) = κ
ρ is:

E1[ρ, u](t) =

∫
R

(1

2
ρ(t, x)|u(t, x)− ū(x)|2 + e∗(ρ(t, x), ρ̄(x)) + ε2(∂xρ

1
2 )2
)
dx (2.18) 1.7

and the total mechanical energy for system (
1.1
1.3) is:

E2[ρ, v](t) =

∫
R

(1

2
ρ(t, x)|v(t, x)− v̄(x)|2 + e∗(ρ(t, x), ρ̄(x))

)
dx (2.19) 1.7

Definition 2.3 Let (ρ0, v0) be given initial data with finite-energy with respect to the end
states: (ρ±, v±) at infinity, and E[ρ0, v0] ≤ E0 < +∞. A pair of measurable functions
(ρ, u) : R2

+ → R2
+ is called a finite-energy entropy solution of the Cauchy problem (

1.3
1.5)

if the following properties hold:

1. The total energy is bounded in time such that there exists a bounded function
C(E, t), defined on R+ × R+ and continuous in t for each E ∈ R+ with for a.e
t > 0:

E[ρ, v](t) ≤ C(E0, t).

2. The entropy inequality:
ηψ(ρ, v)t + qψ(ρ, v)x ≤ 0,

is satisfied in the sense of distributions for all test functions ψ(s) ∈ {±1,±s, s2}.

3. The initial data (ρ0, v0) are obtained in the sense of distributions.

We now give our main conditions on the initial data (
1.2
1.4), which is inspired from

10
[5].

Definition 2.4 Let (ρ̄(x), v̄(x)) be some pair of smooth monotone functions satisfying
(ρ̄(x), v̄(x)) = (ρ−,+, v−,+) when −+x ≥ L0 for some large L0 > 0. For positive constant
C0, C1 and C2 independent of ε, we say that the initial data (ρε0, v

ε
0) satisfy the condition

H if they verify the following properties:

• ρε0 > 0,
∫
R ρ

ε
0(x)|uε0(x)− ū(x)| ≤ C0 < +∞,

• The energy is finite:∫
R

(1

2
ρε0(x)|vε0(x)− v̄(x)|2 + e∗(ρε0(x), ρ̄(x))

)
dx ≤ C1 < +∞,

•
ε2
∫
R

|∂xρε0(x)|2

ρε0(x)3−2α
dx ≤ C2 < +∞.

In this section, we would like to recall some properties on the pair of entropy for the
system (

1.3
1.5). Smooth solutions of (

1.3
1.5) satisfy the conservation laws:

∂tη(ρ, u) + ∂xH(ρ, u) = 0,

8



if and only if:

ηρρ =
P
′
(ρ)

ρ2
ηuu. (2.20) ondes

We supplement the equation
ondes
2.20 by giving initial conditions:

η(0, u) = 0, ηρ(0, u) = ψ(u). (2.21) initial

We are now going to give a sequel of proposition on the properties of η, we refer to
35
[26]

for more details.

proputile Proposition 2.2 For ρ ≥ 0, u, ω ∈ R,

• The fundamental solution of (
ondes
2.20)-(

initial
2.21) is the solution corresponding to ηρ(0, u) =

δ(u) is given by:

χ(ρ, ω) = (ργ−1 − ω2)λ+ with λ =
3− γ

2(γ − 1)
. (2.22)

• The solution of (
ondes
2.20)-(

initial
2.21) is given by:

η(ρ, u) =

∫
R
ψ(ξ)χ(ρ, ξ − u)dξ, (2.23) entropie

• η is convex in (ρ, ρu) for all ρ, u if and only if g is convex.

• The entropy flux H associated with η is given by:

H(ρ, u) =

∫
R
ψ(ξ)[θξ + (1− θ)ξ]χ(ρ, ξ − u)dξ where θ =

γ − 1

2
. (2.24) flux

We now give a important result on the entropy pair (see
35
[26], lemma 4) .

pair35 Proposition 2.3 Taking ψ(s) = 1
2s|s|, then there exists a positive constant C > 0,

depending only on γ > 1, such that the entropy pair (ηψ, Hψ) satisfies:

|ηψ(ρ, u)| ≤ (ρ|u|2 + ργ),

Hψ(ρ, u) ≥ C−1(ρ|u|3 + ργ+θ), for all ρ ≥ 0 and u ∈ R,
|ηψm(ρ, u)| ≤ (ρ|u|+ ρθ),

|ηψmm(ρ, u)| ≤ Cρ−1.

(2.25) 2.37

We are now going to give recent results on the entropy pair (ηψ, qψ) generated by ψ ∈
C2

0 (R) (we refer to
10
[5] for more details).

propChen Proposition 2.4 For a C2 function ψ : R → R, compactly supported on the interval
[a, b], we have:

supp(ηψ), supp(qψ) ⊂ {(ρ,m) = (ρ, ρu) : u+ ρθ ≥ a, u− ρθ ≤ b} : (2.26) 3.2

Furthermore, there exists a constant Cψ such that, for any ρ ≥ 0 and u ∈ R, we have:

9



• For γ ∈ (1, 3],
|ηψ(ρ,m)|+ |qψ(ρ,m)| ≤ Cψρ. (2.27) 3.3

• For γ ∈ (3,+∞),

|ηψ(ρ,m)| ≤ Cψρ, |qψ(ρ,m)| ≤ Cψ(ρ+ ρθ+1). (2.28) 3.4

• If ηψ is considered as a function of (ρ,m), m = ρu then

|ηψm(ρ,m)|+ |ρηψmm(ρ,m)| ≤ Cψ, (2.29) 3.5

and, if ηψm is considered as a function of (ρ, u), then

|ηψm(m,u)|+ |ρ1−θηψmρ(ρ, ρu)| ≤ Cψ. (2.30) 3.6

We now would like to express the kinetic formulation of (
1.3
1.5) introduced in (

35
[26]).

Theorem 2.4 Let (ρ, ρv) ∈ L∞(R+, L1(R)) have finite energy and ρ ≥ 0, then it is an
entropy solution of (

1.3
1.5) if and only if there exists a non-positive bounded measure m on

R+ × R2 such that the function χ(ρ, ξ − u) satisfies:

∂tχ+ ∂x[(θξ + (1− θ)u)χ] = ∂ξξm(t, x, ξ). (2.31)

cinetique

3 Proof of theorem
theo

1.1
section3

We would like to start with recalling an important result due to Solonnikov (see
Sol
[34]).

Let ρ0 the initial density such that:

0 < m0 ≤ ρ0 ≤M0 < +∞. (3.32) initiald

When the viscosity coefficient µ(ρ) satisfies:

µ(ρ) ≥ c > 0 for allρ ≥ 0, (3.33) visco

we have the existence of strong solution for small time. More exactly, we have:

Proposition 3.5 Let (ρ0, v0) satisfy (
initiald
3.32) and assume that µ satisfies (

visco
3.33), then there

exists T0 > 0 depending on m0, M0, ‖ρ0− ρ̄‖H1 and ‖v0‖H1 such that (
1.1
1.3) has a unique

solution (ρ, v) on (0, T0) satisfying:

ρ− ρ̄ ∈ L∞(H1(R), ∂tρ ∈ L2((0, T1)× R),

v ∈ L2(0, T1, H
2(R)), ∂tv ∈ L2((0, T1)× R)

for all T1 < T0.

Remark 3 The main point in this theorem is that the time of existence T0 depends only
of the norms of ρ0 which gives us a low bounds on T0 of the system (

1.1
1.3).

10



In view of this proposition, we see that if we introduce a truncated viscosity coefficient
µn(ρ):

µn(ρ) = max(ρ,
1

n
),

then there exists approximated solutions (ρn, vn) defined for small time (0, T0) of the
system (

1.1
1.3). In order to prove theorem

theo
1.1 , we only have to show that (ρn, vn) satisfies

the following bounds uniformly with respect to n and T large:

0 < m0 ≤ ρn ≤M0 < +∞, ∀t ∈ [0, T ],

ρn − ρ̄ ∈ L∞T (H1(R)),

vn ∈ L∞T (H1(R)).

(3.34)

We are going to follow the method of Lions et al in
36
[25], indeed the main point is to

prove that we can extend the notion of Riemann invariant or more precisely the kinetic
formulation of proposition

cinetique
2.4 to the system (

1.1
1.3). We recall that system (

1.1
1.3) has the

following form:
∂

∂t
ρn + ∂x(ρnvn)− ε∂xxρn = 0,

∂

∂t
(ρnvn) + ∂x(ρnvnvn)− ε∂x(∂xρnvn)− ε∂x(ρn∂xvn) + ∂x(a(ρn)γ = 0,

(3.35) 1.1a

and we have finally:
∂

∂t
ρn + ∂x(ρnvn)− ε∂xxρn = 0,

∂

∂t
(ρnvn) + ∂x(ρnvnvn)− ε∂x∂x(ρnvn) + ∂x(a(ρn)γ = 0,

(3.36) 1.1b

Following
36
[25] and settingmn = ρnvn we have for any pair of entropy flux (η(ρ, u), H(ρ, u))

defined by (
entropie
2.23) and (

flux
2.24) where η is a convex function of (ρn,mn). We write η =

η̄(ρn,mn):

∂tη + ∂xH = εη̄ρ∂xxρn + εη̄m∂xxmn,

= ε∂xxη − ε(η̄ρρ(∂xρn)2 + 2η̄ρm(∂xρn)(∂xmn) + η̄mm(∂xmn)2).

Here we define µn such that:

µn = η̄ρρ(∂xρn)2 + 2η̄ρm(∂xρn)(∂xmn) + η̄mm(∂xmn)2

By proposition
proputile
2.2, we can check that µn ≥ 0. We obtain then that:

∂tη(ρn, vn) + ∂xH((ρn, vn)− εη̄ρ∂xxρn ≤ 0 in R× (0,+∞).

By applying the same method than for proving the theorem
cinetique
2.4, we obtain the following

kinetic formulation:

∂tχ+ ∂x([θξ + (1− θ)vn]χ)− ∂xxχ = ∂ξξm̄n on R2 × (0,+∞), (3.37) riemann

11



where m̄n is a nonpositive bounded measure on R2 × (0,+∞). Finally we recover the
classical maximum principle by multiplying (

riemann
3.37) by the convex functions g(ξ) = (ξ −

ξ0)+ and g(ξ) = (ξ − ξ0)− and integrating over R2 × (0,+∞). Indeed as we have that:

−C ≤ min
x

(v0 − ρθ0) ≤ max
x

(v0 + ρθ0) ≤ C,

and that:
suppξ = [v − ρθ, v + ρ[θ].

For ξ0 large enough, we can show that:

suppξ0 ∩ suppχ = ∅.

We have obtain then that:

−C ≤ min
x

(v0 − ρθ0) ≤ vn − ρθn ≤ vn + ρθn ≤ max
x

(v0 + ρθ0) ≤ C.

In particular we obtained that ρn and vn are uniformly bounded in L∞(0, Tn, L
∞(R)) or:

sup
x∈R,t∈(0,Tn)

(
|ρn(t, x)|+ |vn(t, x)|) ≤ C0, (3.38) imp2

4 Proof of theorem
theo1

1.2

4.1 Uniform estimates for the solutions of (
1.1
1.3)

section4
First we assume that (ρε, vε) is the global solutions of Korteweg’s equations (

1.1
1.3) con-

structed in theorem
theo
1.1 and satisfying:

ρε(t, x) ≥ cε(t), for some cε(t) > 0, (4.39) 2.1

and
lim

x→±∞
(ρε, vε)(x, t) = (ρ±, u±). (4.40) 2.2

Here we are working around a non constant state (ρ̄, v̄) with:

lim
x→±∞

(ρ̄, v̄)(x, t) = (ρ±, u±).

It is a simple extension of theorem
theo
1.1. Our goal is now to check the properties (

1.8
1.11),

(
1.9
1.12) and (

1.10
1.13) in order to use the theorem

theo2
1.3 of Chen and Perepelista (see

10
[5]) in

order to prove the theorem
theo1
1.2.

For simplicity, throughout this section, we denote (ρ, v) = (ρε, vε) and C > 0 denote the
constant independent of ε.
We start with recalling the inequality energy for system (

1.1
1.3), indeed by the introduction

of the effective velocity we obtain new entropies (see
Hprepa
[13]).

Lemma 1 Suppose that E1[ρ0, u0] ≤ E0 < +∞ for some E0 > 0 independent of ε. It
holds that:

sup
0≤τ≤t

E1[ρ, u](τ) + ε

∫ t

0

∫
R
ρu2

xdxdτ ≤ C(t), (4.41) 2.3a

12



and:

sup
0≤τ≤t

E2[ρ, v](τ) + ε

∫ t

0

∫
R
ρv2
xdxdτ + ε

∫ t

0

∫
R
ργ−2ρ2

xdxdτ ≤ C(t), (4.42) 2.3

where C(t) depends on E0, t, ρ̄, and ū but not on ε.lemma1

Proof: It suffices to writes the energy inequalities for system (
1.1
1.3) and from system

(
1.3
1.5). More exactly we have:

d

dt

∫
R

(η(ρ,m)− η(ρ̄, ρ̄ū)dx+ ε

∫
R
ρu2

xdx = q(ρ−,m−)− q(ρ+,m+),

with the entropy pair:

η(ρ,m) =
m2

2ρ
+ e(ρ), q(ρ,m) =

m3

2ρ2
+me

′
(ρ),

with e(ρ) = a
γ−1ρ

γ . Since we have:

ε(ρ, ρ̄) ≥ ρ(ρθ − ρ̄θ)2, θ =
γ − 1

2
,

we can classically bootstrap on the left hand-side the term q(ρ−,m−)− q(ρ+,m+).

Remark 4 Since vacuum could occur in our solution, the inequality∫ t

0

∫
R
ρu2

xdxdτ ≤ C(t),

in (
2.3
4.42) is much weaker than the corresponding one in

10
[5]. That is why lemma

lemme2
2 will be

more tricky to obtain.

The following higher order integrability estimate is crucial in compactness argument.

lemme2 Lemma 2 If the conditions of lemma
lemma1
1 hold, then for any −∞ < a < b < +∞ and all

t > 0, it holds that: ∫ t

0

∫ b

a
ργ+1dxdτ ≤ C(t, a, b), (4.43) 2.21

where C(t) > 0 depends on E0, a, b, γ, t, ρ̄, ū but not on ε.

Remark 5 The proof follows the same ideas than in the case of compressible Navier-
Stokes equations when we wish to obtain a gain of integrability on the density. We refer
to

fL2
[24] for more details. The proof is also inspired from Huang et al in

Hu2
[19].

Proof. Choose ω ∈ C∞0 (R) such that:

0 ≤ ω(x) ≤ 1, ω(x) = 1 for x ∈ [a, b], and suppω = (a− 1, b+ 1).

By the momentum equation of (
1.1
1.3) and by localizing, we have

(P (ρ)ω)x = −(ρuvω)x + (P (ρ) + ρuv)ωx − (ρv)tω + ε(ρvxω)x − ερvxωx. (4.44) 2.22
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Integrating (
2.22
4.44) with respect to spatial variable over (−∞, x), we obtain:

P (ρ)ω = −ρuvω + ε(ρvxω)x − (

∫ x

−∞
ρv ωdy)t +

∫ x

−∞
[(ρuv + P (ρ))ωx − ερvxωx. (4.45) 2.23

Multiplying (
2.23
4.45) by ρω, we have

ρP (ρ)ω2 =− ρ2uvω2 + ερ2vxω
2 − (ρω

∫ x

−∞
ρv ωdy)t

− (ρu)xω(

∫ x

−∞
ρuωdy) + ρω

∫ x

−∞
[(ρuv + P (ρ))ωx − ερvxωx]dx,

=ερ2vxω
2 − (ρω

∫ x

−∞
ρv ωdy)t − (ρuω

∫ x

−∞
ρv ωdy)x

+ ρuωx

∫ x

−∞
ρv ωdy + ρω

∫ x

−∞
[(ρuv + P (ρ))ωx − ερvxωx]dx,

(4.46) 2.24

We now integrate (
2.24
4.46) over (0, t)× R and we get:∫ t

0

∫
R
aργ+1ω2dxdτ = ε

∫ t

0

∫
R
ρ2vxω

2 −
∫
R

(ρω

∫ x

−∞
ρv ωdy)dx

+

∫
R

(ρ0ω

∫ x

−∞
ρ0v0 ωdy)dx+

∫ t

0

∫
R

(
ρuωx

∫ x

−∞
ρv ωdy

)
dxdτ

+

∫ t

0

∫
R

(
ρω

∫ x

−∞
[(ρuv + P (ρ))ωx − ερvxωx]dx

)
dxdτ.

(4.47) 2.25

Let
A = {x : ρ(t, x) ≥ ρ}, where ρ = 2 max(ρ+, ρ−), (4.48) 2.26

then we have the following estimates by (
2.3
4.42):

|A| ≤ C(t)

e∗(2ρ, ρ̄)
= d(t). (4.49) 2.27

By (
2.26
4.48), for any (t, x) there exists a point x0 = x0(t, x) such that |x − x0| ≤ d(t) and

ρ(t, x0) = ρ. Here we choose β = γ+1
2 > 0,

suppx∈supp(ω)ερ
β(t, x) ≤ ερβ + suppx∈supp(ω)∩Aερ

β(t, x),

≤ 2ερβ + suppx∈supp(ω)∩A|ερβ(t, x)− ερβ(t, x0)|,

≤ 2ερβ + suppx∈supp(ω)∩A

∫ x0+d(t)

x0−d(t)
|β||ερβ−1(t, x)ρx|dx,

≤ 2ερβ +

∫ b+1+2d(t)

a−1−2d(t)
|β|ρ2β−1dx+

∫
R
ε2ρ−1ρ2

xdx,

≤ C(t) +

∫ b+1+2d(t)

a−1−2d(t)
ργdx,

≤ C(t).

(4.50) 2.28
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Using (
2.28
4.50), Young inequalities and Hölder’s inequalities, the first term on the right

hand side of (
2.25
4.47) is treated as follows:∫ t

0

∫
R
ρ2vxω

2dxdτ

≤ 1

2
ε

∫ t

0

∫
R
ρ3ω4dxdτ +

1

2
ε

∫ t

0

∫
R
ρv2
xdxdτ,

≤ C(t) + ε

∫ t

0

∫
R
ρ3ω2dxdτ,

≤ C(t) + C(t)

∫ t

0

∫
R
ρ4−βω2dxdτ,

≤ C(t) + δ

∫ t

0

∫
R
ργ+1ω2dxdτ,

(4.51) 2.29

Here we have used the fact that γ > 5
3 . By lemma

lemma1
1 and the Hölder inequality, we obtain∣∣ ∫ x

−∞
ρvωdy

∣∣ ≤ ∫
supp(ω)

|ρv|dy,

≤ (

∫
supp(ω)

ρdy)
1
2 (

∫
supp(ω)

ρv2dy)
1
2 ≤ C(t).

(4.52) 2.30

Then: ∣∣ ∫
R

(
ρω

∫ x

−∞
ρvωdy

)
dx
∣∣+
∣∣ ∫

R

(
ρ0ω

∫ x

−∞
ρ0v0ωdy

)
dx
∣∣

+
∣∣ ∫ t

0

∫
R

(
ρuωx

∫ x

−∞
ρvωdy

)
dxdτ

∣∣ ≤ C(t).

(4.53) 2.32

Similarly, we have: ∣∣ ∫ t

0

∫
R

(
ρω

∫ x

−∞
(ρuv + P (ρ))ωxdy

)
dxdτ

∣∣ ≤ C(t), (4.54) 2.33

and

ε
∣∣ ∫ t

0

∫
R

(
ρω

∫ x

−∞
ρvxωxdy

)
dxdτ

∣∣
≤ ε
∣∣ ∫ t

0

∫
R

(
ρω

∫
R
ρ|vx| |ωx|dy

)
dxdτ

∣∣,
≤ ε
∣∣ ∫ t

0

( ∫
R
ρωdx

)( ∫
R
ρv2
xdy +

∫
R
ρω2

xdy
)
dτ
∣∣,

≤ C(t).

(4.55) 2.34

Substituting (
2.29
4.51), (

2.32
4.53)-(

2.34
4.55) into (

2.25
4.47) and noticing the smallness of δ, we proved

lemma
lemme2
2.

Lemma 3 Suppose that (ρ0(x), v0(x) satisfy the conditions in the lemmas
lemma1
1. Further-

more there exists M0 > 0 independent of ε, such that∫
R
ρ0(x)|v0(x)− v̄(x)|dx ≤M0 < +∞, (4.56) 2.35
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then for any compact set K ⊂ R, it holds that:∫ t

0

∫
K

(ργ+θ + ρ|v|3)dxdτ ≤ C(t,K), (4.57) 2.36

where C(t,K) is independent of ε.

Remark 6 In order to prove the inequality (
2.36
4.57), we will use the same ingredients than

in
35
[26] where this inequality was obtained for the first time.

Proof. We are now working with the function ψ of proposition
pair35
2.3. If we consider ηψm

as a function depending of (ρ, v), we have for all ρ ≥ 0 and v ∈ R:{
|ηψmv(ρ, v)| ≤ C,
|ηψmρ(ρ, v)| ≤ Cρθ−1.

(4.58) 2.38

For this weak entropy pair (ηψ, Hψ), we observe that:

ηψ(ρ, 0) = ηψρ (ρ, 0) = 0, Hψ(ρ, 0) =
θ

2
ρ3θ+1

∫
R
|s|3[1− s2]λ+,

and:

ηψm(ρ, 0) = βρθ with β =

∫
R
|s|[1− s2]λ+ds.

By Taylor formula, we have:

η∗(ρ,m) = βρθm+ r(ρ,m), (4.59) 2.39

with:
r(ρ,m) ≤ Cρv2, (4.60) 2.40

for some constant C > 0. Now we introduce a new entropy pair (η̂, Ĥ) such that,

η̂(ρ,m) = ηψ(ρ,m− ρv−), Ĥ(ρ,m) = Hψ(ρ,m− ρv−) + v−ηψ(ρ,m− ρv−),

with m = ρv which satisfies:{
η̂(ρ,m) = βρθ+1(v − v−) + r(ρ, ρ(v − v−)),

r(ρ, ρ(v − v−)) ≤ Cρ(v − v−)2.
(4.61) 2.41

Integrating (
1.1
1.3)1 × η̂ρ + (

1.1
1.3)2 × η̂m over (0, t)× (−∞, x), we have:∫ x

−∞

(
η̂(ρ,m)− η̂(ρ0,m0)

)
dy +

∫ t

0
q∗(ρ, ρ(v − v−)) + v−η∗(ρ, ρ(v − v−))dτ

= tq∗(ρ−, 0) + ε

∫ t

0
η̂mρvxdτ − ε

∫ t

0

∫ x

−∞
(η̂muρv

2
x + η̂mρρρxvx)dydτ.

(4.62) 2.42

By using (
2.38
4.58), we obtain:

∣∣ε∫ t

0

∫ x

−∞
η̂muρv

2
xdydτ

∣∣ ≤ Cε∫ t

0

∫
R
ρv2
xdy dτ ≤ C(t), (4.63) 2.43
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∣∣ε∫ t

0

∫ x

−∞
η̂mρρρxvxdydτ

∣∣ ≤ Cε∫ t

0

∫
R
ρθ−1ρ|ρxvx|dy dτ ≤ C(t),

≤ Cε
∫ t

0

∫
R
ρv2
xdy dτ + Cε

∫ t

0

∫
R
ργ−2ρ2

xdy dτ ≤ C(t).

(4.64) 2.44

Substituting (
2.43
4.63) and (

2.44
4.64) into (

2.42
4.62), then integrating over K and using (

2.37
2.25), we

obtain:∫ t

0

∫
K
ρθ+γ + ρ|v − v−|3dxdτ

≤ C(t) + C

∫ t

0

∫
K
|η∗(ρ, ρ(v − v−)|dxdτ + Cε

∫ t

0

∫
K
ρ|v||vx|dxdτ

+ Cε

∫ t

0

∫
K
ρ1+θ|vx|dxdτ + 2 sup

τ∈[0,t]

∣∣ ∫
K

(

∫ x

−∞
êta(ρ(y, τ), (ρv)(y, τ))dy)dx

∣∣.
(4.65) 2.45

Applying lemma
lemma1
1, we have:∫ t

0

∫
K
|η∗(ρ, ρ(v − v−)|dxdτ ≤ C(t). (4.66) 2.46

By Hölder’s inequality and (
2.28
4.50), we get:

ε

∫ t

0

∫
K
ρ1+θ|vx|dxdτ ≤ Cε

∫ t

0

∫
K
ρv2
xdxdτ + Cε

∫ t

0

∫
K
ρ1+2θdxdτ,

≤ C(t) + C(t)

∫ t

0

∫
K
ρθdxdτ,

≤ C(t).

(4.67) 2.47

We have now:

ε

∫ t

0

∫
K
ρ|v||vx|dxdτ ≤

1

2
ε

∫ t

0

∫
K
ρv2
xdxdτ +

1

2
ε

∫ t

0

∫
K
ρv2dxdτ,

≤ C(t).

(4.68) 2.48

Now we are going to deal with the last term on the right hand side of (
2.45
4.65). (

1.1
1.3) implies

that:
(ρv − ρv−)t + (ρv2 + P (ρ)− ρuu−)x = ε(ρvx)x. (4.69) 2.49

Integrating (
2.49
4.69) over [0, t]× (−∞, x) for x ∈ K, we get:∫ x

−∞
ρ(v − ρv−)dy =

∫ x

−∞
ρ0(v0 − ρv−)dy −

∫ t

0
(ρv2 + P (ρ)− ρuu− − P (ρ−))

+ ε

∫ t

0
ρvxdτ.

(4.70) 2.50
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Furthermore:∣∣ ∫ x

−∞
η̂((ρ(y, τ), (ρv)(y, τ))dy

∣∣
≤
∣∣ ∫ x

−∞
(η̂(ρρv)− βρθ+1(v − v̄))dy

∣∣+ |
∫ x

−∞
βρθ+1(v − v̄))dy

∣∣
≤
∣∣ ∫ x

−∞
(r(ρρ(v − v̄))dy

∣∣+
∣∣ ∫ x

−∞
β(ρθ − (ρ−)θ)ρ(v − v̄))dy

∣∣
+ β(ρ−)θ

∣∣ ∫ x

−∞
ρ(v − v̄))dy

∣∣,
≤ C(t) + β(ρ−)θ

∣∣ ∫ x

−∞
ρ(v − v̄))dy

∣∣.

(4.71) 2.51

By using (
2.35
4.56), lemma

lemma1
1 and

lemme2
2, (

2.50
4.70) and (

2.51
4.71) we conclude the proof of the lemma.

4.2 H−1
loc (R2

+) Compactness

In this section we are going to take profit of the uniform estimates obtained in the previous
section in order to prove the following lemma, which gives the H−1

loc (R2
+)-compactness of

the Korteweg solution sequence (ρε, vε) on a entropy- entropy flux pair.

Lemma 4 Let ψ ∈ C2
0 (R), ηψ, Hψ) be a weak entropy pair generated by ψ. Then for the

solutions (ρε, vε) with mε = ρεvε of Korteweg system (
1.1
1.3, the following sequence:

ηψ(ρε,mε)t + qψ(ρε,mε)x are compact in H−1
loc (R2

+) (4.72) 3.1

lemme4

Proof: Now we are going to prove the lemma. A direct computation on (
1.1
1.3)1 ×

ηψρ (ρε,mε) + (
1.1
1.3)2 × ηψm(ρε,mε) gives:

ηψρ (ρε,mε)t +Hψ
ρ (ρε,mε)x = ε

(
ηψρ (ρε,mε)(ρε)vεx

)
− εηψmu(ρε,mε)(ρε)(vεx)2

− εηψmu(ρε,mε)(ρε)vεxρ
ε
x.

(4.73) 3.7

Let K ⊂ R be compact, using proposition
propChen
2.4 (

3.6
2.30) and Hölder inequality, we get:

ε

∫ t

0

∫
K
|ηψmu(ρε,mε)(ρε)|(vεx)2 + |ηψmu(ρε,mε)(ρε)vεxρ

ε
x|dxdt

≤ Cε
∫ t

0

∫
K

(ρε)|(vεx)2dxdτ + Cε

∫ t

0

∫
K

(ρε)γ−2(ρεx)2dxdτ

≤ C(t).

(4.74) 3.8

This shows that:

−εηψmu(ρε,mε)ρε(vεx)2 − εηψmu(ρε,mε)ρεvεxρ
ε
x are bounded in L1([0, T ]×K), (4.75) 3.9

and thus it is compact in W−1,p1
loc (R2

+), for 1 < p1 < 2. Moreover we observe that

|ηψmu(ρε, ρεvε)| ≤ Cψ,

18



, then we obtain: ∫ t

0

∫
K

(εηψm(ρε,mε)ρεvεx)
4
3dxdt

≤
∫ t

0

∫
K
ε
4
3 |ρε|

4
3 |vεx|

4
3dxdt

≤ Cε
4
3

∫ t

0

∫
K
ρε|vεx|2dxdt+ Cε

4
3

∫ t

0

∫
K

(ρε)2dxdt

≤ C(t,K)ε
1
3 + Cε

4
3

∫ t

0

∫
K

(ρε)γ+1dxdt→ε→0 0.

(4.76) 3.10

Using (
3.10
4.76) and (

3.9
4.75), we obtain

ηψρ (ρε,mε)t +Hψ
ρ (ρε,mε)x are compact in W−1,p1

loc (R2
+) for some 1 < p1 < 2. (4.77) 3.11

Furthermore by (
3.3
2.27)-(

3.4
2.28), lemma

lemma1
1-

lemme2
2 and (

2.36
4.57), we have:

ηψρ (ρε,mε)t +Hψ
ρ (ρε,mε)x are uniformly bounded in Lp3loc(R

2
+) for p3 > 2. (4.78) 3.12

where p3 = γ + 1 > 2 when γ ∈ (1, 3], and p3 = γ+θ
1+θ > 2 when γ > 3. By interpolation

we conclude the proof of the lemma
lemme4
4.

5 Proof of theorem
theo1

1.2

From lemmas
lemma1
1, we have verified the conditions (i)-(iii) of theorem

theo2
1.3 for the sequence

of solutions (ρε,mε). Using theorem
theo2
1.3, there exists a subsequence (ρε,mε) and a pair

of measurable functions (ρ,m) such that

(ρε,mε)→ (ρ,m), a.e ε→ 0. (5.79) 4.1

It is easy to check that (ρ,m) is a finite-energy entropy solution (ρ,m) to the Cauchy
problem (

1.3
1.5) with initial data (ρ0, ρ0u0) for the isentropic Euler equations with γ > 5

3 .
It achieves the proof of theorem

theo1
1.2.
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Annales Mathématiques Blaise Pascal 16, 431-481 (2009).

fH2 [16] B. Haspot, Existence of weak solution for compressible fluid models of Korteweg
type, Journal of Mathematical Fluid Mechanics, DOI: 10.1007/s00021-009-0013-2
online.
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