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[1] A number of studies have shown that rainfall processes may be described by stochastic
scaling models in the time domain. However, most of the data sets have a resolution
that is too limited to perceive the internal structure and variability of rain events. In this
study, we analyze high‐resolution (15 s) disdrometer time series, of total duration 2 years,
obtained in Palaiseau, France. Monofractal and multifractal analysis tools are applied
to the data set in order to investigate the scaling properties of the process, especially within
the framework of universal multifractals (UMs). From spectral analysis and first‐order
structure function, it is shown that rainfall should be modeled by nonconservative
(integrated) processes at small scales (hourly or finer) but not at larger scales. Multifractal
analysis shows that two multiscaling regimes should be distinguished, i.e., ∼3 days
to 30 min and 15 min to 15 s, with different UM parameters. The former is likely to
represent the interevent variability, and the latter is likely to represent the event internal
variability. Moreover, most data points contain zero values, which are susceptible to bias
multifractal analysis results. In order to assess the effect of the zeros on multifractal
analysis results, the UM parameters are also estimated from two variants: from
uninterrupted rain events (with almost no zeros) and from a modified (weighted) version
of analysis procedure that overweights nonzero values. The parameters are shown to
depend noticeably on the proportion of zeros. We propose an approach based on a scaling
support of the time series and derive semitheoretical formulas for the bias in the
parameters, which are applied in our case study. Finally, we discuss the advantages
and drawbacks of some models for numerical simulation of multifractal fields containing
a lot of zeros.

Citation: Verrier, S., C. Mallet, and L. Barthès (2011), Multiscaling properties of rain in the time domain, taking into account
rain support biases, J. Geophys. Res., 116, D20119, doi:10.1029/2011JD015719.

1. Introduction

[2] Rainfall displays a very heterogeneous behavior, in a
twofold way. First, wet and dry periods alternate and may
have variable duration. On the other hand, there is also an
extreme variability in the interior of rain events. Since
rainfall dynamics involve a wide range of time scales and
space scales, scaling models have been considered for a long
time by researchers. These models display features such as
power law spectra, induced by the absence of characteristic
scale in a given range of scales (usually coined as scaling
range). Such power laws are accurately displayed by rainfall
data sets, at least for some scaling ranges. Scaling behaviors
seem even to occur in most geophysical fields. However,
it has appeared to geophysicists that usual simple scaling
(monofractal) models, characterized by a single fractal
dimension, may represent an artificially narrow class of

processes, with a too‐limited variability. In other words,
power spectra are useful when determining the existence of
one or several scaling regime(s), but since it is a second‐order
statistic, some information about low‐order or high‐order
statistics is missed. The latter point is especially crucial when
considering the most rare and extreme events, the most
important ones for operational hydrology, civil engineering,
and safety policies. Then, more elaborated models have been
designed, in order to account for a wide set of (decreasing)
fractal dimensions, associated with increasingly high inten-
sities. These are multifractal models, characterized by an
infinite spectrum of fractal dimensions. A popular route to
multifractality is that of stochastic multiplicative cascades,
first developed in the context of statistical modeling of tur-
bulence [Kolmogorov, 1962; Obukhov, 1962; Yaglom, 1966;
Mandelbrot, 1974]. In a general manner, cascade models rely
on three phenomenological assumptions: (1) there exists a
quantity (energy flux in the context of turbulence) which is
conserved in average from large to smaller scales; (2) this
quantity is heterogeneously transmitted to smaller scales in a
scale‐invariant way; and (3) most of the interactions occur
between neighboring scales. Moreover, the cascade is said
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multiplicative when its heterogeneity is built by an iterative
multiplicative modulation process. This results in a multi-
fractality that would need, in principle, an infinite number of
parameters (i.e., an infinite set of fractal dimensions). Yet, it
has been shown that under plausible assumptions, (continu-
ous in scale) cascades converge toward laws that are often
characterized by a small number of degrees of freedom
(universality). For instance, the universal multifractal (UM)
model [Schertzer and Lovejoy, 1987] (that includes the well‐
known special case of lognormal cascades, with a = 2) and
the log‐Poisson model [She and Levêque, 1994] need only
two fundamental parameters. For 25 years, scientists have
performed multifractal analysis over a number of geophysical
fields, leading to the conclusion that multifractality should be
somewhat ubiquitous in nonlinear geophysics (for reviews,
see Lovejoy and Schertzer [2007, 2010]). In particular, the
multifractality of rain, first proposed by Schertzer and
Lovejoy [1987], has been confirmed by a number of studies
in the time and space domains (for reviews, see Lovejoy and
Schertzer [1995], Lilley et al. [2006], and even in a spatio-
temporal framework Marsan et al. [1996], Over and Gupta
[1996], and Deidda [2000]). The multifractal structure of
rainfall time series has been investigated by a number of
papers, e.g., in the UM framework [Ladoy et al., 1991;
Tessier et al., 1993; Hubert et al., 1993; Ladoy et al., 1993;
Olsson, 1995; Harris et al., 1996; Schmitt et al., 1998; de
Lima and Grasman, 1999; Pathirana et al., 2003; de Lima
and de Lima, 2009; Sun and Barros, 2010; Lovejoy et al.,
2011]. The main results (scaling regimes, UM parameters)
of these papers are recalled in Table 1. As shown, most of
the studies suffer from the limited resolution of the data
(typically one day). Obviously, rain has much variability at
subdaily scales, hence some singular behavior should be
expected at these small time scales. Recently, de Montera
et al. [2009] have performed multifractal analysis of high‐
resolution (<1 min) time series obtained by the means of
a dual‐beam spectropluviometer. They found the existence of
a break in the scaling at 1 hr time scale, and of a scaling
regime, in the interior of rain events, with UM parameters far
from the usual large‐scale ones (see Table 1). They advocated
that the break at 1 hr time scale could be due to the presence
of numerous zeros in the series, which would lead to biases
in multifractal analysis at larger scales. It is perhaps not well
known enough that the presence of these zeros may consid-
erably affect the estimation of multifractal parameters, even
though this has been noticed for a long time [Harris et al.,
1996; Schmitt et al., 1998]; see also Fraedrich and Larnder
[1993] in a monoscaling framework. Such a phenomenon
may be easily retrieved by analyzing thresholded synthetic
multifractal fields [Verrier et al., 2010]. Other comments on
the effects of thresholds on rain spatial statistics may be found
in the work of Lovejoy et al. [2008]. In the time domain, the
transition at ∼1 h may be viewed as a transition from a mul-
tiscaling regime to another with different parameters (includ-
ing a transition from nonconservativity to conservativity).
However, the physical interpretation of the transition remains
unclear but could involve a kind of threshold in the rain
generation process.
[3] The present paper aims to extend the results obtained

by de Montera et al. [2009], using another high‐resolution
time series covering a wide range of scales (2 years of rain
intensity data at 15 s resolution). The present study will

distinguish the main scaling regimes of rainfall in the time
domain in the range of scales available from the measure-
ments. Different analysis procedures will be performed in
order to highlight the role of the zero rain rates. Further-
more, a semitheoretical explanation and formulas for the
biases observed in UM parameters estimates on data sets
that contain a lot of zeros will be proposed and tested.
[4] The study is structured as follows. In section 2, the

main properties of the multifractal formalism are recalled,
including UM parametrization. Section 3 provides infor-
mation on the data set and the experiment. As a first step,
some monoscaling analysis techniques were applied to the
series in order to determine the scaling regimes; the results
are presented in section 4. Then, section 5 exposes the
application of classical multifractal analysis tools to the
series and to rain events extracted from the series. The latter
procedure aims to distinguish between rain variability in
rain events and the alternation between rain and absence of
rain and to characterize the scaling properties of the former.
UM parameters are shown to be strongly different at large
scale, compared to those estimated from (small‐scale) rain
events. It is suggested that at least part of the difference may
be due to the zero rain rates. In section 6, some suggestions
for modeling multifractal fields that have many zeros are
proposed. From a model of scaling support, semitheoretical
formulas are derived to quantify the bias of multifractal
analysis results depending on the codimension of the support.
We also review and discuss the advantages and drawbacks
of existing models of support generation. It is argued that a
thresholded multifractal model could be able to reproduce
some of the observed features of the DBS series. Finally,
we conclude in section 7.

2. Some Theories of Multifractals

2.1. Multiplicative Cascades and Multifractals

[5] Multiplicative cascades are defined by an iterative
multiplicative construction as follows. First, distribute uni-
formly a quantity at the largest scale T of the process (called
external scale), i.e., over a full interval [0, T]. Then, divide
the initial interval in l1 (usually, two) subintervals of equal
length (or, in D dimensions, in l1

D subpixels or sub-
hypercubes). Attribute a value on each subinterval by mul-
tiplying the initial value by a random variable. Then, repeat
the construction by subdividing each of the previous sub-
intervals in l1 new subintervals and attribute a value to each
of the new intervals. By iterating the process, you can build
a series Fl (t) of resolution l = l1

n (in the following, the
resolution varies as the inverse of the interval length, which
is the time scale, l = T/Dt). If we impose all random vari-
ables to be independent and identically distributed and dis-
tributed independently of the scale, one can obtain a series
(or a field) that has scale‐invariant properties. Usually, the
mean of the process is assumed to be statistically conserved
when the resolution changes: ∀l, hFli = M.
[6] The latter equation expresses canonical conservation,

which will be considered in the scope of this paper. Note
that conservation can also be defined in a microcanonical
way (see Mandelbrot [1974] about this distinction), i.e.,
exact conservation at each step.
[7] Generically, scale‐invariant multiplicative cascades

converge toward multifractal fields [see, e.g., Schertzer
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et al., 2002]. The fundamental equation of the (codimen-
sion) multifractal formalism expresses the fact that for a mul-
tifractal field, the probability of exceedence of a threshold that
is power law of the resolution is also power law with exponent
depending on the amplitude of the family of thresholds:

Pr F� > ��ð Þ � ��c �ð Þ ð1Þ

where Fl is the (normalized, M = 1) series or field seen at
resolution l and ≈ indicates an equality within the limits of
slowly varying functions. Above, the (real) exponent g is a
scale‐invariant indicator of the amplitude of the resolution‐
dependent family of thresholds:

T� ¼ �� ð2Þ

Here, g is called singularity and characterizes the amplitude
of the process independently of the scale. It is associated to
a unique fractal codimension denoted c(g), which is the
exponent of the power law defined in (1). By varying the
singularity, we can describe the fractal codimensions of
families of thresholds of various amplitudes. Physically,
the higher the threshold, the more intense the events: it is
expected that higher singularities are associated with the
most rare events, with smaller fractal dimensions: c(g)
increases with g. c(g) defines a function, called codimension
function, which entirely characterizes the multifractal series
or field Fl. Note that the trivial case c(g) = const corresponds
to monofractality. In a general manner, c(g) is convex, pos-
itive, with a fixed point C1 imposed by the condition of
canonical conservation. Since the probability distributions
are closely related with the statistical moments, (1) is
equivalent [Schertzer and Lovejoy, 1987] to:

Fq
�

� � � �K qð Þ ð3Þ

where h•i denotes the averaging operator, q is the (non-
necessarily integer) order of the moment, and K(q) is the
moment scaling function. Equation (3) expresses that the
moments of the series, at fixed order, depend in a power law
way of the resolution. The high orders obviously correspond
to the highest values of the series and also to the highest

singularities. In fact, the analogy is closer since there is a one‐
to‐one correspondence between singularities and moment
orders, since the moment scaling function is the Legendre
transform of the codimension function [Parisi and Frisch,
1985]. In the same way, it may be demonstrated that K(q)
should be convex. Because of the imposed scale‐by‐scale
conservation of the mean, we have K(1) = 0. For a space‐
filling field, we also have K(0) = 0 (more generally, ‐K(0) is
the codimension of the support; see section 6.
[8] The characterization of a multifractal field needs the

knowledge of the moment scaling function, or equivalently
of the codimension function, which describe the statistics
at all scales.

2.2. Universality

[9] Because of the small number of constraints that apply
a priori on K(q), i.e., convexity and trivial values, a great
variety of possible functions could be involved. The char-
acterization of the multifractal properties would therefore
need an infinite number of parameters, which is unman-
ageable. Various attempts to reduce the number of para-
meters to a limited number of physically relevant ones have
been proposed. In addition, such models should have some
attractor properties in order to be physically realistic. Such
properties may appear, under certain conditions, with con-
tinuous in‐scale cascades. Obviously, the classical discrete
cascades (where l is necessarily an entire power of an
elementary step l1) are not physically realistic since (1) the
step l1 has no physical justification and (2) they induce an
artificial clustering of the data in square‐like shapes. On the
contrary, physically relevant cascades should be continuous
in scale, i.e., with l1 → 1, which is equivalent to add more
and more (up to infinity) steps between the initially discrete
steps. Since continuous in‐scale multiplicative cascades
converge by construction to log‐infinitely divisible dis-
tributions, the possible choice of random generators has
been restricted, and at least some of them need few degrees
of freedom. Some authors have proposed log‐Poisson sta-
tistics [She and Levêque, 1994; Dubrulle, 1994; She and
Waymire, 1995]. On the contrary, by assuming stability of
the generator and suitable renormalization, Schertzer and
Lovejoy [1987, 1991] have proposed log‐Levy statistics,

Table 1. Comparison of Universal Parameters a, C1, H, and Empirical Spectral Slope b, Estimated Over Various Ranges of Time Scalesa

Reference Measurement Range of Scales a C1 H b

Tessier et al. [1993] Gauges, daily accumulations 1–64 days 0.55 0.6 ‐ ‐
Ladoy et al. [1993] One gauge, daily accumulations 1–64 days 0.45 0.60 0.03a 0.37
Fraedrich and Larnder [1993] Rain gauges (daily and 5 min resolutions) 3 days to 2.4 h ‐ ‐ ‐ 0.5

<2.4 h ‐ ‐ ‐ 1
Olsson [1995] Gauges, 2 years of 8 min data (3–11) days to 8 min 0.63 0.44 0.10a 0.66
Tessier et al. [1996] Gauges, daily accumulations 15 days to 1 day 0.7 0.4 −0.1 0.4
de Lima and Grasman [1999] Nonrecording gauge (daily resolution) 8–128 days 0.66 0.30 −0.23a 0.17

1–8 days 0.48 0.51 −0.11a 0.17
Recording gauge (15 min resolution) 15 min to 10.7 days 0.49 0.51 −0.02 ‐

Pathirana et al. [2003] Gauges, hourly accumulations 1 day to 1 h 1.35 0.34 −0.05 1.02
Molini et al. [2009] Rain gauges, accumulations (up to 60 min) 3 days to 2 h ‐ ‐ ‐ 0.7
de Lima and de Lima [2009] Gauges, daily records 1–16 days 0.5–0.7 0.35–0.5 −0.13 ‐
de Montera et al. [2009] Dual‐beam spectropluviometer >1 h 0.24 0.63 0 ‐

Dual‐beam spectropluviometer, uninterrupted rain events 1 h to 1 min (full rain) 1.69 0.13 0.53 ‐
Lovejoy et al. [2011] Gauges (hourly data gridded on 2.5° × 2° pixels) >3 months ‐ ‐ ‐0.42 0.08

(2–10) days to 1 h ‐ 0.37 0.17 0.76

aThese values of H were not explicitly estimated by the cited authors yet may be deduced from the exponents a, C1, and b they found and from the
relationship b = 1 − K(2) + 2H.
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defining the UM model. Mathematical and physical argu-
ments supporting this kind of (strong) universality, may be
found in the work of Schertzer and Lovejoy [1997]; see,
however, Gupta and Waymire [1997] for discussion about
the generality of this model. Yet, this model has been
applied successfully to a number of geophysical fields
[Lovejoy and Schertzer, 2010]. UM fields have the follow-
ing parametrized moment scaling function:

K qð Þ ¼ C1

�� 1
q� � qð Þ: ð4Þ

[10] There are two relevant parameters: a, the index of
multifractality, which is between 0 (monofractality) and 2
(lognormality); and C1, which is the codimension giving the
dominant contribution to the mean value of the field. The
higher the C1, the more intermittent the field: then, peaks
become more sparse but higher. C1 is bounded below by 0
(homogeneity) and above by the dimension of the embed-
ding space, denoted D. Because of Legendre transform, C1 =
c(C1) = K′(1) is the fixed point of the codimension function
as well as the singularity associated with the mean (moment
of order 1).

2.3. The FIF Model

[11] Since most geophysical fields are nonconservative,
an extension of the UM model to nonconservative fields has
been proposed [Schertzer and Lovejoy, 1991]. This is the
fractionally integrated flux (FIF) model, based on the frac-
tional integration of a conservative UM. The order of inte-
gration, denoted H, defines a nonconservativity parameter:
it strongly constrains the smoothness of the field. The FIF
model has therefore three parameters. A FIF series has
stationary increments, following:

R� t þDtð Þ � R� tð Þj j ¼d F� Dtj jH ð5Þ

where ∣Dt∣ = T
�.

[12] The FIF model is especially useful to model scaling
processes with spectral exponent greater than 1. Indeed,
the power spectrum of a multifractal FIF follows a power
law E(k)/ k−b where k is the wave number and b = 1 −K(2) +
2H is the spectral exponent. Of course, the formula holds
in the case of conservative cascades, with H = 0. Note
that the power spectrum is a second‐order statistic, hence
the term K(2). The determination of the parameter H may be
done with the help of first‐order structure function, namely,
h∣Rl(t + Dt) − Rl(t)∣i = f(Dt) / ∣Dt∣H.

3. The Data Set

[13] A dual‐beam spectropluviometer (DBS) has per-
formed more than 2 years of measurements in Palaiseau,
near Paris, France. This instrument uses two flat parallel
infrared beams of 2 mm in height, 40 mm in width and
250 mm in length, hence has a 100 cm2 catchment surface.
The two beams help detection of small drops to be per-
formed, down to 0.3 mm in diameter. Various means of
reducing instrumental and physical disturbances and false
detections have been used, that are presented by Delahaye
et al. [2006]. The device provided diameters, fall veloci-
ties and times of arrival of raindrops. From the latter, the

rain rates are estimated at 1 s resolution. Since rain typically
decouples from turbulence at scales smaller than 1 m
[Lovejoy and Schertzer, 2008], it should be expected that a
scaling behavior could hold up to 1 s time scale. However,
measurement limitations seem to be dominant at such small
scales with this instrument, and that a larger integration
time should be necessary. In this study, the rain rates were
estimated over an integration time of 15 s. The validity of
the latter will be justified a posteriori in section 4. In order
to facilitate multifractal analysis, a 2n section has been
extracted from the raw data set, covering approximately
96% of the latter. Therefore, the data set consists of a 15 s
rain rate time series of length 222 points and spans almost a
2 year period. After correction of some unreliable small
portions of the series, a threshold of 0.1 mm h has been
applied in order to wash out doubtfully low values. The
main properties of the data set are summarized in Table 2.
An example of rain event, measured by the DBS on 12 May
2009, is shown in Figure 1. However, similar rain events
represent only a small part of the total series. From Table 2,
it may be noticed that most points of the series contain a
(true or instrumental) zero rain rate value. The latter may
impact rainfall stochastic modeling, which will be discussed
in sections 5 and 6.

4. Some Evidence of Scaling

[14] This section investigates the scaling properties of the
series and of its support, independently of a particular (multi)
fractal model. The purpose is to determine the scaling
regimes of the series from classical tools such as power
spectrum and (slightly modified) box‐counting algorithm.

4.1. Power Spectrum

[15] Consistently with the remarks of section 2.3, a scal-
ing regime is generically associated with a power law por-
tion of spectrum. The power spectrum of the DBS series,
averaged over logarithmically spaced bins, is provided in
Figure 2 (in log‐log coordinates). At time scales greater than
a few days, the spectrum is almost flat. This is coherent with
the findings of most papers [see, e.g., Ladoy et al., 1993;
Fraedrich and Larnder, 1993; Tessier et al., 1996; Lovejoy
et al., 2011. However, the very low value of the spectral
slope (the so‐called “spectral plateau”) at scales greater than
a few days or weeks should not be misinterpreted or over-
interpreted since this single information is not sufficient to
reject the hypothesis of long‐range dependencies [Lovejoy
et al., 2011].
[16] At the higher frequencies, a scaling regime appears

clearly at time scales between 30 s and 30 min time scales.
In this range of scales, the spectral slope is b = 1.55 ± 0.03
(the error bar corresponds to the 95% confidence interval).
The latter value is greater than 1, which means that, in case
of multifractality, a nonconservative model (such as the FIF
model) should be more appropriate (see also section 4.3).
There is almost no flattening at the far highest wave
numbers, meaning that measurement would be affected by a
very moderate level of measurement noise at the series
resolution, which remains coherent with the findings of
de Montera et al. [2009], based on the same instrument, but
from measurements obtained in different periods and places.
This justifies a posteriori the choice of the resolution of the
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series explained in section 3. The time scales between
3 days and 30 min correspond to a slow transition from the
large‐scale flat spectrum to the small‐scale scaling regime.
Two indicative fits within this range of scales are shown in
Figure 2, illustrating that the spectral slope is smaller at
smaller frequencies (with slopes b = 0.41 ± 0.06 and 1.09 ±
0.07 for 3 days to 3 h and 3 h to 30 min ranges, respec-
tively). The properties deduced from Figure 2 seem rather
coherent with some results of literature that are based on
high‐resolution data. As reported in Table 1, a scaling break
at 1–5 days has been found by Fraedrich and Larnder
[1993], Olsson [1995], Pathirana et al. [2003], Molini et al.
[2009], and Lovejoy et al. [2011]. The spectral slopes they
estimated, for subdaily scales, were between 0.5 and 1. They
did not, however, notice any higher spectral slope at subhourly
scales, probably because their work was based on data at
coarser resolutions than ours. Opposite, de Montera et al.
[2009] have found a specific scaling regime at subhourly
scales, with a spectral slope greater than 1, and with a non-
conservativity exponent H ∼ 0.5. These results suggest the
existence of a nonconservative scaling regime at the subhourly
scales, coherently with our findings, i.e., with the 30 min to
30 s scaling regime highlighted above. Similarly with the
results of de Montera et al. [2009], this scaling behavior holds
well up to subminute scales and would be probably mainly
limited by the measurement noise, at scales of several seconds.
[17] The small‐scale estimate of b (= 1.55 ± 0.03) in

Figure 2 needs some comments, since it is remindful (with a
slight but significant difference) of the classical value 5/3
of the Corrsin‐Obukhov law of passive scalars [Obukhov,
1949; Corrsin, 1951]. Even though rain is not a passive
scalar, it is strongly coupled with turbulence. In particular,
turbulence strongly accelerates the growth of small cloud
droplets and therefore rain initiation, by increasing the
mean collision rate [Falkovich et al., 2002; Xue et al., 2008;
Wang and Grabowski, 2009]. Furthermore, rainfall may
share some properties with passive scalars. Of course, indi-
vidual raindrops are far too heavy to behave like pas-
sive scalars, especially they are characterized by too large
Stokes numbers. However, it has been recently demonstrated
[Lovejoy and Schertzer, 2008] that patches of raindrops are
likely to display such a behavior above a spatial critical scale
lc. In the latter paper, the authors used three‐dimensional
raindrop stereophotography data in a 10 m3 volume and
showed that the liquid water density power spectrum accu-
rately follows a k−5/3 law above a critical scale lc of the order
of 50 cm. A passive scalarlike model for rain has recently
been proposed by de Montera et al. [2010] under some
plausible physical assumptions. The authors checked the

predictions of their model up to storm scale, based on radar
and disdrometer data.
[18] In our present case study, several reasons may

therefore contribute to the difference between the small‐
scale value of b in Figure 2 and the “expectable” 5/3 value.
Multifractal “intermittency” corrections to the spectral slope
could be involved. These corrections are closely related
with multifractal parameters, as expressed by the equation
b = 1 − K(2) + 2H (see section 2.3). In sections 4.3 and 5.2,
UM and nonconservativity exponents will be estimated
in a similar scaling regime. The parameters will be such that
K(2) = 0.24 and H = 0.38, hence b = 1.52. Still, a more
realistic (passive scalarlike) model of rainfall should involve
at least two fluxes, as proposed by de Montera et al. [2010].
Moreover, as discussed in sections 5 and 6, the zeros of
rainfall may strongly affect scaling properties. Even though
this effect will be shown to act mainly at large scales
(coherently with Figure 2), it remains possible that the
spectral slope could be slightly shifted at smaller scales.

4.2. The Fractality of the Data Set Support

[19] In this section, we focus on the properties of the rain
support. The alternation of rain and absence of rain is
expected indeed to have some scaling properties, following
the results of various studies in the time domain [Hubert
et al., 1989; Olsson et al., 1993; Lavergnat and Golé,
1998; Schmitt et al., 1998]. In Figure 3, the probability of
occurrence of nonzero values is presented as a function of
the resolution l, in logarithmic coordinates. It is shown that,
from 1.5 day time scale to 30 min time scale, the probability
that a point belongs to the series support follows a power
law of the resolution:

Pr R� tð Þ > 0ð Þ / ��cf ð6Þ

where cf is a fractal codimension, clearly that of the data set
support. In a classical multifractal framework, it would be
the codimension associated with the −∞ singularity.

Table 2. Properties of the Preprocessed DBS Time Series Used in
This Study

Property Value

Date and Time (Beginning) 16 July 2008 15:00:00
Date and time (end) 14 July 2010 16:15:45
Resolution 15 s
Series length 222

Mean 0.052 mm h
Percentage of zeros 95.9%
Threshold 0.1 mm h

Figure 1. Rain event observed by the DBS on 12 May
2009, beginning at 04:05:00, in Palaiseau.
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[20] It should be pointed out that cf is representative of the
data set support scaling and not of the “true” rain support
possible scaling. Indeed, any measurement involves a kind
of measurement threshold thus true zero rain rates cannot
easily be distinguished from instrumentally defined ones.
This may directly impact the observed value of the fractal
dimension. Nevertheless, the scaling regimes are expected to
hold approximately for comparable thresholds and the esti-
mated data set codimension cf should be an upper bound of
the “true” rain support codimension. In order to eliminate
possibly unreliable low rain rates estimation, a threshold of
0.1 mm h has been applied in the DBS series preprocessing.
The latter threshold could seem a bit high, however, its
choice was motivated by the necessity to remove instru-
mental noise and false detections. From the fit in Figure 3,
the data set codimension is estimated at 0.45, meaning that
in the corresponding scaling range, the data set is embedded
in a fractal support of dimension df = 0.55. To illustrate the
dependence of the fractal dimensions on the threshold, it
should be emphasized that a threshold of 0.01 mm h in DBS
preprocessing would have shifted the codimension value to
0.40. This dependence is rather strong since support codi-
mensions are equivalent to 0‐order statistics. However, the
reference DBS data set, thresholded at 0.1 mm h, will be
considered in sections 4 and 5, where higher‐order statistics
are of interest.
[21] As stated previously, the codimension of the data set

support is estimated at 0.45, meaning that in the corre-
sponding scaling range (1.5 days to 30 min), the data set is

embedded in a fractal support of dimension 0.55. Because
of the dependence of fractal dimensions on thresholds,
direct comparison with other literature results is nontrivial.
However, Schmitt et al. [1998] found a scaling regime
for their data set support that extends from 3 day to 10 min
time scales. They also found a support dimension of 0.55,
which is difficult to compare with our estimate because
of a different measurement resolution and threshold. We
should also mention the study by Olsson et al. [1993] who
distinguish three scaling regimes separated by transitions at
1 week and 45 min time scales. In the 1 week to 45 min
regime, these authors estimated a fractal dimension of 0.37.
Moreover, they found a pseudoscaling regime of dimension
1 in the range 2 years to 1 week, which is rather coherent
with Figure 3 where the probability of nonzero rain values
becomes almost constant after a few days, i.e., cf = 0. Such
a behavior is in fact not surprising: at large scales, large
time intervals (�1 day) almost surely contain a rain event.
From Figure 3, the support does not seem scaling at scales
smaller than 30 min, except perhaps at the far smallest
scales. The probability of occurrence of rain is greater
than predicted by prolonging the power law that holds
between 1.5 days and 30 min. This may be due to the fact
that this range of scales is dominated by continuous rain
events that do not contain zeros. However, if a scaling
behavior still holds (which is not obvious in Figure 3), the
support is expected to have a greater dimension. Olsson
et al. [1993] have tried to estimate fractal dimensions in
the range 1–45 min, and found 0.82.

Figure 2. Power spectrum of the DBS rain rate time series and corresponding scaling regimes. Coordi-
nates are logarithmic and wave numbers are normalized, such that the Nyquist wave number is associated
with the value p.
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4.3. Structure Function Analysis

[22] As stated in section 2.3, the nonconservativity
exponent H may be estimated directly from the first‐order
structure function of the series. From spectral slopes, it may
be conjectured that the rain process will have a non-
conservativity exponent H ≤ 0 at large scales, but H > 0 at
scales smaller than 3 h (where b > 1). The first‐order
structure function of the series, f(Dt) = h∣DR(Dt)∣i is
represented in logarithmic coordinates in Figure 4, as a
function of time increment. The structure function is com-
pletely flat at scales greater than 6 h, meaning that at these
scales conservative (or fractionally differentiated) multi-
fractal fluxes should be involved, without any additional
integration. In the range of scales 3 days to 3 h, this result
has to be compared with the values that can be deduced
from the relation b = 1 − K(2) + 2H with b = 0.41 and (as
discussed further in section 5.2, see also Table 3)K(2) = 0.65,
hence H = 0.03: within this range of scales, strict conser-
vation seems tenable, coherently with values reported in
Table 1. Nevertheless, strict conservation is unlikely to hold
at larger scales (i.e., >1 week) since b and K(2) diminish at
very large scales (see also Figure 6) so that H < 0. The study
of processes that have a strictly negative H exponent is a bit
more involved since in this case “incremental” structure
functions such as defined above cannot provide a reliable
estimation of H and more sophisticated tools would be
needed. Recent works [e.g., Lovejoy et al., 2011] investi-
gated in detail the low‐frequency scaling of rainfall based on

gauge data spanning a few decades and the authors find a
large‐scale estimate of H close to −0.4.
[23] Considering now the smaller scales, it may be seen

that at time scales between 8 min and 6 h, the curve in
Figure 4 is nonlinear with a low instantaneous slope.
However, at very small time scales (<8 min), the structure
function is a power law with exponent H = 0.38. This value
is not easily comparable with literature results which gen-
erally do not investigate such scales. As reported in Table 1,
the main exception would be the study of de Montera et al.
[2009] based on short rain events. One should note that the
estimation of H on a data set that contains many zeros may
be unreliable. In the space domain, Verrier et al. [2010]
found that H could be underestimated from such data sets.
[24] The transition from H > 0 to H ∼ 0 at scales of a few

hours seems physically relevant in terms of correlation.
Indeed, at the smaller scales, the structure of almost unin-
terrupted rain events presents a high degree of correlation,
possibly modeled by an integrated process. Opposite, the
properties of coarse scale (i.e., greater than the mean event
duration) rain are in fact conditioned by rain events total
accumulations, that are less intercorrelated, thus there is no
need of an integrated model.

5. The Multiscaling Properties of the DBS Series

5.1. Multifractal Analysis: The Principle

[25] In section 5.1, a classical procedure for investigating
multifractality on data is recalled. For more details about a

Figure 3. Probabilities of nonzero series values as a function of the resolution. The fractal codimension
of series support is deduced. This algorithm could be viewed as a probabilistic variant of the classical
box‐counting algorithm.

VERRIER ET AL.: MULTIFRACTALITY OF RAIN TIME SERIES D20119D20119

7 of 16



similar methodology, see, e.g., Tessier et al. [1993]. The
purpose of multifractal analysis (MA) is to test whether the
fundamental equation (3) of multifractality is accurately
followed. The process may be decomposed in three steps:
(1) estimation of the relevant conservative quantity FL from
the data, at the observation resolution, denoted L, (2) deg-
radation of the latter at coarser resolutions, Fl, for l < L,
and (3) empirical estimation of the moments for all available
resolutions and for various orders q. Step 1 aims to wash out
any possible nonconservativity in the data, since the latter
may be related to a conservative cascade by a fractional
integration. If necessary, a fractional derivative of order
H should be necessary to invert the latter. However, it has
been shown by Lavallée et al. [1993] that, in practice,
it suffices to take the normalized absolute gradient at the
highest resolution, which is much simpler (and almost
as efficient) than a rigorous fractional derivation. In all
cases, F is normalized by its mean. In step 2, the scale is

roughened by iterative steps of factor 2: the values of coarse
pixels are deduced from those at double scale by a simple
average of neighboring pixels. This procedure therefore
approximates the inversion of the multiplicative cascade,
even though the latter is supposed to be only statistically
conservative. From the estimation of F at various resolu-
tions, it is easy to compute the empirical moments for a
given interval of orders. Since most literature results report
that the statistical moments should diverge at orders greater
than a critical order qD ≈ 3 [e.g., Hubert et al., 2007], and
because of sample size limitations, we restrict the study to
an interval of reliable orders which is set to [0, 3]. The
moments are then shown on a log‐log graph, as a function of
the resolution. The presence of straight lines for all orders is
therefore the signature of equation (3) and thus of multi-
fractality. A linear fit of the line associated with qth order
moment provides the value of K(q): the moment scaling
function may therefore be estimated and possibly fitted with

Table 3. Comparison of Universal Parameters a, C1, H, and Empirical Spectral Slope b Estimated From DBS Data and Different MA
Procedures

Data Set + MA Technique Range of Scales a C1 H b

DBS whole time series, standard MA 3 days to 32 min 0.31 0.59 0.03a,b 0.41a

16 min to 15 s 1.10 0.17 0.38c 1.55
DBS 32 min rain events, standard MA 32 min to 15 s 1.84 0.10 0.44 ‐
DBS whole time series, weighted MA 1 week to 32 min 1.22 0.16 ‐ ‐

aSpectral and nonconservativity exponents accurate from 32 min to 3–6 h only.
bReporting the large‐scale UM parameters and the spectral slope in the formula b = 1 − K(2) + 2H leads to H = 0.03.
cNonconservativity exponent accurate up to 8 min time scale.

Figure 4. First‐order structure function of the DBS time series. Linear regression is used to estimate the
small‐scale nonconservativity exponent, i.e., H = 0.38.
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its universal forms. In the latter case, the universal expo-
nents may be estimated.

5.2. Multifractal Analysis of the DBS Series

[26] First, the possible small‐scale nonconservativity is
not taken into account, i.e., the rain rates are considered
directly, without any kind of (finite) differentiation. The
graph of the moments of the DBS rain rate series is pre-
sented in Figure 5. The logarithm basis is fixed at 2 in order
to visualize the successive averagings. A multifractal regime
may be found between 3 day and 4 h time scales. On the
contrary, a quick view of Figure 5 could lead to think that
the process is not multiscaling at scales smaller than half an
hour. This would be surprising since the spectrum seems to
have good scaling in this domain. However, such a con-
clusion must not be drawn too quickly, since both spectrum
and first‐order structure function (see section 4) suggest that
the process is not conservative at such scales, with H > 0.
Then, the results of direct MA at these small scales remain
questionable. Indeed, a strictly positive H parameter would
impact the statistics of the process: the latter is expected to
be smoothed, leading to attenuated moments when the res-
olution increases. This could explain the flattening of the
empirical moments curve at the largest scales. Figure 5 may
be usefully compared with Figure 6 which is the graph of
the moments deduced from the absolute gradient of the
series, taken at 15 s resolution. Obviously, this new defi-
nition of F impacts the small‐scale statistics which obey to
multiscaling statistics between 16 min and 15 s time scales,
whereas the large‐scale statistics remain scaling down to a

32 min time scale. These results enforce the distinction,
advocated in section 4, between a small‐scale “integrated”
regime and a large‐scale “nonintegrated” regime. Both of
them seem to have multifractal statistics and are separated
by a transition at a 32 min time scale. In the range 3 days to
32 min, the K(q) function, represented in Figure 7, may be
fitted with UM exponents a = 0.31 and C1 = 0.59, which is
more or less coherent with the most common values in the
literature (see Table 1 for classical results and Table 3 for all
the UM parameters estimated in this study). On the contrary,
the statistics in the range 16 min to 15 s do not seem uni-
versal, since low, average, and high singularities cannot be
simultaneously represented within this model. The “best fit”
of K(q) (not shown) near the average singularities (q = 1)
would involve spurious exponents (a = 1.10 and C1 = 0.17),
which cannot describe other (lower or higher) singularities.
Still, such small‐scale statistics combine continuous rain
events with periods with a lot of zeros, which are qualita-
tively different and remain therefore dubious. In the fol-
lowing, we apply two procedures to investigate the scaling
behavior of rain while washing out the effect of the zeros. At
smaller scales, uninterrupted rain events may be analyzed
with the help of MA tools. At larger scales, a weighted MA
procedure, that overweights nonzero values, is applied on
the data.

5.3. Event Analysis

[27] In this paragraph, the analysis of (almost) uninter-
rupted rain events is presented. This analysis procedure aims
to characterize the variability of rain rates in the interior the

Figure 5. Empirical moments of the DBS time series as functions of the resolution, in log‐log coordi-
nates. Each curve corresponds to one specific order of moment, between 0 and 3.

VERRIER ET AL.: MULTIFRACTALITY OF RAIN TIME SERIES D20119D20119

9 of 16



rain events. Rain events were automatically extracted from
the full DBS series by taking the greatest consecutive sec-
tions that begin with a nonzero rain rate and contain at least
97.5% of nonzero precipitation values. The latter condition
enables automatic selection of rainy sequences but implies
that the computed moments are conditional statistics in the
sense that the presence of high enough singularities is a
prerequisite. Among these events, a selection was performed
by taking those which have a duration slightly greater than
30 min. Then, all the 52 selected events were truncated in
order to have a size of 27 points, i.e., a 32 min duration,
which is close to the typical size of rain events, as shown by
previous spectral analysis. This provides a new data set of
rain events of the same size (i.e., a power of two in order to
facilitate MA). Then, the procedure described in section 5.1,
i.e., inversion of the fractional integration, upscale estima-
tion of the cascade, and estimation of the moments, has been
performed on each event. The obtained statistics have then
been averaged on all events. It is needed to inverse the
fractional integration since, confirming results of Figure 4, a
nonconservative behavior (with H > 0) appears, as shown on
the graph structure function (Figure 8). The moments are
represented as a function of the resolution on Figure 9,
which shows a good multifractal behavior in the range 32
min to 15 s. The obtained parameters (Figure 10 and Table
3), a = 1.84, C1 = 0.10, are notably different from those
recalled in Table 1, and from the large‐scale parameters
estimated in section 5.2, which are obtained by classical
analyses that include the zeros. However, such a result is

coherent with those obtained by a similar full‐rain meth-
odology. In the time domain, de Montera et al. [2009]
estimated a = 1.7 and C1 = 0.13 on an event‐by‐event
(small‐scale) basis. Moreover, these authors also estimated
the nonconservation parameter H ∼ 0.5 on their rain events,

Figure 6. Empirical moments of the absolute gradients of the DBS time series. Scaling regimes are dis-
tinguished and fitted with the straight lines, each one for a specific order of moment.

Figure 7. Estimation of empirical moment scaling func-
tions and fit with UM moment scaling functions for the scal-
ing regime 3 days to 32 min.
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which is consistent with the value reported above. There-
fore, a nonconservative multifractal behavior should hold in
the interior of rain events.
[28] These remarks are likely to hold in the spatial domain

since Verrier et al. [2010] estimated a = 1.8 and C1 = 0.12
from radar data restricted to full‐rain areas (tropical storms),
at resolutions between 25 km and 400 m. This should be
compared with usual literature parameters in the space
domain (see Lovejoy and Schertzer [1995] for a review) that
provide a smaller a (typically, 1.2–1.4) and a slightly
greater C1 (0.1–0.2). It has been advocated by de Montera
et al. [2009] and Verrier et al. [2010] that most usual lit-
erature parameters might suffer from a bias in MA because
of the zeros. The more zeros in the series or fields, the greater

the bias. For instance, it may be checked that thresholded
multifractal fields will have a break and a large‐scale biased
scaling regime (with H = 0) (see Verrier et al. [2010] for
simulations and the qualitative discussion in section 6.2). A
general remark on these full‐rain parameters is to notice
their similarity in the space and time domains, which is not
retrieved in usual literature parameters. This may give some
kind of generality to the so‐called universal parameters. Yet,
the fact that the difference between full‐rain and large‐scale
parameters seems smaller in space does not mean that rain is
more space filling in the space domain than in the time
domain, but should be rather interpreted as a consequence of
preprocessing strategies. Indeed, authors that work in the
time domain consider full series with a lot of zeros whereas
those who work in the space domain usually preselect maps
in order to focus on storms, thus their data contain less zeros.
[29] As suggested by recent results [de Montera et al.,

2009], the full‐rain parameters could be somewhat inde-
pendent of the place, except perhaps the nonconservativity
parameter. On the contrary, rainfall statistics at larger time
scales are or seem dependent on local conditions [Molini
et al., 2009]. Since large‐scale statistics are sensitive to
the zeros, there is a need to distinguish between support
and microclimatic effects. Another remark on the full‐rain
parameters is their similarity with those generally used for
other atmospheric fields. In a general manner a ∼ 1.8 and
C1 ∼ 0.1 define a very current set of multifractal exponents
and are likely to model, at least in the space domain, the
variability of cloud radiances, cloud liquid water concen-
tration, and perhaps horizontal wind [e.g., Lovejoy and
Schertzer, 2010].

5.4. Weighted MA of the Data Set

[30] We now investigate the scaling properties of nonzero
rain at larger scales. Since, as shown in section 4.2, the data
set support has a monoscaling regime between 1.5 day and
32 min time scales, rain values could be seen at these scales
as distributed over a fractal support. Because of the latter,
the scaling properties of rain are modified (some theoretical

Figure 8. First‐order structure function of 52 full‐rain
events extracted from the DBS series and small‐scale fit
by linear regression, giving the estimation of H.

Figure 9. Empirical moments of 52 full‐rain events of dura-
tion 32 min, extracted from the DBS series, in logarithmic
coordinates.

Figure 10. UM fit of empirical moment scaling function of
full‐rain events, deduced from the fit in Figure 9.
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considerations are proposed in section 6.1). In section 5.4,
the MA procedure is slightly modified in order to focus
on the rain variability only, by removing the effect of the
fractal support. We apply a weighted MA (WMA) proce-
dure, originally defined by Gires [2009] and Gires et al.
[2010], in order to compute the coarse scale averages and
the empirical moments in a way that overweights the non-
zero rain values. The obtained statistics should therefore be
representative of rain properties in the interior of its (fractal)
support. The procedure is based on the estimation of the
statistics of the density with respect to the support and dif-
fers from that of section 5.1 by two main changes:
[31] 1. The coarse scale series are computed by averaging

neighboring nonzero points (if any), and
[32] 2. The empirical moments are computed using a

weighting between the points of the series. When calculat-
ing the moments at resolution l, each interval (or pixel) at
this resolution is associated with a weight. The weights are
computed by estimating the ratio of the area of the support
that intersects the interval by the total area of rain support.
Since areas of rain are not well defined in the case of a fractal
support, they are approximated by counting the number of
rainy subintervals, at the highest available resolution.
[33] Since the fractal scaling of the support is likely to

break at 32 min scale (Figure 3), we average the series at
32 min resolution (without any specific weighting) before
applying WMA. From the coarse‐grained series, WMA
provides the moments on the graph represented in Figure 11.
A wide scaling regime is observed from 1 week to 32 min
time scales. The fit lines intersect at about log2(l) = 4, i.e., a
1.5 month time scale. This outer scale of the multifractal
cascade is comparable to the value of 42 days estimated by
Lovejoy and Schertzer [2010] from rain gauge data and
could be interpreted as the typical lifetime of synoptic
structures. The multifractal parameters are estimated at a =
1.22 and C1 = 0.16 (Figure 12). Figure 11 leads to think that,
when excluding the zeros, rainfall should be multifractal
from 32 min (average event duration) to 1 week (which is
not so far from synoptic‐scale weather structures) time
scales, with corrected parameters, different from those
estimated in section 5.2 for similar scales. Moreover, the
comparison of the (small‐scale) event analysis of previous
section 5.4 and of WMA reveals a rather limited change
in multifractal parameters: in both cases, C1 is moderate and
a > 1 is the indicator of processes with unbounded singu-
larities (on the above side).

6. Rain Over a Support: Consequences on
Multifractal Analysis and Simulation Procedures

6.1. Rain Over a Support: Which Interpretation?

[34] Section 6.1 aims to propose a way to quantify the
biases that occur in MA because of the zeros. Rain data sets
often have the property that the nonzero values are distrib-
uted over a fractal support, at least in some scaling range.
When performing direct MA, as defined in section 5.1, on a
rain series with a support dimension df < 1, some biases may
appear. Multifractal fields over a fractal support may exhibit
a biased empirical scaling regime when the empirical
moments are estimated without taking care of the zeros. The
presence of zeros in the series is responsible for inadequate
(and unphysical) averagings between zero and nonzero

values. Therefore, classical analysis tools will provide a
biased estimation, denoted K̂(q), of the moment scaling
function K(q). To quantify this, let us first recall the notion
of trace moments (for simplicity, we restrict the theoretical
developments of section 6.1 to the case H = 0).
[35] At resolution l, the series may be decomposed in

l intervals ]t1, t2[…] tl, tl+1[. At each of these intervals,
a total accumulation Xl(i) =

R
�ti;tiþ1½

FL(t)dt may be defined

(the maximal resolution is L). Classically, the average
trace moments [Schertzer and Lovejoy, 1987; Schertzer et al.,
2002] may be defined:

Tr Fq
�

� �� � ¼ X�
i¼1

X� ið Þq
* +

: ð7Þ

[36] For a one‐dimensional process, these moments are
scaling:

Tr Fq
�

� �� � / �M1 qð Þ ð8Þ

where:

M1 qð Þ ¼ K qð Þ � q� 1ð Þ: ð9Þ

[37] In the same way, we have for d‐dimensional processes:

Md qð Þ ¼ K qð Þ � d q� 1ð Þ: ð10Þ

[38] Following Schmitt et al. [1998], it may be noticed
that the empirical trace moments involve sums and accu-
mulations only. Therefore, contrary to classical moments,
which are sensitive to inadequate averagings between rain
values and rain zeros, the moment trace scaling function
remains invariant whatever the dimension involved in MA.
By inadequately assuming that the process is one dimen-
sional, instead of df dimensional, a biased moment scaling
function K̂(q) is obtained but the trace moment scaling
function is correctly estimated. Hence, we may equal the
two expressions:

Mdf qð Þ ¼ K qð Þ � df q� 1ð Þ ¼ K̂ qð Þ � d q� 1ð Þ ð11Þ

which provides the expression of the (biased) empirical
moment scaling function:

K̂ qð Þ ¼ K qð Þ þ cf q� 1ð Þ ð12Þ

where cf is the fractal codimension of the rain support.
It may be noted that the condition of conservativity K̂(1) = 0
is accurately followed. However, the fractal support has
been taken into account since lim

q!0þ
K̂(q) = −cf. Note that

equation (12) quantifies the multiscaling properties of a
UM field multiplied by an independent b‐model mono-
fractal cascade.
[39] From equation (12), an approximation of the usual

biased parameters may be proposed. Indeed, suppose that
the universal parameters are estimated by fitting the
empirical moment scaling function with the universal two‐
parameter form for moderate orders. The fit is strongly
conditioned by the behavior of the process not too far from
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the mean of the process (q = 1). Let us now consider the
optimal estimation of the parameters a and C1, near q = 1.
When K(q) has a universal form, the parameters may be
estimated by considering the derivatives in q = 1: K′(1) = C1

and K″(1) = C1a. However, the optimal fit, near the mean
of the process, of K̂(q), which does not have the classical
form, will provide biased parameters that should follow,
with trivial notations:

K̂
′
1ð Þ ¼ Ĉ1

K̂
′′
1ð Þ ¼ Ĉ1�̂

(
: ð13Þ

[40] From (12) and (13), the values of biased parameters
may be expressed as:

Ĉ1 ¼ C1 þ cf ð14Þ

�̂ ¼ �C1

C1 þ cf
: ð15Þ

[41] This could explain why MA of rain fields that contain
a lot of zeros provides a high value of C1 and a rather small
value of a, compared to full‐rain parameters and to para-
meters that describe other atmospheric processes. In the
same way, the spectrum of conservative cascades should be
flatter in this pseudoscaling regime:

�̂ ¼ 1� K̂ 2ð Þ ¼ � � cf ð16Þ

[42] Let us now consider the small‐scale and full‐rain
parameters obtained in section 5.3, i.e., a = 1.8, C1 = 0.1.
If we assume that these parameters in fact hold at larger
scales (where the process becomes nearly conservative,
H ∼ 0), but are distributed at these scales over a fractal
support which would bias direct MA, we could try to test the

Figure 11. Weighted empirical moments of the DBS time series, as a function of the resolution, in log‐
log coordinates. Both the resolution degradation process and the weighting procedure are adapted in order
to overweight the nonzero rain values.

Figure 12. Best UM fit of the moment scaling function of
the weighted statistics shown in Figure 11.
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above formulas. This is equivalent to wonder which biased
UM parameters would be expectable in the range of scales
where the data set support has codimension 0.45, i.e., 1.5
days to 30 min. By applying the above formulas, we find
Ĉ1 = 0.55 and �̂ ≈ 0.3, which is very consistent with the
large‐scale parameters estimated from Figure 6 in the range
3 days to 32 min. In addition, the spectral slope �̂ ≈ 1.1 is
very close to that estimated from Figure 2 in the range 3 hr
to 32 min. The break observed on the power spectrum at 3 h
would in fact be independent of the multifractality of the
series and only result from a (progressive) transition from
nonstationarity (H ≠ 0) to stationarity (H = 0), coherently
with the first‐order structure function presented in Figure 4.
[43] The model of rain over a support seems therefore

pertinent to quantify some biases because of the zero rain
rate effect on multifractal statistics, and to explain part
(most?) of the differences between parameters of the liter-
ature (Table 1) and those reported in Table 3. An apparent
multifractal transition between scaling regimes such as those
shown in this study could in fact hide some kind of
dimensional transition. However, the applicability of the
previous formulas should be nuanced since they are based a
limited range of order of moments and hence of classes of
variability. Moreover, realistic rain supports are coupled
with the position of rain peaks which should not be dis-
tributed independently of the support borders, which is not
adequately represented by the model described this section.
[44] Even though some properties of multifractal pro-

cesses over a support may be demonstrated, the issue of the
simulation of such processes is important for applications. In
the section 6.2, some strategies of simulation are reviewed
and their main characteristics are discussed.

6.2. How to Simulate Both Rain Variability
and Support?

[45] Whereas simple and efficient algorithms for simu-
lating UM or FIF fields are available [Wilson et al., 1991;
Pecknold et al., 1993], they are not designed for simulating
fields with many zeros. To take the latter into account, we
need a procedure that forces the pixels or time intervals that
are outside the rain support to zero. Two main solutions
have been considered in the literature: (1) multiplying the
multifractal field by an independent monofractal support,
and, (2) applying a threshold to the synthetic UM or FIF field.
[46] Solution 1 may admit some variants in the way of

generating the fractal support. The most classical one [Over
and Gupta, 1996] is to consider a b‐model cascade, which
could possibly be adapted to continuity in scale. This model
is coherent with the cascade phenomenology and has the
advantage that the support dimension can be easily and
precisely set to a given value. However, some authors
questioned the ability of the a b‐model to reproduce ade-
quately the probability distributions of wet and dry
sequences durations [Schmitt et al., 1998] and proposed to
use alternative solutions such as scaling renewal processes
[Bernardara et al., 2007], which are not considered in the
following paragraphs.
[47] The basic alternative between solutions 1 and 2 can

be commented by comparing their properties. The indepen-
dent fractal support approach suffers from a lack of corre-
lation between heavy rain structures and support shapes. This
approach may be not easily extendable to nonconservative

multifractal FIFs. Moreover, a purely monofractal support
would have a zero area, which is problematic, unless build-
ing a monofractal cascade up to a maximal (finite) resolu-
tion. Opposite, solution 2 could appear more appealing since
there is a strong coupling between rainfall variability and
rainfall support. Since a threshold in rain processes could
be given some physical or instrumental justification, this
model could seem more physically based. However, such a
model could involve subtle effects in the multiscale behavior
of the processes, which have been considered in detail by
the means of numerical simulations in previous papers
[de Montera et al., 2009; Verrier et al., 2010]. These simu-
lations demonstrated that thresholded UM or FIF has biased
scaling properties and can exhibit breaks in the scaling.
To see how such effects can arise, suppose for instance a
conservative UM field and apply a low threshold. Then, a
minimal singularity gT will be imposed, resulting (after
Legendre tranformation) in a linear K(q) function for low
q values (q < qT). However, if the threshold is high enough
so that gT > C1 (or equivalently qT > 1), the normalization of
the field will be affected and a break will appear in the
scaling. In this case, thresholding a multifractal field pro-
duces a break in the scaling with a large‐scale pseudoscaling
regime [Verrier et al., 2010]. The large‐scale (pseudo) scal-
ing regime is in fact associated with a fractal support.
[48] As shown in section 5.2, there is strong evidence of

a transition separating two multifractal regimes in the DBS
data, and the results in sections 5.3, 5.4 and 6.1 have shown
that more or less the same underlying multifractal para-
meters could hold in both regimes, while appearing differ-
ent because of support effects. It is therefore tempting to
interpret this behavior as a consequence of the (unavoidable)
instrumental threshold in the data. Because of this threshold,
different empirical scaling regimes would appear while pos-
sibly hiding a unique underlying multifractal scaling. How-
ever, even in this view, the distinction between true zeros
and instrumental ones remains rather an open issue.Moreover,
we should not forget that the support model has also its own
interest, especially because of its mathematical convenience
(e.g., applicability of the equations in section 6.1). In fact, the
choice of the appropriate model for rainfall simulation might
be dependent on the domain of application and of the purposes
of the simulation. An alternative possibility would be to
combine some of these models. In fact, Figure 3 shows that the
rain support is fractal from a few days to half an hour time
scale and that at smaller scales, the fractality does not hold
because of the lack of rain zeros in rain events. This would
suggest to model separately large‐scale zeros from small‐
scale zeros. Hence, a product of a UM or FIF and of a b‐model
may be sufficient to simulate rain for resolutions greater
than half an hour, but simulating finer resolution series would
need additional multifractal multiplicative increments with
a low threshold.

7. Conclusion

[49] Even though the scaling properties of rain have been
investigated in the time domain for a long time, a number of
studies were based on data sets with a coarse resolution,
typically daily, and did not explore (subdaily and) subhourly
scales. This is a drawback since the structure and the internal
variability of rain events is missed. In this study, we used a
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disdrometer time series of higher resolution (15 s) to show
that rainfall processes exhibit remarkable features at sub-
daily scales. In particular, rain variability presents multi-
fractal properties in separate 3 day to 32 min and 16 min to
15 s scaling regimes. Since the numerous zeros present in
the rainfall series were suspected to bias multifractal anal-
ysis results and universal multifractal parameters estimates,
we proposed to modify analysis procedures in order to
estimate more reliable parameters. First, multifractal anal-
ysis has been applied to about 50 uninterrupted rain events
of duration ∼30 min, extracted from the data set. This leads
to corrected universal parameters, namely, a = 1.8, C1 = 0.1.
Then, a weighted multifractal analysis procedure has been
applied to the full‐rain time series and highlighted the sen-
sitivity of large‐scale parameters to the zeros. In order to
model and quantify the bias due to the zeros, a model of
multifractals distributed over a fractal support was designed,
and formulas for the biased universal multifractal parameters
were derived, depending on the “true” ones and the codi-
mension of the support. Since the data set support was
shown to be scaling in the same large‐scale (i.e., from a few
days to half an hour) regime as above, these formulas were
applicable to our case study. The large‐scale biased para-
meters were retrieved satisfactorily. Therefore, an important
correction to usual parameters reported in the literature
should be appropriate (from the biased parameters, a ∼ 0.5,
C1 ∼ 0.5, to corrected ones, a ∼ 1.8, C1 ∼ 0.1). One chal-
lenge remaining for applications involving the simulation of
realistic rainfall series would be to define a simulation
procedure that will take into account both rain variability
and rain support scaling properties, while conserving the
correct scaling regimes. The key difficulty may reside in the
characterization and interpretation of the rain zeros: how to
separate rain and absence of rain, on both physical and
instrumental approaches? which is the part of instrumental
limitations? The adaptation of existing multiplicative mod-
els to a realistic modeling of both rain values and zero rain
rates remains an outstanding challenge.
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