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The convergence of weak solutions to the compressible Navier-Stokes-Fourier-Poisson system with a friction term is studied in the high friction limit, the pressure law including that corresponding to Fermi-Dirac particles. The limit is shown to be a weak solution of a non-isothermal Smoluchowski-Poisson system with a time-dependent and spatially homogeneous temperature determined by the conservation of the total energy.

Introduction

There are many equations and systems studied in mathematical fluid mechanics that can be obtained, mostly formally, as singular limits of the complete system of equations describing the motion of a general, compressible, viscous, and heat conducting fluid. The best known examples are the geostrophic system arising in meteorology, various models of the turbulence phenomena considered as low Reynolds number limits of a viscous flow, and the classical Navier-Stokes system describing the motion of an incompressible fluid that can be viewed as a low Mach number limit of the full Navier-Stokes-Fourier system (see, for instance, the monograph of ZEYTOUNIAN [START_REF] Kh | Theory and Applications of Viscous Fluid Flows[END_REF]). Problems of this type are characterized by multiple space and time scales, where a careful asymptotic analysis is not only of significant theoretical interest but proved to be an efficient tool in numerical experiments (see KLEIN et al. [START_REF] Klein | Asymptotic adaptive methods for multi-scale problems in fluid mechanics[END_REF]).

Pursuing this strategy we consider the Smoluchowski equation

∂ t ̺ + div x J = 0, (1.1) 
J = -∇ x p F (̺, ϑ) -̺∇ x Φ, (1.2) 
where the density ̺ = ̺(t, x) ≥ 0, and the current J = J(t, x) are functions of the time t ∈ (0, T ) and the spatial position x ∈ Ω ⊂ R 3 , satisfying the conservative boundary conditions J • n| ∂Ω = 0.

(1.

3)

The scalar potential Φ = Φ(t, x) obeys the Poisson equation

∆Φ = 1 Ω ̺ in (0, T ) × R 3 , (1.4) 
while the absolute temperature ϑ = ϑ(t) > 0 is a spatially homogeneous function determined through the total energy balance relation

Ω ̺e F (̺, ϑ) + 1 2
̺Φ dx = E 0 for t ∈ (0, T ).

(1.5)

Given the initial distribution of the density, ̺(0, x) = ̺ 0 (x) for x ∈ Ω, (1.6) the quantities ϑ 0 = ϑ(0) and E 0 are interrelated through

Ω ̺ 0 e F (̺ 0 , ϑ 0 ) + 1 2 ̺ 0 Φ 0 dx = E 0 (1.7)
with ∆Φ 0 = 1 Ω ̺ 0 to be satisfied in R 3 .

The pressure p F and the (specific) internal energy e F obey the perfect gas state equation

p F (̺, ϑ) = 2 3 ̺e F (̺, ϑ), (1.8) 
supplemented with Gibbs' relation

ϑDs F (̺, ϑ) = De F (̺, ϑ) + p F (̺, ϑ)D 1 ̺ , (1.9) 
where the symbol s F stands for the specific entropy and D = (∂ ̺ , ∂ ϑ ). It is easy to see that, necessarily, p F (̺, ϑ) = ϑ 5/2 P F ̺ ϑ 3/2 for a certain function P F : [0, ∞) → R.

(1.10)

As far as we know, a system similar to (1.1 -1.5) has been introduced in [START_REF] Chavanis | Statistical mechanics of two-dimensional vortices and collisionless stellar systems[END_REF] where it is derived by formal asymptotic expansions from a Vlasov-Fokker-Planck-Poisson kinetic equation modelling the statistical mechanics of collisionless stellar systems. The derivation performed in [START_REF] Chavanis | Statistical mechanics of two-dimensional vortices and collisionless stellar systems[END_REF] actually involves two steps: first, taking the moments of order zero, one and two of the solutions to the kinetic equation and using a closure method yield a Euler-Poisson system [START_REF] Chavanis | Statistical mechanics of two-dimensional vortices and collisionless stellar systems[END_REF]Eqns. (5.10)-(5.12)]. A high friction limit then leads to non-isothermal Smoluchowski-Poisson equations similar to (1.1 -1.5) (still at a formal level), the pressure P F being either P F (Z) = Z or P F (Z) = (2/3) I 3/2 • I -1 1/2 (Z), where I α denotes the Fermi integral andI -1 α its inverse function. This approach has further been developed in [START_REF] Chavanis | Chapman-Enskog derivation of the generalized Smoluchowski equation[END_REF] in a more general setting, allowing for other pressure laws p F . The purpose of this work is then an attempt to give a rigorous proof of the second step, the high friction limit, the starting point being not the Euler-Poisson system but the Navier-Stokes-Fourier-Poisson system. Also, the friction term introduced below is simpler than the one arising from [START_REF] Chavanis | Statistical mechanics of two-dimensional vortices and collisionless stellar systems[END_REF].

I α (Z) = ∞ 0 r α 1 + Ze r dr , α > -1 ,
More precisely, as an hydrodynamics counterpart to (1.1 -1.5), we consider the Navier-Stokes-Fourier-Poisson system: ε∂ t ̺ + div x (̺u) = 0, (1.11) ε∂ t (̺u) + div x (̺u ⊗ u) + ∇ x p = div x S -1 ε ̺u -̺∇ x Φ, (1.12)

∆Φ = 1 Ω ̺, (1.13) 
ε∂ t (̺s) + div x (̺su) + div x q ϑ ≥ 1 ϑ S :

∇ x u - q • ∇ x ϑ ϑ + 1 ε ̺|u| 2 , (1.14 
)

Ω 1 2 ̺|u| 2 + ̺e + 1 2 ̺Φ dx = E 0,ε , (1.15) 
supplemented with the conservative boundary conditions:

u • n| ∂Ω = 0, (Sn) × n| ∂Ω = 0, q • n| ∂Ω = 0. (1.16)
Here, the viscous (deviatoric) stress tensor S obeys Newton's rheological law:

S = µ(ϑ) ∇ x u + ∇ x u t - 2 3 div x uI , (1.17) 
the shear viscosity coefficient µ being a continuously differentiable function of the absolute temperature ϑ.

Similarly, the heat flux q is determined by Fourier's law:

q = -κ(ϑ)∇ x ϑ, κ(ϑ) = εϑ 3 + κ F (ϑ), (1.18) 
with the heat conductivity coefficient

κ F ∈ C 1 ([0, ∞)).
Finally, we assume that the pressure p, the internal energy e, and the entropy s are continuously differentiable for ̺, ϑ > 0 and satisfy

p(̺, ϑ) = ε 3 ϑ 4 + p F (̺, ϑ), e(̺, ϑ) = ε ϑ 4 ̺ + e F (̺, ϑ), s(̺, ϑ) = 4ε 3 
ϑ 3 ̺ + s F (̺, ϑ), (1.19) 
where p F , e F , and s F are the same as in (1.8 -1.10).

The system (1.11 -1.15) can be viewed as a simple model of a self-gravitating fluid subjected to high temperature radiation effects expressed through the ε-dependent quantities appearing in the constitutive relations (1.18), (1.19) (see [START_REF] Feireisl | On a simple model of reacting compressible flows arising in astrophysics[END_REF]). Furthermore, the parameter ε scaling the time derivatives corresponds to a (small) value of the Strouhal number while the quantity ̺u/ε in the momentum equation (1.12) can be interpreted as a "friction" term due to the surrounding medium at rest.

The main goal of the present paper is to show that the Smoluchowski-Poisson system (1.1 -1.5) can be obtained as the asymptotic limit for ε → 0 of (1.11 -1.19). Explicitly, we claim the following result.

Theorem 1.1. Let Ω ⊂ R 3 be a bounded domain with Lipschitz boundary. Assume that p, e, and s are given by (1.19), where p F , e F , and s F obey (1.9), (1.10), with

P F ∈ C 1 ([0, ∞)) such that P F (0) = 0, P ′ F (Z) > 0 for all Z ≥ 0, lim Z→∞ P ′ F (Z) Z 2/3 = a > 0, 0 < Q F (Z) Z < C v with Q F (Z) = 5 3 P F (Z) -P ′ F (Z)Z for all Z > 0.
(1.20)

We also require that

either s F is bounded from below or inf Z>0 Q F (Z) Z > 0. (1.21)
Furthermore, suppose that µ and κ F belong to C 1 ([0, ∞)) and satisfy

0 < µϑ ≤ µ(ϑ) ≤ µ(1 + ϑ) for all ϑ > 0, 0 < κ(1 + ϑ) ≤ κ F (ϑ) ≤ κ(1 + ϑ) for all ϑ > 0.
(1.22)

For ε ∈ (0, 1) let (̺ ε , u ε , ϑ ε ) be a variational solution to (1.11 -1.16) in the sense of Definition 2.2 below satisfying, in addition,

Ω ̺ ε (0) dx = M > 0, sup ε>0 E 0,ε < ∞, ess lim inf t→0+ Ω ̺ ε s(̺ ε , ϑ ε ) dx ≥ S 0 , (1.23)
with M , S 0 independent of ε, and there are a non-negative function ̺ ∈ L 1 (Ω) and a positive function θ ∈ L 1 (Ω) such that

S 0 > Ω ̺s(̺, θ) dx.
(1.24)

Then, passing to a subsequence if necessary, we have

̺ ε → ̺ in C([0, T ]; L 5/3 weak (Ω)) ∩ L 1 ((0, T ) × Ω), J ε = 1 ε ̺ ε u ε ⇀ J weakly in L 3/2 (0, T ; L 90/77 (Ω; R 3 )), ϑ ε → ϑ in L p ((0, T ) × Ω), ∇ x ϑ ε → 0 in L p ((0, T ) × Ω; R 3 ) for any 1 ≤ p < 2,
E 0,ε → E 0 , where the limit quantities ̺, J, ϑ, and E 0 represent a weak (distributional) solution of the Smoluchowski-Poisson system (1.1 -1.5) (cf. Definition 2.1 below). In addition, p F (̺, ϑ) ∈ L 15/13 (0, T ; W 1,15/13 (Ω)) and both ϑ and 1/ϑ belong to L ∞ (0, T ).

Remark 1.2. The last stipulation in (1.20) is equivalent, conformably with (1.9), to the requirement of strict positivity and boundedness of the specific heat at constant volume

c v (̺, ϑ) = ∂e F (̺, ϑ) ∂ϑ .
The choices P F (Z) = Z + Z 5/3 or P F (Z) = (2/3) I 3/2 • I -1 1/2 (Z) fulfil this assumption and (1.21). Indeed, concerning the latter, the positivity of Q F follows from [2, Lemma 5.3] while we have Q F (Z) ∼ cZ 1/3 as Z → ∞ by the well-known Sommerfeld representation of the Fermi integrals with α half an odd integer (see, e.g., [7, Eqs. ( 6)-( 7)]). This property implies the boundedness of Z → Q F (Z)/Z and that s F is bounded from below. For P F (Z) = Z + Z 5/3 , we have Q F (Z) = 2Z/3 which clearly fulfils the second requirement of (1.21).

The existence of global-in-time solutions to system (1.11 -1.16) (with the noslip boundary conditions imposed on the velocity field u) was established in [START_REF] Feireisl | On a simple model of reacting compressible flows arising in astrophysics[END_REF]Theorem 2.4] (see also [START_REF] Feireisl | Mathematical theory of compressible, viscous, and heat conducting fluids[END_REF] for the necessary modifications to accommodate the growth conditions (1.22)). Note that, in accordance with the general philosophy discussed in [START_REF] Feireisl | Mathematical theory of compressible, viscous, and heat conducting fluids[END_REF], the energy balance equation has been substituted with the entropy inequality (1.14) together with the total energy conservation principle expressed through (1.15).

Besides proving the convergence as ε → 0, Theorem 1.1 also provides the existence of a weak solution to the non-isothermal Smoluchowski-Poisson equations (1.1-1.6) for pressure laws satisfying (1.20) and for non-negative initial data ̺ 0 ∈ L 5/3 (Ω) with an arbitrary large mass M and total energy E 0 complying with the relation (1.7). To our knowledge this existence result is also new, a related existence result having been obtained in [START_REF] Stańczy | On an evolution system describing self-gravitating particles in microcanonical setting[END_REF] for the non-isothermal Smoluchowski-Poisson equations derived in [START_REF] Chavanis | Statistical mechanics of two-dimensional vortices and collisionless stellar systems[END_REF] for initial data ̺ 0 with a sufficiently small mass. Actually, it is mainly the non-isothermal Smoluchowski-Poisson equations with p F (̺, ϑ) = ̺ϑ which has been studied recently [START_REF] Biler | Global and exploding solutions in a model of self-gravitating systems[END_REF][START_REF] Chavanis | Thermodynamics of self-gravitating systems[END_REF][START_REF] Van Duijn | Global existence conditions for a non-local problem arising in statistical mechanics[END_REF]: in that particular case, global existence of solutions is known to hold true for initial data with small mass while finite time blow-up occurs for initial data with large mass. Such a phenomenon does not take place for pressure laws satisfying (1.20). At a formal level, these results have been extended to pressure laws p F (̺, ϑ) = ϑ̺ γ , γ ∈ (0, ∞), in [START_REF] Chavanis | Anomalous diffusion and collapse of self-gravitating Langevin particles in D dimensions[END_REF].

The rest of the paper is devoted to the proof of Theorem 1.1. After some preliminary material discussed in Section 2, we establish uniform bounds on the family {̺ ε , u ε , ϑ ε } ε>0 , independent of the parameter ε > 0 (see Section 3).

In Section 4, having identified all available estimates, we pass to the limit in the field equations (1.11 -1.16) in order to obtain (1.1), (1.4).

Sections 5 and 6 are devoted to the proof of the strong (pointwise) convergence of {̺ ε } ε>0 , {ϑ ε } ε>0 , respectively, necessary to establish the constitutive relation (1.2). This is the most delicate part of the proof because of insufficient uniform bounds on the sequence {̺ ε } ε>0 . For the system (1.11 -1.16), the "standard" way to deal with this problem is to introduce the renormalized continuity equation

ε∂ t b(̺) + div x (b(̺)u) + b ′ (̺)̺ -b(̺) div x u = 0, (1.25) replacing ̺ ≈ b(̺)
, where b is a suitable bounded function. In the present setting, however, the time derivative ∂ t b(̺) expressed through (1.25) contains a singular term

1 ε b ′ (̺)̺ -b(̺) div x u,
which is not (known to be) bounded uniformly with respect to ε. Consequently, instead of using (1.25), our approach is based on the concept of oscillation defect measure introduced in the existence theory developed in [START_REF] Feireisl | Mathematical theory of compressible, viscous, and heat conducting fluids[END_REF]. The proof of Theorem 1.1 is completed in Section 7.

Variational formulation

In this section, we collect some preliminary material concerning the concept of variational (distributional) solutions to problems (1.1 -1.5) and (1.11 -1.16). We start with the Smoluchowski-Poisson system. Definition 2.1. We shall say that ̺, J, Φ, and ϑ represent a variational solution to problem (1.1 -1.5) if

• ̺ ≥ 0, ̺ ∈ L 1 ((0, T ) × Ω), J ∈ L 1 ((0, T ) × Ω; R 3 )), and 
T 0 Ω ̺∂ t ϕ + J • ∇ x ϕ dx dt = 0 for any ϕ ∈ D((0, T ) × Ω); • the potential Φ = ∆ -1 [̺1 Ω ] is determined through the integral identity Φ(t, x) = - 1 4π Ω ̺(t, y)
|x -y| dy for a.a. (t, x) ∈ (0, T ) × Ω;

• the temperature ϑ = ϑ(t) is a non-negative spatially homogeneous function such that ϑ ∈ L 1 (0, T ), p F (̺, ϑ) ∈ L 1 ((0, T ) × Ω), ̺∇ x Φ ∈ L 1 ((0, T ) × Ω; R 3 ), and

T 0 Ω J • ϕ dx dt = T 0 Ω p F (̺, ϑ) div x ϕ -̺∇ x Φ • ϕ dx dt for any ϕ ∈ D((0, T ) × Ω; R 3 ); • Ω ̺e F (̺, ϑ) + 1 2 ̺Φ dx = E 0 for a.a. t ∈ (0, T ).
In a similar way, the variational solutions to the Navier-Stokes-Fourier-Poisson system are defined as follows.

Definition 2.2. We shall say that ̺, u, and ϑ represent a variational solution to problem (1.11 -1.16) if

• the density ̺ ≥ 0, ̺ ∈ L 1 ((0, T )×Ω) and the velocity u ∈ L 1 (0, T ; W 1,1 (Ω; R 3 )) are such that ̺u ∈ L 1 ((0, T )×Ω; R 3 ) and satisfy the renormalized continuity equation expressed through the integral identity

T 0 Ω ε̺B(̺)∂ t ϕ + ̺B(̺)u • ∇ x ϕ -b(̺) (div x u)ϕ dx dt = 0 (2.1)
to hold for any ϕ ∈ D((0,

T ) × Ω), b ∈ BC([0, ∞)), where 
B(̺) = B(0) + ̺ 1 b(z) z 2 dz; (2.2) • ̺u⊗u ∈ L 1 ((0, T )×Ω; R 3×3 ), the pressure p = p(̺, ϑ) is given by (1.19), p ∈ L 1 ((0, T )×Ω), the viscous stress S satisfies (1.17), S ∈ L 1 ((0, T )×Ω; R 3×3 ), ̺∇ x Φ ∈ L 1 ((0, T ) × Ω; R 3 ), and T 0 Ω ε̺u • ∂ t ϕ + ̺[u ⊗ u] : ∇ x ϕ + p div x ϕ dx dt (2.3) = T 0 Ω S : ∇ x ϕ + 1 ε ̺u • ϕ + ̺∇ x Φ • ϕ dx dt for any ϕ ∈ D((0, T ) × Ω; R 3 ) satisfying ϕ • n| ∂Ω = 0; • Φ(t, x) = - 1 4π Ω ̺(t, y) |x -y| dy for a.a. (t, x) ∈ (0, T ) × Ω; (2.4) • ϑ > 0 a.e. in (0, T ) × Ω, the specific entropy s = s(̺, ϑ) is given by (1.19), ̺s ∈ L 1 ((0, T ) × Ω), ̺su ∈ L 1 ((0, T ) × Ω; R 3 ), ϑ ∈ L 1 (0, T ; W 1,1 (Ω)), q is determined by (1.18), q/ϑ ∈ L 1 ((0, T ) × Ω; R 3 ), S : ∇ x u + (1/ε)̺|u| 2 -(q • ∇ x ϑ)/ϑ /ϑ ∈ L 1 ((0, T ) × Ω),
and

T 0 Ω ε̺s∂ t ϕ + ̺su • ∇ x ϕ + q • ∇ x ϕ ϑ dx dt ≤ (2.5) T 0 Ω 1 ϑ q • ∇ x ϑ ϑ -S : ∇ x u - 1 ε ̺|u| 2 ϕ dx dt
for any ϕ ∈ D((0, T ) × Ω), ϕ ≥ 0; • the specific internal energy e = e(̺, ϑ) is given by (1.19), ̺e ∈ L 1 ((0, T ) × Ω), and the total energy balance

Ω 1 2 ̺|u| 2 + ̺e + 1 2 ̺Φ dx = E 0,ε holds for a.a. t ∈ (0, T ); (2.6)
• the impermeability boundary conditions u • n| ∂Ω = 0 hold in the sense that

Ω div x (ϕu) dx = 0 a.a. on (0, T ) (2.7)
for any ϕ ∈ D(Ω).

Uniform estimates

The proof of Theorem 1.1 is based on uniform estimates on the sequence of variational solutions {̺ ε , u ε , ϑ ε } ε>0 to be derived in this section. These represent a direct consequence of the underlying physical principles, namely the conservation of the mass, the momentum, and the total energy. In addition, a useful piece of information is obtained from the dissipativity properties of the Navier-Stokes-Fourier system expressed through the production term in the entropy balance (2.5).

3.1. Total mass conservation. Let {̺ ε , u ε , ϑ ε } ε>0 be a family of variational solutions satisfying the hypotheses of Theorem 1.1. It follows directly from (2.1) that the total mass

M = Ω ̺ ε dx (3.1)
is a constant of motion. As the densities ̺ ε are non-negative, we get immediately that

{̺ ε } ε>0 is bounded in L ∞ (0, T ; L 1 (Ω)). (3.
2) Furthermore, the standard elliptic estimates applied to (2.4) give rise to

Φ ε (t) L 5/2 (Ω) ≤ c ̺ ε (t) L 1 (Ω) for t ∈ [0, T ]; (3.3)
whence, in accordance with (3.2), 

{Φ ε } ε>0 is bounded in L ∞ (0, T ; L 5/2 (Ω)). ( 3 
̺e(̺, ϑ) = εϑ 4 + 3 2 ϑ 5/2 P F ̺ ϑ 3/2 ,
where, in accordance with (1.20), there are C > c > 0 such that

c(Z + Z 5/3 ) ≤ P F (Z) ≤ C(Z + Z 5/3 ) for all Z ≥ 0. (3.5)
Consequently,

̺ ε e(̺ ε , ϑ ε ) ≥ εϑ 4 ε + c ̺ ε ϑ ε + ̺ 5/3 ε .
Taking estimate (3.4) into account, we can use the total energy balance (2.6) together with the hypothesis (1.23) in order to conclude that

{̺ ε } ε>0 is bounded in L ∞ (0, T ; L 5/3 (Ω)), (3.6) 
{ √ ̺ ε u ε } ε>0 is bounded in L ∞ (0, T ; L 2 (Ω; R 3 )), (3.7 
)

{ε 1/4 ϑ ε } ε>0 is bounded in L ∞ (0, T ; L 4 (Ω)), (3.8) {̺ ε ϑ ε } ε>0 is bounded in L ∞ (0, T ; L 1 (Ω)), (3.9 
) and E 0,ε → E 0 passing to a subsequence as the case may be. 

∂s F ∂̺ (̺, ϑ) = - 1 ̺ 2 ∂p F ∂ϑ (̺, ϑ) = - 2 3̺ ∂e F ∂ϑ (̺, ϑ) = - 3ϑ 3/2 2̺ 2 Q F ̺ ϑ 3/2 , ∂s F ∂ϑ (̺, ϑ) = 1 ϑ ∂e F ∂ϑ (̺, ϑ) = 9ϑ 1/2 4̺ Q F ̺ ϑ 3/2 , the function Q F being defined in (1.20). Owing to (1.19) we may write s(̺, ϑ) = ε 4 3 ϑ 3 ̺ + s F (1, 1) + ̺ 1 ∂s F (z, ϑ) ∂̺ dz + ϑ 1 ∂s F (1, z) ∂ϑ dz and use (1.20) to obtain s(̺, ϑ) ≤ ε 4 3 ϑ 3 ̺ + s F (1, 1) + 1 min {̺,1} ∂s F (z, ϑ) ∂̺ dz + max {ϑ,1} 1 ∂s F (1, z) ∂ϑ dz ≤ ε 4 3 ϑ 3 ̺ + s F (1, 1) - 3C v 2 log(min {̺, 1}) + 9C v 4 log(max {ϑ, 1}) ≤ ε 4 3 ϑ 3 ̺ + s F (1, 1) + 3C v 2 |log(̺)| + 9C v 4 [log(ϑ)] + , (3.10) 
where [r] + = max {r, 0} denotes the positive part of the real number r. We then infer from the energy estimates (3.2), (3.6), (3.8), and (3.9) that

Ω ̺ ε s(̺ ε , ϑ ε ) dx ≤ c for a.a. t ∈ (0, T ). (3.11)
Consequently, choosing a suitable spatially homogeneous test function in the entropy inequality (2.5) and utilizing the hypothesis (1.23) together with the estimate (3.11), we get a uniform bound on the entropy production rate:

T 0 Ω 1 ϑ ε S ε : ∇ x u ε + κ(ϑ ε )|∇ x ϑ ε | 2 ϑ ε + 1 ε ̺ ε |u ε | 2 dx dt ≤ εc.
In particular, by virtue of hypotheses (1.18) and (1.22), we obtain

1 ε ̺ ε ϑ ε u ε ε>0 is bounded in L 2 ((0, T ) × Ω; R 3 ), (3.12) together with 1 √ ε ∇ x u ε + ∇ x u t ε - 2 3 div x u ε I ε>0 is bounded in L 2 ((0, T ) × Ω; R 3×3 sym ), (3.13) 
∇ x ϑ 3/2 ε ε>0 is bounded in L 2 ((0, T ) × Ω; R 3 ), (3.14) and 1 √ ε ∇ x ϑ ε ε>0 and 1 √ ε ∇ x log(ϑ ε ) ε>0 are bounded in L 2 ((0, T ) × Ω; R 3 ). (3.15)
In order to continue, we shall need the following "weighted" version of the Poincaré inequality [10, Lemma 3.2]: Lemma 3.1. Let Ω ⊂ R 3 be a bounded regular domain and M and K be two positive real numbers. Assume that ̺ is a non-negative function such that

0 < M = Ω ̺ dx and Ω ̺ 5/3 dx ≤ K. (3.16)
Then there exists a constant c = c(M, K, p) such that

w - 1 M Ω ̺w dx L p (Ω) ≤ c(M, K, p) ∇ x w L p (Ω;R 3 )
for any w ∈ W 1,p (Ω) if p > 15/11.

Proof: Assuming the contrary there are a sequence

{w n } ∞ n=1 ⊂ W 1,p (Ω) and a sequence {̺ n } ∞ n=1 ⊂ L 5/3 (Ω) such that w n - 1 M Ω ̺ n w n dx L p (Ω) ≥ n ∇ x w n L p (Ω;R 3 ) > 0,
where ̺ n satisfies (3.16) for each n ≥ 1. Consequently, setting

z n = w n - 1 M Ω ̺ n w n dx w n - 1 M Ω ̺ n w n dx -1 L p (Ω)
we readily get

z n → z in W 1,p (Ω),
where z is a constant function, specifically, z = |Ω| -1/p . Furthermore, as p > 15/11, the Sobolev space W 1,p (Ω) is compactly imbedded into L 5/2 (Ω); therefore we can assume

̺ n ⇀ ̺ weakly in L 5/3 (Ω), Ω ̺ dx = M ; z n → z strongly in L 5/2 (Ω),
and, consequently,

0 = Ω ̺ n z n dx → Ω ̺z dx = M |Ω| -1/p , whence a contradiction.
In a similar way, one can establish a more standard result:

Lemma 3.2.
Let Ω ⊂ R 3 be a bounded regular domain and M , K and Λ be positive real numbers with Λ ∈ (0, 1]. Furthermore, assume that ̺ is a non-negative function such that

0 < M = Ω ̺ dx and Ω ̺ 5/3 dx ≤ K.
Then there exists a constant c = c(M, K) such that

w W 1,2 (Ω;R 3 ) ≤ c(M, K) Ω ̺|w| Λ dx 1/Λ + c(M, K) ∇ x w + ∇ x w t - 2 3 div x wI L 2 (Ω;R 3×3 sym )
for any w ∈ W 1,2 (Ω; R 3 )). In particular,

w W 1,2 (Ω) ≤ c(M, K) Ω ̺|w| Λ dx 1/Λ + ∇ x w L 2 (Ω;R 3 )
for any w ∈ W 1,2 (Ω). Now, Lemma 3.2 with Λ = 2/3 together with estimates (3.1), (3.6), (3.9), (3.14), give rise to

{ϑ 3/2 ε } ε>0 is bounded in L 2 (0, T ; W 1,2 (Ω)). Next, since Ω ̺ ε ϑ 1/2 ε dx ≤ Ω ̺ ε ϑ ε dx 1/2 Ω ̺ ε dx ≤ c by (3.
2) and (3.9), another use of Lemma 3.2 with Λ = 1 and (3.15) entail that

{ϑ 1/2 ε } ε>0 is bounded in L 2 (0, T ; W 1,2 (Ω))
. By a simple interpolation argument we end up with {ϑ α/2 ε } ε>0 is bounded in L 2 (0, T ; W 1,2 (Ω)) for any 1 ≤ α ≤ 3.

(3.17)

In particular, it readily follows from (3.17) (with α = 3) and the embedding of

W 1,2 (Ω) in L 6 (Ω) that {ϑ ε } ε>0 is bounded in L 3 (0, T ; L 9 (Ω)). (3.18) Moreover, writing 1 ε ̺ ε u ε = 1 ε ̺ ε ϑ ε u ε ̺ ε ϑ ε
one can use (3.9), (3.12) to obtain that

1 ε ̺ ε u ε ε>0 is bounded in L 2 (0, T ; L 1 (Ω; R 3 )) (3.19)
while (3.6), (3.12), and (3.17) (with α = 3) yield

1 ε ̺ ε u ε ε>0 is bounded in L 3/2 (0, T ; L 90/77 (Ω; R 3 )). (3.20)
Finally, with (3.13), (3.19) at hand , another application of Lemma 3.2 (with Λ = 1) gives rise to

1 √ ε u ε ε>0 is bounded in L 2 (0, T ; W 1,2 (Ω; R 3 )).
(3.21) 3.4. Pressure estimates. The pressure estimates can be deduced formally "computing" the pressure p in the momentum equation (2.3) and using the energy estimates established above. More precisely, consider the operator A defined by

A[w] = ∇ x ∆ -1 N w - 1 |Ω| Ω w dx
where ∆ N denotes the Laplace operator supplemented with homogeneous Neumann boundary conditions on ∂Ω. For g ∈ C 1 ([0, ∞)) such that g and z → zg ′ (z) are bounded, the function g(̺ ε ) satisfies the renormalized equation (2.1). It then follows from [8, Theorem II.1] that, if η δ = η δ (x) is a family of regularizing kernels, then η δ * g(̺ ε ) solves

ε∂ t (η δ * g(̺ ε )) + div x η δ * g(̺ ε )u ε + η δ * (g ′ (̺ ε )̺ ε -g(̺ ε ))div x u ε = r ε,δ in D ′ ((0, T ) × Ω), where r ε,δ → 0 in L 2 ((0, T ) × Ω) as δ → 0.
Note that, in accordance with Definition 2.2, equation (2.1) holds in D ′ ((0, T )× R 3 ) provided ̺ ε = 1 Ω ̺ ε and the velocity u ε is extended to a function belonging to

L 2 (0, T ; W 1,2 (R 3 ; R 3 )). We next take ϕ(t, x) = ψ(t)A[η δ * g(̺ ε )] as test function in (2.
3) where ψ ≥ 0 belongs to D(0, T ) and use the previous equation for η δ * g(̺ ε ) to obtain

T 0 Ω ε∂ t ψ̺ ε u ε • A[η δ * g(̺ ε )] dxdt (= F 1 (ε, δ)) + T 0 Ω ψ̺ ε u ε • A r ε,δ -div x (η δ * g(̺ ε )u ε ) dx dt (= F 2 (ε, δ)) + T 0 Ω ψ̺ ε u ε • A η δ * g(̺ ε ) -g ′ (̺ ε )̺ ε div x u ε dx dt (= F 3 (ε, δ)) + T 0 Ω ψ̺ ε [u ε ⊗ u ε ] : ∇ x A[η δ * g(̺ ε )] dx dt (= F 4 (ε, δ)) (3.22) + T 0 Ω ψp(̺ ε , ϑ ε ) η δ * g(̺ ε ) - 1 |Ω| Ω η δ * g(̺ ε ) dx dx dt (= F 5 (ε, δ)) = T 0 Ω ψS ε : ∇ x A[η δ * g(̺ ε )] dx dt (= F 6 (ε, δ)) + T 0 Ω ψ 1 ε ̺ ε u ε + ̺ ε ∇ x Φ ε • A[η δ * g(̺ ε )] dx dt. (= F 7 (ε, δ))
We now assume further that g is such that

0 ≤ g(̺) + |̺g ′ (̺)| ≤ C̺ 1/9 , ̺ ≥ 0, (3.23) 
for some C > 0. We infer from (3.6) and (3.23) that sup

[0,T ] η δ * g(̺ ε ) L 15 (Ω) + η δ * (g(̺ ε ) -̺ ε g ′ (̺ ε )) L 15 (Ω) ≤ c. (3.24)
Now, by (3.6), (3.7), (3.24), and classical elliptic estimates, we have

|F 1 (ε, δ)| ≤ ε T 0 |∂ t ψ| √ ̺ ε u ε L 2 (Ω;R 3 ) √ ̺ ε L 10/3 (Ω) A[η δ * g(̺ ε )] L 5 (Ω;R 3 ) dt ≤ cε ∂ t ψ L 1 (0,T ) .
It next follows from (3.6), (3.21), (3.24), and classical elliptic estimates that

|F 2 (ε, δ)| ≤ ψ L ∞ (0,T ) T 0 ̺ ε u ε L 30/23 (Ω;R 3 ) A[r ε,δ ] L 30/7 (Ω;R 3 ) dt + ψ L ∞ (0,T ) T 0 A[div x (η δ * g(̺ ε )u ε )] L 30/7 (Ω;R 3 ) dt ≤ ψ L ∞ (0,T ) T 0 ̺ ε L 5/3 (Ω) u ε L 6 (Ω;R 3 ) r ε,δ L 2 (Ω) dt + ψ L ∞ (0,T ) T 0 ̺ ε L 5/3 (Ω) u ε L 6 (Ω;R 3 ) η δ * g(̺ ε )u ε L 30/7 (Ω;R 3 ) dt ≤ c √ ε ψ L ∞ (0,T ) T 0 u ε √ ε W 1,2 (Ω;R 3 ) r ε,δ L 2 (Ω) + u ε L 6 (Ω;R 3 ) dt ≤ c √ ε ψ L ∞ (0,T ) r ε,δ L 2 ((0,T )×Ω) + √ ε .
Similar arguments also yield that

|F 3 (ε, δ)| ≤ c √ ε ψ L ∞ (0,T ) .
Using once more (3.6), (3.21) and (3.24), we obtain

|F 4 (ε, δ)| ≤ ψ L ∞ (0,T ) T 0 ̺ ε L 5/3 (Ω) u ε 2 L 6 (Ω;R 3 ) A[η δ * g(̺ ε )u ε ] L 15 (Ω;R 3 ) dt ≤ cε ψ L ∞ (0,T ) .
We next infer from (1.22), (3.13) and (3.18) that

S ε L 6/5 (0,T ;L 18/11 (Ω;R 3×3 sym )) ≤ c √ ε. (3.25)
Consequently, thanks to (3.24) and classical elliptic estimates,

|F 6 (ε, δ)| ≤ ψ L ∞ (0,T ) T 0 S ε L 18/11 (Ω;R 3×3 sym ) η δ * g(̺ ε ) L 18/7 (Ω;R 3 ) dt ≤ c √ ε ψ L ∞ (0,T ) .
Finally, by (3.4), (3.6), (3.19), (3.24), the Calderon-Zygmund inequality and the embedding of W 2,5/3 (Ω) in W 1,15/4 (Ω), we have

|F 7 (ε, δ)| ≤ ψ L ∞ (0,T ) T 0 1 ε ̺ ε u ε L 1 (Ω;R 3 ) A[η δ * g(̺ ε )] L ∞ (Ω;R 3 ) dt + ψ L ∞ (0,T ) T 0 ̺ ε L 5/3 (Ω) ∇ x Φ ε L 5/2 (Ω;R 3 ) A[η δ * g(̺ ε )] L ∞ (Ω;R 3 ) dt ≤ ψ L ∞ (0,T ) T 0 1 ε ̺ ε u ε L 1 (Ω;R 3 ) A[η δ * g(̺ ε )] W 1,15 (Ω;R 3 ) dt + ψ L ∞ (0,T ) T 0 Φ ε W 2,5/3 (Ω) A[η δ * g(̺ ε )] W 1,15 (Ω;R 3 ) dt ≤ c ψ L ∞ (0,T ) ,
while (3.5), (3.8), (3.18), and (3.24) ensure that

T 0 Ω ψp(̺ ε , ϑ ε ) 1 |Ω| Ω η δ * g(̺ ε ) dx dx dt ≤ c ψ L ∞ (0,T ) T 0 Ω p(̺ ε , ϑ ε ) dx dt ≤ c ψ L ∞ (0,T ) .
Collecting these information, one can deduce from (3.22) that

T 0 Ω ψp(̺ ε , ϑ ε )η δ * g(̺ ε ) dx ≤ c ψ L ∞ (0,T ) + ∂ t ψ L 1 (0,T ) 1 + r ε,δ L 2 ((0,T )×Ω) ,
provided g satisfies (3.23), where the bound is independent of both ε and δ. We may then let δ → 0, ψ → 1 [0,T ] and g(̺) → ̺ 1/9 to conclude, in view of (3.5), that {̺ ε } ε>0 is bounded in L 16/9 ((0, T ) × Ω).

(3.26) Remark 3.3. Similar estimates were established locally in Ω by LIONS [START_REF] Lions | Mathematical Topics in Fluid Dynamics[END_REF] and extended to the whole domain Ω with the no-slip boundary conditions for u in [START_REF] Feireisl | On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow[END_REF].

In both cases, g(̺) ≈ ̺ θ , with θ = (2γ/3) -1 provided ̺ ∈ L ∞ (0, T ; L γ (Ω)). Thus the value θ = 1/9 corresponds to γ = 5/3 in agreement with (3.6).

The singular limit

With the estimates obtained in Section 3, it is easy to pass to the limit for ε → 0 in the system of equations (1.11 -1.13). After a straightforward manipulation, we deduce from (1.11), (3.20) that

̺ ε → ̺ in C([0, T ]; L 5/3 weak (Ω)), (4.1) 
J ε = 1 ε ̺ ε u ε ⇀ J weakly in L 3/2 (0, T ; L 90/77 (Ω; R 3 )). (4.2)
We may thus pass to the limit as ε → 0 in (1.11) (or (2.1) with B = 1) to obtain

T 0 Ω (̺∂ t ϕ + J • ∇ x ϕ) dx dt = 0 (4.3)
for any ϕ ∈ D((0, T ) × Ω). Furthermore, a simple interpolation argument yields Next, on the one hand, by (3.6) and classical elliptic estimates,

ε 1/4 ϑ ε 17/3 L 17/3 (Ω) ≤ cε 3/4 ϑ ε 3 L 9 (Ω) ε 1/4 ϑ ε 8/3 L 4 (Ω) ; (4.
{∇ x Φ ε } ε>0 is bounded in L ∞ (0, T ; L 15/4 (Ω; R 3 )) ∩ L ∞ (0, T ; W 1,5/3 (Ω; R 3 )).
On the other hand, we infer from (1.11), (3.6) and (3.20) that {̺ ε } ε>0 is bounded in L ∞ (0, T ; L 5/3 (Ω)) while

{∂ t ̺ ε } ε>0 is bounded in L 3/2 (0, T ; W -1,90/77 (Ω)). (4.7) 
We are then in a position to apply [15, Lemma 5.1] to conclude that

̺ ε ∇ x Φ ε ⇀ ̺∇ x Φ weakly in L 15/13 ((0, T ) × Ω; R 3 ). ( 4.8) 
We can now pass to the limit as ε → 0 in (1.12) (or (2. for any ϕ ∈ D((0, T ) × Ω; R 3 ), ∇ x ϕ • n| ∂Ω = 0, and

∆Φ = 1 Ω ̺ in (0, T ) × R 3 . (4.10) 
In particular, relation (4.9) implies that p F (̺, ϑ) ∈ L 15/13 (0, T ; W 1,15/13 (Ω)), and

J = -∇ x p F (̺, ϑ) -̺∇ x Φ. (4.11)
Consequently, in order to complete the proof of Theorem 1.1, it is enough to show the strong (pointwise) convergence of the sequences {̺ ε } ε>0 and {ϑ ε } ε>0 .

In the remaining sections, we use the following notation: if f : [0, ∞) 2 → R is a function such that the sequence {f ε (̺ ε , ϑ ε )} ε>0 is weakly relatively compact in L 1 ((0, T ) × Ω), we denote by f (̺, ϑ) its weak limit (after possible extraction of a subsequence).

Strong convergence of the density

As already pointed out in Section 1, the strong convergence of {̺ ε } ε>0 represents a rather delicate issue mainly because of the fact that, strangely enough, the renormalized equation (2.1) contains a singular term.

Let g ∈ C 1 ([0, ∞)) be a bounded function such that z → zg ′ (z) is also bounded. Owing to the analysis of Section 3.4, F i (ε, δ) → 0 as δ, ε → 0 for i ∈ {1, 2, 3, 4, 6} and we may let first δ → 0 and then ε → 0 in (3.22) to obtain

lim ε→0 T 0 Ω p F (̺ ε , ϑ ε ) g(̺ ε ) - 1 |Ω| Ω g(̺ ε ) dx dx dt = (5.1) lim ε→0 T 0 Ω (J ε + ̺ ε ∇ x Φ ε ) • A[g(̺ ε )] dx dt.
Owing to (2.4), (4.7) and the boundedness of g, classical elliptic estimates ensure that {A

[g(̺ ε )]} ε>0 is bounded in L ∞ (0, T ; W 1,∞ (Ω)) and {∂ t ∇ x Φ ε } ε>0 is bounded in L 3/2 (0, T ; W -1,90/77 (Ω; R 3 )). Applying [15, Lemma 5.1] we get ∇ x Φ ε • A[g(̺ ε )] ⇀ ∇ x Φ • A g(̺) weakly in L 15/4 ((0, T ) × Ω; R 3 ).
Next, in accordance with the standard elliptic estimates, we have

∇ x Φ ε • A[g(̺ ε )] ε>0 is bounded in L ∞ (0, T ; W 1,5/3 (Ω)),
which, together with (3.6) and (4.7) allow us to use again [START_REF] Lions | Mathematical Topics in Fluid Dynamics[END_REF]Lemma 5.1] in order to obtain

lim ε→0 T 0 Ω ̺ ε ∇ x Φ ε • A[g(̺ ε )] dx dt = T 0 Ω ̺∇ x Φ • A g(̺) dx dt. (5.2)
Now, taking ϕ = A g(̺) in (4.9), and making use of (5.1), (5.2), we get

lim ε→0 T 0 Ω p F (̺ ε , ϑ ε )g(̺ ε ) -p F (̺, ϑ) g(̺) dx dt = lim ε→0 1 |Ω| T 0 Ω p F (̺ ε , ϑ ε ) dx Ω g(̺ ε ) dx - Ω p F (̺, ϑ) dx Ω g(̺) dx dt + lim ε→0 T 0 Ω J ε • A[g(̺ ε )] dxdt - T 0 Ω J • A g(̺) dxdt = lim ε→0 1 |Ω| T 0 Ω p F (̺ ε , ϑ ε ) dx Ω g(̺ ε ) -g(̺) dxdt (5.3) + lim ε→0 T 0 Ω J ε • A g(̺ ε ) -g(̺) dxdt.
At this stage, we introduce the cut-off functions

T k ∈ C ∞ (R), k ≥ 1, satisfying                    T k (z) = z for 0 ≤ z ≤ k,
T k is concave and strictly increasing for z ∈ [0, ∞), z) for all z ∈ (-∞, 0), (5.4) together with the quantities (defect measures) [START_REF] Feireisl | Dynamics of Viscous Compressible Fluids[END_REF]Chapter 6]). It is easy to check that

T k (z) ≤ 2k for all z ∈ [0, ∞), T k (z) = -T k (-
ω k = lim sup ε→0 T 0 Ω |T k (̺ ε ) -T k (̺)| 8/3 dx dt, k ≥ 1 (cf.
T k (z) -z L q (Ω) ≤ 1 k (p-q)/q z p/q L p (Ω) for any 1 ≤ q < p < ∞. In particular, Ω T k (̺) -̺ dx ≤ T k (̺) -̺ L 1 (Ω) ≤ lim inf ε→0 T k (̺ ε ) -̺ ε L 1 (Ω) ≤ 1 k 2/3 sup ε>0 ̺ ε 5/3 L 5/3 (Ω) .
Consequently, observing that 

Ω T k (̺ ε ) -T k (̺) dx = Ω T k (̺ ε ) -̺ ε + ̺ -T k (̺)
p F (̺ ε , ϑ ε )T k (̺ ε ) -p F (̺, ϑ) T k (̺) dx dt ≤ (5.5) c k 2/3 + lim ε→0 T 0 Ω J ε • A T k (̺ ε ) -T k (̺) dx dt.
where c is independent of k. Now, we write

T 0 Ω J ε • A T k (̺ ε ) -T k (̺) dx dt = G 1 (ε, k, m) + G 2 (ε, k, m)
with

G 1 (ε, k, m) = T 0 Ω J ε -T m (J ε ) • A T k (̺ ε ) -T k (̺) dx dt, G 2 (ε, k, m) = T 0 Ω T m (J ε ) • A T k (̺ ε ) -T k (̺) dx dt,
where we have set T m (J) i = T m (J i ), i = 1, 2, 3. In accordance with the standard Sobolev imbedding theorem, we have

|G 1 (ε, k, m)| ≤ c T 0 J ε -T m (J ε ) L 24/23 (Ω;R 3 ) A T k (̺ ε ) -T k (̺) W 1,8/3 (Ω;R 3 ) dt ≤ c T 0 J ε -T m (J ε ) L 24/23 (Ω;R 3 ) T k (̺ ε ) -T k (̺) L 8/3 (Ω) dt; whence lim sup ε→0 |G 1 (ε, k, m)| ≤ sup ε>0 J ε -T m (J ε ) L 8/5 (0,T ;L 24/23 (Ω;R 3 )) ω 3/8 k .
Next, the standard interpolation argument can be used to show

J ε -T m (J ε ) L 24/23 (Ω;R 3 ) ≤ c J ε -T m (J ε ) 2/3 L 1 (Ω;R 3 ) J ε -T m (J ε ) 1/3 L 8/7 (Ω;R 3 ) ;
therefore, by virtue of the uniform estimates (3.19) and (3.20),

J ε -T m (J ε ) L 8/5 (0,T ;L 24/23 (Ω;R 3 )) ≤ c J ε -T m (J ε ) 2/3 L 2 (0,T ;L 1 (Ω;R 3 )) J ε -T m (J ε ) 1/3 L 16/11 (0,T ;L 8/7 (Ω;R 3 )) ≤ c 1 m 1/132 J ε 1/3 L 90/77 ((0,T )×Ω;R 3 ) ≤ cm -1/132 from which we conclude that lim sup ε→0 |G 1 (ε, k, m)| ≤ cm -1/132 ω 3/8 k .
(

Furthermore, by virtue of (4.1),

lim sup ε→0 G 2 (ε, k, m) = lim sup ε→0 T 0 Ω T m (J ε )•A[T k (̺ ε )-̺ ε ] dx dt+ T 0 Ω T m (J)•A ̺ -T k (̺) dx dt ≤ m sup ε>0 sup t∈(0,T ) T k (̺ ε )(t) -̺ ε (t) L 1 (Ω) ≤ c m k 2/3 ;
Thanks to (5.6) and the previous estimate, (5.5) transforms to

lim ε→0 T 0 Ω p F (̺ ε , ϑ ε )T k (̺ ε ) -p F (̺, ϑ) T k (̺) dx dt ≤ (5.7) 
c (1 + m)k -2/3 + m -1/132 ω 3/8 k for any k, m ≥ 1.
Next, using (1.20), one can write

p F (̺, ϑ) = a 0 ̺ 5/3 + q(̺, ϑ), (5.8) 
for some a 0 ∈ (0, a) where ∂q(̺, ϑ) ∂̺ ≥ 0 for all ̺, ϑ > 0.

(5.9)

Now, proceeding as in the proof of [10, Proposition 6.2] and using the concavity of T k and the convexity of z → z 5/3 , one can check that

lim ε→0 T 0 Ω ̺ 5/3 ε T k (̺ ε ) -̺ 5/3 T k (̺) dx dt ≥ ω k ; (5.10) 
whence (5.7) reduces to

a 0 ω k + lim ε→0 T 0 Ω q(̺ ε , ϑ ε )T k (̺ ε ) -q(̺, ϑ) T k (̺) dx dt ≤ (5.11) c (1 + m)k -2/3 + m -1/132 ω 3/8 k for any k, m ≥ 1.
We next set

h k = T -1 k T k (̺) .
By virtue of (5.9), q is non-decreasing in ̺, and, consequently,

lim ε→0 T 0 Ω q(̺ ε , ϑ ε )T k (̺ ε ) -q(̺, ϑ) T k (̺) dx dt ≥ lim inf ε→0 T 0 Ω q T -1 k (T k (̺ ε )), ϑ ε -q T -1 k T k (̺) , ϑ ε T k (̺ ε ) -T k (̺) dx dt+ lim inf ε→0 T 0 Ω q T -1 k T k (̺) , ϑ ε T k (̺ ε ) -T k (̺) dx dt ≥ lim inf ε→0 T 0 Ω q h k , ϑ ε T k (̺ ε ) -T k (̺) dx dt.
(5.12)

Invoking estimates (3.15) and (3.18), we have

∇ x ϑ ε L 3/2 ((0,T )×Ω;R 3 ) = 2 √ ε ϑ ε ∇ x √ ϑ ε √ ε L 3/2 ((0,T )×Ω;R 3 ) ≤ c √ ε;
whence, by virtue of (3.17),

∇ x ϑ ε → 0 in L p ((0, T ) × Ω; R 3 ) for any 1 ≤ p < 2. ( 5.13) 
Introducing

χ ε = χ ε (t) = 1 M Ω ̺ ε ϑ ε dx, (5.14) 
and recalling Lemma 3.1 we deduce from (3.6), (3.18), and (5.13) that

ϑ ε -χ ε → 0 in L p ((0, T ) × Ω) for any 1 ≤ p < 3, (5.15) 
and χ ε ⇀ χ weakly -(*) in L ∞ (0, T ).

(5.16) In addition, in accordance with (5.8) and hypothesis (1.20), we have 0

≤ ∂ ϑ q(̺, ϑ) = ∂ ϑ p F (̺, ϑ) ≤ 3C v ̺/2, so that q h k , ϑ ε -q h k , χ ε ≤ ch k |ϑ ε -χ ε | ≤ c̺|ϑ ε -χ ε |, the inequality h k ≤ ̺ being a consequence of the concavity of T k (guaranteeing that T k (̺) ≤ T k (̺)
) and the monotonicity of T -1 k . Integrating the previous inequality over (0, T ) × Ω and using (3.6) and (5.15) lead us to

q h k , ϑ ε -q h k , χ ε L 1 ((0,T )×Ω) ≤ 3 2 C v ̺ L ∞ (0,T ;L 5/3 (Ω)) ϑ ε -χ ε L 5/2 ((0,T )×Ω) -→ ε→0 0.
This makes possible to rewrite (5.12) as

lim ε→0 T 0 Ω q(̺ ε , ϑ ε )T k (̺ ε ) -q(̺, ϑ) T k (̺) dx dt ≥ (5.17) lim inf ε→0 T 0 Ω q h k , χ ε T k (̺ ε ) -T k (̺) dx dt.
We also note at this point that the above mentioned inequality h k ≤ ̺, (3.6), (3.26) and (4.1) imply that

h k L ∞ (0,T ;L 5/3 (Ω)) + h k L 16/9 ((0,T )×Ω) ≤ c uniformly in k ≥ 1. (5.18) Now, we write lim inf ε→0 T 0 Ω q h k , χ ε T k (̺ ε ) -T k (̺) dx dt ≥ lim inf ε→0 {h k ≥m} q(h k , χ ε ) -q(h k , χ) T k (̺ ε ) -T k (̺) dx dt+ lim inf ε→0 {0≤h k ≤m} q(h k , χ ε ) T k (̺ ε ) -T k (̺) dx dt.
Similarly to above, we have lim sup

ε→0 {h k ≥m} q(h k , χ ε ) -q(h k , χ) T k (̺ ε ) -T k (̺) dx dt ≤ c lim sup ε→0 {h k ≥m} h k T k (̺ ε ) -T k (̺) dx dt ≤ c sup k≥1 1 {h k ≥m} h k L 8/5 ((0,T )×Ω) ω 3/8 k ≤ cm -1/9 ω 3/8 k ,
where we have used estimates (5.18). Consequently,

lim inf ε→0 T 0 Ω q h k , χ ε T k (̺ ε ) -T k (̺) dx dt ≥ (5.19) -cm -1/9 ω 3/8 k + lim inf ε→0 {0≤h k ≤m} q(h k , χ ε ) T k (̺ ε ) -T k (̺) dx dt.
Finally, for each pair (m, k), we fix H m,k ∈ D((0, T ) × Ω) such that

H m,k -h k L 1 ((0,T )×Ω) ≤ 1 m 2/3 k 2 .
We can then estimate

{0≤h k ≤m} q(h k , χ ε ) T k (̺ ε ) -T k (̺) dx dt = {0≤h k ≤m} q(T m (h k ), χ ε ) T k (̺ ε ) -T k (̺) dx dt ≤ 4k sup ε>0 T 0 Ω q(T m (h k ), χ ε ) -q(T m (H m,k ), χ ε ) dx dt+ {0≤h k ≤m} q(T m (H m,k ), χ ε ) T k (̺ ε ) -T k (̺) dx dt .
As for the former expression, we infer from (1.20) and (5.8) that 4k sup

ε>0 T 0 Ω q(T m (h k ), χ ε ) -q(T m (H m,k ), χ ε ) dx dt ≤ (5.20) ck 1 + m 2/3 h k -H m,k L 1 ((0,T )×Ω) ≤ c k ,
thanks to the choice H m,k ; while the latter can be treated as lim sup

ε→0 {0≤h k ≤m} q(T m (H m,k ), χ ε ) T k (̺ ε ) -T k (̺) dx dt ≤ (5.21) lim sup ε→0 {0≤h k ≤m} q(T m (H m,k ), χ ε ) T k (̺ ε ) -̺ ε + ̺ -T k (̺) dx dt + lim sup ε→0 {0≤h k ≤m} q(T m (H m,k ), χ ε )(̺ ε -̺) dx dt ≤ c 1 + m 5/3 sup ε→0 T k (̺ ε ) -̺ ε L 1 ((0,T )×Ω) + ̺ -T k (̺) L 1 ((0,T )×Ω) + sup ε>0 q(T m (H m,k ), χ ε ) L 1 (0,T ;W 1,2 (Ω)) lim sup ε→0 ̺ ε -̺ L ∞ (0,T ;W 1,2 (Ω) * ) ≤ c m 5/3 k 2/3 .
Thus relations (5.19 -5.21) allow us to conclude that lim inf

ε→0 T 0 Ω q h k , χ ε T k (̺ ε ) -T k (̺) dx dt ≥ -c m -1/9 ω 3/8 k + 1 k + m 5/3 k 2/3 .
Inserting the above lower bound in (5.17), we deduce that

a 0 ω k ≤ c k -1 + k -2/3 + m -1/132 ω 3/8 k + m -1/9 ω 3/8 k + m + m 5/3 k 2/3
for any m, k;

whence lim sup k→∞ lim sup ε→0 T 0 Ω |T k (̺ ε ) -T k (̺)| 8/3 dx dt = 0,
which yields the desired conclusion

̺ ε → ̺ (strongly) in L 1 ((0, T ) × Ω).
(5.22)

Strong convergence of the temperature

Up to now, we have collected the following information concerning the sequence {ϑ ε } ε>0 :

• by virtue of (5.13),

∇ x ϑ ε → 0 in L p ((0, T ) × Ω; R 3
) for any 1 ≤ p < 2; (6.1)

• the limit temperature distribution is spatially homogeneous, specifically, by virtue of (5.14), (5.15), (5.16), and (6.1),

ϑ ε = (ϑ ε -χ ε ) + χ ε , χ ε = 1 M Ω ̺ ε ϑ ε dx, (6.2) 
and    (ϑ ε -χ ε ) → 0 strongly in L p (0, T ; W 1,p (Ω)) for any 1 ≤ p < 2, (ϑ ε -χ ε ) ⇀ 0 weakly in L 2 (0, T ; W 1,2 (Ω)), (6.3)

χ ε ⇀ χ = ϑ weakly -(*) in L ∞ (0, T ); (6.4)
• the radiation component of the internal energy vanishes asymptotically (see (4.5)), εϑ 4 ε → 0 in L 17/3 ((0, T ) × Ω). (6.5) In order to go on, we establish a positivity property for the temperature. More specifically, we claim that there is ε 0 > 0

χ ε = 1 M Ω ̺ ε ϑ ε dx ≥ η > 0 for a.a. t ∈ (0, T ) and ε ∈ (0, ε 0 ). (6.6)
For that purpose we adapt the proof of the positivity property (4.8) in [START_REF] Feireisl | Mathematical theory of compressible, viscous, and heat conducting fluids[END_REF] and first observe that, by virtue of Gibb's relation (1.9), there is a function S F such that s F (̺, ϑ) = S F ̺ϑ -3/2 . Owing to the monotonicity of s F with respect to the temperature, we may define

s F (̺, 0+) = lim ϑ→0 s F (̺, ϑ) = inf ϑ>0 {s F (̺, ϑ)} ∈ [-∞, ∞) .
The scaling invariance of s F then implies that s F (̺, 0+) does not depend on ̺. We therefore have either s F (̺, 0+) = -∞ for all ̺ ≥ 0 or s F (̺, 0+) = ℓ ∈ R for all ̺ ≥ 0. Since s F is defined up to an additive constant, we may assume that ℓ = 0 in the latter case and S F (1) = 0 in the former. We thus have either

s F (̺, 0+) = lim ϑ→0 s F (̺, ϑ) = -∞ for all ̺ ≥ 0, (6.7) 
or s F (̺, 0+) = lim ϑ→0 s F (̺, ϑ) = 0 for all ̺ ≥ 0. (6.8)

The next crucial observation is that, in accordance with (2.5), the total entropy

S ε : t → Ω ̺ ε s(̺ ε , ϑ ε ) dx is non-decreasing in (0, T )
and bounded from above and from below by (1.23) and (3.11). Therefore, after possibly extracting a subsequence, we deduce from Helly's selection principle that there is S ∈ L ∞ (0, T ) such that

S ε → S in L 1 (0, T ), (6.9) 
and S ε (t) ≥ S 0 for a.a. t ∈ (0, T ) and ε > 0. It next follows from (1.24) and (3.8) that

Ω ̺ ε s F (̺ ε , ϑ ε ) dx ≥ S = Ω ̺s(̺, θ) dx (6.10)
for a.a. t ∈ (0, T ) and ε ∈ (0, ε 0 ) with ε 0 small enough. Now the claim (6.6) is a straightforward consequence of (3.1), (3.6), (3.9), (6.10) and the following lemma.

Lemma 6.1. Consider R 0 > 0. There exists a positive constant m > 0 depending only on M , R 0 and S such that, if ̺ is a non-negative function in L 5/3 (Ω) and ϑ : Ω → (0, ∞) is a positive and measurable function satisfying

       ̺ 5/3 L 5/3 (Ω) + ̺ϑ L 1 (Ω) ≤ R 0 , Ω ̺ dx = M and Ω ̺s F (̺, ϑ) dx ≥ S, (6.11) 
then Ω ̺ϑ dx ≥ m > 0.

In order not to delay further the proof of the strong convergence of {ϑ ε } ε>0 , we postpone the proof of Lemma 6.1 to the end of the section.

Owing to (6.4), the positivity property (6.6) is also enjoyed by ϑ = χ and thus ϑ ≥ η > 0 for a.a. t ∈ (0, T ). (6.12)

The next consequence of (6.9), along with the strong convergence of the densities established in (5.22) and (6.3), (6.4), is that

lim ε→0 T 0 Ω ̺ ε s(̺ ε , ϑ ε ) -̺ ε s(̺ ε , ϑ) ϑ ε -ϑ dx dt = 0. (6.13) Indeed one has T 0 Ω ̺ ε s(̺ ε , ϑ ε ) -̺ ε s(̺ ε , ϑ) ϑ ε -ϑ dx dt = H ε 1 + H ε 2 + H ε 3 , with H ε 1 = T 0 Ω ̺ ε s(̺ ε , ϑ ε ) -̺ ε s(̺ ε , ϑ) ϑ ε -χ ε dx dt and H ε 2 = T 0 (χ ε -χ) S ε dt, H ε 3 = T 0 (χ ε -χ) Ω ̺ ε s(̺ ε , ϑ) dx dt.
It readily follows from (5.4) and (6.9) that H ε 2 → 0 as ε → 0. Similarly, we deduce from (5.22) and the positivity (6.12) of ϑ that {̺ ε s(̺ ε , ϑ)} ε>0 converges towards ̺s(̺, ϑ) in L 1 ((0, T ) × Ω) as ε → 0, whence H ε 3 → 0 as ε → 0 by (5.4). Concerning H ε 1 , we first observe that, if s is bounded from below, the convergence of H ε 1 to zero as ε → 0 is a straightforward consequence of (3.6), (3.8), (3.10), (3.18) and (6.3). However, some difficulties arise when s F is not bounded below as we do not have a uniform positive lower bound for ϑ ε . To remedy to this fact, we are going to use the extra assumption (1.24) and thus consider the case where Q F (Z)/Z ≥ α > 0 for all Z > 0. Then

s F (̺, ϑ) ≤ - 3α 2 log ̺ + 9α 4 log ϑ if ̺ ≥ ϑ 3/2 ,
and we infer from (3.6), (3.8), (3.10), and (3.18) that

S 0 ≤ S ε = 4 3 ε Ω ϑ 3 ε dx + {̺ε≥ϑ 3/2 ε } 9α 4 ̺ ε log ϑ ε - 3α 2 ̺ ε log ̺ ε dx + {̺ε<ϑ 3/2 ε } s F (1, 1)̺ ε + 3C v 2 ̺ ε |log(̺ ε )| + 9C v 4 ̺ ε [log(ϑ ε )] + dx ≤ Ω 9α 4 ̺ ε log ϑ ε - 3α 2 ̺ ε log ̺ ε dx + c Ω ̺ ε + ̺ 5/3 ε + ̺ ε ϑ ε dx ≤ 9α 4 Ω ̺ ε log ϑ ε dx + c.
Combining the previous bound with (3.9) allows us to deduce that

Ω ̺ ε | log ϑ ε | dx ≤ c.
Thanks to (3.15), we may now apply Lemma 3.1 to conclude that {log ϑ ε } ε>0 is bounded in L 2 (0, T ; W 1,2 (Ω)). (6.14)

Using again (3.10) and the assumption (1.24), we have 

̺ ε s(̺ ε , ϑ ε ) ≤ s F (1, 1)̺ ε + 3C v 2 ̺ ε |log(̺ ε )| + 9C v 4 ̺ ε [log(ϑ ε )] + and ̺ ε s(̺ ε , ϑ ε ) ≥ -c (̺ ε |log(̺ ε )| + ̺ ε |log(ϑ ε )|) ,
{̺ ε s(̺ ε , ϑ ε )} ε>0 is bounded in L 2 (0, T ; L 30/23 (Ω)).
This last property, (3.18), and (6.3) finally allow us to conclude that H ε 1 → 0 as ε → 0 and complete the proof of (6.13).

Moreover, writing

s(̺, ϑ) = 4ε 3̺ ϑ 3 + s F (̺, ϑ), we get lim ε→0 T 0 Ω ̺ ε s F (̺ ε , ϑ ε ) -̺ ε s F (̺ ε , ϑ) ϑ ε -ϑ dx dt = 0. (6.15)
Now, for δ ∈ (0, 1) and K > 1/η (the constant η being defined in (6.6)), we have

{̺>δ} |ϑ ε -ϑ| 2 dx dt ≤ I 1 ε (K) + I 2 ε + I 3 ε (K) + I 4 ε (K),
where Proof of Lemma 6.1: Assume for contradiction that the conclusion of the lemma is false. Then there are a sequence of non-negative functions {̺ n } n≥1 in L 5/3 (Ω) and a sequence of positive and measurable functions {ϑ n } n≥1 satisfying (6.11) At this stage, we have either (6.7) or (6.8). On the one hand, if s F fulfils (6.7) we may let j → ∞ and find that S = -∞ and a contradiction. On the other hand, if (6.8) holds true, we obtain that S = 0 by passing to the limit as j → ∞. The strict monotonicity of s F with respect to the temperature then implies that θ = 0. But this contradicts the positivity of θ and completes the proof.

I 1 ε (K) = {̺ε>K;ϑε>K} |ϑ ε -ϑ| 2 dx dt, I 2 ε = {̺ε<δ;̺>δ} |ϑ ε -ϑ| 2 dx dt, I 3 ε (K) {δ≤̺ε≤K;1/K≤ϑε≤K} |ϑ ε -ϑ| 2 dx dt, and 
I 4 ε (K) = {ϑε≤1/K}

Conclusion

Summarizing the above considerations we infer that the limit quantities ̺, J solve the problem ∂ t ̺ + div x J = 0, (7.1) ̺(0) = ̺ 0 , J • n| ∂Ω = 0 (7.2) in the sense of distributions (cf. Definition 2.1).

Moreover, the current J is given by the constitutive equation

J = -∇ x p F (̺, ϑ) -̺∇ x Φ, (7.3) 
where ∆Φ = 1 Ω ̺ in (0, T ) × R 3 . Since ϑ and 1/ϑ belong to L ∞ (0, T ) by virtue of (5.16) and (6.12), Theorem 1.1 has been proved.
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 3 Dissipation estimates. Gibb's relation (1.9), (1.8), and (1.10) yield

4 )

 4 therefore,(3.8) and(3.18) give rise toεϑ 4 ε → 0 in L 17/3 ((0, T ) × Ω). (4.5) It also follows from (3.5), (3.18), and (3.26) that p F (̺ ε , ϑ ε ) → p F (̺, ϑ) weakly in L 48/43 ((0, T ) × Ω). (4.6)

  3)) and (1.13) (or (2.4)) with the help of (3.6), (3.21), (3.25), (4.6), and (4.8) and obtain T 0 Ω p F (̺, ϑ) div x ϕ dx dt = T 0 Ω (J + ̺∇ x Φ) • ϕ dx dt (4.9)

  dx by (3.1) and (4.1), one can use (5.3) (with g = T k ) to obtain lim

|ϑ ε -ϑ| 2

 2 dx dt. By (3.6) and (3.18) we have lim K→∞ sup ε>0 {I 1 ε (K)} = 0.Moreover, as ̺ ε → ̺ a.e. in (0, T ) × Ω by(5.22), (ϑ ε -χ ε ) → 0 a.e. in (0, T ) × Ω by (6.3) and χ ε ≥ η a.e. in (0,̺ ε ∈ [δ, K] and ϑ ε ∈ [1/K, K], we have (̺ ε s F (̺ ε , ϑ ε ) -̺ ε s F (̺ ε , ϑ)) (ϑ ε -ϑ) ≥ δ min [δ,K]×[1/K,K] s F (ϑ ε -ϑ) 2and the strict positivity of s F in [δ, K] × [1/K, K] and (6.15) entail that lim ε→0 I 3 ε (K) = 0 for any fixed K.Consequently, for K > 1/η, we have lim supε→0 {̺>δ} |ϑ ε -ϑ| 2 dx dt ≤ sup ε>0 {I ε 1 (K)} .Letting K → ∞ leads us toϑ ε → ϑ in L 2 ({̺ > δ}) for any δ > 0,which, combined with (6.3), (6.4) yieldsϑ ε → ϑ in L p (0, T ; W 1,p (Ω)) for any 1 ≤ p < 2. (6.16)As a consequence of (4.6),(5.22), and (6.16), we have p F (̺, ϑ) = p F (̺, ϑ).

(7. 4 )

 4 The temperature ϑ a spatially homogeneous function such thatE 0 = Ω ̺e F (̺, ϑ) + 1 2̺Φ dx a.e. in (0, T ). (7.5)In addition, we have shown that the total entropyS : t → Ω ̺s F (̺, ϑ) dx (7.6) is a non-decreasing function of time satisfying ess lim inf t→0+ S(t) ≥ S 0 . (7.7)

  and lim n→∞ Ω ̺ n ϑ n dx = 0. Given j ≥ 1 and k ≥ 1, we infer from (3.10) that {̺n≤1/k}̺ n s F (̺ n , ϑ n ) dx ̺ n s F (̺ n , ϑ n ) dx ≤ 0. Finally, introducing ̺ n,k = ̺ n 1 [1/k,k] (̺ n )and using the monotonicity of s F , we get{1/k<̺n<k;ϑn<1/(jk 2/3 )} ̺ n s F (̺ n , ϑ n ) dx ≤ ̺ n s F (̺ n , ϑ n ) dx ≤ ck -1/3 + s F 1, 1 j Mfor all k ≥ 1 and j ≥ 1. Letting k → ∞ and using (6.11) we end up withS ≤ lim inf n→∞ Ω ̺ n s F (̺ n , ϑ n ) dx ≤ lim sup n→∞ Ω ̺ n s F (̺ n , ϑ n ) dx ≤ s F 1, 1 j M.

	Summarizing, we have shown that
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{̺n≥k} ̺ n s F (̺ n , ϑ n ) dx ≤ {̺n≥k} s F (1, 1) ̺ Ω ̺ n ϑ n dx , n s F (̺ n , ϑ n ) dx ≤ ck -1/3 .

Using once more (3.10) and (6.11) we obtain

{1/k<̺n<k;ϑn≥1/(jk 2/3 )} ̺ n s F (̺ n , ϑ n ) dx n ϑ n dx ≤ c jk 8/3 + jk 8/3 log k + 1 Ω ̺ n ϑ n dx,
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