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Convergence to steady states for a one-dimensional viscous Hamilton-Jacobi equation with Dirichlet boundary conditions

Introduction

Non-negative solutions to the one-dimensional viscous Hamilton-Jacobi equation

∂ t u -∂ 2
x u = a |∂ x u| p , (t, x) ∈ (0, ∞) × (-1, 1) , (1) u(t, ±1) = 0 , t ∈ (0, ∞) ,

(2) u(0) = u 0 ≥ 0 , x ∈ (-1, 1) ,

1 exhibits a rich variety of qualitative behaviours, according to the sign of a ∈ {-1, 1} and the values of p ∈ (0, ∞). Indeed, on the one hand, extinction in finite time (that is, there is T ⋆ > 0 such that u(t) ≡ 0 for t ≥ T ⋆ ) occurs for a = -1 and p ∈ (0, 1), while u(t) converges exponentially fast to zero as t → ∞ if a = -1 and p ≥ 1 [START_REF] Benachour | Long time behaviour for a viscous Hamilton-Jacobi equation with Dirichlet boundary conditions[END_REF]. On the other hand, if a = 1 and p > 2, finite time gradient blow-up takes place for suitably large initial data [START_REF] Ph | Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions[END_REF] while convergence to zero of u(t) as t → ∞ still holds true for global solutions [START_REF] Arrieta | Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena[END_REF][START_REF] Ph | Global solutions of inhomogeneous Hamilton-Jacobi equations[END_REF]. In addition, all solutions are global for a = 1 and p ∈ [START_REF] Alaa | Weak solutions of some quasilinear elliptic equations with data measures[END_REF][START_REF] Arrieta | Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena[END_REF] and converge to zero as t → ∞ [START_REF] Benachour | Long time behaviour for a viscous Hamilton-Jacobi equation with Dirichlet boundary conditions[END_REF][START_REF] Ph | Global solutions of inhomogeneous Hamilton-Jacobi equations[END_REF].

The case a = 1 and p ∈ (0, 1) offers an interesting novelty and is the subject of the present paper. Indeed, in contrast to the previous cases, the initial-boundary value problem ( 1)-( 3) has a one parameter family (U ϑ ) ϑ∈[0,1] of steady states when a = 1 and p ∈ (0, 1) with U 1 ≡ 0 and U ϑ is not constant if ϑ ∈ [0, 1). These steady states play an important role in the dynamics of solutions to (1)-( 3): indeed, we will prove that any solution u to (1)-( 3) converges as t → ∞ towards a steady state, which is non-trivial if, for instance, the initial datum u 0 is non-negative with a positive maximum. In addition, an interesting feature of U ϑ for ϑ ∈ (0, 1) is that they are constant on a subinterval of (-1, 1). This property is of course related to the fact that p ranges in (0, 1) and is reminiscent of the finite time extinction phenomenon already alluded to for non-negative solutions when a = -1 and p ∈ (0, 1). It is then natural to wonder whether the nonlinear term |∂ x u| p may induce a similar singular behaviour on the dynamics of u. More precisely, for a particular class of non-negative initial data, we will show that the gradient ∂ x u vanishes identically on [T ⋆ , ∞)×I for some T ⋆ > 0 and some subinterval I of (-1, 1). Let us point out here that, for non-negative initial data, extinction in finite time cannot occur when a = 1 and p ∈ (0, 1), for the comparison principle warrants that u is bounded from below by the solution to the linear heat equation with the same initial and boundary data.

From now on, we thus assume that a = 1 and p ∈ (0, 1) ,

and 

u 0 ∈ Y := w ∈ C 1 ([-1, 1]) , w(±1) = 0 . (5) 
u ∈ C([0, ∞) × [-1, 1]) ∩ C 2,1 ((0, ∞) × (-1, 1)) satisfying min [-1,1] u 0 ≤ u(t, x) ≤ max [-1,1] u 0 , (t, x) ∈ [0, ∞) × [-1, 1] . (6) 
In addition, setting

M(t) := max x∈[-1,1] u(t, x) ≥ 0 , (7) 
the comparison principle ensures that t -→ M(t) is a non-increasing function of time and we put

M ∞ := lim t→∞ M(t) ∈ 0, max [-1,1] u 0 . (8) 
Let us recall at this point that classical solutions to (1)-( 3) enjoy the comparison principle: this fact may be proved by standard arguments as in, e.g., [START_REF] Gilding | The Cauchy problem for u t = ∆u + |∇u| q[END_REF]Theorem 4].

Remark 1

The initial-boundary value problem ( 1)-( 3) is actually well-posed in a larger space than Y , which depends on p, and we refer to [START_REF] Benachour | The mixed Cauchy-Dirichlet problem for a viscous Hamilton-Jacobi equation[END_REF] for a more detailed account. Still, the solutions constructed in [START_REF] Benachour | The mixed Cauchy-Dirichlet problem for a viscous Hamilton-Jacobi equation[END_REF] belong to Y for any positive time. Since we are interested here in the large time behaviour, the assumption (5) that u 0 ∈ Y is thus not restrictive.

For further use, we also introduce the following notations:

α := 2 -p 1 -p and M 0 := (1 -p) α 2 -p . (9) 
We may now state our main result.

Theorem 2 Consider u 0 ∈ Y and denote by u the corresponding classical solution to (1)-( 3). Then M ∞ ∈ [0, M 0 ] and there is a non-negative stationary solution u s to (1)-( 2) such that

lim t→∞ u(t) -u s ∞ = 0 . ( 10 
)
Furthermore, u s ≡ 0 and M ∞ > 0 if 1 -1 u 0 (x) cos πx 2 dx > 0 . (11) 
It readily follows from the second assertion of Theorem 2 that the set of non-trivial and non-negative steady states to (1)-( 2) attracts all solutions to (1)-( 3) starting from a non-negative initial datum u 0 ≡ 0. Observe however that the set of non-trivial and non-negative steady states to (1)-( 2) also attracts sign-changing solutions u to (1)-( 3) since there are sign-changing initial data fulfilling [START_REF] Lions | Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre[END_REF].

The proof of Theorem 2 requires several steps and is performed as follows: we first identify the stationary solutions to (1)-( 2) in Section 2 and use them together with comparison arguments to establish that, if u 0 ∈ Y is nonnegative with u 0 ≡ 0, then M ∞ > 0 and {u(t); t ≥ 0} is bounded in C 1 ([-1, 1]) (Section 3). In Section 4, we employ the technique of Zelenyak [START_REF] Zelenyak | Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable[END_REF] to construct a Liapunov functional for non-negative solutions to (1)-(3). Let us mention here that this technique has also been used recently for related problems in [START_REF] Arrieta | Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena[END_REF][START_REF] Simondon | A Lyapunov functional and long-time behaviour for a degenerate parabolic problem[END_REF]. For non-negative initial data convergence towards a steady state then follows from the results of Section 3 and Section 4 by a LaSalle invariance principle argument. The large time behaviour of signchanging initial data is next deduced from that of non-negative solutions after observing that the negative part of any solution to (1)-(3) vanishes in a finite time (Section 6).

Remark 3 A further outcome of Theorem 2 is that the large behaviour of solutions to (1) on a bounded interval is more complex for homogeneous Dirichlet boundary conditions than for periodic and homogeneous Neumann boundary conditions. Indeed, for the latter boundary conditions, it follows from [START_REF] Benachour | Large time behavior for a viscous Hamilton-Jacobi equation with Neumann boundary condition[END_REF][START_REF] Benachour | Extinction and nonextinction for viscous Hamilton-Jacobi equations in R N , Asymptot[END_REF] that there are T ⋆ > 0 and m ⋆ ∈ R such that u(t) ≡ m ⋆ for t ≥ T ⋆ whatever the signs of a and u 0 are.

In Section 7, we prove the extinction in finite time of ∂ x u on a subinterval of (-1, 1) for a specific class of initial data. More precisely, we have the following result:

Theorem 4 Assume further that there are m 0 ∈ (0, M 0 ) and ε > 0 such that m 0 -M 0 |x| α + ε |x| 1+α ≤ u 0 (x) ≤ m 0 , x ∈ [-1, 1] . (12) 
Then, for each t ∈ (0, ∞), there is X(t) ∈ (0, 1) such that u(t, x) = m 0 for x ∈ (-X(t), X(t)) .

Furthermore, if

δ 0 := 1 - m 0 M 0 1/α ∈ (0, 1) , (13) 
and δ ∈ (0, δ 0 ), there exists T (δ) > 0 such that

u(t, x) = m 0 for (t, x) ∈ [T (δ), ∞) × [-δ, δ] .
An example of initial datum in Y fulfilling [START_REF] Simondon | A Lyapunov functional and long-time behaviour for a degenerate parabolic problem[END_REF] is the following:

u 0 (x) = M 0 -ε -M 0 |x| α + ε |x| β for x ∈ [-1, 1], where β ∈ (α, α + 1] and ε ∈ (0, αM 0 /β).
The second assertion of Theorem 4 shows that ∂ x u vanishes identically after some time on a subinterval of [-1, 1], a phenomenon which one could call finite time incomplete extinction in comparison to what occurs for periodic or homogeneous Neumann boundary conditions. But the first assertion of Theorem 4 reveals that the extinction mechanism is somewhat stronger since, even if ∂ x u 0 (x) vanishes only for x = 0, ∂ x u vanishes instantaneously on a subinterval of [-1, 1] with positive measure.

Another consequence of Theorem 4 and ( 6) is that u(t) ∞ = m 0 for every t ≥ 0. Therefore, for an initial datum u 0 in Y satisfying [START_REF] Simondon | A Lyapunov functional and long-time behaviour for a degenerate parabolic problem[END_REF], the corresponding solution u to (1)-( 3) does not obey the strong maximum principle.

The proof of Theorem 4 relies on comparison arguments with travelling wave solutions to (1) and is similar to that of [START_REF] Gilding | The Cauchy problem for u t = ∆u + |∇u| q , large-time behaviour[END_REF]Theorem 9], some care being needed to cope with the boundary conditions.

Notations. Throughout the paper, we denote by r + := max {r, 0} the positive part of the real number r. For r ∈ R and s ∈ R, we put r ∨ s := max {r, s} and r ∧ s := min {r, s}. Also, for q ∈ [1, ∞], . q denotes the L q (-1, 1)-norm.

Non-negative steady states

In this section, we look for non-negative stationary solutions to (1), [START_REF] Arrieta | Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena[END_REF], that is, non-negative functions

U ∈ C 2 ([-1, 1]) such that d 2 U dx 2 + dU dx p = 0 , x ∈ (-1, 1) , (14) 
U(±1) = 0 . ( 15 
) Proposition 5 Let U ∈ C 2 ([-1, 1]
) be a non-negative solution to ( 14), [START_REF] Zelenyak | Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable[END_REF]. Then there is ϑ ∈ [0, 1] such that U = U ϑ , where

U ϑ (x) := M 0 (1 -ϑ) α -(|x| -ϑ) α + , x ∈ [-1, 1] .
Observe that U ϑ is constant on [-ϑ, ϑ] for each ϑ ∈ (0, 1) and that U 1 ≡ 0.

Proof. Let U ∈ C 2 ([-1, 1]
) be a non-negative solution to ( 14), [START_REF] Zelenyak | Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable[END_REF]. Then U is concave by ( 14) and we infer from the non-negativity of U and the boundary conditions ( 15) that dU/dx(-1) ≥ 0 and dU/dx(1) ≤ 0.

If dU/dx(-1) = 0, the concavity of U entails that U is a non-increasing function in (-1, 1). Consequently, U ≡ 0 = U 1 to comply with the boundary conditions [START_REF] Zelenyak | Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable[END_REF].

Similarly, if dU/dx(1) = 0, it follows from the concavity of U that U is non-decreasing on (-1, 1), whence U ≡ 0 = U 1 by [START_REF] Zelenyak | Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable[END_REF].

We finally consider the case where dU/dx(-1) > 0 and dU/dx(1) < 0 and put

x I := sup {X ∈ (-1, 1) such that dU/dx(x) > 0 on [-1, X)} , x S := inf {X ∈ (-1, 1) such that dU/dx(x) < 0 on (X, 1]} .
Owing to the continuity of dU/dx, we have -1 < x I ≤ x S < 1 and dU/dx(x) = 0 for x ∈ [x I , x S ] by the concavity of U. Direct integration of ( 14) then entails that there are two constants A and B such that

dU dx (x) -p dU dx (x) + (1 -p) x = A if x ∈ (x S , 1] , B if x ∈ [-1, x I ) . (16) 
Since p ∈ (0, 1) and dU/dx vanishes for x ∈ {x I , x S }, we may let x → x I and x → x S in (16) to deduce that A = (1 -p) x S and B = (1 -p) x I . We next integrate (16) to obtain that there are two constants C I and C S such that

U(x) = C S -M 0 (x -x S ) α if x ∈ (x S , 1] , C I -M 0 (x I -x) α if x ∈ [-1, x I ) .
Requiring the boundary conditions [START_REF] Zelenyak | Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable[END_REF] to be fulfilled provides the values of C I and C S , whence

U(x) = M 0 (1 -x S ) α -M 0 (x -x S ) α if x ∈ (x S , 1] , M 0 (x I + 1) α -M 0 (x I -x) α if x ∈ [-1, x I ) .
Now, since dU/dx vanishes for x ∈ [x I , x S ], we shall have U(x S ) = U(x I ), which implies that 1 -x S = x I + 1, whence x S = -x I . Thus, necessarily, x S ∈ [0, 1], from which the equality U = U x S readily follows.

It is worth mentioning that U ϑ ∞ ≤ M 0 for each ϑ ∈ [0, 1]. Combining this property with the convergence to a steady state to be proved in Section 5, we will conclude that M ∞ ≤ M 0 .

Remark 6 Proposition 5 shows in particular that there is non-uniqueness of classical solutions to ( 14), [START_REF] Zelenyak | Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable[END_REF]. A similar construction is performed in [START_REF] Alaa | Weak solutions of some quasilinear elliptic equations with data measures[END_REF][START_REF] Lions | Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre[END_REF] for the boundary-value problem

-∆u = |∇u| p in B(0, 1) , u = 0 on ∂B(0, 1) ,
where B(0, 1) denotes the open unit ball of R N , N > 1, to establish the non-uniqueness of weak solutions for p > N/(N -1).

3 Some properties of {u(t) ; t ≥ 0} Proof. Since u 0 ≡ 0, there are x 0 ∈ (-1, 1), δ ∈ (0, 1) and m > 0 such that (x 0 -δ, x 0 + δ) ⊂ (-1, 1) and

Introducing the positive cone Y + := {w ∈ Y such that w ≥ 0} of Y , we first prove that M ∞ > 0 for u 0 ∈ Y + , u 0 ≡ 0,
u 0 (x) ≥ m for x ∈ (x 0 -δ, x 0 + δ) . (17) 
We put

x 1 := (x 0 -1) ∨ (-1), x 2 := (x 0 + 1) ∧ 1, J := [x 1 , x 2 ], λ := 1 ∧ m M 0 -U 0 (δ)
,

and v(x) := λ (U 0 (x -x 0 ) -U 0 (δ)) for x ∈ J.
On the one hand, it follows from (1) and ( 14) that

∂ t v -∂ 2 x v -|∂ x v| p = (λ -λ p ) |∂ x U 0 (. -x 0 )| p ≤ 0 = ∂ t u -∂ 2 x u -|∂ x u| p on [0, ∞)×J.
On the other hand, the non-negativity of u 0 and the maximum principle entail the non-negativity of u which then warrants that

v(x 1 ) ≤ v(x 0 -δ) = 0 ≤ u(t, x 1 ) , v(x 2 ) ≤ v(x 0 + δ) = 0 ≤ u(t, x 2 ) ,
while the choice of λ entails that

v(x) ≤ λ (M 0 -U 0 (δ)) ≤ m ≤ u 0 (x) for x ∈ (x 0 -δ, x 0 + δ) , v(x) ≤ v(x 0 ± δ) = 0 ≤ u 0 (x) for x ∈ J \ (x 0 -δ, x 0 + δ) .
We then infer from the comparison principle that u(t, x)

≥ v(x) for (t, x) ∈ [0, ∞) × J. In particular, M(t) = u(t) ∞ ≥ u(t, x 0 ) ≥ v(x 0 ) = λ (M 0 - U 0 (δ)) for each t ≥ 0, whence M ∞ ≥ λ (M 0 -U 0 (δ)) > 0.
We now turn to the global boundedness of the trajectory {u(t)

; t ≥ 0} in C 1 ([-1, 1]).
Lemma 8 Let u 0 ∈ Y + and denote by u the corresponding classical solution to (1)-( 3). There is a constant Λ > 0 depending only on u 0 W 1,∞ (-1,1) and p such that

u(t) W 1,∞ (-1,1) ≤ Λ for t ≥ 0 . (18) 
Proof. We first recall that {u(t) ; t ≥ 0} is bounded in L ∞ (-1, 1) by ( 6) and we are left with the proof that {∂ x u(t) ; t ≥ 0} is bounded in L ∞ (-1, 1).

For that purpose, we choose λ > 1 such that

λ ≥ 2 1 -p 1/(1-p) ∂ x u 0 ∞ ∨ u 0 ∞ (1 -2 -α ) M 0 . (19) 
Putting v := λU 0 , we first notice that the condition λ > 1 ensures that

∂ t v -∂ 2 x v -|∂ x v| p = (λ -λ p ) |∂ x U 0 | p ≥ 0 in (0, ∞) × (-1, 1) , while v(±1) = u(t, ±1) = 0 for each t ≥ 0.
Next, on the one hand, it follows from (19) and the monotonicity properties of U 0 that, if x ∈ (-1/2, 1/2), we have

v(x) = λ U 0 (x) ≥ λ U 0 (1/2) = λ M 0 (1 -2 -α ) ≥ u 0 ∞ ≥ u 0 (x) .
On the other hand, if x ∈ [1/2, 1], we have by (19) that

v(x) = λ (U 0 (x) -U 0 (1)) = λ 1 x dU 0 dx (y) dy = α λ M 0 1 x y 1/(1-p) dy ≥ α λ M 0 1 x 2 -1/(1-p) dy ≥ 1 x ∂ x u 0 ∞ dy ≥ 1 x |∂ x u 0 (y)|dy ≥ u 0 (x) .
A similar computation shows that v(x) ≥ u 0 (x) also holds true for

x ∈ [-1, -1/2]. Therefore, v ≥ u 0 in [-1, 1
] and the previous analysis allows us to apply the comparison principle and conclude that u(t, x)

≤ v(x) for (t, x) ∈ [0, ∞) × [-1, 1].
In particular, if t ≥ 0 and x ∈ (0, 1), we have

u(t, x) -u(t, 1) x -1 = u(t, x) x -1 ≥ v(x) x -1 = v(x) -v(1) x -1 . Letting x → 1, we deduce that ∂ x u(t, 1) ≥ ∂ x v(1) = -λ (1 -p) 1/(1-p) .
Since u 0 ≥ 0, the comparison principle ensures that u(t, x) ≥ 0 = u(t, 1) for x ∈ (0, 1), so that we also have ∂ x u(t, 1) ≤ 0. Arguing in a similar way for x = -1, we end up with

|∂ x u(t, ±1)| ≤ λ (1 -p) 1/(1-p) for t ≥ 0 . (20) 
We now put k := ∂ x u 0 ∞ ∨ λ (1 -p) 1/(1-p) , z := ∂ x u and R := {(t, x) ∈ (0, ∞) × (-1, 1) , z(t, x) = 0}. In the neighbourhood of each point (t 0 , x 0 ) of R, the function |∂ x u| p is smooth, and classical parabolic regularity theory implies that z is C 1,2 in a neighbourhood of (t 0 , x 0 ) and satisfies

∂ t z(t, x) -∂ 2 x z(t, x) = p |z(t, x)| p-2 z(t, x) ∂ x z(t, x) .
Since {(t, x) ∈ (0, ∞) × (-1, 1) , z(t, x) > k} ⊂ R, we deduce from the previous identity and (20) that 1 2

d dt (z -k) + 2 2 = [(z -k) + ∂ x z] x=1 x=-1 - 1 -1 |∂ x (z -k) + | 2 dx + p p + 1 z -k |z| p (z -k) + |z -k| x=1 x=-1 = - 1 -1 |∂ x (z -k) + | 2 dx , whence (z(t) -k) + 2 2 ≤ (z(0) -k) + 2 2
= 0 , the last equality being true thanks to the choice of k. Consequently,

∂ x u(t, x) = z(t, x) ≤ k in [0, ∞) × [-1, 1]
. By a similar argument, we also establish that

∂ x u(t, x) = z(t, x) ≥ -k in [0, ∞) × [-1, 1]. Therefore, |∂ x u(t, x)| ≤ ∂ x u 0 ∞ ∨ λ (1 -p) 1/(1-p) for (t, x) ∈ [0, ∞) × [-1, 1]
, which completes the proof of Lemma 8.

A Liapunov functional

We now construct a Liapunov functional for non-negative solutions to (1)-( 3) with the help of the technique developed by Zelenyak [START_REF] Zelenyak | Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable[END_REF]. Let u 0 ∈ Y + and denote by u the corresponding classical solution to (1)-( 3) which is also non-negative by the maximum principle. We look for a pair of functions Φ and ̺ ≥ 0 such that

d dt 1 -1 Φ (u, ∂ x u) dx = 1 -1 ̺ (u, ∂ x u) |∂ t u| 2 dx . (21) 
Since ∂ t u(t, ±1) = 0 by (2), the first term of the right-hand side of the above equality also reads

d dt 1 -1 Φ (u, ∂ x u) dx = 1 -1 [∂ 1 Φ (u, ∂ x u) ∂ t u + ∂ 2 Φ (u, ∂ x u) ∂ x ∂ t u] dx = 1 -1 ∂ 1 Φ (u, ∂ x u) -∂ 1 ∂ 2 Φ (u, ∂ x u) ∂ x u -∂ 2 2 Φ (u, ∂ x u) ∂ 2 x u ∂ t u dx ,
and it is then natural to require that

∂ 1 Φ (u, ∂ x u) -∂ 1 ∂ 2 Φ (u, ∂ x u) ∂ x u -∂ 2 2 Φ (u, ∂ x u) ∂ 2 x u = ̺ (u, ∂ x u) ∂ t u = ̺ (u, ∂ x u) |∂ x u| p + ∂ 2 x u
for (21) to hold true. Following [START_REF] Zelenyak | Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable[END_REF], we realize that a sufficient condition for the previous equality to be valid is

∂ 1 Φ (u, ∂ x u) -∂ 1 ∂ 2 Φ (u, ∂ x u) ∂ x u = ̺ (u, ∂ x u) |∂ x u| p , ( 22 
) -∂ 2 2 Φ (u, ∂ x u) = ̺ (u, ∂ x u) . ( 23 
)
Performing the computations as in [START_REF] Zelenyak | Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable[END_REF], we see that the functions

Φ (u, ∂ x u) := u - |∂ x u| 2-p (2 -p)(1 -p)
and ̺ (u, ∂ x u) := |∂ x u| -p solve the differential system ( 22), (23). However, ̺ is singular when ∂ x u vanishes and it is not clear how to give a meaning to (21) for such a choice of functions Φ and ̺. Nevertherless, we have the following weaker result which turns out to be sufficient for our purposes.

Proposition 9 For each t > 0 and δ ∈ (0, 1], we have

d dt 1 -1 |∂ x u(t, x)| 2-p (2 -p)(1 -p) -u(t, x) dx + 1 -1 |∂ t u| 2 (|∂ x u| 2 + δ 2 ) p/2 dx ≤ 0 . ( 24 
)
Proof. We fix δ ∈ (0, 1] and define ψ ε by

ψ ε (0) = ψ ′ ε (0) = 0 and ψ ′′ ε (r) = (|r| ∨ ε) -p , r ∈ R
for ε ∈ (0, δ). We infer from ( 1) and ( 2) that

d dt 1 -1 [ψ ε (∂ x u) -u] dx = 1 -1 [ψ ′ ε (∂ x u) ∂ x ∂ t u -∂ t u] dx = [ψ ′ ε (∂ x u) ∂ t u] x=1 x=-1 - 1 -1 ψ ′′ ε (∂ x u) ∂ 2 x u + 1 ∂ t u dx = - 1 -1 ψ ′′ ε (∂ x u) ∂ 2 x u + (|∂ x u| ∨ ε) p ∂ t u dx = - 1 -1 ψ ′′ ε (∂ x u) (∂ t u + (|∂ x u| ∨ ε) p -|∂ x u| p ) ∂ t u dx = - 1 -1 ψ ′′ ε (∂ x u) |∂ t u| 2 dx - 1 -1 1 - |∂ x u| p ε p + ∂ t u dx .
On the one hand, since ε ∈ (0, δ), we have

|∂ x u| ∨ ε ≤ |∂ x u| 2 + δ 2 1/2 , so that 1 -1 ψ ′′ ε (∂ x u) |∂ t u| 2 dx ≥ 1 -1 |∂ t u| 2 (|∂ x u| 2 + δ 2 ) p/2 dx .
On the other hand, introducing

ξ(r) :=          r - |r| p r (p + 1)ε p if |r| ≤ ε , pε p + 1 r |r| if |r| ≥ ε , we have ξ ′ (r) = (1 -|r| p /ε p ) + and |ξ(r)| ≤ ε. Consequently, thanks to (1), 1 -1 1 - |∂ x u| p ε p + ∂ t u dx ≤ 1 -1 1 - |∂ x u| p ε p + ∂ 2 x u dx + ε p 1 -1 1 - |∂ x u| p ε p + dx ≤ 1 -1 ∂ x ξ (∂ x u) dx + 2 ε p ≤ |ξ(∂ x u(t, 1))| + |ξ(∂ x u(t, -1))| + 2 ε p ≤ 4ε p .
Consequently, for each ε ∈ (0, δ), we have

d dt 1 -1 [ψ ε (∂ x u) -u] dx + 1 -1 |∂ t u| 2 (|∂ x u| 2 + δ 2 ) p/2 dx ≤ 4ε p . ( 25 
)
It remains to pass to the limit in (25) as ε → 0. For that purpose, we notice that

ψ ′ ε (r) - |r| -p r 1 -p ≤ p 1 -p ε 1-p for r ∈ R, so that (ψ ε ) converges uniformly towards r -→ |r| 2-p /((2 -p)(1 - p)) on compact subsets of R. Recalling that ∂ x u(t) belongs to L ∞ (-1, 1
) by Lemma 8, we may let ε → 0 in (25) and obtain (24).

Remark 10 It turns out that, at least formally, the functional

w -→ 1 -1 |∂ x w(x)| 2-p (2 -p)(1 -p) -w(x) dx
is also a Liapunov functional for (1)-( 3) when p ∈ (1, 2), while

w -→ 1 -1 (|∂ x w(x)| ln (|∂ x w(x)|) -|∂ x w(x)| -w(x)) dx
is a Liapunov functional for (1)-( 3) when p = 1. For p > 2, (1)-( 3) still have Liapunov functionals but of a different kind [START_REF] Arrieta | Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena[END_REF].

Corollary 11 We have ∞ 0 1 -1 |∂ t u(t, x)| 2 dxdt < ∞ . (26) 
Proof. Let T > 0. We integrate (24) with δ = 1 over (0, T ) and use ( 18) and the non-negativity of u to obtain

T 0 1 -1 |∂ t u(t, x)| 2 (1 + Λ 2 ) p/2 dxdt ≤ T 0 1 -1 |∂ t u(t, x)| 2 (|∂ x u(t, x)| 2 + 1) p/2 dxdt ≤ 1 -1 |∂ x u(0, x)| 2-p (2 -p)(1 -p) -u(0, x) dx - 1 -1 |∂ x u(T, x)| 2-p (2 -p)(1 -p) -u(T, x) dx ≤ 2 ∂ x u 0 2-p ∞ (2 -p)(1 -p) + 1 -1 u(T, x) dx ≤ 2 ∂ x u 0 2-p ∞ (2 -p)(1 -p) + 2 Λ , whence (26) 
, for the right-hand side of the above inequality does not depend on T > 0.

Convergence to steady states

Proof of Theorem 2: non-negative initial data. Let u 0 ∈ Y + , u 0 ≡ 0, and denote by u the corresponding classical solution to (1)-( 3). We consider an increasing sequence (t n ) n≥1 of positive real numbers such that t n → ∞ as n → ∞ and define a sequence of functions (u n ) n≥1 by u n (t, x) := u(t n + t, x) for (t, x) ∈ [0, 1] × [-1, 1] and n ≥ 1. We next denote by g n the solution to

∂ t g n -∂ 2 x g n = 0 , (t, x) ∈ (0, 1) × (-1, 1) , (27) g n (t, ±1) = 0 , t ∈ (0, 1) , (28) g n (0) = u n (0) = u(t n ) , x ∈ (-1, 1) , (29) 
and put h n = u n -g n . Then h n is a solution to

∂ t h n -∂ 2 x h n = |∂ x u n | p , (t, x) ∈ (0, 1) × (-1, 1) , (30) h n (t, ±1) = 0 , t ∈ (0, 1) , (31) h n (0) = 0 , x ∈ (-1, 1) . ( 32 
)
On the one hand, owing to Lemma 8, the sequence (|∂ x u n | p ) is bounded in L q ((0, 1) × (-1, 1)) for every q ∈ (1, ∞). Since h n is a solution to (30)-(32), we infer from [10, Theorem IV.9.1] that (h n ) is bounded in {w ∈ L q (0, 1; W 2,q (-1, 1)) , ∂ t w ∈ L q ((0, 1) × (-1, 1))} for every q ∈ (1, ∞). We may then use [10, Lemma II.3.3] with q = 4 to deduce that there is β ∈ (0, 1) such that (h n ) and (∂

x h n ) are bounded in C β/2,β ([0, 1] × [-1, 1]).
This last property together with the Arzelà-Ascoli theorem entail that (h n ) and (∂ x h n ) are relatively compact in C([0, 1] × [-1, 1]). On the other hand, it follows from Lemma 8 and classical regularity properties of the heat equation that (

g n ) is relatively compact in C([0, 1] × [-1, 1]), while (∂ x g n ) is relatively compact in C([τ, 1] × [-1, 1]
) for each τ ∈ (0, 1). Consequently, there are a subsequence of (u n ) (not relabeled) and

U ∈ C([0, 1] × [-1, 1]) such that ∂ x U ∈ C((0, 1] × [-1, 1]) and u n -→ U in C([0, 1] × [-1, 1]) , ∂ x u n -→ ∂ x U in C([τ, 1] × [-1, 1]) (33) 
for every τ ∈ (0, 1). Now, since (u n ) satisfies ( 1), (2), a straightforward consequence of (33) is that

∂ t U -∂ 2 x U = |∂ x U| p in D ′ ((0, 1) × (-1, 1)) . (34) 
Furthermore, it follows from Corollary 11 that

lim n→∞ 1 0 1 -1 |∂ t u n | 2 dxdt = lim n→∞ 1+tn tn 1 -1 |∂ t u| 2 dxdt = 0 .
By a weak lower semicontinuity argument, we infer from (33) and the previous identity that ∂ t U = 0. Then U does not depend on time and thus belongs to C 1 ([-1, 1]). Furthermore, recalling (34), we conclude that ∂ 2 x U + |∂ x U| p = 0 in D ′ (-1, 1). The already established regularity of U implies that U ∈ C 2 ([-1, 1]) and solves ( 14), [START_REF] Zelenyak | Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable[END_REF]. Consequently, by Proposition 5, there exists ϑ ∈ [0, 1] such that U = U ϑ and (u n (0)) = (u(t n )) converges towards U ϑ in C([-1, 1]) as n → ∞ by (33). In particular, recalling that M(t) is defined by [START_REF] Gilding | The Cauchy problem for u t = ∆u + |∇u| q , large-time behaviour[END_REF], we have

M 0 (1 -ϑ) α = U ϑ ∞ = lim n→∞ u(t n ) ∞ = lim n→∞ M(t n ) = M ∞ , whence M ∞ ≤ M 0 and ϑ = 1 - M ∞ M 0 1/α . (35) 
Since this identity determines ϑ in a unique way, we deduce that the set of cluster points of {u(t) ; t ≥ 0} is reduced to a single point {U ϑ } with ϑ given by (35). The set {u(t) ; t ≥ 0} being relatively compact in C([-1, 1]) by Lemma 8 and the Arzelà-Ascoli theorem, we finally conclude that u(t) -U ϑ ∞ → 0 as t → ∞, whence [START_REF] Ladyženskaja | Linear and Quasi-Linear Equations of Parabolic Type[END_REF]. In addition, since u 0 ≡ 0, Lemma 7 guarantees that ϑ < 1, so that U ϑ is indeed a non-trivial steady state to (1)-(3). We have thus proved that,

if u 0 ∈ Y + , u 0 ≡ 0, then M ∞ > 0 and there is ϑ ∈ [0, 1) such that u(t) -U ϑ ∞ → 0 as t → ∞, (36) 
and Theorem 2 holds true for non-negative initial data.

Sign-changing solutions

We now show that the family (U ϑ ) ϑ∈[0,1] of non-negative steady states to (1)-(2) constructed in Proposition 5 also describes the large time behaviour of sign-changing solutions to (1)-(3). For that purpose, we first establish that any solution to (1)-(3) becomes non-negative after a finite time.

Lemma 12 Consider u 0 ∈ Y and denote by u the corresponding classical solution to (1)-(3). Then there is

T ⋆ > 0 such that u(t, x) ≥ 0 for (t, x) ∈ [T ⋆ , ∞) × [-1, 1]. Moreover, if u 0 ≤ 0, then u(t, x) = 0 for (t, x) ∈ [T ⋆ , ∞) × [-1, 1].
Proof. We put ũ0 (x) = 0 ∧ u 0 (x) for x ∈ [-1, 1] and ũ0 (x) = 0 for x ∈ R \ [-1, 1]. Since ũ0 is a non-positive, bounded and continuous function in R, we infer from [8, Theorem 3] that there is a unique classical solution

ũ ∈ C([0, ∞) × R) ∩ C 1,2 ((0, ∞) × R)) to the Cauchy problem ∂ t ũ -∂ 2 x ũ = a |∂ x ũ| p , (t, x) ∈ (0, ∞) × R , (37) ũ 
(0) = ũ0 , x ∈ R . (38) 
Furthermore, ũ is non-positive in (0, ∞)×R) and is thus clearly a subsolution to (1)-( 3) since ũ0 ≤ u 0 . The comparison principle then entails that

ũ(t, x) ≤ u(t, x) for (t, x) ∈ [0, ∞) × [-1, 1] .
But, since ũ0 is a non-positive, bounded and continuous function with compact support in R, it follows from [START_REF] Benachour | Extinction and nonextinction for viscous Hamilton-Jacobi equations in R N , Asymptot[END_REF][START_REF] Gilding | The Cauchy problem for u t = ∆u + |∇u| q , large-time behaviour[END_REF] that ũ enjoys the property of finite time extinction, that is, there is

T ⋆ > 0 such that ũ(t, x) = 0 for (t, x) ∈ [T ⋆ , ∞) × R .
Combining these two facts yield the first assertion of Lemma 12. Next, if u 0 ≤ 0, we have also u ≤ 0 in [0, ∞) × [-1, 1] by [START_REF] Benachour | Extinction and nonextinction for viscous Hamilton-Jacobi equations in R N , Asymptot[END_REF] and u thus identically vanishes in

[T ⋆ , ∞) × [-1, 1].
Proof of Theorem 2: sign-changing initial data. By Lemma 12, there is T ⋆ > 0 such that u(T ⋆ , x) ≥ 0 for x ∈ [-1, 1]. Then either u(T ⋆ ) ≡ 0 and thus u(t) ≡ 0 for t ≥ T ⋆ , and u(t) converges towards U 1 as t → ∞. Or u(T ⋆ ) ≡ 0 and we infer from (36) that there is ϑ ∈ [0, 1) such that u(t + T ⋆ ) converges towards U ϑ as t → ∞, which completes the proof of the first statement of Theorem 2. Assume next that u 0 fulfils [START_REF] Lions | Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre[END_REF]. Putting ϕ 1 (x) := cos (πx/2) for x ∈ [-1, 1] and λ 1 := π 2 /4, we recall that -d 2 ϕ 1 /dx 2 = λ 1 ϕ 1 in (-1, 1) with ϕ 1 (±1) = 0. We infer from (1), [START_REF] Lions | Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre[END_REF] and the non-negativity of ϕ 1 and |∂

x u| p that 1 -1 u(t, x) ϕ 1 (x) dx ≥ e -λ 1 t 1 -1 u 0 (x) ϕ 1 (x) dx > 0
Proof of Theorem 4. As already mentioned, the proof is similar to that of [START_REF] Gilding | The Cauchy problem for u t = ∆u + |∇u| q , large-time behaviour[END_REF]Theorem 9], the main difference being due to the boundary conditions. We nevertheless reproduce the whole argument here for the sake of completeness. We first observe that [START_REF] Simondon | A Lyapunov functional and long-time behaviour for a degenerate parabolic problem[END_REF] implies that u 0 (x) ≥ m 0 -M 0 + U 0 (x) for x ∈ [-1, 1] and that m 0 -M 0 +U 0 is a subsolution to (1) with m 0 -M 0 +U 0 (±1) ≤ 0. We then infer from the comparison principle and ( 6) that

m 0 -M 0 + U 0 (x) ≤ u(t, x) ≤ m 0 for (t, x) ∈ [0, ∞) × [-1, 1] . (41) 
In particular, u(t, 0) = m 0 for t ∈ [0, ∞) .

We now consider σ ∈ (0, ε/κ p ) and put w σ (t, x) = m 0 + W σ (x -σt) for (t, x) ∈ [0, ∞) ×R (recall that ε and m 0 are both defined in [START_REF] Simondon | A Lyapunov functional and long-time behaviour for a degenerate parabolic problem[END_REF]). We readily have that

∂ t w σ -∂ 2
x w σ -|∂ x w σ | p = 0 = ∂ t u -∂ 2 x u -|∂ x u| p in (0, ∞) × (0, 1) (43) with w σ (t, 0) = m 0 = u(t, 0) , t ≥ 0 ,

by ( 39) and (42). In addition, we infer from ( 12), (40) and the choice of σ that, for x ∈ [0, 1],

w σ (0, x) = m 0 + W σ (x) = m 0 + W 0 (x) + W σ (x) -W 0 (x) ≤ m 0 -M 0 x α + σ κ p x 1+α ≤ m 0 -M 0 x α + ε x 1+α ≤ u 0 (x) .

Finally, if δ ∈ (0, δ 0 ) and t ∈ [0, δ/σ], it follows from (40) that

w σ (t, 1) = m 0 + W σ (1 -σt) = m 0 + W 0 (1 -σt) + W σ (1 -σt) -W 0 (1 -σt) ≤ m 0 -M 0 (1 -σt) α + σ κ p (1 -σt) 1+α ≤ M 0 ((1 -δ 0 ) α -(1 -δ) α ) + σ κ p ≤ 0 (46)
as soon as σ is sufficiently small. Owing to (43), (44), ( 45) and (46), there is σ δ depending only on p, m 0 , ε and δ such that, if σ ∈ (0, σ δ ), we may apply the comparison principle on [0, δ/σ] × [0, 1] to deduce that w σ (t, x) ≤ u(t, x) , (t, x) ∈ [0, δ/σ] × [0, 1] .

Recalling (41), we conclude from (47) that, if σ ∈ (0, σ δ ), u(t, x) = m 0 for t ∈ [0, δ/σ] and x ∈ [0, σt] .

A first consequence of (47) is that, if t > 0, we may find σ small enough such that σ ∈ (0, σ δ ) and t ∈ [0, δ/σ]. It then follows from (48) that u(t, x) = m 0 for x ∈ [0, X(t)] with X(t) := σ t.

As a second consequence of (47), we note that, if t ≥ T (δ) := δ/σ δ , there is σ ∈ (0, σ δ ) such that t = δ/σ. Then u(t, x) = m 0 for x ∈ [0, δ] by (48).

To complete the proof of Theorem 4, it suffices to notice that v : (t, x) -→ u(t, -x) also solves ( 1)-( 2) with initial datum x -→ u 0 (-x) which satisfies [START_REF] Simondon | A Lyapunov functional and long-time behaviour for a degenerate parabolic problem[END_REF]. Then, v also enjoys the above two properties from which we deduce that we have also u(t, x) = m 0 for x ∈ [-X(t), 0] for every t > 0 and u(t, x) = m 0 for x ∈ [-δ, 0] for t ≥ T (δ), thus completing the proof of Theorem 4.

It then follows from [ 3 ,

 3 Theorem 3.1 & Proposition 4.1] that the initialboundary value problem (1)-(3) has a unique classical solution

  by constructing suitable subsolutions to (1)-(3) with the help of U 0 . Lemma 7 Let u 0 ∈ Y + and denote by u the corresponding classical solution to (1)-(3). If u 0 ≡ 0, we have M ∞ > 0.
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for t ≥ 0. In particular, with the previous notations, we have u(T ⋆ ) ≥ 0 with 1 -1 u(T ⋆ , x) ϕ 1 (x) dx > 0 , which, together with the positivity of ϕ 1 on (-1, 1), ensures that u(T ⋆ ) is non-negative with u(T ⋆ ) ≡ 0. Arguing as before, we infer from (36) that there is ϑ ∈ [0, 1) such that u(t) converges towards U ϑ as t → ∞, which completes the proof of the second statement of Theorem 2.

Partial extinction of ∂ x u in finite time

Before proceeding with the proof of Theorem 4, we recall that, if σ ∈ (0, ∞) and µ ∈ R, the function (t, x) -→ µ+W σ (x-σt) is a travelling wave solution to ∂ t w -∂ 2

x w = |∂ x w| p in (0, ∞) × R (see, e.g., [START_REF] Gilding | Travelling Waves in Nonlinear Diffusion-Convection Reaction[END_REF]Chapter 13]), where

with κ p := (1 -p) α /(2(3 -2p)). Indeed, introducing ζ(r) := (r -1 + e -r )/r 2 and ζ 1 (r) := rζ(r) for r ≥ 0, we have for ξ ≥ 0

We deduce from the elementary inequalities 0 ≤ ζ 1 (r) ≤ 1 for r ≥ 0 and

We next use the fact that ζ(r) ≤ 1/2 for r ≥ 0 to complete the proof of (40).