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EFFECTIVE INTEGRABLE DYNAMICS FOR SOME

NONLINEAR WAVE EQUATION

PATRICK GÉRARD AND SANDRINE GRELLIER

Abstract. We consider the following degenerate half wave equa-
tion on the one dimensional torus

i∂tu− |D|u = |u|2u, u(0, ·) = u0.

We show that, on a large time interval, the solution may be ap-
proximated by the solution of a completely integrable system– the
cubic Szegö equation. As a consequence, we prove an instability
result for large Hs norms of solutions of this wave equation.

1. Introduction

Let us consider, on the one dimensional torus T, the following“half-
wave” equation

(1) i∂tu− |D|u = |u|2u, u(0, ·) = u0.

Here |D| denotes the pseudo-differential operator defined by

|D|u =
∑

|k|uke
ikx, u =

∑

k

uke
ikx.

This equation can be seen as a toy model for non linear Schrödinger
equation on degenerate geometries leading to lack of dispersion. For
instance, it has the same structure as the cubic non linear Schrödinger
equation on the Heisenberg group, or associated with the Grušin oper-
ator. We refer to [4] and [5] for more detail.

We endow L2(T) with the symplectic form

ω(u, v) = Im(u|v) .
Equation (1) may be seen as the Hamiltonian system related to the en-
ergy functionH(u) := 1

2
(|D|u, u)+ 1

4
‖u‖4L4. In particular, H is invariant

by the flow which also admits the following conservation laws,

Q(u) := ‖u‖2L2, M(u) := (Du|u).
However, equation (1) is a non dispersive equation. Indeed, it is equiv-
alent to the system

(2) i(∂t ± ∂x)u± = Π±(|u|2u), u±(0, ·) = Π±(u0),
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EFFECTIVE DYNAMICS FOR SOME NON LINEAR WAVE EQUATION 2

where u± = Π±(u). Here, Π+ denotes the orthogonal projector from
L2(T) onto

L2
+(T) := {u =

∑

k≥0

uke
ikx, (uk)k≥0 ∈ ℓ2}

and Π− := I − Π+.
Though the scaling is L2-critical, the first iteration map of the Duhamel

formula

u(t) = e−it|D|u0 − i

t
∫

0

e−i(t−τ)|D|(|u(τ)|2u(τ))dτ

is not bounded on Hs for s < 1
2
. Indeed, such boundedness would

require the inequality

1
∫

0

‖e−it|D|f‖4L4(T) dt . ‖f‖4Hs/2.

However, testing this inequality on functions localized on positive modes
for instance, shows that this fails if s < 1

2
(see the appendix for more

detail).
Proceeding as in the case of the cubic Szegö equation (see [5], The-

orem 2.1),

(3) i∂tw = Π+(|w|2w),
one can prove the global existence and uniqueness of solutions of (1)
in Hs for any s ≥ 1/2. The proof uses in particular the a priori bound
of the H1/2-norm provided by the energy conservation law.

Proposition 1. Given u0 ∈ H
1

2 (T), there exists u ∈ C(R, H
1

2 (T))
unique such that

i∂tu− |D|u = |u|2u , u(0, x) = u0(x) .

Moreover if u0 ∈ Hs(T) for some s > 1
2
, then u ∈ C(R, Hs(T)).

Notice that similarly to the cubic Szegö equation, the proof of Propo-
sition 1 provides only bad large time estimates,

‖u(t)‖Hs . ee
Cst

.

This naturally leads to the question of the large time behaviour of
solutions of (1). In order to answer this question, a fundamental issue
is the decoupling of non negative and negative modes in system (2).
Assuming that initial data are small and spectrally localized on non
negative modes, a first step in that direction is given by the next simple
proposition, which shows that u−(t) remains smaller in H1/2 uniformly
in time.
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Proposition 2. Assume

Π+u0 = u0 = O(ε) in H
1

2 (T).

Then, the solution u of (1) satisfies

sup
t∈R

‖Π−u(t)‖H 1
2
= O(ε2) .

Proof. By the energy and momentum conservation laws, we have

(|D|u, u) + 1

2
‖u‖4L4 = (|D|u0, u0) +

1

2
‖u0‖4L4 ,

(Du, u) = (Du0, u0) .

Substracting these equalities, we get

2(|D|u−, u−) +
1

2
‖u‖4L4 =

1

2
‖u0‖4L4 = O(ε4) ,

hence
‖u−‖2

H
1
2
= O(ε4) .

�

This decoupling result suggests to neglect u− in system (2) and hence
to compare the solutions of (1) to the solutions of

i∂tv −Dv = Π+(|v|2v),
which can be reduced to (3) by the transformation v(t, x) = w(t, x− t).

Our main result is the following.

Theorem 1.1. Let s > 1 and u0 = Π+(u0) ∈ L2
+(T) ∩ Hs(T) with

‖u0‖Hs = ε, ε > 0 small enough. Denote by v the solution of the cubic
Szegö equation

(4) i∂tv −Dv = Π+(|v|2v) , v(0, ·) = u0.

Then, for any α > 0, there exists a constant c = cα < 1 so that

(5) ‖u(t)− v(t)‖Hs = O(ε3−α) for t ≤ cα
ε2

log
1

ε
.

Furthermore, there exists c > 0 such that

(6) ∀t ≤ c

ε3
, ‖u(t)‖L∞ = O(ε) .

Theorem 1.1 calls for several remarks. Firstly, if we rescale u as εu,
equation (1) becomes

i∂tu− |D|u = ε2|u|2u, u(0, ·) = u0

with ‖u0‖Hs = 1. On the latter equation, it is easy to prove that
u(t) = e−it|D|u0 + o(1) for t << 1

ε2
, so that non linear effects only start

for 1
ε2

. t. Rescaling v as εv in equation (4), Theorem 1.1 states that
the cubic Szegö dynamics appear as the effective dynamics of equation
(1) on a time interval where non linear effects are taken into account.
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Secondly, as pointed out before, (4) reduces to (3) by a simple Galilean
transformation. Equation (3) has been studied in [4], [5] and [6] where
its complete integrability is established together with an explicit for-
mula for its generic solutions. Consequently, the first part of Theorem
1.1 provides an accurate description of solutions of equation (1) for
a reasonably large time. Moreover, the second part of Theorem 1.1
claims an L∞ bound for the solution of (1) on an even larger time.
This latter bound is closely related to a special conservation law of
equation (3), namely, some Besov norm of v –see section 2 below.

Our next observation is that, in the case of small Cauchy data localized
on non negatives modes, system (2) can be reformulated as a— singular
— perturbation of the cubic Szegö equation (3). Indeed, write u0 = εw0

and u(t, x) = εw(ε2t, x− t), then w = w+ + w− solves the system

(7)

{

i∂tw+ = Π+(|w|2w)
i(ε2∂t − 2∂x)w− = ε2Π−(|w|2w)

Notice that, for ε = 0 and Π+w0 = w0, the solution of this system is
exactly the solution of (3). It is therefore natural to ask how much, for
ε > 0 small, the solution of system (7) stays close to the solution of
equation (3). Since equation (3) turns out to be completely integrable,
this problem appears as a perturbation of a completely integrable in-
finite dimensional system. There is a lot of literature on this subject
(see e.g. the books by Kuksin [13], Craig [3] and Kappeler–Pöschel [12]
for the KAM theory). In the case of the 1D cubic NLS equation and of
the modified KdV equation, with special initial data such as solitons
or 2-solitons, we refer to recent papers by Holmer-Zworski ([8], [9]),
Holmer-Marzuola-Zworski ([10]), Holmer-Perelman-Zworski ([11]) and
to references therein. Here we emphasize that our perturbation is more
singular and that we deal with general Cauchy data.

Finally, let us mention that the proof of Theorem 1.1 is based on a
Poincaré-Birkhoff normal form approach, similarly to [1] and [7] for
instance. More specifically, we prove that equation (4) turns out to be
a Poincaré-Birkhoff normal form of equation (1), for small initial data
with only non negative modes.

As a corollary of Theorem 1.1, we get the following instability result.

Corollary 1. Let s > 1. There exists a sequence of data un
0 and a

sequence of times t(n) such that, for any r,

‖un
0‖Hr → 0

while the corresponding solution of (1) satisfies

‖un(t(n))‖Hs ≃ ‖un
0‖Hs

(

log
1

‖un
0‖Hs

)2s−1

.
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It is interesting to compare this result to what is known about cubic
NLS. In the one dimensional case, the cubic NLS is integrable [17]
and admits an infinite number of conservation laws which control the
regularity of the solution in Sobolev spaces. As a consequence, no such
norm inflation occurs. This is in contrast with the 2D cubic NLS case
for which Colliander, Keel, Staffilani, Takaoka, Tao exhibited in [2]
small initial data in Hs which give rise to large Hs solutions after a
large time.

In our case, the situation is different. Although the cubic Szegö equa-
tion is completely integrable, its conservation laws do not control the
regularity of the solutions, which allows a large time behavior similar
to the one proved in [2] for 2D cubic NLS (see [5] section 6, corollary
5). Unfortunately, the time interval on which the approximation (5)
holds does not allow to infer large solutions for (1), but only solutions
with large relative size with respect to their Cauchy data –see section
3 below. A time interval of the form [0, 1

ε2+β ] for some β > 0 would be
enough to construct large solutions for (1) for some Hs-norms.

We close this introduction by mentioning that O. Pocovnicu solved a
similar problem for equation (1) on the line by using the renormal-
ization group method instead of the Poincaré-Birkhoff normal form
method. Moreover, she improved the approximation in Theorem 1.1
by introducing a quintic correction to the Szegö cubic equation [15].

The paper is organized as follows. In section 2 we recall some basic
facts about the Lax pair structure for the cubic Szegö equation (3). In
section 3, we deduce Corollary 1 from Theorem 1.1. Finally, the proof
of Theorem 1.1 is given in section 4.

2. The Lax pair for the cubic Szegö equation and some of

its consequences

In this section, we recall some basic facts about equation (3) (see [5]
for more detail). Given w ∈ H1/2(T), we define (see e.g. Peller [16],
Nikolskii [14]), the Hankel operator of symbol w by

Hw(h) = Π+(wh) , h ∈ L2
+ .

It is easy to check that Hw is a C -antilinear Hilbert-Schmidt operator.
In [5], we proved that the cubic Szegö flow admits a Lax pair in the
following sense. For simplicity let us restrict ourselves to the case of
Hs solutions of (3) for s > 1

2
. From [5] Theorem 3.1, there exists a

mapping w ∈ Hs 7→ Bw, valued into C-linear bounded skew–symmetric
operators on L2

+, such that

(8) H−iΠ+(|w|2w) = [Bw, Hw] .
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Moreover,

Bw =
i

2
H2

w − iT|w|2 ,

where Tb denotes the Toeplitz operator of symbol b given by Tb(h) =
Π+(bh). Consequently, w is a solution of (3) if and only if

(9)
d

dt
Hw = [Bw, Hw] .

An important consequence of this structure is that the cubic Szegö
equation admits an infinite number of conservation laws. Indeed, de-
noting W (t) the solution of the operator equation

d

dt
W = BwW , W (0) = I ,

the operator W (t) is unitary for every t, and

W (t)∗Hw(t)W (t) = Hw(0).

Hence, if w is a solution of (3), then Hw(t) is unitarily equivalent to
Hw(0). Consequently, the spectrum of the C-linear positive self adjoint
trace class operator H2

w is conserved by the evolution. In particular,
the trace norm of Hw is conserved by the flow. A theorem by Peller, see
[16], Theorem 2, p. 454, states that the trace norm of a Hankel operator
Hw is equivalent to the norm of w in the Besov space B1

1,1(T). Recall
that the Besov space B1 = B1

1,1(T) is defined as the set of functions w
so that ‖w‖B1

1,1
is finite where

‖w‖B1
1,1

= ‖S0(w)‖L1 +

∞
∑

j=0

2j‖∆jw‖L1,

here w = S0(w) +
∑∞

j=0∆jw stands for the Littlewood-Paley decom-

position of w. It is standard that B1 is an algebra included into L∞ (in
fact into the Wiener algebra). The conservation of the trace norm of
Hw therefore provides an L∞ estimate for solutions of (3) with initial
data in B1.

The space B1 and formula (8) will play an important role in the proof of
Theorem 1.1. In particular, the last part will follow from the fact that
‖u(t)‖B1 remains bounded by ε for t << 1

ε3
. The fact that Hs(T) ⊂ B1

for s > 1, explains why we assume s > 1 in the statement.

3. Proof of Corollary 1

As observed in [5], section 6.1, Proposition 7, and section 6.2, Corol-
lary 5, the equation

i∂tw = Π+(|w|2w) , w(0, x) =
a0 e

ix + b0
1− p0eix
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with a0, b0, p0 ∈ C, |p0| < 1 can be solved as

w(t, x) =
a(t) eix + b(t)

1− p(t)eix

where a, b, p satisfy an ODE system explicitly solvable.
In the particular case when

a0 = ε , b0 = εδ , p0 = 0 , wε(0, x) = ε(eix + δ) ,

one finds

1−
∣

∣

∣
p
( π

2ε2δ

)
∣

∣

∣

2

≃ δ2 ,

so that, for s > 1
2
,

∥

∥

∥
wε

( π

2ε2δ

)
∥

∥

∥

Hs
≃ ε

δ2s−1
.

Let vε be the solution of

i(∂t + ∂x)vε = Π+(|vε|2vε) , vε(0, x) = ε(eix + δ)

then vε(t, x) = wε(t, x− t) so that

∥

∥

∥
vε

( π

2ε2δ

)
∥

∥

∥

Hs
≃ ε

δ2s−1
.

Choose

ε =
1

n
, δ =

C

logn

with C large enough so that if t(n) := π
2ε2δ

then t(n) < c log(1/ε)
ε2

, where
c = cα in Theorem 1.1 for α = 1, say. Denote by un

0 := vε(0, ·). As
‖un

0‖Hs ≃ ε, the previous estimate reads

∥

∥

∥
vε

( π

2ε2δ

)
∥

∥

∥

Hs
≃ ‖un

0‖Hs

(

log
1

‖un
0‖Hs

)2s−1

.

Applying Theorem 1.1, we get the same information about ‖un(t
(n))‖Hs.

4. Proof of Theorem 1.1

First of all, we rescale u as εu so that equation (1) becomes

(10) i∂tu− |D|u = ε2|u|2u, u(0, ·) = u0

with ‖u0‖Hs = 1.
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4.1. Study of the resonances. We write the Duhamel formula as

u(t) = e−it|D|u(t)

with
û(t, k) = û0(k)− iε2

∑

k1−k2+k3−k=0

I(k1, k2, k3, k),

where

I(k1, k2, k3, k) =

t
∫

0

e−iτΦ(k1,k2,k3,k)û(τ, k1)û(τ, k2)û(τ, k3) dτ ,

and
Φ(k1, k2, k3, k4) := |k1| − |k2|+ |k3| − |k4| .

If Φ(k1, k2, k3, k4) 6= 0, an integration by parts in I(k1, k2, k3, k4)
provides an extra factor ε2, hence the set of (k1, k2, k3, k4) such that
Φ(k1, k2, k3, k4) = 0 is expected to play a crucial role in the analysis.
This set is described in the following lemma.

Lemma 1. Given (k1, k2, k3, k4) ∈ Z4,

k1 − k2 + k3 − k4 = 0 and |k1| − |k2|+ |k3| − |k4| = 0

if and only if at least one of the following properties holds :

(1) ∀j, kj ≥ 0 .
(2) ∀j, kj ≤ 0 .
(3) k1 = k2 , k3 = k4 .
(4) k1 = k4 , k3 = k2 .

Proof. Consider (k1, k2, k3, k4) ∈ Z4 such that k1 − k2 + k3 − k4 = 0,
|k1| − |k2|+ |k3| − |k4| = 0, and the kj’s are not all non negative or all
non positive. Let us prove in that case that either k1 = k2 and k3 = k4,
or k1 = k4 and k3 = k2 . Without loss of generality, we can assume that
at least one of the kj is positive, for instance k1. Then, substracting
both equations, we get that |k3| − k3 = |k2| − k2 + |k4| − k4. If k3 is
non negative, then, necessarily both k2 and k4 are non negative and
hence all the kj’s are non negative. Assume now that k3 is negative.
At least one among k2, k4 is negative. If both of them are negative,
then k3 = k2 + k4 but this would imply k1 = 0 which is impossible by
assumption. So we get either that k3 = k2 (and so k1 = k4) or k3 = k4
(and so k1 = k2). This completes the proof of the lemma. �

4.2. First reduction. We get rid of the resonances corresponding to
cases (3) and (4) by applying the transformation

(11) u(t) 7→ e2itε
2‖u0‖2

L2u(t)

which, since the L2 norm of u is conserved, leads to the equation

(12) i∂tu− |D|u = ε2(|u|2 − 2‖u‖2L2)u, u(0, ·) = u0 .
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Notice that this transformation does not change the Hs norm. The
Hamiltonian function associated to the equation (12) is given by

H(u) =
1

2
(|D|u, u) + ε2

4
(‖u‖4L4 − 2‖u‖4L2) = H0(u) + ε2R(u) ,

where

H0(u) :=
1

2
(|D|u, u) , R(u) :=

1

4
(‖u‖4L4−2‖u‖4L2) =

1

4

∑

k1−k2+k3−k4=0,
k1 6=k2,k4

uk1uk2uk3uk4.

4.3. The Poincaré-Birkhoff normal form. We claim that under
a suitable canonical transformation on u, H can be reduced to the
following Hamiltonian

H̃(u) = H0(u) + ε2R̃(u) +O(ε4)

where

R̃(u) =
1

4

∑

k∈R
uk1uk2uk3uk4

with

R = {k = (k1, k2, k3, k4) : k1 − k2 + k3 − k4 = 0,

k1 6= k2, k1 6= k4, ∀j, kj ≥ 0 or ∀j, kj ≤ 0} .

We look for a canonical transformation as the value at time 1 of some
Hamiltonian flow. In other words, we look for a function F such that
its Hamiltonian vector field is smooth on Hs and on B1 , so that our
canonical transformation is ϕ1, where ϕσ is the solution of

(13)
d

dσ
ϕσ(u) = ε2XF (ϕσ(u)), ϕ0(u) = u.

Recall that, given a smooth real valued function F , its Hamiltonian
vector field XF is defined by

dF (u).h =: ω(h,XF (u)) ,

and, given two functions F,G admitting Hamiltonian vector fields, the
Poisson bracket of F,G is defined by

{F,G}(u) = ω(XF (u), XG(u)) .

Let us make some preliminary remarks about the Poisson brackets.
In view of the expression of ω, we have

{F,G} := dG.XF =
2

i

∑

k

(∂kF∂kG− ∂kG∂kF )

where ∂kF stands for ∂F
∂uk

and ∂kF for ∂F
∂uk

. In particular, if F and G are
respectively homogeneous of order p and q, then their Poisson bracket
is homogeneous of order p+ q − 2.

We prove the following lemma.
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Lemma 2. Set

F (u) :=
∑

k1−k2+k3−k4=0

fk,k2,k3,k4uk1uk2uk3uk4 ,

where

fk1,k2,k3,k4 =

{

i
4(|k1|−|k2|+|k3|−|k4|) if |k1| − |k2|+ |k3| − |k4| 6= 0 ,

0 otherwise.

Then XF is smooth on Hs, s > 1
2
, as well as on B1, and

{F,H0}+R = R̃ ,

‖DXF (u)h‖ . ‖u‖2‖h‖ ,

where the norm is taken either in Hs, s > 1
2
, or in B1.

Proof. First we make a formal calculation with F given by

F (u) :=
∑

k1−k2+k3−k4=0

fk1,k2,k3,k4uk1uk2uk3uk4

for some coefficients fk1,k2,k3,k4 to be determined later. We compute

{F,H0} =
1

i

∑

k1−k2+k3−k4=0

(−|k1|+|k2|−|k3|+|k4|)fk1,k2,k3,k4uk1uk2uk3uk4

so that equality {F,H0}+R = R̃ requires

fk1,k2,k3,k4 =

{

i
4(|k1|−|k2|+|k3|−|k4|) if |k1| − |k2|+ |k3| − |k4| 6= 0

0 otherwise.

One can easily check that the function F is explicitly given by

F (u) =
1

2
Im

(

(D−1
0 u−||u+|2u+)− (D−1

0 u+||u−|2u−)− (D−1
0 |u+|2||u−|2)

)

where D−1
0 is the operator defined by

D−1
0 u(x) =

∑

k 6=0

uk

k
eikx.

In view of the above formula, the Hamiltonian vector field XF (u) is
a sum and products of terms involving the following maps f 7→ f ,
f 7→ D−1

0 f , f 7→ Π±f , (f, g) 7→ fg. These maps are continuous on
Hs and on B1. Hence, XF is smooth and its differential satisfies the
claimed estimate on Hs, s > 1

2
, and B1. �

For further reference, we state the following technical lemma, which
is based on straightforward calculations.
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Lemma 3. The function R̃ and its Hamiltonian vector field are given
by

R̃(u) =
1

4
(‖ũ+‖4L4 + ‖ũ−‖4L4) + Re((u|1) (u−|u2

−))−
1

2
(‖u+‖4L2 + ‖u−‖4L2) ,

iXR̃(u) = Π+(|u+|2u+) + Π−(|u−|2u−)− 2‖u+‖2L2u+ − 2‖u−‖2L2u−

+(u−|u2
−) + 2(1|u)Π−(|u−|2) + (1|u)u2

− ,

where we have set u± := Π±(u).
The maps X{F,R} and X{F,R̃} are smooth homogeneous polynomials of

degree five on B1 and on Hs for every s > 1
2
.

We now perform the canonical transformation

χε := exp(ε2XF ).

Lemma 4. Set ϕσ := exp(ε2σXF ) for −1 ≤ σ ≤ 1. There exist m0 > 0
and C0 > 0 so that, for any u ∈ B1 so that ε‖u‖B1 ≤ m0, ϕσ(u) is well
defined for σ ∈ [−1, 1] and

‖ϕσ(u)‖B1 ≤ 3

2
‖u‖B1

‖ϕσ(u)− u‖B1 ≤ C0ε
2‖u‖3B1

‖Dϕσ(u)‖B1→B1 ≤ eC0ε2‖u‖2
B1

Moreover, the same estimates hold in Hs, s > 1
2
, with some constants

m(s) and C(s).

Proof. Write ϕσ as the integral of its derivative and use Lemma 2 to
get

(14) sup
|σ|≤τ

‖ϕσ(u)‖B1 ≤ ‖u‖B1 + Cε2 sup
|σ|≤τ

‖ϕσ(u)‖3B1 , 0 ≤ τ ≤ 1

We now use the following standard bootstrap lemma.

Lemma 5. Let a, b, T > 0 and τ ∈ [0, T ] 7→ M(τ) ∈ R+ be a continu-
ous function satisfying

∀τ ∈ [0, T ],M(τ) ≤ a + bM(τ)3 .

Assume √
3bM(0) < 1 ,

√
3b a <

2

3
.

Then

∀τ ∈ [0, T ] , M(τ) ≤ 3

2
a .

Proof. For the convenience of the reader, we give the proof of Lemma
5. The function f : z ≥ 0 7→ z − bz3 attains its maximum at zc =

1√
3b
,

equal to fm = 2
3
√
3b
. Consequently, since a is smaller than fm by the

second inequality,

{z ≥ 0 : f(z) ≤ a} = [0, z−] ∪ [z+,+∞)
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with z− < zc < z+ and f(z−) = a. Since M(τ) belongs to this set
for every τ and since M(0) belongs to the first interval by the first
inequality, we conclude by continuity that M(τ) ≤ z− for every τ . By
concavity of f , f(z) ≥ 2

3
z for z ∈ [0, zc], hence z− ≤ 3

2
a. �

Let us come back to the proof of Lemma 4. If ε‖u‖B1 < 2
3
√
3C

,

equation (14) and Lemma 5 imply that

(15) sup
|σ|≤1

‖ϕσ(u)‖B1 ≤ 3

2
‖u‖B1 ,

which is the first estimate. For the second one, we write for |σ| ≤ 1,

‖ϕσ(u)−u‖B1 = ‖ϕσ(u)−ϕ0(u)‖B1 ≤ |σ| sup
|s|≤|σ|

∥

∥

∥

∥

d

ds
ϕs(u)

∥

∥

∥

∥

B1

≤ C0ε
2‖u‖3B1 ,

where the last inequality comes from Lemma 2 and estimate (15).

It remains to prove the last estimate. We differentiate the equation
satisfied by ϕσ and use again Lemma 2 to obtain

‖Dϕσ(u)‖B1→B1 ≤ 1 + ε2

∣

∣

∣

∣

∣

∣

σ
∫

0

‖DXF (ϕτ (u))‖B1→B1‖Dϕτ (u)‖B1→B1 dτ

∣

∣

∣

∣

∣

∣

≤ 1 + C0ε
2‖u‖2B1

∣

∣

∣

∣

∣

∣

σ
∫

0

‖Dϕτ(u)‖B1→B1dτ

∣

∣

∣

∣

∣

∣

,

and Gronwall’s lemma yields the result. Analogous proofs give the
estimates in Hs. �

Let u satisfy the assumption of Lemma 4 in B1 or in Hs for some
s > 1

2
.
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Let us compute H ◦ χε = H ◦ ϕ1 as the Taylor expansion of H ◦ ϕσ

at time 1 around 0. One gets

H ◦ χε = H ◦ ϕ1 = H0 ◦ ϕ1 + ε2R ◦ ϕ1

= H0 +
d

dσ
[H0 ◦ ϕσ]σ=0 + ε2R +

+

1
∫

0

(

(1− σ)
d2

dσ2
[H0 ◦ ϕσ] + ε2

d

dσ
[R ◦ ϕσ]

)

dσ

= H0 + ε2({F,H0}+R) + ε4
1

∫

0

((1− σ){F, {F,H0}}+ {F,R}) ◦ ϕσ dσ

= H0 + ε2R̃ + ε4
1

∫

0

(

(1− σ){F, R̃}+ σ{F,R}
)

◦ ϕσ dσ

:= H0 + ε2R̃ + ε4
1

∫

0

G(σ) ◦ ϕσ dσ .

By Lemma 3, one gets

sup
0≤σ≤1

‖XG(σ)(w)‖ ≤ C‖w‖5

where the norm stands for the B1 norm or the Hs norm. Since

XG(σ)◦ϕσ(u) = Dϕ−σ(ϕσ(u)).XG(σ)(ϕσ(u)) ,

we conclude from Lemma 4 that, if ε‖u‖B1 ≤ m0,

‖XG(σ)◦ϕσ(u)‖B1 ≤ C‖u‖5B1 .

As a consequence, one can write

XH◦χε = XH0
+ ε2XR̃ + ε4Y ,

where, if ε‖u‖B1 ≤ m0, then

‖Y (u)‖B1 . ‖u‖5B1 .

An analogous estimate holds in Hs, s > 1
2
.

4.4. End of the proof. We first deal with the B1-norm of u, solution
of equation (12). We are going to prove that ‖u(t)‖B1 = O(1) for
t << 1

ε3
by the following bootstrap argument. We assume that for

some K large enough with respect to ‖u0‖B1 , for some T > 0, for all
t ∈ [0, T ], ‖u(t)‖B1 ≤ 10K, and we prove that if T << 1

ε3
, ‖u(t)‖B1 ≤ K

for t ∈ [0, T ]. This will prove the result by continuity.

Set, for t ∈ [0, T ],

ũ(t) := χ−1
ε (u(t)) ,
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so that ũ is solution of

i∂tũ− |D|ũ = ε2XR̃(ũ) + ε4Y (ũ) .

Moreover, by Lemma 4,

‖ũ(t)− u(t)‖B1 . ε2‖u‖3B1

and so by the hypothesis, ‖ũ(t)‖B1 ≤ 11K if ε is small enough. In view

of the expression of the Hamiltonian vector field of R̃ in Lemma 3, the
equation for ũ reads






















i∂tũ+ −Dũ+ = ε2
(

Π+(|ũ+|2ũ+)− 2‖ũ+‖2L2 ũ+ +
∫

T
|ũ−|2ũ−

)

+ ε4Y+(ũ) ,

i∂tũ− +Dũ− = ε2
(

Π−(|ũ−|2ũ−)− 2‖ũ−‖2L2 ũ− + 2(1|ũ)Π−(|ũ−|2) + (1|ũ)ũ2
−
)

+ ε4Y−(ũ) .

Notice that all the Hamiltonian functions we have dealt with so far are
invariant by multiplication by complex numbers of modulus 1, hence
their Hamiltonian vector fields satisfy

X(eiθz) = eiθz ,

so that the corresponding Hamiltonian flows conserve the L2 norm.
Hence ũ has the same L2 norm as u, which is the L2 norm of u0. In
particular, |(1|ũ)| ≤ ‖u0‖L2.

Moreover, as ‖u0‖B1 . ‖u0‖Hs = O(1) since s > 1, ũ0 satisfies

‖ũ0 − u0‖B1 . ε2

by Lemma 4 so that, as u0− = 0, we get ‖ũ0−‖B1 = O(ε2). Then we
obtain from the second equation

sup
0≤τ≤t

‖ũ−(τ)‖B1 . ε2+ε2t( sup
0≤τ≤t

‖ũ−(τ)‖3B1+ sup
0≤τ≤t

‖ũ−(τ)‖2B1)+ε4tK5 .

Let M(t) = 1
ε
sup0≤τ≤t ‖ũ−(τ)‖B1 so that, if t ≤ T ,

M(t) . ε+ ε3TM(t)2(1 + εM(t)) + ε3T.

As 3m2 ≤ 1 + 2m3 for any m ≥ 0, we get

M(t) . ε+ ε3TM(t)3 + ε3T.

Using Lemma 5, we conclude that, if T << 1
ε3
,

sup
0≤τ≤T

‖ũ−(τ)‖B1 << ε.

For further reference, notice that, if T . 1
ε2
log 1

ε
, this estimate can be

improved as
sup

0≤τ≤T
‖ũ−(τ)‖B1 . ε2−α , ∀α > 0.

We come back to the case T << 1
ε3
. From the estimate on ũ−, we

infer
‖ũ+‖2L2 = ‖ũ‖2L2 +O(ε2) = ‖u0‖2L2 +O(ε2) ,
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and the equation for ũ+ reads

i∂tũ+−Dũ+ = ε2
(

Π+(|ũ+|2ũ+)− 2‖u0‖2L2 ũ+

)

+ε4Y+(ũ)+O(ε5)+O(ε4)ũ+ .

Since ũ0+ is not small in B1, we have to use a different strategy to
estimate ũ+. We use the complete integrability of the cubic Szegö
equation, especially its Lax pair and the conservation of the B1-norm.

At this stage it is of course convenient to cancel the linear term ‖u0‖2L2 ũ+

by multiplying ũ+(t) by e2iε
2t‖u0‖2

L2 . As pointed out before, this change
of unknown is completely transparent to the above system. This leads
to

i∂tũ+ −Dũ+ = ε2Π+(|ũ+|2ũ+) + ε4Y+(ũ) +O(ε5) +O(ε4)ũ+ .

We now appeal to the results recalled in section 2. We introduce the
unitary family U(t) defined by

i∂tU −DU = ε2(T|ũ+|2 −
1

2
H2

ũ+
)U , U(0) = I,

so that, using formula (8),

i∂t(U(t)∗Hũ+(t)U(t)) = ε4U(t)∗HY+(ũ)+O(ε)+O(1)ũ+
U(t) .

Then, we use Peller’s theorem [16] which states, as recalled in section
2, that the trace norm of a Hankel operator of symbol b is equivalent
to the B1-norm of b to obtain

‖ũ+(t)‖B1 ≃ Tr|Hũ+(t)|

. Tr|Hũ0+
|+ ε4

t
∫

0

(Tr|HY+(ũ)(τ)|+ Tr|Hũ+
(τ)|+ ε) dτ

. ‖ũ0+‖B1 + ε4
t

∫

0

(‖ũ(τ)‖5B1 + ‖ũ+(τ)‖B1 + ε) dτ

so that as ‖ũ(t)‖B1 ≤ 11K,

‖ũ+(t)‖B1 . ‖ũ0+‖B1 + ε4t(11K)5 ,

and, if t << 1
ε3

and ε is small enough,

‖ũ(t)‖B1 . ‖ũ0+‖B1 .

Using again the second estimate in Lemma 4, we infer

‖u(t)‖B1 ≤ K .

Finally, using the inverse of transformation (11) and multiplying u by
ε, we obtain estimate (6) of Theorem 1.1.
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We now estimate the difference between the solution of the wave equa-
tion and the solution of the cubic Szegö equation. Since we have ap-
plied transformation (11), we have to compare in B1 the solution u of
equation (12) to the solution v of equation

i∂tv −Dv = ε2(Π+(|v|2v)− 2‖u0‖2L2v) , v(0) = u0 .

Notice that, as u0 is bounded in Hs, s > 1, and as the B1 norm is
conserved by the cubic Szegö flow,

‖v(t)‖B1 ≃ ‖u0‖B1 . ‖u0‖Hs = O(1).

We shall prove that, for every α > 0, there exists cα > 0 such that,

∀t ≤ cα
ε2

log
1

ε
, ‖u(t)− v(t)‖B1 ≤ ε2−α .

In view of the previous estimates, it is enough to prove that, on the
same time interval,

‖ũ+(t)− v(t)‖B1 ≤ ε2−α ,

where ũ+ satisfies

(16)







i∂tũ+ −Dũ+ = ε2
(

Π+(|ũ+|2ũ+)− 2‖u0‖2L2 ũ+

)

+O(ε4) ,

ũ+(0) = ũ0,+ .

As ‖ũ(t)‖B1 . 1, ‖v(t)‖B1 . 1, ‖ũ0,+ − u0‖B1 ≤ ε2‖u0‖B1 . ε2 and

(i∂t−D)(ũ+ − v) = ε2Π+(|ũ+|2ũ+−|v|2v− 2‖u0‖2L2(ũ+− v))+O(ε4) ,

we get, using that B1 is an algebra on which Π+ acts,

‖ũ+(t)− v(t)‖B1 . ε2 + ε4t+ ε2
t

∫

0

‖ũ+(τ)− v(τ)‖B1 dτ .

This yields

‖ũ+(t)− v(t)‖B1 . (ε2 + ε4t)eε
2t ,

hence, for t ≤ cα
ε2
log 1

ε
,

‖ũ+(t)− v(t)‖B1 ≤ ε2−α .

We now turn to the estimates in Hs for s > 1.

From the equation on v and the a priori estimate in B1, it follows that
‖v(t)‖Hs ≤ AeAε2t, t > 0, so that ‖v(t)‖Hs ≤ N(ε) for t ≤ c

ε2
log(1

ε
),

0 < c << 1 where N(ε) := Aε−cA.

Let us assume that for some T > 0,

∀t ∈ [0, T ], ‖u(t)‖Hs ≤ 10N(ε) .
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We are going to prove that, for every α > 0, there exists cα > 0 such
that, if

T ≤ cα
ε2

log
1

ε
,

then

∀t ∈ [0, T ], ‖u(t)− v(t)‖Hs ≤ ε2−α ,

Since ‖v(t)‖Hs ≤ N(ε) for t ≤ c
ε2
log 1

ε
, this will prove the result by a

bootstrap argument.

As before, we perform the same canonical transformation

ũ(t) := χ−1
ε (u(t)) ,

to get the solution of

i∂tũ− |D|ũ = ε2XR̃(ũ) + ε4Y (ũ) .

By Lemma 4,

‖ũ(t)− u(t)‖Hs . ε2N(ε)3

and so ‖ũ(t)‖Hs . N(ε). Therefore it suffices to prove that

∀t ∈ [0, T ], ‖ũ(t)− v(t)‖Hs ≤ ε2−α .

We first deal with ũ−. A similar argument as the one developed in B1

gives that for, for 0 ≤ t . 1
ε2
log 1

ε
,

sup
0≤τ≤t

‖ũ−(τ)‖Hs ≤ Cαε
2−α

for every α > 0.
It remains to estimate the Hs norm of ũ+ − v. Notice that

‖ũ0,+ − u0‖Hs ≤ ε2

by Lemma 4. We use the following inequality — recall that B1 ⊂ L∞ ,

‖Π+(|u|2u− |v|2v)‖Hs . (‖u‖2B1 + ‖v‖2B1)‖u− v‖Hs +

+ (‖v‖Hs + ‖u− v‖Hs)(‖u‖B1 + ‖v‖B1)‖u− v‖B1 .

Plugging this into a Gronwall inequality, in view of the previous esti-
mates, we finally get

‖ũ+(t)− v(t)‖Hs ≤ ε2−α

for t ≤ cα
ε2
log 1

ε
. This completes the proof.
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5. Appendix: a necessary condition for wellposedness

In this section, we justify that the boundedness in Hs of the first
iteration map of the Duhamel formula

F (t) = e−it|D|f − i

t
∫

0

e−i(t−τ)|D|(|F (τ)|2F (τ))dτ

implies
1

∫

0

‖e−it|D|f‖4L4(T)dt . ‖f‖4Hs/2.

Indeed, assume the following inequality
∥

∥

∥

∥

∥

∥

1
∫

0

e−i(1−τ)|D|(|e−iτ |D|f |2e−iτ |D|f)dτ

∥

∥

∥

∥

∥

∥

Hs

. ‖f‖3Hs.

We compute the scalar product of the expression in the left hand side
with e−i|D|f and we get

1
∫

0

‖e−iτ |D|f‖4L4dτ . ‖f‖3Hs‖f‖H−s.

If we assume first that f is spectrally supported, that is if f = ∆Nf for
some N , then ‖f‖H±s ≃ N±s‖f‖L2 and the preceding inequality reads

1
∫

0

‖e−iτ |D|f‖4L4dτ . N2s‖f‖4L2.

Eventually, for general f =
∑

N ∆N (f), we used the Littlewood-
Paley estimate

‖g‖4L4 .
∑

N

‖∆Ng‖4L4

to get
1

∫

0

‖e−iτ |D|f‖4L4dτ . ‖f‖4Hs/2.
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octobre 2008, École polytechnique, Palaiseau.

[5] Gérard, P., Grellier, S., The cubic Szegö equation , Ann. Scient. Éc. Norm.
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