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Robust Feedforward-Feedback Control of a

Nonlinear and Oscillating 2-DOF Piezocantilever
Micky Rakotondrabe, member, IEEE, Kanty Rabenorosoa, Joël Agnus and Nicolas Chaillet, member, IEEE

Abstract— Many tasks related to the micro/nano-world require,
not only high performances like submicrometric accuracy, but
also a high dexterity. Such performances are only obtained using
micromanipulators and microrobots with multiple degrees of
freedom (DOF). Unfortunately, these multi-DOF systems usually
present a strong coupling between the different axis making them
very hard to control.

The aim of this work is the modeling and control of
a 2-DOF piezoelectric cantilever dedicated to microassem-
bly/micromanipulation tasks. In addition to the coupling between
the two axis, the piezocantilever is very oscillating and strongly
nonlinear (hysteresis and creep). In the proposed approach,
the nonlinearity and vibration are first compensated thanks to
the feedforward technique. Afterwards, we derive a decoupled
model in order to synthesize a linear robust H∞ controller. The
experimental results show the efficiency of the proposed approach
and their convenience to the micromanipulation/microassembly
requirements.

Note to Practitioners— The main motivation of this

article is the need of both high performances and high

dexterity in micromanipulation and microassembly tasks.

In such a case, not only a submicrometric accuracy

and stability are needed, but also numerous degrees of

freedom. For that, in the literature, there exist piezoelectric

based structures with 2 or more DOF. Unfortunately, the

coupling between its axis, the nonlinearities (hysteresis

and creep) and the structure vibration make them very

difficult to control and therefore make performances lost. A

classical feedback controller can be employed but when the

nonlinearities and vibration become strong, it is impossible

to synthesize a linear controller. In this paper, we show that

the combination of feedforward techniques, to minimize

the nonlinearities and vibration, and feedback techniques

makes possible to reach the high performances required

in micromanipulation/microassembly. We notice that the

proposed approach can also be applied to other nonlinear,

oscillating and multi-DOF systems, such as piezotubes.

Index Terms— Piezoelectric cantilever, 2 degrees of freedom,
coupling, nonlinear, feedforward control, robust control, mi-
croassembly/micromanipulation.
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I. INTRODUCTION

T
He design and development of microrobots, microma-

nipulators and microsystems in general used to work

in the micro/nano-world (such as for micromanipulation and

microassembly) are very different to that of classical systems.

At this scale, the systems should have accuracy and resolution

that are better than one micron. For instance, fixing a microlens

at the tip of an optical fiber with 1µm of relative positioning

error or 0.4µrad of orientation error may cause a loss of 50%
of the light flux [1]. In fact, to reach such high performances,

the microrobots, micromanipulators and microsystems are

developed with smart materials instead of classical motors

(example DC motors) and hinges. Smart materials minimizes

the mechanical clearances which induce the loss of accuracy.

Furthermore, they allow less compact design than hinges

because it is possible to design a microsystem with one bulk

material. Among the very commonly used smart materials are

piezoceramics. Their recognition is due to the high resolution,

the short response time and the high force density that they

offer.

Beyond the accuracy and resolution, the systems used for

microassembly and micromanipulation need to be dexterous.

Indeed, when producing hybrid and complex microstructures

and MEMS, the used micromanipulators, microrobots and

microsystems should be able to perform complex trajectory or

should have a complex workspace. For that, they should have

higher number of degrees of freedom (DOF). For instance,

[2] developped a 2-DOF piezoelectric stick-slip microrobot

able to perform angular and linear motion, [3] [4] proposed

3-DOF microrobots for x, y, θ motions, [5] proposed a 4-DOF

piezoelectric microgripper and [6] proposes a 6-DOF dexter-

ous microhandling system. In fact, it has been demonstrated

that high DOF-number microassembly/micromanipulation sys-

tems offer more possibility for complex, hybrid assembled

microstructures and MEMS than one-DOF systems [7]- [10].

Among the commonly used microsystems and micromanip-

ulators, piezoelectric microgrippers (called piezogrippers) are

especially adapted for microassembly and micromanipulation

because of their ability to perform pick and place tasks with

submicrometric resolution, and the possibility to control the

manipulation force [11]. Most of existing microgrippers are

made of two single-DOF piezocantilevers with only an in-

plane positioning capability [12]- [15]. To fulfill the dexterity

requirement, our previous work [5] proposed a high dexterous

two-fingered piezogripper (Fig. 1). With its 4 articular DOF,

it is able to orient micro-objects or to pick-transport and

place them in and out of plane. In-plane means positioning
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in the y-axis while out of plane in the z-axis (Fig. 1-a).

In particular, when the 4-DOF microgripper is particularly

combined with external high range linear or rotary systems,

the whole micromanipulation/microassembly system becomes

itself dexterous [16]. For instance, such micromanipulation

system allowed the manipulation of watch screws or the

alignment of beam splitters for microspectrometers [7] [17].

In fact, each finger that composes the 4-DOF microgripper is

a 2-DOF piezocantilever that is able to move independently

in the two orthogonal directions. Notwithstanding, when ap-

plying a reference deflection along y-axis (resp. z-axis) to the

piezocantilever, an undesirable deflection is obtained in the z-

axis (resp. y-axis), making a loss of accuracy. This is due to

mechanical imperfection of the structure and particularly to

the misalignment of the electrodes. In addition to these, the

presence of a manipulated object may also cause a coupling

between the two axis. Beyond the coupling, the piezocan-

tilever also presents nonlinearities (hysteresis and creep) and

vibrations. While the hysteresis and creep also makes lose

the accuracy, vibrations generate undesirable overshoots that

may destroy the manipulated micro-objects or the actuators

themselves. At the end, despite the high dexterity, general

performances are lost due to the coupling, nonlinearities and

vibrations. It is obvious that the piezocantilever has to be

controlled. This control is at low-level and can only be very

useful to ameliorate the efficiency of the whole (teleoperated or

automated) micromanipulation/microassembly systems. This

is why several projects concerning the development of high

performances micromanipulation/microassembly stations in-

clude the low-level control and the performances improvement

of each actuators these last years [18] [19].

piezocantilevers
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Fig. 1. (a) a piezogripper with 2-DOF piezocantilevers. (b) the microgripper
developped in [5].

In the literature, the control of 1-DOF piezocantilevers,

including AFM-tubes working on one axis, is at its cruising

speed. In open-loop control, both hysteresis and creep were

compensated by nonlinear compensators in cascade [20]

[21] [22]. Additionaly to the nonlinearity compensation, the

vibration was minimized by using dynamic inversion method

[23] [24] or inverse multiplicative approach [25]. Open-

loop control is convenient for sensor-less piezocantilevers,

reducing the cost of the whole automated system. However,

once external disturbances appear or model uncertainties be-

come large, open-loop control techniques fail and closed-

loop methods should be used. Different closed-loop control

laws were therefore applied and have proved their efficiency

in the micro/nano-positioning: integral based control [26],

state feedback technique [27], adaptive [28] [29] and robust

techniques [30] [31]. The above techniques applied for 1-

DOF can not be directly extended for 2-DOF piezocantilevers:

coupling between axis should be delicately considered. In fact,

if the coupling is badly characterized and modeled, the closed-

loop system may be unstable. In [32], a robust technique

was proposed to control a nonlinear 2-DOF nanopositioner.

It takes into account the coupling and the nonlinearities.

However, when these nonlinearities and the coupling become

very large and when the vibration is very badly damped,

the technique fails. It is then necessary to propose a new

approach that permits to control strongly coupled, hysteretic,

creeped and oscillating bi-variable piezocantilevers. Such a

technique can be used, not only for multi-DOF piezogrip-

pers dedicated to micromanipulation/microassembly but also

for AFM-piezotubes used as a scanner working on two or

three axis [33]. The object of this paper is to propose a

new technique in that issue. First, we apply a feedforward

compensation in order to minimize the effect of the hysteresis

and vibration. Afterwards, a model taking into account the

coupling and residual nonlinearities is proposed. Finally, a

robust feedback control law is synthesized in order to reach

the expected performances.

The paper is organized as follows. In section-II, we present

the functioning of the 2-DOF piezocantilever that will be

controlled. The feedforward technique for compensating hys-

teresis and vibration is presented in section-III. In section-

IV, we model the obtained system in order to further permit

the synthesis of a linear feedback control law. Section-V is

dedicated to the synthesis of a robust H∞ controller to reject

coupling and uncertainty effects and to reach the specified

performances. Finally, conclusions end the paper.

II. PRESENTATION OF THE 2-DOF PIEZOCANTILEVER

A. The piezocantilever working principle

In this section, we present the 2-DOF piezocantilever that

will be controlled. Two of this piezocantilever compose a 4-

DOF piezogripper (Fig. 1-b) that is able to grip, orient and

position micro-objects along y, z and around x axis [5].

The 2-DOF piezocantilever is made up of two piezolayers

with 4 local electrodes at its surfaces and one middle electrode

for ground (Fig. 2-a). It can be assimilated to a cantilever

beam clamped at one end. The two DOF are obtained with a

judicious application of voltages on the electrodes.
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Fig. 2-b pictures the functioning of the piezocantilever with

cross section views. The structure at rest is presented with solid

area and the deformed actuator with dashed lines. P indicates

the polarization of the piezoelectric material. It is reminded

that when the electric field (so the applied voltage) is in the

same direction than the polarization, the piezolayer contracts.

In the first configuration (Fig. 2-c), the four electrodes are set

to the same voltage VZ > 0. The upper layer expands along x
while the lower layer contracts, leading to a deflection along z.

In the second situation (Fig. 2-d), the applied voltages on two

adjacent and two opposite electrodes are VY and −VY (VY >
0). So, while the left part of the piezocantilever expands, the

right one contracts leading to a deflection along y axis. Finally,

in the last configuration (Fig. 2-e), the electrodes are set at

voltages VZ + VY and VZ − VY , which yields a deflexion

in y and z directions. The 2-DOF of the piezocantilever

are very interesting for designing piezogrippers with high

dexterity. Unfortunately, when a displacement along one axis

is desired, a residual displacement along the orthogonal axis

appears. This coupling is mainly due to the misalignement

of the four electrodes and to the interference between the

applied electrical fields. Furthermore, hysteresis and creep

nonlinearities as well as vibrations characterize the behavior

of the piezocantilever.
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Fig. 2. (a) presentation of the 2-DOF piezocantilever. (b) cross section view
of the piezocantilever. (c) achievement of z axis motion. (d) achievement of
y axis motion. (e) achievement of both y and z motions.

B. The experimental setup

Fig. 3 shows the experimental setup. The piezocantilever,

made up of PZT-layers, has the following total dimensions:

15mm× 2mm× 0.5mm. Two optical sensors, from Keyence

(LK2420), with 10nm of resolution and 0.1µm of accuracy

are used to measure displacements at the tip of the piezo-

cantilever along y and z axis. We use computer and DSpace-

board materials to acquire measurements and to provide con-

trol signals. These real-time materials work with a sampling

frequency of 5kHz which is high enough compared to the

bandwidth of the system to be controlled. The control signals

that they supply are amplified by a home-made high voltage

amplifier having two independent lines. It can supply up to

±200V at its output. The Matlab-Simulink TM software is used

to manage the data and signals.

y-axis sensor
10mm

z-axis sensor

support

2-dof piezocantilever

 

 

y

x

D-SPace board

Y-Z sensors 2 lines amplifier

 
 

 

 

Fig. 3. Experimental setup based on one piezocantilever and two optical
sensors.

III. FEEDFORWARD CONTROL

In this section, we characterize and compensate the hystere-

sis and vibration of the piezocantilever. This compensation is

necessary in order to linearize the system and to attenuate the

vibration and therefore to further make easy the synthesis of

a linear controller.

The piezocantilever can be considered as a bi-variable

system where inputs are voltages VY and VZ while outputs are

displacements Y and Z (Fig. 4). As advised by previous works

[23] [25], the nonlinearities and the vibration analysis can be
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done independently, by choosing properly the frequencies of

the input signals. Therefore, we first analyze and compensate

the hysteresis. Afterwards, we consider the vibration.

 

Vy

Vz

Y

Z

system

Fig. 4. Block-scheme representing the 2-DOF piezocantilever.

A. Hysteresis compensation

To characterize the hysteresis, a sine input signal is applied

to the system and the resulting output signal is plotted versus

the input. The frequency of this input is chosen to be low in

order to avoid the effect of the dynamic part on the hysteresis

shape. However, it should not be too low in order to avoid the

effect of the creep [25] [31]. In our case, we have two input

signals VY and VZ . Following our previous characterization

work [34], fY = fZ = 0.05Hz is a good choice. Concerning

the amplitude, the piezocantilever can be powered by a voltage

up to 100V but our experiments will be limited to 40V (both

for y and z axis), which corresponds to the expected range of

displacements.

First, we apply a VY voltage while VZ is set to zero. Two

amplitudes VY = 40V and VY = 20V are used. As pictured in

Fig. 5-a, a strong hysteresis characterizes the VY → Y transfer.

This hysteresis is nearly equal to 17% ( h
H

× 100% = 7.5µm
42µm

).

Furthermore, a residual displacement appears on the z axis

(Fig. 5-b). This corresponds to the VY → Z coupling.

Now we set VY to zero and apply a sine voltage VZ .

As pictured in Fig. 5-d, a strong hysteresis (16.67% =
20µm
120µm

× 100%) also characterizes the VZ → Z transfer.

Finally, a residual displacement appears on the y axis (Fig. 5-

c) corresponding to the VZ → Y coupling. The asymmetry of

the coupling curve is due to the imperfection of the mechanical

design of the 2-DOF piezocantilever.

The two hysteresis being too strong, they make difficult the

synthesis of further feedback controller. It is then necessary to

minimize these hysteresis. The principle used for that is the

feedforward compensation based on the inverse model. There

are different hysteresis models and compensation techniques

for smart materials: the Preisach [35], the Prandtl-Ishlinskii

[36] [22] and the Bouc-Wen techniques [37]. We use the

Prandtl-Ishlinski model (PI-model) because of the simplicity

of its implementation and ease of obtaining a compensator or

inverse model.

1) Prandtl-Ishlinskii (PI) hysteresis modeling: in the PI ap-

proach, a hysteresis is modeled by the sum of many elementary

hysteresis operators, called play operators. Each play operator,

denoted by γj(.), is characterized by a threshold rj and a
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Fig. 5. Hysteresis characteristics of the 2-DOF system piezocantilever.

weighting wj [38]. Thus, the relation between the input Vi

(i ∈ {Y,Z}) and the output δ (δ ∈ {Y,Z}) is given by:

δ =
nhyst
∑

j=1

γj (Vi(t))

=
nhyst
∑

j=1

ωj · max {Vi(t) − rj ,min {Vi(t) − rj , δ(t
−)}}

(1)

where δ(t−) indicates the value of the output at precedent

time and nhyst the number of play operators. The identification

of the parameters rj and wj , well described in [25], is done

using the maximum voltage input Vi = 40V .

2) Prandtl-Ishlinskii (PI) hysteresis compensation: to com-

pensate a hysteresis that has been modeled with a PI-model,

another PI hysteresis model (called hysteresis compensator or

PI inverse model) is put in cascade with it. For the 2-DOF

piezocantilever, a compensator is put for each axis. In Fig. 6,

YRH [µm] is the new input for the y axis while ZRH [µm] is

for the z axis, and where subscript RH means reference for

the hysteresis compensated system.

 
 

 

Vy

Vz

Y

Z

system

Hyst

comp-Y
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comp-Z

RH
Y
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Fig. 6. Block-scheme representing the system with the hysteresis compen-
sators.

Like the PI direct model, each elementary operator of the

PI inverse model is characterized by a threshold r′k and a



IEEE TRANSACTIONS ON AUTOMATION, SCIENCE AND ENGINEERING 5

weighting gain w′
k. They are computed from the parameters

rj and wj of the direct model. We have [36]:

r′k =
k
∑

j=1

wl · (rk − rj) ; k = 1 · · ·nhyst (2)

and

w′
1 = 1

w1

w′
k = −wk

 

w1+
k
P

j=2

wj

!

·

 

w1+
k−1
P

j=2

wj

! ; k = 2 · · ·nhyst

(3)

3) Experimental results: first, the PI hysteresis model,

described by (Eq. 1), is identified. For a trade-off on accuracy

and complexity, we choose nhyst = 15. In Fig. 7, the

experimental curves and the simulation are plotted. As seen

in Fig. 7-b, the identified model for the VZ → Z transfer

well fits to the real (experimental) hysteresis. However, there

is a residual error between the model VY → Y (Fig. 7-a)

and the corresponding real hysteresis. This is due to the fact

that the real hysteresis is non-symmetrical while the employed

model is symmetrical. An adapted model can be used but its

compensator has a high complexity for implementation [39].

In addition, the aim is to reduce the hysteresis in order to

facilitate the feedback synthesis and the residual error can be

considered as uncertainty. This uncertainty will be taken into

account during the feedback control design.
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Fig. 7. Experimental results and model simulation of the hysteresis.

The hysteresis compensator has been computed using

(Eq. 3), implemented in the Matlab-Simulink TM software and

tested. The experimental process is performed as follows.

First, a sine input reference YRH with amplitude 20µm
is applied while ZRH is set to zero. Fig. 8-a presents the

output Y . It appears that the hysteresis which was initially

17% (Fig. ??-a) was reduced into 8.75%. This residual hys-

teresis is due to the asymmetry of the real hysteresis, already

commented above. Fig. 8-b presents the coupling YRH → Z.

It is shown that this coupling stays unchanged.

After that, a sine reference ZRH with amplitude 60µm
is applied while YRH is set to zero. As pictured in Fig. 8-

d, the hysteresis which was initially 16.67%(see Fig. ??-d)

is completely removed. However, the coupling ZRH → Y
becomes slightly larger (compare Fig. ??-c and Fig. 8-c). This

coupling will be considered as a disturbance to be removed

during the modeling.
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Fig. 8. Experimental results of the 2-DOF piezocantilever with the hysteresis
compensator.

B. Vibration compensation

Now, let us analyze the step responses of the new system

represented by the scheme in Fig. 6. For that, we first apply a

step YRH = 20µm, ZRH being equal to zero. The response of

Y is plotted in Fig. 9-a. Then, we apply a step ZRH = 60µm,

YRH being equal to zero. The response of Z is plotted in

Fig. 9-d. It appears that the structure is more oscillating and

has a badly damped vibration in the y axis than in z axis. The

overshoots are 77% and 4.8% in y and z axis respectively. The

corresponding resonant frequencies are 5400 rad
s

and 2670 rad
s

.

Finally, the couplings YRH → Z and ZRH → Y are pictured

in Fig. 9-b and Fig. 9-c respectively.

Similarly to the hysteresis phenomenon, it is hard to syn-

thesis a feedback controller when the vibration characterizing

piezocantilevers is too badly damped [34]. This is why

we propose to minimize the vibration along y axis. Fig. 10

gives the block-scheme of the 2-DOF piezocantilever with

the previous hysteresis compensators and the new vibration
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Fig. 9. Vibration characteristics of the 2-DOF piezocantilever.

compensator. In this, the new references inputs are YRV and

ZRV = ZRH . Subsrcipt RV means reference for the vibration

compensated system.

To compensate a dynamic part, an inverse dynamic model

can be used [23] [24]. This technique necessitates a bi-

stability condition (direct and inverse models stable) on the

model. However, such a condition is not always guaranteed

for real systems. Another technique to minimize or cancel

vibration is input shaping techniques. Input shaping techniques

avoid the dynamic inversion and have a simplicity of imple-

mentation [25]. There are different kinds of input shaping

methods but the one presented here is the Zero Vibration

(ZV) method which has the particularity to be simple for

computation [40].
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Fig. 10. Block-scheme representing the system with the hysteresis compen-
sators and the vibration compensator.

1) The ZV input shaping technique: When an impulse is

applied to an oscillating system, a vibration appears. Let ωn be

the natural frequency and ξ the damping ratio. When a second

impulse is applied at time Td = T/2, with T = 2·π
ωn·

√
1−ξ2

,

the vibration caused by the second impulse can cancel the

one caused by the first impulse (Fig. 11-a) if the amplitudes

of both are judiciously chosen. For any reference input, the

previous sequence of impulses, also called shaper, is convolved

with it. Fig. 11-b shows the bloc-diagram of the shaper, which

constitutes the vibration compensator and which is convolved

with the input reference. For instance, if the reference input

is a step, the control signal is a staircase with two steps.

0 T
d
T

1
A
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A

first impulse response

(a)
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t [s]

shaper (vibration compensator)

oscillating

system

control
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d
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impulse
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Fig. 11. Principle of the ZV input shaping technique to minimize vibration.

If the identified parameters ωn or ξ are quite different

from the real parameters, a residual vibration will remain

after compensation. In fact, the vibration caused by the first

impulse will not be exactly cancelled by that of the second

one. Therefore, if the overshoots of the two vibrations are

very high, the resulting interfered signal may also have a high

overshoot. To avoid such a problem, it is advised to use more

than two impulses in the shaper. In that case, each impulse

amplitude and the corresponding vibration are small. So, the

resulting interfered signal will have a lower overshoot if any.

Let an oscillating system be modeled by the following

second order model:

δ

δR

=
K

(

1
ωn

)2

· s2 + 2·ξ
ωn

· s + 1
(4)

where K is the static gain.

If Ai and ti are the amplitudes of the impulses and their

application times (delays), the shaper is computed using the

following expressions [40]:
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Ai :

























A1 = a1

(1+β)m−1

A2 = a2

(1+β)m−1

...

Am = am

(1+β)m−1

























ti :











t1 = 0
t2 = Td

...

tm = (m − 1) · Td











(5)

where β = e
− ξ.π√

1−ξ2 , m is the number of impulses in the

shaper, ai indicates the ith monomial of the polynomial from

(1 + β)
m−1

. We have a1 = 1 and am = βm−1.

2) Experimental result: first, we identify the transfer

YRH → Y . We obtain: K = 0.93, ωn = 6101rad/s and

ξ = 0.02. Fig. 12 shows that the identified model reasonably

fits to the experimental result.

50 10 15 20 25 30 35

5

10

15

20

25

30 : model simulation

: experimental result

[ ]Y µm

[ ]t ms

Fig. 12. Step response of the piezocantilever in Y -axis: experimental result
and model simulation.

Then, different shapers, characterized by different numbers

of impulses, were computed and implemented accordingly to

Fig. 10. Higher the number of impulses is, lower is the over-

shoot of the obtained output Y , when a step reference input

YRV is applied. However, the complexity of the implemented

compensator increases versus the number of impulses. It is

therefore unecessary to have a shaper with a high number

of impulses. In our case, when the number of impulse is

more than 4, the overshoot stops decreasing drastically. So,

we propose to finally choose a shaper with four impulses.

The first experiment concerns the step response on Y . In

order to compare the results with and without compensator,

both results are plotted as in Fig. 13. The figure clearly shows

that the overshoot which is 72.22% without compensator is

highly reduced when using the 4-impulse compensator.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

without vibration compensator

with vibration compensator

[ ]Y µm

[ ]t ms

( )RHY Y→

( )RVY Y→

Fig. 13. Experimental step responses of the piezocantilever in Y -axis:
comparison results of with and without compensator.

After that, a harmonic analysis is performed. For that, a sine

input signal is applied and the corresponding output magnitude

is plotted. Fig. 14 presents the comparison of the results with

and without compensator. It shows that the initial resonance

peak is highly damped when we apply the input shaping

method.

10−1 100 101 102 103 104
−20

−15

−10

−5

0

5

10

15

20

with vibration compensator

( )RV
Y Y→

without vibration compensator

( )RH
Y Y→

magnitude [dB] of Y

Fig. 14. Experimental harmonic responses of the piezocantilever in Y -axis:
comparison results of with and without compensator.

C. Scheme of the new system

In the previous sub-sections, we have compensated the

hysteresis of two axes and the vibration of the y axis using

the feedforward techniques. The new system to be modeled

and controlled with feedback is now a bi-variable system

with smaller hysteresis and vibration, but still with a strong

coupling. It has inputs YRV and ZRV while outputs are Y
and Z (Fig. 15). The next section will be dedicated to the

modeling of this new system.
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Fig. 15. Block-scheme of the new system to be modeled and controlled with
feedback technique.

IV. MODELING

In this section, we first characterize the system. Afterwards,

we propose to model the system by a decoupling technique

for y and z axis. The two decoupled models are advantageous

relative to one multivariable model because we handle sim-

pler models and therefore synthesize simple controllers. The

identification part and the scheme of the nominal model used

for the controllers design end the section.

A. Characterization of the system

The first characterization concerns the step responses. A

step input YRV = 20µm is applied while ZRV is set to zero.

Fig. 16-a confirms that the vibration on Y is minimized thanks

to the previous input shaping technique. The coupling effect

YRV → Z gives a final value of −0.4µm (Fig. 16-b). After

that, we set YRV = 0 and apply ZRV = 60µm. While Fig. 16-

d pictures the resulting Z, Fig. 16-c shows that the coupling

ZRV → Y is strong (final value nearly equal to 4µm) and

very oscillating.

0 20 40 60
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(c)

(b)

(d)[ ]t ms

[ ]t ms [ ]t ms

[ ]t ms

coupling

coupling

coupling

(final value)

coupling

(final value)

RVZ Y→

RVY Z→

Fig. 16. Step response of the compensated 2-DOF piezocantilever.

The next characterization concerns the static plane behav-

iors, ie. the input-output plane. For that, a sine input YRV with

amplitude 20µm is applied. In parallel, three constant values

of ZRV are applied: 0µm, 30µm and 60µm. The response

on Y , plotted in Fig. 17-a, shows the residual hysteresis in

YRV → Y . The effect of the constant ZRV on the (three

hysteresis) curves is that they are slightly angled and shifted.

A sine input ZRV with amplitude 60µm is now applied. Three

constant values are given to YRV : 0µm, 10µm and 20µm. The

response of Z, plotted in Fig. 17-d shows the linearity of the

direct transfer ZRV → Z. The applied constant YRV affects

the three linear curves by a slight angle.

Fig. 17-b presents the coupling transfer YRV → Z. It

confirms that the effect of YRV on Z is negligible. Indeed,

we have:

∂Z
∂YRV

≃ 0, ∀ZRV (6)

Fig. 17-c presents the coupling transfer ZRV → Y , which

can be approximated by a linear function such as:

∂Y
∂ZRV

≃ 12µm
60µm

= 0.2 = aZY , ∀YRV (7)
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Fig. 17. Characteristics in the static plane of the compensated 2-DOF
piezocantilever.

Finally, the last characterization concerns the creep effect.

The creep is defined to be the drift appearing after the end

of the transient part. These transient parts were presented in

Fig. 16. To characterize the creeps, a step input YRV = 20µm
(with ZRV = 0) is first applied, afterwards a step input

ZRV = 60µm (with YRV = 0) is applied. The outputs are

acquired for a long duration: 600s, and the curves are given

in Fig. 18. The direct transfers YRV → Y and ZRV → Z
provide creeps of 4µm and 15µm respectively (Fig. 18-a

and Fig. 18-d). The coupling transfer YRV → Z provides a

creep of 6.5µm (Fig. 18-b). Finally, the creep of the coupling

transfer ZRV → Y (Fig. 18-c) decreases from 6µm to 5µm.
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Fig. 18. Creep characteristics of the compensated 2-DOF piezocantilever.

Based on these characterizations, we model the system of

Fig. 15 in the next sub-section. The aim is to obtain a simple

but convenient model for the synthesis of a feedback controller.

B. The decoupled model

Let the considered system be represented by the following

nonlinear and coupled bi-variable operator:

(

Y
Z

)

= Γ (YRV , ZRV , s) ⇔
{

Y = ΓY (YRV , ZRV , s)
Z = ΓZ (YRV , ZRV , s)

(8)

where ΓY and ΓZ are nonlinear dynamic operators whose

inputs are YRV and ZRV . The Laplace variable is denoted by

s.

1) Equation of the output Y : According to Fig. 17-a and

-b and to (Eq. 7), the output Y can be considered as nonlinear

relative to YRV and affine versus to ZRV . The dynamic

part relating ZRV and Y can be denoted by DZY (s) and is

characterized by the curve in Fig. 16-c. We deduce:

Y = ΓY Y (YRV , s) + aZY · DZY (s) · ZRV (9)

where the static gain of the coupling ZRV → Y is aZY

and ΓY Y (YRV , s) represents a dynamic hysteresis. A dynamic

hysteresis is a hysteresis whose shape depends on the rate or

frequency of the input. It can be seen from Fig. 17-a that

this hysteresis is angled accordingly to the value of ZRV , so

it is slighlty dependent on the latter. However, because the

angle is weak, it will not be considered in the model but in

an uncertainty introduced later.

To model the hysteresis, the quadrilateral approximation is

applied [31]. It has the advantage to approximate a nonlinear

model by a linear one subjected to an uncertainty. As we want

to synthesize a simple (linear) controller, this approximation

is adapted to our situation. The principle of the quadrilateral

approximation is described below.

• The dynamic hysteresis of the piezoactuator can be sepa-

rated into a static hysteresis and a linear dynamic part. So

we have: ΓY Y (YRV , s) = DY Y (s) ·Γs
Y Y (YRV ). A static

hysteresis is a hysteresis whose shape is independent of

the rate or frequency of the input.

• The static hysteresis Γs
Y Y (.) is approximated by a quadri-

lateral characterized by a maximal slope αY max and a

minimal slope αY min (Fig. 19).

• Finally, a linear model with direct input multiplicative

uncertainty ∆·WY e is derived, WY e being the weighting.

For the approximation of Γs
Y Y (YRV ), the nominal static

gain is the slope of its axis denoted by αY , and the

uncertainty is: ∆ ∈ R and |∆| ≤ 1, the weighting

WY e ∈ R is chosen to cover the radius αY max−αY min

2 .

input

output

maxY
α

Y
α

minY
α

Fig. 19. The quadrilateral approximation of a static hysteresis [31].

The previous model approximates the hysteresis but does

not account the creep. It has been demonstrated in [41] that

the creep behaves like a fictive external disturbance. So, the

equation of Y becomes:

Y = αY · DY Y (s) · YRV + dY (10)

where:

dY = aZY · DZY (s) · ZRV + cY · FY + Ycreep (11)

is the external disturbance in the y axis. It is composed of

the coupling part aZY · DZY (s) · ZRV , the fictive external

disturbance related to the creep part Ycreep and the manipu-

lation force part cY · FY , cY being the compliance. While

the direct creep is pictured in Fig. 18-a, the creep due to

the coupling denoted by Y ZRV
creep is pictured in Fig. 18-c. In

the figure, this coupling creep is lower than the final value

of aZY · DZY (s) · ZRV , this is why it was not necessary to

include it in the disturbance in (Eq. 11).

2) Equation of the output Z: According to Fig. 17-c and

-d and to (Eq. 6), the output Z is linear relative to ZRV and

the coupling YRV → Z is negligible:

Z = αZ · DZZ(s) · ZRV (12)
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where αZ is the static gain identified from Fig. 17-d and

DZZ is a linear dynamic part identified from the step response

given in Fig. 16-d.

Let Zcreep be the direct creep pictured in Fig. 18-d, and

ZYRV
creep be the coupling creep due to YRV in Fig. 18-b. Once

again, these creeps can be considered as external disturbances.

Finally we have:

Z = αZ · DZZ(s) · ZRV + dZ (13)

where dZ is the final external disturbance along z axis. It

is given by:

dZ = cZFZ + Zcreep + ZYRV
creep (14)

with FZ being the manipulation force along z axis and cZ

the compliance.

C. Summary of the modeling

Fig. 20 sums up the decoupling technique as we have

proposed. The initial nonlinear and coupled model in (Eq. 8)

has two coupled equations, one for Y and one for Z. The

linear and decoupled two models were obtained as follows.

• For Y , we have brought the coupling (Fig. 17-c), the

direct creep (Fig. 18-a) and the manipulation force to-

gether in a disturbance. The residual hysteresis (Fig. 17-

a) was approximated by the quadrilateral approach and

has derived an uncertainty of model parameter.

• For Z, the direct creep (Fig. 18-d), the coupling creep

(Fig. 18-b) and the external force were considered as

disturbance. The slight angle due to the coupling (Fig. 17-

d) was considered as a model uncertainty.

We notice that if another piezocantilever with different

characteristics (sizes, etc.) is used, the proposed decoupled

and linear model is still valid. One has only to perform first

the characterization process as presented in section-IV-A.

D. Identification

1) Static gains: the static gain αY was identified using

Fig. 17-a and the principle shown in Fig. 19. The whole three

hysteresis curves of Fig. 17-a were used to choose the maximal

and minimal slopes. However, to choose the nominal gain, we

only use the hysteresis obtained at ZRV = 0. Concerning

the static gain αZ , we use Fig. 17-d. Finally, we introduce

a weighting WZe for uncertainty related to the fact that the

three curves in Fig. 17-a are slightly angled themselves. We

obtain:



















αY = 1.01

WY e = 0.2

αZ = 0.99

WZe = 0.002

(15)

Nonlinear

and coupled

model

linear

model

- coupling

- direct creep

- external force

- direct creep

- coupling creep

- external force

- residual

hysteresis

disturbance

model

uncertainty

RV
Y

RV
Z

RV
Z

RV
Y

Y

Y

Z

Zlinear

model

- coupling

(slight 

angle on

the static

curve)

disturbance

model

uncertainty

Fig. 20. Summary of the decoupling technique.

2) Dynamic parts: using the step responses in Fig. 16-a and

-d, we apply an ARMAX (Auto Regressive Moving Average

with eXternal inputs)) model and Matlab software [42] to

identify DY Y and DZZ . Fig. 21 presents the step responses

of the identified models compared with the experimental result.

We have:































DY Y (s) =
−235(s−1.5×104)(s+50.7)

(s+46.6)(s2+3378s+4.5×106)

DZZ(s) =
0.002(s2+1.43×104s+6.5×107)(s2−5195s+6.9×107)

(s+2388)(s+544)(s2+49.6s+7.1×106)

(16)

E. Characterization of the disturbances

1) Disturbance dY : the disturbance described by (Eq. 11)

is first characterized. The aim is to determine the maximal

disturbance that may appear in the y axis.

The coupling part aZY · DZY (s) · ZRV is computed using

the maximal input range ZRV = 60µm. In the steady-state

mode, this coupling part is 4µm (Fig. ??-c). The creep Ycreep

obtained at the maximal input YRV = 20µm is nearly 6µm
(Fig. 18-a). The compliance has been identified in a previous

work, we have: cY = 0.625µm/mN [34]. The maximal

manipulation force is 20mN . Then, we obtain: cY · FY =
12.5µm. Therefore, the maximal disturbance along y is:

dY = 22.5µm (17)

2) Disturbance dZ: here, we characterize the disturbance

described by (Eq. 14).
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Fig. 21. Experimental results and simulation of the identified transient part.

The identified compliance is cZ = 5µm/mN . With a

maximal force of 5mN along z, we have: cZFZ = 25µm.

The creep Zcreep is computed using the maximal input range

ZRV = 60µm, we have: Zcreep = 13µm (Fig. 18-d).

The coupling creep is obtained at YRV = 20µm, we have:

ZYRV
creep = 7.5µm (Fig. 18-b). The maximal disturbance along

z is then: .

dZ = 45.5µm (18)

F. Block-scheme of the model

The system to be controlled and which is represented by

Fig. 15 has been modeled and decoupled in previous sub-

sections. The two decoupled models are given by (Eq. 10) and

(Eq. 13). Based on these two models, we can synthesize two

separate feedback controllers for y and z axis. The equivalent

scheme used for the synthesize is presented in Fig. 22-a. As the

two models and their schemes are similar, we use one model

and one scheme as presented in Fig. 22-b for the controller

synthesis explanations. In the figure, the input control is δRV

(δRV ∈ {YRV , ZRV }), the output is δ (δ ∈ {Y,Z}), the

disturbance is d (d ∈ {dY , dZ}) and the weighting is We

(We ∈ {WY e,WZe}). Finally, we have α ∈ {αY , αZ} and

D(s) ∈ {DY Y (s), DZZ(s)}.

V. ROBUST FEEDBACK CONTROL

In this section, we synthesize a feedback controller. The

objective is to reach the required performances and to reject

the disturbance effects that the feedforward techniques cannot

account. These disturbances include the creep phenomena,

the model uncertainty due to residual hysteresis, the coupling

effect and the external applied forces. To account these objec-

tives at the same time, a PID structure would not work because

of the limited number of parameters (and therefore the limited
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Fig. 22. Block-scheme of the nominal models used to synthesize the
controllers.

number of DOF of tuning). This is why we propose to use a

H∞ synthesis technique for the two axis (y and z). A H∞

controller design allows to strongly account the performances

specifications and the disturbance rejection. Furthermore, it is

possible to take into account the model uncertainty during the

synthesis and make the controller robust. The following points

will be taken into account during the synthesis:

• the stability has to be ensured despite the presence of

uncertainty,

• the effect of the disturbance d should be rejected,

• and the performances required in micromanipulation and

microassembly contexts (eg. high accuracy) should be

ensured.

A. Scheme and problem formulation

In H∞ approach, the specifications are represented by

weighting functions. Let Fig. 23-a be the closed-loop scheme

with the weighting functions used for these specifications.

From it, we derive the standard scheme (Fig. 23-b) which

presents the interconnection between the augmented system

P (s) and the controller K(s). In the figures, δR corre-

sponds to the reference input, such as δR ∈ {YR, ZR}. For

each axis, a controller K(s) is to be synthesized: K(s) ∈
{KY (s),KZ(s)}. Finally, i and o are the input and output

vector signals respectively. The nominal system is: G(s) =
α · D(s).

The standard H∞ problem consists in finding an optimal

value γ and a controller K(s) stabilizing the closed-loop
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Fig. 23. (a) block-scheme of the closed-loop with the weighting functions.
(b) the standard scheme corresponding to the closed-loop.

scheme of Fig. 23-b and guaranteeing the following inequality

[43]:

‖Fl (P (s),K(s))‖∞ < γ (19)

where Fl (., .) is the lower Linear Fractionar Transformation

and is defined by Fl (P (s),K(s)) = o · i−1, with o =
(

o1 o2

)T
and i =

(

δR b
)T

.

Using Fig. 23-a, we obtain:

{

o1 = W1SδR − W1SW2b

o2 = WeKSGδR − WeSW2b
(20)

where S = (1 + KG)
−1

is the sensitivity function.

Using the condition in (Inequation 19) and the output

equations in (Eq. 20), we infer:



















‖W1S‖∞ < γ

‖W1SW2‖∞ < γ

‖WeKSG‖∞ < γ

‖WeSW2‖∞ < γ

(21)

such as the following frequential constraints can be used:











































|S| <
γ

|W1|
|S| <

γ

|W1W2|
|KSG| <

γ

|We|
|S| <

γ

|WeW2|

(22)

To solve the problem in (Inequation 22), we use the Glover-

Doyle algorithm [44] [45].

B. Weighting functions

The functions 1
W1

and 1
W1W2

are chosen from the specifi-

cations on the tracking performances and on the disturbance

rejection respectively. Afterwards, the weighting W1 and W2

are automatically deduced. The functions 1
We

and 1
WeW2

are

chosen accordingly to the uncertainty. As We has already been

identified, these two functions are deduced if W2 is known

from the previous specification.

1) Specifications and weighting for Y : The specifications

for tracking performances are as follows.

• the maximal settling time is 40ms,

• the maximal statical error is 10%,

• the maximal admitted overshoot is 0%.

The specifications for the disturbances rejection are:

• the maximal settling time for rejection is 20ms,

• the effect of the maximal disturbance dY = 22.5µm (see

(Eq. 17)) should be less than 1µm, leading to a maximal

static error of 4.44%.

From these, we choose:















WY 1 =
s + 75

s + 0.75

WY 2 =
(s + 150) (s + 0.75)

(s + 75) (s + 6)

(23)

2) Specifications and weighting for Z: The specifications

for tracking performances are similar to that of Y .

• the maximal settling time is 40ms,

• the maximal statical error is 10%,

• the maximal admitted overshoot is 0%.

The specifications for the disturbances rejection are:

• the maximal settling time for rejection is 20ms,

• the effect of the maximal disturbance dZ = 45.5µm (see

(Eq. 18)) should be less than 2µm, leading to a maximal

static error of 4.3%.

From these, we choose:















WZ1 =
s + 75

s + 0.75

WZ2 =
1.25 (s + 0.1765) (s + 0.75)

(s + 75) (s + 0.005516)

(24)

C. Controller computation

The controllers KY (s) and KZ(s) for Y and Z respectively

were computed. While KY (s) has an order of 6, KZ(s) has

an order of 7. The total order (13) is high and may lead

to unwanted numerical error or unstability because of the

requirement of high memory and time consumptions in the

computer. So, to minimize that, the orders of the controllers

have been reduced to 2 and 4 respectively by using the

balanced realization technique [46]. We obtain final orders

of 2 and 4:







KY (s) =
0.245 (s + 531) (s + 2.84)

(s + 6) (s + 0.75)

γY = 1.43

(25)

and
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

















KZ(s) =
539(s+327)(s+0.0059)(s2−8488s+4.1×106)
(s+1.4×106)(s+1.2×104)(s+0.75)(s+0.0055)

γZ−opt = 1.61

(26)

D. Experimental results

The two controllers were implemented in the Matlab-

Simulink TM software, in addition to the feedforward con-

trollers. The complete scheme representing the control of the

2-DOF piezocantilever is shown in Fig. 24. The measurements

of Y and Z used for the feedback are provided by the two

optical sensors (Keyence) as presented in section-II.
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Fig. 24. Block-scheme of the feedforward-feedback control of the 2-DOF
piezocantilever.

1) Step responses: first, a series of step references YR =
±20µm and ZR = ±60µm are applied. The responses are

represented in Fig. 25. The coupling ZR → Y which is 17%
(= Y

ZR
= 10µm

60µm
= 0.17) is rapidly rejected (Fig. 25-a). The

coupling YR → Z is negligible and also rapidly rejected.
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[ ]t s

[ ]t s

Fig. 25. Steps responses of the controlled 2-DOF piezocantilever.

To analyze the temporal performances, the step responses

are zoomed (Fig. 26). It is noticed that the time axis in the

latter figures were shifted to start at zero in order facilitate the

reading. As seen in the results, the overshoots for the two axis

are null, as expected in the specifications. These overshoots

were initially 77% and 4.8% for Y and Z respectively without

the proposed feedback-feedforward controller (see Fig. ??-a

and d). Similarly, the static errors tends towards zero, implying

a very high accuracy of the controlled piezocantilever. Con-

cerning the response speed, the settling time for Y , which was

initially 40ms (see Fig. ??-a), is unchanged for the controlled

piezocantilever. However, the settling time for Z, initially more

than 100ms (see Fig. ??-d), is reduced into 70ms when using

the proposed control law. This settling time is still higher than

the expected in specifications. Such a difference is due to the

specifications which were too severe, leading to an optimal

γZ more than one. Despite that, the results are well suited for

micromanipulation and microassembly tasks.
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Fig. 26. Zoom of the step responses of the controlled 2-DOF piezocantilever.

2) Harmonic responses: finally, a harmonic experiment

is performed in order to evaluate the performances more

accurately. For that, a sine wave YR with 20µm of amplitude is

applied. Fig. 27-a pictures the transfer
(

Y
YR

)

dB
and

(

Z
YR

)

dB
.

It shows that whatever the frequency is, the coupling is rejected

(Z-magnitude less than −30dB). The results also show that no

resonance peak higher than 0dB is present for Y , indicating

the absence of overshoot in the temporal response.

Similarly, a sine input ZR with 60µm of amplitude is ap-

plied. Fig. 27-b show the responses of
(

Y
ZR

)

dB
and

(

Z
ZR

)

dB
.

They show that the effect of ZR on Y is negligible whatever

the frequency is, since the coupling is less than −20dB.

Finally, once again, the absence of overshoot is demonstrated

in the magnitude as there is no resonant peak.

VI. CONCLUSION

This paper presents the control of a highly coupled, strongly

nonlinear (hysteresis and creep) and vibrating 2-DOF piezo-
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Fig. 27. Harmonic response of the controlled 2-DOF piezocantilever.

cantilever. In order to obtain the required performances, we

proposed to combine the feedforward compensation technique

and the robust feedback control technique. The feedforward

technique was first applied in order to reduce the hysteresis

and vibration. Afterwards, a decoupled linear model was

developped. The advantage of the proposed model is that it

explicitely accounts residual nonlinearities (residual hysteresis,

creep) and the coupling by considering them as uncertainty and

disturbance to be rejected. Finally, a robust feedback controller

was proposed to control the decoupled model. The experi-

mental results show that the proposed approach could provide

performances which are suitable for micromanipulation and

microassembly aspects. The works presented in this paper will

be extended into the control of a microgripper composed of

two piezocantilevers.
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