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We consider the following degenerate half wave equation on the one dimensional torus

We show that, on a large time interval, the solution may be approximated by the solution of a completely integrable system-the cubic Szegö equation. As a consequence, we prove an instability result for large H s norms of solutions of this wave equation.

Introduction

Let us consider, on the one dimensional torus T, the following"halfwave" equation (1) i∂ t u -|D|u = |u| 2 u, u(0, •) = u 0 .

Here |D| denotes the pseudo-differential operator defined by

|D|u = |k|u k e ikx , u = k u k e ikx .
This equation can be seen as a toy model for non linear Schrödinger equation on degenerate geometries leading to lack of dispersion. For instance, it has the same structure as the cubic non linear Schrödinger equation on the Heisenberg group, or associated with the Grušin operator. We refer to [START_REF] Gérard | The cubic Szegö equation[END_REF] and [START_REF] Gérard | The cubic Szegö equation[END_REF] for more detail. We endow L 2 (T) with the symplectic form ω(u, v) = Im(u|v) .

Equation ( 1) may be seen as the Hamiltonian system related to the energy function H(u) := 1 2 (|D|u, u)+ 1 4 u 4 L 4 . In particular, H is invariant by the flow which also admits the following conservation laws,

Q(u) := u 2
L 2 , M(u) := (Du|u). However, equation ( 1) is a non dispersive equation. Indeed, it is equivalent to the system [START_REF] Colliander | Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrodinger equation[END_REF] i(∂ t ± ∂ x )u ± = Π ± (|u| 2 u), u ± (0, •) = Π ± (u 0 ), where u ± = Π ± (u). Here, Π + denotes the orthogonal projector from L 2 (T) onto

L 2 + (T) := {u = k≥0 u k e ikx , (u k ) k≥0 ∈ ℓ 2 }
and Π -:= I -Π + . Though the scaling is L 2 -critical, the first iteration map of the Duhamel formula u(t) = e -it|D| u 0 -i t 0 e -i(t-τ )|D| (|u(τ )| 2 u(τ ))dτ is not bounded on H s for s < 1 2 . Indeed, such boundedness would require the inequality

1 0 e -it|D| f 4 L 4 (T) dt f 4 H s/2 .
However, testing this inequality on functions localized on positive modes for instance, shows that this fails if s < 1 2 (see the appendix for more detail).

Proceeding as in the case of the cubic Szegö equation (see [START_REF] Gérard | The cubic Szegö equation[END_REF], Theorem 2.1), [START_REF] Craig | Problèmes de petits diviseurs dans les équations aux dérivées partielles[END_REF] i∂ t w = Π + (|w| 2 w), one can prove the global existence and uniqueness of solutions of (1) in H s for any s ≥ 1/2. The proof uses in particular the a priori bound of the H 1/2 -norm provided by the energy conservation law.

Proposition 1. Given u 0 ∈ H 1 2 (T), there exists u ∈ C(R, H 1 2 (T)) unique such that i∂ t u -|D|u = |u| 2 u , u(0, x) = u 0 (x) .

Moreover if u 0 ∈ H s (T) for some s > 1 2 , then u ∈ C(R, H s (T)). Notice that similarly to the cubic Szegö equation, the proof of Proposition 1 provides only bad large time estimates,

u(t) H s e e Cst .
This naturally leads to the question of the large time behaviour of solutions of (1). In order to answer this question, a fundamental issue is the decoupling of non negative and negative modes in system [START_REF] Colliander | Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrodinger equation[END_REF]. Assuming that initial data are small and spectrally localized on non negative modes, a first step in that direction is given by the next simple proposition, which shows that u -(t) remains smaller in H 1/2 uniformly in time.

Proposition 2. Assume

Π + u 0 = u 0 = O(ε) in H 1 2 (T).
Then, the solution u of (1) satisfies

sup t∈R Π -u(t) H 1 2 = O(ε 2 ) .
Proof. By the energy and momentum conservation laws, we have

(|D|u, u) + 1 2 u 4 L 4 = (|D|u 0 , u 0 ) + 1 2 u 0 4 L 4 , (Du, u) = (Du 0 , u 0 ) .
Substracting these equalities, we get

2(|D|u -, u -) + 1 2 u 4 L 4 = 1 2 u 0 4 L 4 = O(ε 4 ) , hence u - 2 H 1 2 = O(ε 4 ) .
This decoupling result suggests to neglect u -in system (2) and hence to compare the solutions of (1) to the solutions of

i∂ t v -Dv = Π + (|v| 2 v),
which can be reduced to (3) by the transformation v(t, x) = w(t, x -t).

Our main result is the following.

Theorem 1.1. Let s > 1 and

u 0 = Π + (u 0 ) ∈ L 2 + (T) ∩ H s (T) with u 0 H s = ε, ε > 0 small enough. Denote by v the solution of the cubic Szegö equation (4) i∂ t v -Dv = Π + (|v| 2 v) , v(0, •) = u 0 .
Then, for any α > 0, there exists a constant c = c α < 1 so that

(5) u(t) -v(t) H s = O(ε 3-α ) for t ≤ c α ε 2 log 1 ε .
Furthermore, there exists c > 0 such that

(6) ∀t ≤ c ε 3 , u(t) L ∞ = O(ε) . Theorem 1.
1 calls for several remarks. Firstly, if we rescale u as εu, equation (1) becomes

i∂ t u -|D|u = ε 2 |u| 2 u, u(0, •) = u 0
with u 0 H s = 1. On the latter equation, it is easy to prove that u(t) = e -it|D| u 0 + o(1) for t < < 1 ε 2 , so that non linear effects only start for 1 ε 2 t. Rescaling v as εv in equation ( 4), Theorem 1.1 states that the cubic Szegö dynamics appear as the effective dynamics of equation (1) on a time interval where non linear effects are taken into account.

Secondly, as pointed out before, (4) reduces to (3) by a simple Galilean transformation. Equation (3) has been studied in [START_REF] Gérard | The cubic Szegö equation[END_REF], [START_REF] Gérard | The cubic Szegö equation[END_REF] and [START_REF] Gérard | Invariant Tori for the cubic Szegö equation[END_REF] where its complete integrability is established together with an explicit formula for its generic solutions. Consequently, the first part of Theorem 1.1 provides an accurate description of solutions of equation (1) for a reasonably large time. Moreover, the second part of Theorem 1.1 claims an L ∞ bound for the solution of (1) on an even larger time. This latter bound is closely related to a special conservation law of equation ( 3), namely, some Besov norm of v -see section 2 below.

Our next observation is that, in the case of small Cauchy data localized on non negatives modes, system (2) can be reformulated as a -singular -perturbation of the cubic Szegö equation [START_REF] Craig | Problèmes de petits diviseurs dans les équations aux dérivées partielles[END_REF]. Indeed, write u 0 = εw 0 and u(t, x) = εw(ε 2 t, x -t), then w = w + + w -solves the system [START_REF] Grébert | Birkhoff Normal Form and Hamiltonian PDEs[END_REF] i∂

t w + = Π + (|w| 2 w) i(ε 2 ∂ t -2∂ x )w -= ε 2 Π -(|w| 2 w)
Notice that, for ε = 0 and Π + w 0 = w 0 , the solution of this system is exactly the solution of (3). It is therefore natural to ask how much, for ε > 0 small, the solution of system [START_REF] Grébert | Birkhoff Normal Form and Hamiltonian PDEs[END_REF] stays close to the solution of equation [START_REF] Craig | Problèmes de petits diviseurs dans les équations aux dérivées partielles[END_REF]. Since equation (3) turns out to be completely integrable, this problem appears as a perturbation of a completely integrable infinite dimensional system. There is a lot of literature on this subject (see e.g. the books by Kuksin [START_REF] Kuksin | Nearly integrable infinite-dimensional Hamiltonian systems[END_REF], Craig [START_REF] Craig | Problèmes de petits diviseurs dans les équations aux dérivées partielles[END_REF] and Kappeler-Pöschel [START_REF] Kappeler | Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics[END_REF] for the KAM theory). In the case of the 1D cubic NLS equation and of the modified KdV equation, with special initial data such as solitons or 2-solitons, we refer to recent papers by Holmer-Zworski ( [START_REF] Holmer | Slow soliton interaction with delta impurities[END_REF], [START_REF] Holmer | Soliton interaction with slowly varying potentials[END_REF]), Holmer-Marzuola-Zworski ( [START_REF] Holmer | Fast soliton scattering by delta impurities[END_REF]), Holmer-Perelman-Zworski ( [START_REF] Holmer | Effective dynamics of double solitons for perturbed mKdV, with an appendix by Bernd Sturmfels[END_REF]) and to references therein. Here we emphasize that our perturbation is more singular and that we deal with general Cauchy data.

Finally, let us mention that the proof of Theorem 1.1 is based on a Poincaré-Birkhoff normal form approach, similarly to [1] and [START_REF] Grébert | Birkhoff Normal Form and Hamiltonian PDEs[END_REF] for instance. More specifically, we prove that equation (4) turns out to be a Poincaré-Birkhoff normal form of equation ( 1), for small initial data with only non negative modes.

As a corollary of Theorem 1.1, we get the following instability result.

Corollary 1. Let s > 1.
There exists a sequence of data u n 0 and a sequence of times t (n) such that, for any r, u n 0 H r → 0 while the corresponding solution of (1) satisfies

u n (t (n) ) H s ≃ u n 0 H s log 1 u n 0 H s 2s-1 .
It is interesting to compare this result to what is known about cubic NLS. In the one dimensional case, the cubic NLS is integrable [START_REF] Zakharov | Exact theory of two-dimensional selffocusing and one-dimensional self-modulation of waves in nonlinear media[END_REF] and admits an infinite number of conservation laws which control the regularity of the solution in Sobolev spaces. As a consequence, no such norm inflation occurs. This is in contrast with the 2D cubic NLS case for which Colliander, Keel, Staffilani, Takaoka, Tao exhibited in [START_REF] Colliander | Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrodinger equation[END_REF] small initial data in H s which give rise to large H s solutions after a large time.

In our case, the situation is different. Although the cubic Szegö equation is completely integrable, its conservation laws do not control the regularity of the solutions, which allows a large time behavior similar to the one proved in [START_REF] Colliander | Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrodinger equation[END_REF] for 2D cubic NLS (see [START_REF] Gérard | The cubic Szegö equation[END_REF] section 6, corollary 5). Unfortunately, the time interval on which the approximation (5) holds does not allow to infer large solutions for ( 1), but only solutions with large relative size with respect to their Cauchy data -see section 3 below. A time interval of the form [0, 1 ε 2+β ] for some β > 0 would be enough to construct large solutions for (1) for some H s -norms.

We close this introduction by mentioning that O. Pocovnicu solved a similar problem for equation (1) on the line by using the renormalization group method instead of the Poincaré-Birkhoff normal form method. Moreover, she improved the approximation in Theorem 1.1 by introducing a quintic correction to the Szegö cubic equation [START_REF] Pocovnicu | First and second order approximations for a non linear equation, in Etude d'une équation non linéaire, non dispersive et complètement intégrable et de ses perturbations[END_REF].

The paper is organized as follows. In section 2 we recall some basic facts about the Lax pair structure for the cubic Szegö equation (3). In section 3, we deduce Corollary 1 from Theorem 1.1. Finally, the proof of Theorem 1.1 is given in section 4.

The Lax pair for the cubic Szegö equation and some of its consequences

In this section, we recall some basic facts about equation (3) (see [START_REF] Gérard | The cubic Szegö equation[END_REF] for more detail). Given w ∈ H 1/2 (T), we define (see e.g. Peller [START_REF] Peller | Hankel operators of class S p and their applications (rational approximation, Gaussian processes, the problem of majorization of operators[END_REF], Nikolskii [START_REF] Nikolskii | Operators, functions, and systems: an easy reading[END_REF]), the Hankel operator of symbol w by

H w (h) = Π + (wh) , h ∈ L 2 + .
It is easy to check that H w is a C -antilinear Hilbert-Schmidt operator.

In [START_REF] Gérard | The cubic Szegö equation[END_REF], we proved that the cubic Szegö flow admits a Lax pair in the following sense. For simplicity let us restrict ourselves to the case of H s solutions of (3) for s > 1 2 . From [5] Theorem 3.1, there exists a mapping w ∈ H s → B w , valued into C-linear bounded skew-symmetric operators on L 2 + , such that (8)

H -iΠ + (|w| 2 w) = [B w , H w ] .
Moreover,

B w = i 2 H 2 w -iT |w| 2
, where T b denotes the Toeplitz operator of symbol b given by T b (h) = Π + (bh). Consequently, w is a solution of (3) if and only if [START_REF] Holmer | Soliton interaction with slowly varying potentials[END_REF] d dt

H w = [B w , H w ] .
An important consequence of this structure is that the cubic Szegö equation admits an infinite number of conservation laws. Indeed, denoting W (t) the solution of the operator equation

d dt W = B w W , W (0) = I ,
the operator W (t) is unitary for every t, and

W (t) * H w(t) W (t) = H w(0) .
Hence, if w is a solution of (3), then H w(t) is unitarily equivalent to H w(0) . Consequently, the spectrum of the C-linear positive self adjoint trace class operator H 2 w is conserved by the evolution. In particular, the trace norm of H w is conserved by the flow. A theorem by Peller, see [START_REF] Peller | Hankel operators of class S p and their applications (rational approximation, Gaussian processes, the problem of majorization of operators[END_REF], Theorem 2, p. 454, states that the trace norm of a Hankel operator H w is equivalent to the norm of w in the Besov space B 1 1,1 (T). Recall that the Besov space B 1 = B 1 1,1 (T) is defined as the set of functions w so that w B 1 1,1 is finite where

w B 1 1,1 = S 0 (w) L 1 + ∞ j=0 2 j ∆ j w L 1 ,
here w = S 0 (w) + ∞ j=0 ∆ j w stands for the Littlewood-Paley decomposition of w. It is standard that B 1 is an algebra included into L ∞ (in fact into the Wiener algebra). The conservation of the trace norm of H w therefore provides an L ∞ estimate for solutions of (3) with initial data in B 1 .

The space B 1 and formula (8) will play an important role in the proof of Theorem 1.1. In particular, the last part will follow from the fact that u(t) B 1 remains bounded by ε for t < < 1 ε 3 . The fact that H s (T) ⊂ B 1 for s > 1, explains why we assume s > 1 in the statement.

Proof of Corollary 1

As observed in [START_REF] Gérard | The cubic Szegö equation[END_REF], section 6.1, Proposition 7, and section 6.2, Corollary 5, the equation

i∂ t w = Π + (|w| 2 w) , w(0, x) = a 0 e ix + b 0 1 -p 0 e ix with a 0 , b 0 , p 0 ∈ C, |p 0 | < 1 can be solved as w(t, x) = a(t) e ix + b(t) 1 -p(t)e ix
where a, b, p satisfy an ODE system explicitly solvable.

In the particular case when

a 0 = ε , b 0 = εδ , p 0 = 0 , w ε (0, x) = ε(e ix + δ) , one finds 1 -p π 2ε 2 δ 2 ≃ δ 2 , so that, for s > 1 2 , w ε π 2ε 2 δ H s ≃ ε δ 2s-1 . Let v ε be the solution of i(∂ t + ∂ x )v ε = Π + (|v ε | 2 v ε ) , v ε (0, x) = ε(e ix + δ) then v ε (t, x) = w ε (t, x -t) so that v ε π 2ε 2 δ H s ≃ ε δ 2s-1 . Choose ε = 1 n , δ = C log n with C large enough so that if t (n) := π 2ε 2 δ then t (n) < c log(1/ε) ε 2
, where c = c α in Theorem 1.1 for α = 1, say. Denote by u n 0 := v ε (0, •). As u n 0 H s ≃ ε, the previous estimate reads

v ε π 2ε 2 δ H s ≃ u n 0 H s log 1 u n 0 H s 2s-1 .
Applying Theorem 1.1, we get the same information about u n (t (n) ) H s .

Proof of Theorem 1.1

First of all, we rescale u as εu so that equation (1) becomes [START_REF] Holmer | Fast soliton scattering by delta impurities[END_REF] i∂

t u -|D|u = ε 2 |u| 2 u, u(0, •) = u 0 with u 0 H s = 1.

4.1.

Study of the resonances. We write the Duhamel formula as

u(t) = e -it|D| u(t) with û(t, k) = û0 (k) -iε 2 k 1 -k 2 +k 3 -k=0 I(k 1 , k 2 , k 3 , k),
where

I(k 1 , k 2 , k 3 , k) = t 0 e -iτ Φ(k 1 ,k 2 ,k 3 ,k) û(τ, k 1 )û(τ, k 2 )û(τ, k 3 ) dτ , and Φ(k 1 , k 2 , k 3 , k 4 ) := |k 1 | -|k 2 | + |k 3 | -|k 4 | . If Φ(k 1 , k 2 , k 3 , k 4 ) = 0, an integration by parts in I(k 1 , k 2 , k 3 , k 4 )
provides an extra factor ε 2 , hence the set of (k 1 , k 2 , k 3 , k 4 ) such that Φ(k 1 , k 2 , k 3 , k 4 ) = 0 is expected to play a crucial role in the analysis. This set is described in the following lemma.

Lemma 1. Given (k 1 , k 2 , k 3 , k 4 ) ∈ Z 4 , k 1 -k 2 + k 3 -k 4 = 0 and |k 1 | -|k 2 | + |k 3 | -|k 4 | = 0
if and only if at least one of the following properties holds :

(1) ∀j, k j ≥ 0 .

(2) ∀j, k j ≤ 0 .

(

) k 1 = k 2 , k 3 = k 4 . ( 3 
) k 1 = k 4 , k 3 = k 2 . 4 
Proof. 

Consider (k 1 , k 2 , k 3 , k 4 ) ∈ Z 4 such that k 1 -k 2 + k 3 -k 4 = 0, |k 1 | -|k 2 | + |k 3 | -|k 4 | = 0,
i∂ t u -|D|u = ε 2 (|u| 2 -2 u 2 L 2 )u, u(0, •) = u 0 .
Notice that this transformation does not change the H s norm. The Hamiltonian function associated to the equation ( 12) is given by

H(u) = 1 2 (|D|u, u) + ε 2 4 ( u 4 L 4 -2 u 4 L 2 ) = H 0 (u) + ε 2 R(u)
, where

H 0 (u) := 1 2 (|D|u, u) , R(u) := 1 4 ( u 4 L 4 -2 u 4 L 2 ) = 1 4 k 1 -k 2 +k 3 -k 4 =0, k 1 =k 2 ,k 4 u k 1 u k 2 u k 3 u k 4 .

4.3.

The Poincaré-Birkhoff normal form. We claim that under a suitable canonical transformation on u, H can be reduced to the following Hamiltonian

H(u) = H 0 (u) + ε 2 R(u) + O(ε 4 )
where

R(u) = 1 4 k∈R u k 1 u k 2 u k 3 u k 4 with R = {k = (k 1 , k 2 , k 3 , k 4 ) : k 1 -k 2 + k 3 -k 4 = 0, k 1 = k 2 , k 1 = k 4 , ∀j, k j ≥ 0 or ∀j, k j ≤ 0} .
We look for a canonical transformation as the value at time 1 of some Hamiltonian flow. In other words, we look for a function F such that its Hamiltonian vector field is smooth on H s and on B 1 , so that our canonical transformation is ϕ 1 , where ϕ σ is the solution of ( 13)

d dσ ϕ σ (u) = ε 2 X F (ϕ σ (u)), ϕ 0 (u) = u.
Recall that, given a smooth real valued function F , its Hamiltonian vector field X F is defined by dF (u).h =: ω(h, X F (u)) , and, given two functions F, G admitting Hamiltonian vector fields, the Poisson bracket of F, G is defined by

{F, G}(u) = ω(X F (u), X G (u)) .
Let us make some preliminary remarks about the Poisson brackets.

In view of the expression of ω, we have

{F, G} := dG.X F = 2 i k (∂ k F ∂ k G -∂ k G∂ k F )
where ∂ k F stands for ∂F ∂u k and ∂ k F for ∂F ∂u k . In particular, if F and G are respectively homogeneous of order p and q, then their Poisson bracket is homogeneous of order p + q -2.

We prove the following lemma.

Lemma 2. Set F (u) := k 1 -k 2 +k 3 -k 4 =0 f k,k 2 ,k 3 ,k 4 u k 1 u k 2 u k 3 u k 4 , where f k 1 ,k 2 ,k 3 ,k 4 = i 4(|k 1 |-|k 2 |+|k 3 |-|k 4 |) if |k 1 | -|k 2 | + |k 3 | -|k 4 | = 0 , 0 otherwise.
Then X F is smooth on H s , s > 1 2 , as well as on B 1 , and

{F, H 0 } + R = R , DX F (u)h u 2 h ,
where the norm is taken either in H s , s > 1 2 , or in B 1 . Proof. First we make a formal calculation with F given by

F (u) := k 1 -k 2 +k 3 -k 4 =0 f k 1 ,k 2 ,k 3 ,k 4 u k 1 u k 2 u k 3 u k 4
for some coefficients f k 1 ,k 2 ,k 3 ,k 4 to be determined later. We compute

{F, H 0 } = 1 i k 1 -k 2 +k 3 -k 4 =0 (-|k 1 |+|k 2 |-|k 3 |+|k 4 |)f k 1 ,k 2 ,k 3 ,k 4 u k 1 u k 2 u k 3 u k 4 so that equality {F, H 0 } + R = R requires f k 1 ,k 2 ,k 3 ,k 4 = i 4(|k 1 |-|k 2 |+|k 3 |-|k 4 |) if |k 1 | -|k 2 | + |k 3 | -|k 4 | = 0 0 otherwise.
One can easily check that the function F is explicitly given by

F (u) = 1 2 Im (D -1 0 u -||u + | 2 u + ) -(D -1 0 u + ||u -| 2 u -) -(D -1 0 |u + | 2 ||u -| 2 )
where D -1 0 is the operator defined by

D -1 0 u(x) = k =0 u k k e ikx .
In view of the above formula, the Hamiltonian vector field X F (u) is a sum and products of terms involving the following maps

f → f , f → D -1 0 f , f → Π ± f , (f, g) → f g.
These maps are continuous on H s and on B 1 . Hence, X F is smooth and its differential satisfies the claimed estimate on H s , s > 1 2 , and B 1 .

For further reference, we state the following technical lemma, which is based on straightforward calculations.

Lemma 3. The function R and its Hamiltonian vector field are given by

R(u) = 1 4 ( ũ+ 4 L 4 + ũ- 4 L 4 ) + Re((u|1) (u -|u 2 -)) - 1 2 ( u + 4 L 2 + u - 4 L 2 ) , iX R(u) = Π + (|u + | 2 u + ) + Π -(|u -| 2 u -) -2 u + 2 L 2 u + -2 u - 2 L 2 u - +(u -|u 2 -) + 2(1|u)Π -(|u -| 2 ) + (1|u)u 2
-, where we have set u ± := Π ± (u). The maps X {F,R} and X {F, R} are smooth homogeneous polynomials of degree five on B 1 and on H s for every s > 1 2 . We now perform the canonical transformation

χ ε := exp(ε 2 X F ). Lemma 4. Set ϕ σ := exp(ε 2 σX F ) for -1 ≤ σ ≤ 1. There exist m 0 > 0 and C 0 > 0 so that, for any u ∈ B 1 so that ε u B 1 ≤ m 0 , ϕ σ (u) is well defined for σ ∈ [-1, 1] and ϕ σ (u) B 1 ≤ 3 2 u B 1 ϕ σ (u) -u B 1 ≤ C 0 ε 2 u 3 B 1 Dϕ σ (u) B 1 →B 1 ≤ e C 0 ε 2 u 2 B 1
Moreover, the same estimates hold in H s , s > 1 2 , with some constants m(s) and C(s).

Proof. Write ϕ σ as the integral of its derivative and use Lemma 2 to get [START_REF] Nikolskii | Operators, functions, and systems: an easy reading[END_REF] sup

|σ|≤τ ϕ σ (u) B 1 ≤ u B 1 + Cε 2 sup |σ|≤τ ϕ σ (u) 3 B 1 , 0 ≤ τ ≤ 1
We now use the following standard bootstrap lemma.

Lemma 5. Let a, b, T > 0 and τ ∈ [0, T ] → M(τ ) ∈ R + be a continu- ous function satisfying ∀τ ∈ [0, T ], M(τ ) ≤ a + bM(τ ) 3 . Assume √ 3b M(0) < 1 , √ 3b a < 2 3 . Then ∀τ ∈ [0, T ] , M(τ ) ≤ 3 2 a .
Proof. For the convenience of the reader, we give the proof of Lemma 5. The function f : z ≥ 0 → z -bz 3 attains its maximum at

z c = 1 √ 3b , equal to f m = 2 3 √ 3b .
Consequently, since a is smaller than f m by the second inequality,

{z ≥ 0 : f (z) ≤ a} = [0, z -] ∪ [z + , +∞)
with z -< z c < z + and f (z -) = a. Since M(τ ) belongs to this set for every τ and since M(0) belongs to the first interval by the first inequality, we conclude by continuity that M(τ ) ≤ z -for every τ . By

concavity of f , f (z) ≥ 2 3 z for z ∈ [0, z c ], hence z -≤ 3 2 a.
Let us come back to the proof of Lemma 4.

If ε u B 1 < 2 3 √
3C , equation ( 14) and Lemma 5 imply that [START_REF] Pocovnicu | First and second order approximations for a non linear equation, in Etude d'une équation non linéaire, non dispersive et complètement intégrable et de ses perturbations[END_REF] sup

|σ|≤1 ϕ σ (u) B 1 ≤ 3 2 u B 1 ,
which is the first estimate. For the second one, we write for |σ| ≤ 1,

ϕ σ (u)-u B 1 = ϕ σ (u)-ϕ 0 (u) B 1 ≤ |σ| sup |s|≤|σ| d ds ϕ s (u) B 1 ≤ C 0 ε 2 u 3 B 1 ,
where the last inequality comes from Lemma 2 and estimate [START_REF] Pocovnicu | First and second order approximations for a non linear equation, in Etude d'une équation non linéaire, non dispersive et complètement intégrable et de ses perturbations[END_REF].

It remains to prove the last estimate. We differentiate the equation satisfied by ϕ σ and use again Lemma 2 to obtain

Dϕ σ (u) B 1 →B 1 ≤ 1 + ε 2 σ 0 DX F (ϕ τ (u)) B 1 →B 1 Dϕ τ (u) B 1 →B 1 dτ ≤ 1 + C 0 ε 2 u 2 B 1 σ 0 Dϕ τ (u) B 1 →B 1 dτ ,
and Gronwall's lemma yields the result. Analogous proofs give the estimates in H s .

Let u satisfy the assumption of Lemma 4 in B 1 or in H s for some s > 1 2 .

Let us compute H • χ ε = H • ϕ 1 as the Taylor expansion of H • ϕ σ at time 1 around 0. One gets

H • χ ε = H • ϕ 1 = H 0 • ϕ 1 + ε 2 R • ϕ 1 = H 0 + d dσ [H 0 • ϕ σ ] σ=0 + ε 2 R + + 1 0 (1 -σ) d 2 dσ 2 [H 0 • ϕ σ ] + ε 2 d dσ [R • ϕ σ ] dσ = H 0 + ε 2 ({F, H 0 } + R) + ε 4 1 0 ((1 -σ){F, {F, H 0 }} + {F, R}) • ϕ σ dσ = H 0 + ε 2 R + ε 4 1 0 (1 -σ){F, R} + σ{F, R} • ϕ σ dσ := H 0 + ε 2 R + ε 4 1 0 G(σ) • ϕ σ dσ .
By Lemma 3, one gets

sup 0≤σ≤1 X G(σ) (w) ≤ C w 5
where the norm stands for the B 1 norm or the H s norm. Since

X G(σ)•ϕσ (u) = Dϕ -σ (ϕ σ (u)).X G(σ) (ϕ σ (u)) , we conclude from Lemma 4 that, if ε u B 1 ≤ m 0 , X G(σ)•ϕσ (u) B 1 ≤ C u 5 B 1 .
As a consequence, one can write

X H•χε = X H 0 + ε 2 X R + ε 4 Y , where, if ε u B 1 ≤ m 0 , then Y (u) B 1 u 5 B 1 . An analogous estimate holds in H s , s > 1 2 .
4.4. End of the proof. We first deal with the B 1 -norm of u, solution of equation [START_REF] Kappeler | Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics[END_REF]. We are going to prove that u(t) B 1 = O(1) for t < < 1 ε 3 by the following bootstrap argument. We assume that for some K large enough with respect to u 0 B 1 , for some T > 0, for all t ∈ [0, T ], u(t) B 1 ≤ 10K, and we prove that if T < < 1 ε 3 , u(t) B 1 ≤ K for t ∈ [0, T ]. This will prove the result by continuity.

Set, for t ∈ [0, T ], ũ(t) := χ -1 ε (u(t)) , so that ũ is solution of

i∂ t ũ -|D|ũ = ε 2 X R(ũ) + ε 4 Y (ũ) .
Moreover, by Lemma 4,

ũ(t) -u(t) B 1 ε 2 u 3 B 1
and so by the hypothesis, ũ(t) B 1 ≤ 11K if ε is small enough. In view of the expression of the Hamiltonian vector field of R in Lemma 3, the equation for ũ reads

           i∂ t ũ+ -Dũ + = ε 2 Π + (|ũ + | 2 ũ+ ) -2 ũ+ 2 L 2 ũ+ + T |ũ -| 2 ũ- + ε 4 Y + (ũ) , i∂ t ũ-+ Dũ -= ε 2 Π -(|ũ -| 2 ũ-) -2 ũ- 2 L 2 ũ-+ 2(1|ũ)Π -(|ũ -| 2 ) + (1|ũ)ũ 2 - + ε 4 Y -(ũ) .
Notice that all the Hamiltonian functions we have dealt with so far are invariant by multiplication by complex numbers of modulus 1, hence their Hamiltonian vector fields satisfy X(e iθ z) = e iθ z , so that the corresponding Hamiltonian flows conserve the L 2 norm. Hence ũ has the same L 2 norm as u, which is the L 2 norm of u 0 . In particular,

|(1|ũ)| ≤ u 0 L 2 .
Moreover, as

u 0 B 1 u 0 H s = O(1) since s > 1, ũ0 satisfies ũ0 -u 0 B 1 ε 2
by Lemma 4 so that, as u 0-= 0, we get ũ0-B 1 = O(ε 2 ). Then we obtain from the second equation

sup 0≤τ ≤t ũ-(τ ) B 1 ε 2 +ε 2 t( sup 0≤τ ≤t ũ-(τ ) 3 B 1 + sup 0≤τ ≤t ũ-(τ ) 2 B 1 )+ε 4 tK 5 . Let M(t) = 1 ε sup 0≤τ ≤t ũ-(τ ) B 1 so that, if t ≤ T , M(t) ε + ε 3 T M(t) 2 (1 + εM(t)) + ε 3 T.
As 3m 2 ≤ 1 + 2m 3 for any m ≥ 0, we get

M(t) ε + ε 3 T M(t) 3 + ε 3 T.
Using Lemma 5, we conclude that, if

T < < 1 ε 3 , sup 0≤τ ≤T ũ-(τ ) B 1 < < ε.
For further reference, notice that, if T 1 ε 2 log 1 ε , this estimate can be improved as sup

0≤τ ≤T ũ-(τ ) B 1 ε 2-α , ∀α > 0.
We come back to the case T < < 1 ε 3 . From the estimate on ũ-, we infer ũ+

2 L 2 = ũ 2 L 2 + O(ε 2 ) = u 0 2 L 2 + O(ε 2 ) ,
and the equation for ũ+ reads

i∂ t ũ+ -Dũ + = ε 2 Π + (|ũ + | 2 ũ+ ) -2 u 0 2 L 2 ũ+ +ε 4 Y + (ũ)+O(ε 5
)+O(ε 4 )ũ + . Since ũ0+ is not small in B 1 , we have to use a different strategy to estimate ũ+ . We use the complete integrability of the cubic Szegö equation, especially its Lax pair and the conservation of the B 1 -norm.

At this stage it is of course convenient to cancel the linear term u 0 2 L 2 ũ+ by multiplying ũ+ (t) by e 2iε 2 t u 0 2 L 2 . As pointed out before, this change of unknown is completely transparent to the above system. This leads to

i∂ t ũ+ -Dũ + = ε 2 Π + (|ũ + | 2 ũ+ ) + ε 4 Y + (ũ) + O(ε 5 ) + O(ε 4 )ũ + .
We now appeal to the results recalled in section 2. We introduce the unitary family U(t) defined by

i∂ t U -DU = ε 2 (T |ũ + | 2 - 1 2 H 2 ũ+ )U , U(0) = I, so that, using formula (8), i∂ t (U(t) * H ũ+ (t) U(t)) = ε 4 U(t) * H Y + (ũ)+O(ε)+O(1)ũ + U(t) .
Then, we use Peller's theorem [START_REF] Peller | Hankel operators of class S p and their applications (rational approximation, Gaussian processes, the problem of majorization of operators[END_REF] which states, as recalled in section 2, that the trace norm of a Hankel operator of symbol b is equivalent to the B 1 -norm of b to obtain

ũ+ (t) B 1 ≃ Tr|H ũ+ (t) | Tr|H ũ0+ | + ε 4 t 0 (Tr|H Y + (ũ) (τ )| + Tr|H ũ+ (τ )| + ε) dτ ũ0+ B 1 + ε 4 t 0 ( ũ(τ ) 5 B 1 + ũ+ (τ ) B 1 + ε) dτ so that as ũ(t) B 1 ≤ 11K, ũ+ (t) B 1 ũ0+ B 1 + ε 4 t(11K) 5 , and, if t < < 1 ε 3 and ε is small enough, ũ(t) B 1 ũ0+ B 1 .
Using again the second estimate in Lemma 4, we infer

u(t) B 1 ≤ K .
Finally, using the inverse of transformation [START_REF] Holmer | Effective dynamics of double solitons for perturbed mKdV, with an appendix by Bernd Sturmfels[END_REF] and multiplying u by ε, we obtain estimate (6) of Theorem 1.1.

We now estimate the difference between the solution of the wave equation and the solution of the cubic Szegö equation. Since we have applied transformation [START_REF] Holmer | Effective dynamics of double solitons for perturbed mKdV, with an appendix by Bernd Sturmfels[END_REF], we have to compare in B 1 the solution u of equation ( 12) to the solution v of equation

i∂ t v -Dv = ε 2 (Π + (|v| 2 v) -2 u 0 2 L 2 v) , v(0) = u 0 .
Notice that, as u 0 is bounded in H s , s > 1, and as the B 1 norm is conserved by the cubic Szegö flow,

v(t) B 1 ≃ u 0 B 1 u 0 H s = O(1).
We shall prove that, for every α > 0, there exists c α > 0 such that,

∀t ≤ c α ε 2 log 1 ε , u(t) -v(t) B 1 ≤ ε 2-α .
In view of the previous estimates, it is enough to prove that, on the same time interval,

ũ+ (t) -v(t) B 1 ≤ ε 2-α ,
where ũ+ satisfies ( 16)

   i∂ t ũ+ -Dũ + = ε 2 Π + (|ũ + | 2 ũ+ ) -2 u 0 2 L 2 ũ+ + O(ε 4 ) , ũ+ (0) = ũ0,+ . As ũ(t) B 1 1, v(t) B 1 1, ũ0,+ -u 0 B 1 ≤ ε 2 u 0 B 1 ε 2 and (i∂ t -D)(ũ + -v) = ε 2 Π + (|ũ + | 2 ũ+ -|v| 2 v -2 u 0 2 L 2 (ũ + -v)) + O(ε 4
) , we get, using that B 1 is an algebra on which Π + acts,

ũ+ (t) -v(t) B 1 ε 2 + ε 4 t + ε 2 t 0 ũ+ (τ ) -v(τ ) B 1 dτ . This yields ũ+ (t) -v(t) B 1 (ε 2 + ε 4 t)e ε 2 t , hence, for t ≤ cα ε 2 log 1 ε , ũ+ (t) -v(t) B 1 ≤ ε 2-α .
We now turn to the estimates in H s for s > 1.

From the equation on v and the a priori estimate in B 1 , it follows that v(t) H s ≤ Ae Aε 2 t , t > 0, so that v(t) H s ≤ N(ε) for t ≤ c ε 2 log( 1 ε ), 0 < c < < 1 where N(ε) := Aε -cA .

Let us assume that for some T > 0, ∀t ∈ [0, T ], u(t) H s ≤ 10N(ε) .

We are going to prove that, for every α > 0, there exists c α > 0 such that, if

T ≤ c α ε 2 log 1 ε , then ∀t ∈ [0, T ], u(t) -v(t) H s ≤ ε 2-α ,
Since v(t) H s ≤ N(ε) for t ≤ c ε 2 log 1 ε , this will prove the result by a bootstrap argument.

As before, we perform the same canonical transformation ũ(t) := χ -1 ε (u(t)) , to get the solution of

i∂ t ũ -|D|ũ = ε 2 X R(ũ) + ε 4 Y (ũ) .
By Lemma 4, ũ(t) -u(t) H s ε 2 N(ε) 3 and so ũ(t) H s N(ε). Therefore it suffices to prove that ∀t ∈ [0, T ], ũ(t) -v(t) H s ≤ ε 2-α .

We first deal with ũ-. A similar argument as the one developed in B 1 gives that for, for 0 ≤ t by Lemma 4. We use the following inequality -recall that

B 1 ⊂ L ∞ , Π + (|u| 2 u -|v| 2 v) H s ( u 2 B 1 + v 2 B 1 ) u -v H s + + ( v H s + u -v H s )( u B 1 + v B 1 ) u -v B 1 .
Plugging this into a Gronwall inequality, in view of the previous estimates, we finally get ũ+ (t) -v(t) H s ≤ ε 2-α for t ≤ cα ε 2 log 1 ε . This completes the proof.

Appendix: a necessary condition for wellposedness

In this section, we justify that the boundedness in H s of the first iteration map of the Duhamel formula 

H s f 3 H s .
We compute the scalar product of the expression in the left hand side with e -i|D| f and we get

1 0 e -iτ |D| f 4 L 4 dτ f 3 H s f H -s .
If we assume first that f is spectrally supported, that is if f = ∆ N f for some N, then f H ±s ≃ N ±s f L 2 and the preceding inequality reads Eventually, for general f = N ∆ N (f ), we used the Littlewood-Paley estimate g 4

L 4 N ∆ N g 4 L 4
to get 

1 ε 2

 12 log 1 ε , sup 0≤τ ≤t ũ-(τ ) H s ≤ C α ε 2-αfor every α > 0.It remains to estimate the H s norm of ũ+ -v. Notice that ũ0,+ -u 0 H s ≤ ε 2

F 1 0e -it|D| f 4 L 4 (T) dt f 4 H s/ 2 .Indeed, assume the following inequality 1 0e

 144421 (t) = e -it|D| f -i t 0 e -i(t-τ )|D| (|F (τ )| 2 F (τ ))dτ implies -i(1-τ )|D| (|e -iτ |D| f | 2 e -iτ |D| f )dτ

1 0e

 1 -iτ |D| f 4 L 4 dτ N 2s f 4 L 2 .

  and the k j 's are not all non negative or all non positive. Let us prove in that case that either k 1 = k 2 and k 3 = k 4 , or k 1 = k 4 and k 3 = k 2 . Without loss of generality, we can assume that at least one of the k j is positive, for instance k 1 . Then, substracting both equations, we get that|k 3 | -k 3 = |k 2 | -k 2 + |k 4 | -k 4 .If k 3 is non negative, then, necessarily both k 2 and k 4 are non negative and hence all the k j 's are non negative. Assume now that k 3 is negative. At least one among k 2 , k 4 is negative. If both of them are negative, then k 3 = k 2 + k 4 but this would imply k 1 = 0 which is impossible by assumption. So we get either that k 3 = k 2 (and so k 1 = k 4 ) or k 3 = k 4 (and so k 1 = k 2 ). This completes the proof of the lemma.
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