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Abstract

The convergence to steady states of solutions to the one-dimensional
viscous Hamilton-Jacobi equation ∂tu−∂2

xu = |∂xu|
p, (t, x) ∈ (0,∞)×

(−1, 1) with homogeneous Dirichlet boundary conditions is investi-
gated. For that purpose, a Liapunov functional is constructed by the
approach of Zelenyak (1968). Instantaneous extinction of ∂xu on a
subinterval of (−1, 1) is also shown for suitable initial data.

MSC 2000: 35B40, 35K55, 37B25
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1 Introduction

Non-negative solutions to the one-dimensional viscous Hamilton-Jacobi equa-
tion

∂tu− ∂2xu = a |∂xu|
p , (t, x) ∈ (0,∞)× (−1, 1) , (1)

u(t,±1) = 0 , t ∈ (0,∞) , (2)

u(0) = u0 ≥ 0 , x ∈ (−1, 1) , (3)
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exhibits a rich variety of qualitative behaviours, according to the sign of
a ∈ {−1, 1} and the values of p ∈ (0,∞). Indeed, on the one hand, extinction
in finite time (that is, there is T⋆ > 0 such that u(t) ≡ 0 for t ≥ T⋆) occurs
for a = −1 and p ∈ (0, 1), while u(t) converges exponentially fast to zero as
t→ ∞ if a = −1 and p ≥ 1 [5]. On the other hand, if a = 1 and p > 2, finite
time gradient blow-up takes place for suitably large initial data [13] while
convergence to zero of u(t) as t → ∞ still holds true for global solutions
[2, 14]. In addition, all solutions are global for a = 1 and p ∈ [1, 2] and
converge to zero as t→ ∞ [5, 14].

The case a = 1 and p ∈ (0, 1) offers an interesting novelty and is the
subject of the present paper. Indeed, in contrast to the previous cases, the
initial-boundary value problem (1)-(3) has a one parameter family (Uϑ)ϑ∈[0,1]
of steady states when a = 1 and p ∈ (0, 1) with U1 ≡ 0 and Uϑ is not
constant if ϑ ∈ [0, 1). These steady states play an important role in the
dynamics of solutions to (1)-(3): indeed, we will prove that any solution u to
(1)-(3) converges as t→ ∞ towards a steady state, which is non-trivial if, for
instance, the initial datum u0 is non-negative with a positive maximum. In
addition, an interesting feature of Uϑ for ϑ ∈ (0, 1) is that they are constant
on a subinterval of (−1, 1). This property is of course related to the fact that
p ranges in (0, 1) and is reminiscent of the finite time extinction phenomenon
already alluded to for non-negative solutions when a = −1 and p ∈ (0, 1).
It is then natural to wonder whether the nonlinear term |∂xu|

p may induce
a similar singular behaviour on the dynamics of u. More precisely, for a
particular class of non-negative initial data, we will show that the gradient
∂xu vanishes identically on [T⋆,∞)×I for some T⋆ > 0 and some subinterval I
of (−1, 1). Let us point out here that, for non-negative initial data, extinction
in finite time cannot occur when a = 1 and p ∈ (0, 1), for the comparison
principle warrants that u is bounded from below by the solution to the linear
heat equation with the same initial and boundary data.

From now on, we thus assume that

a = 1 and p ∈ (0, 1) , (4)

and
u0 ∈ Y :=

{

w ∈ C1([−1, 1]) , w(±1) = 0
}

. (5)

It then follows from [3, Theorem 3.1 & Proposition 4.1] that the initial-
boundary value problem (1)-(3) has a unique classical solution

u ∈ C([0,∞)× [−1, 1]) ∩ C2,1((0,∞)× (−1, 1))
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satisfying

min
[−1,1]

u0 ≤ u(t, x) ≤ max
[−1,1]

u0 , (t, x) ∈ [0,∞)× [−1, 1] . (6)

In addition, setting
M(t) := max

x∈[−1,1]
u(t, x) ≥ 0 , (7)

the comparison principle ensures that t 7−→M(t) is a non-increasing function
of time and we put

M∞ := lim
t→∞

M(t) ∈

[

0,max
[−1,1]

u0

]

. (8)

Let us recall at this point that classical solutions to (1)-(3) enjoy the com-
parison principle: this fact may be proved by standard arguments as in, e.g.,
[8, Theorem 4].

Remark 1 The initial-boundary value problem (1)-(3) is actually well-posed
in a larger space than Y , which depends on p, and we refer to [3] for a more
detailed account. Still, the solutions constructed in [3] belong to Y for any
positive time. Since we are interested here in the large time behaviour, the
assumption (5) that u0 ∈ Y is thus not restrictive.

For further use, we also introduce the following notations:

α :=
2− p

1− p
and M0 :=

(1− p)α

2− p
. (9)

We may now state our main result.

Theorem 2 Consider u0 ∈ Y and denote by u the corresponding classical
solution to (1)-(3). Then M∞ ∈ [0,M0] and there is a non-negative station-
ary solution us to (1)-(2) such that

lim
t→∞

‖u(t)− us‖∞ = 0 . (10)

Furthermore, us 6≡ 0 and M∞ > 0 if

∫ 1

−1

u0(x) cos
(πx

2

)

dx > 0 . (11)
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It readily follows from the second assertion of Theorem 2 that the set of
non-trivial and non-negative steady states to (1)-(2) attracts all solutions to
(1)-(3) starting from a non-negative initial datum u0 6≡ 0. Observe however
that the set of non-trivial and non-negative steady states to (1)-(2) also
attracts sign-changing solutions u to (1)-(3) since there are sign-changing
initial data fulfilling (11).

The proof of Theorem 2 requires several steps and is performed as follows:
we first identify the stationary solutions to (1)-(2) in Section 2 and use them
together with comparison arguments to establish that, if u0 ∈ Y is non-
negative with u0 6≡ 0, then M∞ > 0 and {u(t); t ≥ 0} is bounded in
C1([−1, 1]) (Section 3). In Section 4, we employ the technique of Zelenyak
[15] to construct a Liapunov functional for non-negative solutions to (1)-
(3). Let us mention here that this technique has also been used recently for
related problems in [2, 12]. For non-negative initial data convergence towards
a steady state then follows from the results of Section 3 and Section 4 by
a LaSalle invariance principle argument. The large time behaviour of sign-
changing initial data is next deduced from that of non-negative solutions
after observing that the negative part of any solution to (1)-(3) vanishes in
a finite time (Section 6).

Remark 3 A further outcome of Theorem 2 is that the large behaviour of so-
lutions to (1) on a bounded interval is more complex for homogeneous Dirich-
let boundary conditions than for periodic and homogeneous Neumann bound-
ary conditions. Indeed, for the latter boundary conditions, it follows from
[4, 6] that there are T⋆ > 0 and m⋆ ∈ R such that u(t) ≡ m⋆ for t ≥ T⋆
whatever the signs of a and u0 are.

In Section 7, we prove the extinction in finite time of ∂xu on a subinterval
of (−1, 1) for a specific class of initial data. More precisely, we have the
following result:

Theorem 4 Assume further that there are m0 ∈ (0,M0) and ε > 0 such
that

m0 −M0 |x|α + ε |x|1+α ≤ u0(x) ≤ m0 , x ∈ [−1, 1] . (12)

Then, for each t ∈ (0,∞), there is X(t) ∈ (0, 1) such that

u(t, x) = m0 for x ∈ (−X(t), X(t)) .
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Furthermore, if

δ0 := 1−

(

m0

M0

)1/α

∈ (0, 1) , (13)

and δ ∈ (0, δ0), there exists T (δ) > 0 such that

u(t, x) = m0 for (t, x) ∈ [T (δ),∞)× [−δ, δ] .

An example of initial datum in Y fulfilling (12) is the following: u0(x) =
M0 − ε − M0 |x|α + ε |x|β for x ∈ [−1, 1], where β ∈ (α, α + 1] and ε ∈
(0, αM0/β).

The second assertion of Theorem 4 shows that ∂xu vanishes identically
after some time on a subinterval of [−1, 1], a phenomenon which one could call
finite time incomplete extinction in comparison to what occurs for periodic
or homogeneous Neumann boundary conditions. But the first assertion of
Theorem 4 reveals that the extinction mechanism is somewhat stronger since,
even if ∂xu0(x) vanishes only for x = 0, ∂xu vanishes instantaneously on a
subinterval of [−1, 1] with positive measure.

Another consequence of Theorem 4 and (6) is that ‖u(t)‖∞ = m0 for
every t ≥ 0. Therefore, for an initial datum u0 in Y satisfying (12), the
corresponding solution u to (1)-(3) does not obey the strong maximum prin-
ciple.

The proof of Theorem 4 relies on comparison arguments with travelling
wave solutions to (1) and is similar to that of [7, Theorem 9], some care being
needed to cope with the boundary conditions.

Notations. Throughout the paper, we denote by r+ := max {r, 0} the
positive part of the real number r. For r ∈ R and s ∈ R, we put r ∨ s :=
max {r, s} and r ∧ s := min {r, s}. Also, for q ∈ [1,∞], ‖.‖q denotes the
Lq(−1, 1)-norm.

2 Non-negative steady states

In this section, we look for non-negative stationary solutions to (1), (2), that
is, non-negative functions U ∈ C2([−1, 1]) such that

d2U

dx2
+

∣

∣

∣

∣

dU

dx

∣

∣

∣

∣

p

= 0 , x ∈ (−1, 1) , (14)

U(±1) = 0 . (15)
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Proposition 5 Let U ∈ C2([−1, 1]) be a non-negative solution to (14), (15).
Then there is ϑ ∈ [0, 1] such that U = Uϑ, where

Uϑ(x) := M0

[

(1− ϑ)α − (|x| − ϑ)α+
]

, x ∈ [−1, 1] .

Observe that Uϑ is constant on [−ϑ, ϑ] for each ϑ ∈ (0, 1) and that U1 ≡ 0.

Proof. Let U ∈ C2([−1, 1]) be a non-negative solution to (14), (15). Then
U is concave by (14) and we infer from the non-negativity of U and the
boundary conditions (15) that dU/dx(−1) ≥ 0 and dU/dx(1) ≤ 0.

If dU/dx(−1) = 0, the concavity of U entails that U is a non-increasing
function in (−1, 1). Consequently, U ≡ 0 = U1 to comply with the boundary
conditions (15).

Similarly, if dU/dx(1) = 0, it follows from the concavity of U that U is
non-decreasing on (−1, 1), whence U ≡ 0 = U1 by (15).

We finally consider the case where dU/dx(−1) > 0 and dU/dx(1) < 0
and put

xI := sup {X ∈ (−1, 1) such that dU/dx(x) > 0 on [−1, X)} ,

xS := inf {X ∈ (−1, 1) such that dU/dx(x) < 0 on (X, 1]} .

Owing to the continuity of dU/dx, we have−1 < xI ≤ xS < 1 and dU/dx(x) =
0 for x ∈ [xI , xS] by the concavity of U . Direct integration of (14) then entails
that there are two constants A and B such that

∣

∣

∣

∣

dU

dx
(x)

∣

∣

∣

∣

−p
dU

dx
(x) + (1− p) x =

{

A if x ∈ (xS, 1] ,
B if x ∈ [−1, xI) .

(16)

Since p ∈ (0, 1) and dU/dx vanishes for x ∈ {xI , xS}, we may let x→ xI and
x→ xS in (16) to deduce that A = (1− p) xS and B = (1− p) xI . We next
integrate (16) to obtain that there are two constants CI and CS such that

U(x) =

{

CS −M0 (x− xS)
α if x ∈ (xS, 1] ,

CI −M0 (xI − x)α if x ∈ [−1, xI) .

Requiring the boundary conditions (15) to be fulfilled provides the values of
CI and CS, whence

U(x) =

{

M0 (1− xS)
α −M0 (x− xS)

α if x ∈ (xS, 1] ,
M0 (xI + 1)α −M0 (xI − x)α if x ∈ [−1, xI) .
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Now, since dU/dx vanishes for x ∈ [xI , xS], we shall have U(xS) = U(xI),
which implies that 1 − xS = xI + 1, whence xS = −xI . Thus, necessarily,
xS ∈ [0, 1], from which the equality U = UxS

readily follows. �

It is worth mentioning that ‖Uϑ‖∞ ≤ M0 for each ϑ ∈ [0, 1]. Combining
this property with the convergence to a steady state to be proved in Section 5,
we will conclude that M∞ ≤ M0.

Remark 6 Proposition 5 shows in particular that there is non-uniqueness
of classical solutions to (14), (15). A similar construction is performed in
[1, 11] for the boundary-value problem

−∆u = |∇u|p in B(0, 1) , u = 0 on ∂B(0, 1) ,

where B(0, 1) denotes the open unit ball of R
N , N > 1, to establish the

non-uniqueness of weak solutions for p > N/(N − 1).

3 Some properties of {u(t) ; t ≥ 0}

Introducing the positive cone Y+ := {w ∈ Y such that w ≥ 0} of Y , we first
prove thatM∞ > 0 for u0 ∈ Y+, u0 6≡ 0, by constructing suitable subsolutions
to (1)-(3) with the help of U0.

Lemma 7 Let u0 ∈ Y+ and denote by u the corresponding classical solution
to (1)-(3). If u0 6≡ 0, we have M∞ > 0.

Proof. Since u0 6≡ 0, there are x0 ∈ (−1, 1), δ ∈ (0, 1) and m > 0 such that
(x0 − δ, x0 + δ) ⊂ (−1, 1) and

u0(x) ≥ m for x ∈ (x0 − δ, x0 + δ) . (17)

We put x1 := (x0 − 1) ∨ (−1), x2 := (x0 + 1) ∧ 1, J := [x1, x2],

λ := 1 ∧
m

M0 − U0(δ)
,

and v(x) := λ (U0(x− x0)− U0(δ)) for x ∈ J .
On the one hand, it follows from (1) and (14) that

∂tv − ∂2xv − |∂xv|
p = (λ− λp) |∂xU0(.− x0)|

p ≤ 0 = ∂tu− ∂2xu− |∂xu|
p
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on [0,∞)×J . On the other hand, the non-negativity of u0 and the maximum
principle entail the non-negativity of u which then warrants that

v(x1) ≤ v(x0 − δ) = 0 ≤ u(t, x1) ,

v(x2) ≤ v(x0 + δ) = 0 ≤ u(t, x2) ,

while the choice of λ entails that

v(x) ≤ λ (M0 − U0(δ)) ≤ m ≤ u0(x) for x ∈ (x0 − δ, x0 + δ) ,

v(x) ≤ v(x0 ± δ) = 0 ≤ u0(x) for x ∈ J \ (x0 − δ, x0 + δ) .

We then infer from the comparison principle that u(t, x) ≥ v(x) for (t, x) ∈
[0,∞) × J . In particular, M(t) = ‖u(t)‖∞ ≥ u(t, x0) ≥ v(x0) = λ (M0 −
U0(δ)) for each t ≥ 0, whence M∞ ≥ λ (M0 − U0(δ)) > 0. �

We now turn to the global boundedness of the trajectory {u(t) ; t ≥ 0}
in C1([−1, 1]).

Lemma 8 Let u0 ∈ Y+ and denote by u the corresponding classical solution
to (1)-(3). There is a constant Λ > 0 depending only on ‖u0‖W 1,∞(−1,1) and
p such that

‖u(t)‖W 1,∞(−1,1) ≤ Λ for t ≥ 0 . (18)

Proof. We first recall that {u(t) ; t ≥ 0} is bounded in L∞(−1, 1) by (6)
and we are left with the proof that {∂xu(t) ; t ≥ 0} is bounded in L∞(−1, 1).
For that purpose, we choose λ > 1 such that

λ ≥

[

(

2

1− p

)1/(1−p)

‖∂xu0‖∞

]

∨

[

‖u0‖∞
(1− 2−α) M0

]

. (19)

Putting v := λU0, we first notice that the condition λ > 1 ensures that

∂tv − ∂2xv − |∂xv|
p = (λ− λp) |∂xU0|

p ≥ 0 in (0,∞)× (−1, 1) ,

while v(±1) = u(t,±1) = 0 for each t ≥ 0. Next, on the one hand, it follows
from (19) and the monotonicity properties of U0 that, if x ∈ (−1/2, 1/2), we
have

v(x) = λ U0(x) ≥ λ U0(1/2) = λ M0 (1− 2−α) ≥ ‖u0‖∞ ≥ u0(x) .
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On the other hand, if x ∈ [1/2, 1], we have by (19) that

v(x) = λ (U0(x)− U0(1)) = λ

∫ 1

x

∣

∣

∣

∣

dU0

dx
(y)

∣

∣

∣

∣

dy = α λ M0

∫ 1

x

y1/(1−p) dy

≥ α λ M0

∫ 1

x

2−1/(1−p) dy ≥

∫ 1

x

‖∂xu0‖∞ dy ≥

∫ 1

x

|∂xu0(y)|dy

≥ u0(x) .

A similar computation shows that v(x) ≥ u0(x) also holds true for x ∈
[−1,−1/2]. Therefore, v ≥ u0 in [−1, 1] and the previous analysis allows
us to apply the comparison principle and conclude that u(t, x) ≤ v(x) for
(t, x) ∈ [0,∞)× [−1, 1]. In particular, if t ≥ 0 and x ∈ (0, 1), we have

u(t, x)− u(t, 1)

x− 1
=
u(t, x)

x− 1
≥

v(x)

x− 1
=
v(x)− v(1)

x− 1
.

Letting x → 1, we deduce that ∂xu(t, 1) ≥ ∂xv(1) = −λ (1 − p)1/(1−p).
Since u0 ≥ 0, the comparison principle ensures that u(t, x) ≥ 0 = u(t, 1) for
x ∈ (0, 1), so that we also have ∂xu(t, 1) ≤ 0. Arguing in a similar way for
x = −1, we end up with

|∂xu(t,±1)| ≤ λ (1− p)1/(1−p) for t ≥ 0 . (20)

We now put k := ‖∂xu0‖∞ ∨ λ (1− p)1/(1−p), z := ∂xu and R := {(t, x) ∈
(0,∞)× (−1, 1) , z(t, x) 6= 0}. In the neighbourhood of each point (t0, x0)
of R, the function |∂xu|

p is smooth, and classical parabolic regularity theory
implies that z is C1,2 in a neighbourhood of (t0, x0) and satisfies

∂tz(t, x)− ∂2xz(t, x) = p |z(t, x)|p−2 z(t, x) ∂xz(t, x) .

Since {(t, x) ∈ (0,∞) × (−1, 1) , z(t, x) > k} ⊂ R, we deduce from the
previous identity and (20) that

1

2

d

dt
‖(z − k)+‖

2
2 = [(z − k)+ ∂xz]

x=1
x=−1 −

∫ 1

−1

|∂x(z − k)+|
2 dx

+

[(

p

p+ 1
z − k

)

|z|p
(z − k)+
|z − k|

]x=1

x=−1

= −

∫ 1

−1

|∂x(z − k)+|
2 dx ,
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whence
‖(z(t)− k)+‖

2
2 ≤ ‖(z(0)− k)+‖

2
2 = 0 ,

the last equality being true thanks to the choice of k. Consequently, ∂xu(t, x) =
z(t, x) ≤ k in [0,∞)× [−1, 1]. By a similar argument, we also establish that
∂xu(t, x) = z(t, x) ≥ −k in [0,∞)× [−1, 1]. Therefore,

|∂xu(t, x)| ≤ ‖∂xu0‖∞ ∨ λ (1− p)1/(1−p)

for (t, x) ∈ [0,∞)× [−1, 1], which completes the proof of Lemma 8. �

4 A Liapunov functional

We now construct a Liapunov functional for non-negative solutions to (1)-
(3) with the help of the technique developed by Zelenyak [15]. Let u0 ∈ Y+
and denote by u the corresponding classical solution to (1)-(3) which is also
non-negative by the maximum principle. We look for a pair of functions Φ
and ̺ ≥ 0 such that

d

dt

∫ 1

−1

Φ (u, ∂xu) dx =

∫ 1

−1

̺ (u, ∂xu) |∂tu|
2 dx . (21)

Since ∂tu(t,±1) = 0 by (2), the first term of the right-hand side of the above
equality also reads

d

dt

∫ 1

−1

Φ (u, ∂xu) dx

=

∫ 1

−1

[∂1Φ (u, ∂xu) ∂tu+ ∂2Φ (u, ∂xu) ∂x∂tu] dx

=

∫ 1

−1

[

∂1Φ (u, ∂xu)− ∂1∂2Φ (u, ∂xu) ∂xu− ∂22Φ (u, ∂xu) ∂
2
xu

]

∂tu dx ,

and it is then natural to require that

[

∂1Φ (u, ∂xu)− ∂1∂2Φ (u, ∂xu) ∂xu− ∂22Φ (u, ∂xu) ∂
2
xu

]

= ̺ (u, ∂xu) ∂tu

= ̺ (u, ∂xu)
(

|∂xu|
p + ∂2xu

)

10



for (21) to hold true. Following [15], we realize that a sufficient condition for
the previous equality to be valid is

∂1Φ (u, ∂xu)− ∂1∂2Φ (u, ∂xu) ∂xu = ̺ (u, ∂xu) |∂xu|
p , (22)

−∂22Φ (u, ∂xu) = ̺ (u, ∂xu) . (23)

Performing the computations as in [15], we see that the functions

Φ (u, ∂xu) := u−
|∂xu|

2−p

(2− p)(1− p)
and ̺ (u, ∂xu) := |∂xu|

−p

solve the differential system (22), (23). However, ̺ is singular when ∂xu
vanishes and it is not clear how to give a meaning to (21) for such a choice of
functions Φ and ̺. Nevertherless, we have the following weaker result which
turns out to be sufficient for our purposes.

Proposition 9 For each t > 0 and δ ∈ (0, 1], we have

d

dt

∫ 1

−1

(

|∂xu(t, x)|
2−p

(2− p)(1− p)
− u(t, x)

)

dx+

∫ 1

−1

|∂tu|
2

(|∂xu|2 + δ2)p/2
dx ≤ 0 . (24)

Proof. We fix δ ∈ (0, 1] and define ψε by

ψε(0) = ψ′
ε(0) = 0 and ψ′′

ε (r) = (|r| ∨ ε)−p , r ∈ R

for ε ∈ (0, δ). We infer from (1) and (2) that

d

dt

∫ 1

−1

[ψε (∂xu)− u] dx

=

∫ 1

−1

[ψ′
ε (∂xu) ∂x∂tu− ∂tu] dx

= [ψ′
ε (∂xu) ∂tu]

x=1
x=−1 −

∫ 1

−1

[

ψ′′
ε (∂xu) ∂

2
xu+ 1

]

∂tu dx

= −

∫ 1

−1

ψ′′
ε (∂xu)

(

∂2xu+ (|∂xu| ∨ ε)
p) ∂tu dx

= −

∫ 1

−1

ψ′′
ε (∂xu) (∂tu+ (|∂xu| ∨ ε)

p − |∂xu|
p) ∂tu dx

= −

∫ 1

−1

ψ′′
ε (∂xu) |∂tu|

2 dx−

∫ 1

−1

(

1−
|∂xu|

p

εp

)

+

∂tu dx .
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On the one hand, since ε ∈ (0, δ), we have

|∂xu| ∨ ε ≤
(

|∂xu|
2 + δ2

)1/2
,

so that
∫ 1

−1

ψ′′
ε (∂xu) |∂tu|

2 dx ≥

∫ 1

−1

|∂tu|
2

(|∂xu|2 + δ2)p/2
dx .

On the other hand, introducing

ξ(r) :=



















r −
|r|pr

(p+ 1)εp
if |r| ≤ ε ,

pε

p+ 1

r

|r|
if |r| ≥ ε ,

we have ξ′(r) = (1− |r|p/εp)+ and |ξ(r)| ≤ ε. Consequently, thanks to (1),

∣

∣

∣

∣

∫ 1

−1

(

1−
|∂xu|

p

εp

)

+

∂tu dx

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ 1

−1

(

1−
|∂xu|

p

εp

)

+

∂2xu dx

∣

∣

∣

∣

+ εp
∫ 1

−1

(

1−
|∂xu|

p

εp

)

+

dx

≤

∣

∣

∣

∣

∫ 1

−1

∂xξ (∂xu) dx

∣

∣

∣

∣

+ 2 εp

≤ |ξ(∂xu(t, 1))|+ |ξ(∂xu(t,−1))|+ 2 εp

≤ 4εp .

Consequently, for each ε ∈ (0, δ), we have

d

dt

∫ 1

−1

[ψε (∂xu)− u] dx+

∫ 1

−1

|∂tu|
2

(|∂xu|2 + δ2)p/2
dx ≤ 4εp . (25)

It remains to pass to the limit in (25) as ε → 0. For that purpose, we
notice that

∣

∣

∣

∣

ψ′
ε(r)−

|r|−pr

1− p

∣

∣

∣

∣

≤
p

1− p
ε1−p

for r ∈ R, so that (ψε) converges uniformly towards r 7−→ |r|2−p/((2−p)(1−
p)) on compact subsets of R. Recalling that ∂xu(t) belongs to L

∞(−1, 1) by
Lemma 8, we may let ε → 0 in (25) and obtain (24). �
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Remark 10 It turns out that, at least formally, the functional

w 7−→

∫ 1

−1

(

|∂xw(x)|
2−p

(2− p)(1− p)
− w(x)

)

dx

is also a Liapunov functional for (1)-(3) when p ∈ (1, 2), while

w 7−→

∫ 1

−1

(|∂xw(x)| ln (|∂xw(x)|)− |∂xw(x)| − w(x)) dx

is a Liapunov functional for (1)-(3) when p = 1. For p > 2, (1)-(3) still have
Liapunov functionals but of a different kind [2].

Corollary 11 We have

∫ ∞

0

∫ 1

−1

|∂tu(t, x)|
2 dxdt <∞ . (26)

Proof. Let T > 0. We integrate (24) with δ = 1 over (0, T ) and use (18)
and the non-negativity of u to obtain

∫ T

0

∫ 1

−1

|∂tu(t, x)|
2

(1 + Λ2)p/2
dxdt ≤

∫ T

0

∫ 1

−1

|∂tu(t, x)|
2

(|∂xu(t, x)|2 + 1)p/2
dxdt

≤

∫ 1

−1

(

|∂xu(0, x)|
2−p

(2− p)(1− p)
− u(0, x)

)

dx

−

∫ 1

−1

(

|∂xu(T, x)|
2−p

(2− p)(1− p)
− u(T, x)

)

dx

≤
2 ‖∂xu0‖

2−p
∞

(2− p)(1− p)
+

∫ 1

−1

u(T, x) dx

≤
2 ‖∂xu0‖

2−p
∞

(2− p)(1− p)
+ 2 Λ ,

whence (26), for the right-hand side of the above inequality does not depend
on T > 0. �
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5 Convergence to steady states

Proof of Theorem 2: non-negative initial data. Let u0 ∈ Y+, u0 6≡ 0,
and denote by u the corresponding classical solution to (1)-(3). We consider
an increasing sequence (tn)n≥1 of positive real numbers such that tn → ∞ as
n→ ∞ and define a sequence of functions (un)n≥1 by un(t, x) := u(tn + t, x)
for (t, x) ∈ [0, 1]× [−1, 1] and n ≥ 1. We next denote by gn the solution to

∂tgn − ∂2xgn = 0 , (t, x) ∈ (0, 1)× (−1, 1) , (27)

gn(t,±1) = 0 , t ∈ (0, 1) , (28)

gn(0) = un(0) = u(tn) , x ∈ (−1, 1) , (29)

and put hn = un − gn. Then hn is a solution to

∂thn − ∂2xhn = |∂xun|
p , (t, x) ∈ (0, 1)× (−1, 1) , (30)

hn(t,±1) = 0 , t ∈ (0, 1) , (31)

hn(0) = 0 , x ∈ (−1, 1) . (32)

On the one hand, owing to Lemma 8, the sequence (|∂xun|
p) is bounded in

Lq((0, 1) × (−1, 1)) for every q ∈ (1,∞). Since hn is a solution to (30)-
(32), we infer from [10, Theorem IV.9.1] that (hn) is bounded in {w ∈
Lq(0, 1;W 2,q(−1, 1)) , ∂tw ∈ Lq((0, 1) × (−1, 1))} for every q ∈ (1,∞).
We may then use [10, Lemma II.3.3] with q = 4 to deduce that there is
β ∈ (0, 1) such that (hn) and (∂xhn) are bounded in Cβ/2,β([0, 1] × [−1, 1]).
This last property together with the Arzelà-Ascoli theorem entail that (hn)
and (∂xhn) are relatively compact in C([0, 1]× [−1, 1]). On the other hand, it
follows from Lemma 8 and classical regularity properties of the heat equation
that (gn) is relatively compact in C([0, 1]× [−1, 1]), while (∂xgn) is relatively
compact in C([τ, 1] × [−1, 1]) for each τ ∈ (0, 1). Consequently, there are
a subsequence of (un) (not relabeled) and U ∈ C([0, 1] × [−1, 1]) such that
∂xU ∈ C((0, 1]× [−1, 1]) and

un −→ U in C([0, 1]× [−1, 1]) ,

∂xun −→ ∂xU in C([τ, 1]× [−1, 1])
(33)

for every τ ∈ (0, 1).
Now, since (un) satisfies (1), (2), a straightforward consequence of (33) is

that
∂tU − ∂2xU = |∂xU |

p in D′((0, 1)× (−1, 1)) . (34)
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Furthermore, it follows from Corollary 11 that

lim
n→∞

∫ 1

0

∫ 1

−1

|∂tun|
2 dxdt = lim

n→∞

∫ 1+tn

tn

∫ 1

−1

|∂tu|
2 dxdt = 0 .

By a weak lower semicontinuity argument, we infer from (33) and the previous
identity that ∂tU = 0. Then U does not depend on time and thus belongs
to C1([−1, 1]). Furthermore, recalling (34), we conclude that ∂2xU + |∂xU |

p =
0 in D′(−1, 1). The already established regularity of U implies that U ∈
C2([−1, 1]) and solves (14), (15). Consequently, by Proposition 5, there exists
ϑ ∈ [0, 1] such that U = Uϑ and (un(0)) = (u(tn)) converges towards Uϑ in
C([−1, 1]) as n→ ∞ by (33). In particular, recalling that M(t) is defined by
(7), we have

M0 (1− ϑ)α = ‖Uϑ‖∞ = lim
n→∞

‖u(tn)‖∞ = lim
n→∞

M(tn) =M∞ ,

whence M∞ ≤ M0 and

ϑ = 1−

(

M∞

M0

)1/α

. (35)

Since this identity determines ϑ in a unique way, we deduce that the set
of cluster points of {u(t) ; t ≥ 0} is reduced to a single point {Uϑ} with ϑ
given by (35). The set {u(t) ; t ≥ 0} being relatively compact in C([−1, 1])
by Lemma 8 and the Arzelà-Ascoli theorem, we finally conclude that ‖u(t)−
Uϑ‖∞ → 0 as t → ∞, whence (10). In addition, since u0 6≡ 0, Lemma 7
guarantees that ϑ < 1, so that Uϑ is indeed a non-trivial steady state to
(1)-(3). We have thus proved that,

if u0 ∈ Y+, u0 6≡ 0, then M∞ > 0 and there is ϑ ∈ [0, 1)
such that ‖u(t)− Uϑ‖∞ → 0 as t→ ∞,

(36)

and Theorem 2 holds true for non-negative initial data. �

6 Sign-changing solutions

We now show that the family (Uϑ)ϑ∈[0,1] of non-negative steady states to (1)-
(2) constructed in Proposition 5 also describes the large time behaviour of
sign-changing solutions to (1)-(3). For that purpose, we first establish that
any solution to (1)-(3) becomes non-negative after a finite time.
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Lemma 12 Consider u0 ∈ Y and denote by u the corresponding classical
solution to (1)-(3). Then there is T⋆ > 0 such that u(t, x) ≥ 0 for (t, x) ∈
[T⋆,∞)× [−1, 1]. Moreover, if u0 ≤ 0, then u(t, x) = 0 for (t, x) ∈ [T⋆,∞)×
[−1, 1].

Proof. We put ũ0(x) = 0 ∧ u0(x) for x ∈ [−1, 1] and ũ0(x) = 0 for x ∈
R \ [−1, 1]. Since ũ0 is a non-positive, bounded and continuous function
in R, we infer from [8, Theorem 3] that there is a unique classical solution
ũ ∈ C([0,∞)× R) ∩ C1,2((0,∞)× R)) to the Cauchy problem

∂tũ− ∂2xũ = a |∂xũ|
p , (t, x) ∈ (0,∞)× R , (37)

ũ(0) = ũ0 , x ∈ R . (38)

Furthermore, ũ is non-positive in (0,∞)×R) and is thus clearly a subsolution
to (1)-(3) since ũ0 ≤ u0. The comparison principle then entails that

ũ(t, x) ≤ u(t, x) for (t, x) ∈ [0,∞)× [−1, 1] .

But, since ũ0 is a non-positive, bounded and continuous function with com-
pact support in R, it follows from [6, 7] that ũ enjoys the property of finite
time extinction, that is, there is T⋆ > 0 such that

ũ(t, x) = 0 for (t, x) ∈ [T⋆,∞)× R .

Combining these two facts yield the first assertion of Lemma 12. Next, if
u0 ≤ 0, we have also u ≤ 0 in [0,∞)× [−1, 1] by (6) and u thus identically
vanishes in [T⋆,∞)× [−1, 1]. �

Proof of Theorem 2: sign-changing initial data. By Lemma 12, there is
T⋆ > 0 such that u(T⋆, x) ≥ 0 for x ∈ [−1, 1]. Then either u(T⋆) ≡ 0 and thus
u(t) ≡ 0 for t ≥ T⋆, and u(t) converges towards U1 as t → ∞. Or u(T⋆) 6≡ 0
and we infer from (36) that there is ϑ ∈ [0, 1) such that u(t + T⋆) converges
towards Uϑ as t → ∞, which completes the proof of the first statement of
Theorem 2.

Assume next that u0 fulfils (11). Putting ϕ1(x) := cos (πx/2) for x ∈
[−1, 1] and λ1 := π2/4, we recall that −d2ϕ1/dx

2 = λ1ϕ1 in (−1, 1) with
ϕ1(±1) = 0. We infer from (1), (11) and the non-negativity of ϕ1 and |∂xu|

p

that
∫ 1

−1

u(t, x) ϕ1(x) dx ≥ e−λ1t

∫ 1

−1

u0(x) ϕ1(x) dx > 0
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for t ≥ 0. In particular, with the previous notations, we have u(T⋆) ≥ 0 with

∫ 1

−1

u(T⋆, x) ϕ1(x) dx > 0 ,

which, together with the positivity of ϕ1 on (−1, 1), ensures that u(T⋆) is
non-negative with u(T⋆) 6≡ 0. Arguing as before, we infer from (36) that
there is ϑ ∈ [0, 1) such that u(t) converges towards Uϑ as t → ∞, which
completes the proof of the second statement of Theorem 2. �

7 Partial extinction of ∂xu in finite time

Before proceeding with the proof of Theorem 4, we recall that, if σ ∈ (0,∞)
and µ ∈ R, the function (t, x) 7−→ µ+Wσ(x−σt) is a travelling wave solution
to ∂tw − ∂2xw = |∂xw|

p in (0,∞)× R (see, e.g., [9, Chapter 13]), where

Wσ(ξ) := −σ−1/(1−p)

∫ ξ

0

(

1− e−σ(1−p)η
)1/(1−p)

+
dη , ξ ∈ R . (39)

Introducing W0(ξ) = −M0 ξ
α
+ for ξ ∈ R, we claim that

0 ≤Wσ(ξ)−W0(ξ) ≤ σ κp ξ
1+α
+ , ξ ∈ R , (40)

with κp := (1− p)α/(2(3− 2p)). Indeed, introducing ζ(r) := (r− 1+ e−r)/r2

and ζ1(r) := rζ(r) for r ≥ 0, we have for ξ ≥ 0

Wσ(ξ)−W0(ξ) =

∫ ξ

0

((1− p)η)1/(1−p)
{

1− (1− ζ1(σ(1− p)η))1/(1−p)
}

dη .

We deduce from the elementary inequalities 0 ≤ ζ1(r) ≤ 1 for r ≥ 0 and

(1− r)1/(1−p) ≥ 1−
r

1− p
, r ∈ [0, 1] ,

that Wσ(ξ)−W0(ξ) ≥ 0 and

Wσ(ξ)−W0(ξ) ≤

∫ ξ

0

((1− p)η)1/(1−p) ζ1(σ(1− p)η)

1− p
dη .

We next use the fact that ζ(r) ≤ 1/2 for r ≥ 0 to complete the proof of (40).
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Proof of Theorem 4. As already mentioned, the proof is similar to that of
[7, Theorem 9], the main difference being due to the boundary conditions. We
nevertheless reproduce the whole argument here for the sake of completeness.
We first observe that (12) implies that u0(x) ≥ m0 − M0 + U0(x) for x ∈
[−1, 1] and thatm0−M0+U0 is a subsolution to (1) withm0−M0+U0(±1) ≤
0. We then infer from the comparison principle and (6) that

m0 −M0 + U0(x) ≤ u(t, x) ≤ m0 for (t, x) ∈ [0,∞)× [−1, 1] . (41)

In particular,
u(t, 0) = m0 for t ∈ [0,∞) . (42)

We now consider σ ∈ (0, ε/κp) and put wσ(t, x) = m0 +Wσ(x − σt) for
(t, x) ∈ [0,∞)×R (recall that ε and m0 are both defined in (12)). We readily
have that

∂twσ − ∂2xwσ − |∂xwσ|
p = 0 = ∂tu− ∂2xu− |∂xu|

p in (0,∞)× (0, 1) (43)

with
wσ(t, 0) = m0 = u(t, 0) , t ≥ 0 , (44)

by (39) and (42). In addition, we infer from (12), (40) and the choice of σ
that, for x ∈ [0, 1],

wσ(0, x) = m0 +Wσ(x) = m0 +W0(x) +Wσ(x)−W0(x)

≤ m0 −M0 x
α + σ κp x

1+α ≤ m0 −M0 x
α + ε x1+α

≤ u0(x) . (45)

Finally, if δ ∈ (0, δ0) and t ∈ [0, δ/σ], it follows from (40) that

wσ(t, 1) = m0 +Wσ(1− σt)

= m0 +W0(1− σt) +Wσ(1− σt)−W0(1− σt)

≤ m0 −M0 (1− σt)α + σ κp (1− σt)1+α

≤ M0 ((1− δ0)
α − (1− δ)α) + σ κp

≤ 0 (46)

as soon as σ is sufficiently small. Owing to (43), (44), (45) and (46), there is
σδ depending only on p, m0, ε and δ such that, if σ ∈ (0, σδ), we may apply
the comparison principle on [0, δ/σ]× [0, 1] to deduce that

wσ(t, x) ≤ u(t, x) , (t, x) ∈ [0, δ/σ]× [0, 1] . (47)
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Recalling (41), we conclude from (47) that, if σ ∈ (0, σδ),

u(t, x) = m0 for t ∈ [0, δ/σ] and x ∈ [0, σt] . (48)

A first consequence of (47) is that, if t > 0, we may find σ small enough
such that σ ∈ (0, σδ) and t ∈ [0, δ/σ]. It then follows from (48) that u(t, x) =
m0 for x ∈ [0, X(t)] with X(t) := σ t.

As a second consequence of (47), we note that, if t ≥ T (δ) := δ/σδ, there
is σ ∈ (0, σδ) such that t = δ/σ. Then u(t, x) = m0 for x ∈ [0, δ] by (48).

To complete the proof of Theorem 4, it suffices to notice that v : (t, x) 7−→
u(t,−x) also solves (1)-(2) with initial datum x 7−→ u0(−x) which satisfies
(12). Then, v also enjoys the above two properties from which we deduce that
we have also u(t, x) = m0 for x ∈ [−X(t), 0] for every t > 0 and u(t, x) = m0

for x ∈ [−δ, 0] for t ≥ T (δ), thus completing the proof of Theorem 4. �
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