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Abstract – The 4/5-law of turbulence, which characterizes the energy cascade from large to
small eddies at high Reynolds numbers in classical fluids, is verified experimentally in a superfluid
4He wind tunnel, operated down to 1.56K and up to Rλ ≈ 1100. The result is corroborated
by high resolution simulations of Landau-Tisza two-fluid model down to 1.15K, corresponding
to a residual normal fluid concentration below 3%, but with a lower Reynolds number of order
Rλ ≈ 100. Although the Kármán-Howarth equation (including a viscous term) is not valid a priori
in a superfluid, we find that it provides an empirical description of the deviation from the ideal
4/5-law and allows us to identify an effective viscosity for the superfluid, whose value matches the
normal fluid kinematic viscosity regardless of its concentration.

Introduction. – At low temperature but above Tλ ≈
2.17K (at saturated vapor pressure), liquid 4He is a clas-
sical fluid, known as He I. Like air or water, its hydrody-
namics behavior is described by the Navier-Stokes equa-
tion. When such a fluid is strongly stirred, its response
becomes dominated by the non-linear term of the Navier-
Stokes equation. The dynamics of such a system, known
as “turbulence”, was first pictured by Richardson in 1920
and theorized by Kolmogorov in 1941 [1]. The energy, in-
jected at a large scale, cascades down across the so-called
“inertial” scales until it reaches dissipative scales. It can
be shown from the Navier-Stokes equation that the energy
flux across the scales results in skewed distribution for the
velocity increments. This prediction, the only exact re-
sult known for turbulence, is sometimes referred to as the
Kolmogorov 4/5-law. It is recalled later in this paper.

When liquid 4He is cooled below Tλ, it undergoes a
phase transition. The new phase, called He II, can be
described with the so-called two-fluid model [2] : an in-
timate mixture of a viscous “normal” component whose
dynamics is described by the Navier-Stokes equation and
an inviscid “superfluid” component with quantized vor-
ticity. Both components are coupled by a mutual fric-
tion term. The fraction of superfluid component ρs/ρn —
where ρs and ρn are respectively the densities of super-
fluid and normal components — varies with temperature,
from 0 at Tλ to +∞ in the zero-temperature limit. When
He II is strongly stirred, a tangle of quantum vortices is
generated. This kind of turbulent flow is often referred to

as “quantum turbulence” or “superfluid turbulence”. For
an introduction to quantum turbulence, one may refer to
[3, 4].

The focus of this letter is intense turbulence of He II at
finite temperature (Tλ > T ≥ 1K). In such conditions,
most of the superfluid kinetic energy distributes itself be-
tween the mechanical forcing scale (e.g. at 1 cm in [5]) and
the typical inter-vortex scale (eg. at 4 µm in [5]). Exci-
tations at smaller scales are strongly damped by the vis-
cosity of the normal component [3]. At scales larger than
the inter-vortex spacing the details of individual vortices
can be ignored (“continuous” or “coarse-grained” descrip-
tion) and superfluid turbulence can be investigated with
the same statistical tools as classical turbulence. An im-
portant open question is how superfluid turbulence com-
pares with classical turbulence. Experimental studies have
revealed differences regarding the vorticity spectra [5, 6]
but also striking similarities of decay rate scaling [7–10],
drag force [11–13] and distribution of kinetic energy among
scales with -5/3 power-law scaling [14,15]. This scaling is
consistent with the existence of a Kolmogorov energy cas-
cade, however no direct proof has been reported yet, as
stressed recently during the Quantum Turbulence Work-
shop in Abu Dhabi [16] (see also the conclusion of [17]).

The main goal of this paper is to test in a superfluid
the 4/5-law which characterizes the energy cascade. To
account for the departure from the ideal 4/5-law at small
scale, the classical Kármán-Howarth equation is assessed.
As a side result, we show that the superfluid inherits vis-
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cosity from the normal component even when the normal
fraction is very low, making it hardly distinguishable from
a classical fluid using the signal of an inertial anemome-
ter like a Pitot tube. To do this, we present experimental
velocity fluctuations measurements obtained in a 1m-long
cryogenic helium wind tunnel at high Reynolds number
as well as results from direct numerical simulations of the
continuous two-fluid model at lower Reynolds number but
fully resolved down to the inter-vortex scale.

Fig. 1: Wind tunnel (in blue) in the cryostat (in gray)

Local velocity measurements. – Local velocity
measurements have been realized in the wake of a disc in
the wind tunnel sketched in figure 1. The disc diameter ∅d
is half the pipe diameter. The probe, located downstream
at x/∅d ≈ 21, was operated both above and below the
superfluid transition, down to 1.56K where ρs/ρn ≈ 5.8.
The wind tunnel is pressurized by more than 1m of static
liquid to prevent cavitation which could otherwise have
occurred in He I. The turbulence intensity τ , defined as

τ =
√
〈(v(t)− 〈v〉)2〉
〈v〉 (1)

where v(t) is the local flow velocity and 〈.〉 stands for time
average, is close to 4.8%, the mean velocity is 〈v〉 = 1m/s.
The forcing length scale L0 is defined from the frequency
of the vortex shedding f0 = 〈v〉 /L0, which is apparent
on the velocity spectrum (see later). The typical Strouhal
number, defined as

St = f0∅d
〈v〉 = ∅d

L0
(2)

is close to 0.35 both above and below the superfluid tran-
sition. At T = 2.2K, where liquid helium is a classical
fluid with kinematic viscosity ν = 1.78× 10−8 m2/s [18],
the Reynolds number based on L0 and the root-mean-
square velocity is Re = 1.8× 105. The Taylor-microscale
Reynolds number, Rλ, estimated as,

Rλ =
√

20
3 Re (3)

is found around Rλ ∼ 1100.
The local anemometer is the probe labeled as ¬ in [15].

It is based on a stagnation pressure measurement (minia-
ture “Pitot tube” probe). It measures the pressure over-
head resulting from the stagnation point at the tip of the

probe, which is pointing upflow. Above the superfluid
transition, the measured pressure pmeas(t) can be written:

pmeas(t) = p(t) + 1
2ρv

2 (4)

Following [14], a similar expression can be found for the
measured pressure below the lambda transition using the
continuous two-fluid description of He II

pmeas(t) = p(t) + 1
2ρnv

2
n + 1

2ρsv
2
s (5)

where vn is the velocity of the normal component and vs
the velocity of the superfluid component. Yet, physically,
the probe is sensitive to the flux of momentum on its tip.
It is therefore convenient [19] to rewrite the measured pres-
sure in terms of the momentum velocity ~vm, based on the
total mass flux and defined as

ρ~vm = ρn~vn + ρs~vs (6)
where ρ = ρn + ρs. This leads to

pmeas(t) = p(t) + 1
2ρv

2
m + ρnρs

2ρ (vn − vs)2 (7)

This equation is similar to the one standing in classical
fluid (Eq. 4) plus an additional term. It has been argued
theoretically [3] and shown numerically [20] that, in highly
turbulent flows, the normal and superfluid components are
nearly locked at inertial scales. Therefore, (vn − vs)2 �
v2
m and since ρnρs ≤ ρ2, the last term in Eq. 7 can be
neglected1.
The calibrations of the probe above and below the su-

perfluid transition are consistent with each other within
10%. The difference comes from experimental uncertain-
ties. In practice, the calibration obtained below Tλ, where
the signal is cleaner, was used to determine the mean val-
ues obtained in normal fluid.

A numerical 4th-order Butterworth low-pass filter is ap-
plied to the velocity time series to suppress the probe
organ-pipe resonance [15]. The filtered velocity time se-
ries are converted into spatial signals using instantaneous
Taylor frozen turbulence hypothesis [21], ie. we relate the
velocity at time t to the velocity at location x by:

v(t) = v(x) where x =
∫ t

0
v(τ)dτ (8)

The velocity power spectra and the velocity probability
distribution are computed from the obtained space veloc-
ity series v(x) and are shown in figure 2.

As expected, the power spectra are compatible with a
Kolmogorov k−5/3 scaling and the velocity distribution is
nearly Gaussian. The spectra above and below the super-
fluid transition are nearly identical. The wave number are
normalized by the forcing scale L0 defined above. The ob-
served cut-off at high k results from the finite resolution
of the probes and not from a dissipative effect.

1If the turbulence intensity is small, it is possible to get the same
result with the weaker hypothesis: 〈vs〉 = 〈vn〉, ie. normal and
superfluid components are locked at large scale [19]. The slip velocity
fluctuating term is of order τ2 at most and thus can be neglected.
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Fig. 2: Experimental 1D velocity power spectrum above and
below the superfluid transition. Red line: T = 2.2K > Tλ at
Rλ ≈ 1100. Blue line: T = 1.56K < Tλ. Inset: Velocity prob-
ability distribution above and below the superfluid transition.
Black line: Gaussian distribution.

The longitudinal velocity increments, here along the
streamwise direction, are defined as,

δv(x; r) = v(x+ r)− v(x) (9)

The distribution of δv(x; r) for a given r, shown in figure
3, is fairly Gaussian at large scale (r = L0) and clearly
skewed on the negative side at smaller scales (r = L0/10).
The skewness S(r) of this distribution is defined as,

S(r) =
〈
δv(r)3〉

〈δv(r)2〉3/2 (10)

where 〈.〉 stands for the space average. S(r) is shown in
the inset of figure 4.
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Fig. 3: Experimental histogram of the longitudinal velocity in-
crements at large and intermediate scales in a superfluid turbu-
lent flow (T = 1.56K). Solid black line: Gaussian distribution.

Above the superfluid transition, S(r) is known to be di-
rectly linked to the energy rate of the Richardson cascade
[22]. Its numerical value at the smallest resolved scale is
fairly compatible with the typical classical value of −0.23
(a review of experimental values for Rλ between 208 and
2500 is given in [23]). The negative sign is a direct evi-
dence that the energy cascades from large to small scales.

Below the superfluid transition, the value of the skew-
ness is nearly identical to the one above the superfluid
transition. This is a strong hint that energy cascades in a
similar fashion above and below the superfluid transition.

More quantitatively, in classical homogeneous and
isotropic turbulence, the third-order structure function is
proportional at first order to the turbulent energy flux
across the scales, ε. The 4/5-law states:

〈
δv(r)3〉 ' −4

5εr (11)

This equation, valid in the inertial range of the turbulent
cascade, is often cited as the only exact result in classical
fully developed turbulence (for asymptotically large Re).
It is interesting to test its validity in quantum turbulence.
In the experimental conditions of this work (Rλ = 1100),
finite Reynolds number corrections to Eq. 11 are small
[24].

To compare superfluid experimental data to this clas-
sical prediction, the mean experimental energy rate ε has
to be estimated. It is not trivial to get an accurate es-
timate for ε from experimental data. A classical way is
to use the third-order structure function and the 4/5-law,
which gives reasonable estimates for Rλ & 1000 [25, 26].
Since our aim is to assess the 4/5-law, we can not use this
technique directly.

However, previous experiments found that ε does not
change when the superfluid transition is crossed [15] and
in our experiment, data are available with the same mean
velocity above and below the superfluid transition. There-
fore, we estimate ε from the 4/5-law using the He I record-
ing — where it is known to hold since He I is a classical
fluid — and we use that estimate to compensate the third-
order velocity structure function obtained in He II. We find
ε = (5.4± 0.3)× 10−3 m2/s3.

We obtain a “plateau” for nearly half a decade of scales,
corresponding to the resolved inertial range of the turbu-
lent cascade (see figure 4). The level of the “plateau”
is comparable above and below the superfluid transition,
within experimental uncertainty of around 25%. This is
an experimental evidence that the 4/5-law (Eq. 11) re-
mains valid in superfluid turbulence, at least for the largest
inertial scales. Together with the invariance of the skew-
ness, this is the first important result of this study.

Direct numerical simulations. – In this section, we
processed velocity fields obtained in a stationary numeri-
cal simulation of He II with periodic boundary conditions.
The numerical procedure is described in [20]. The sim-
ulated velocity fields have a resolution of 5123 or 10243.
The simulated equations are summarized below,

D~vn
Dt

= − 1
ρn
∇pn + ρs

ρ
~Fns + µ

ρn
∇2~vn + ~fextn (12)

D~vs
Dt

= − 1
ρs
∇ps −

ρn
ρ
~Fns + ~fexts (13)
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Fig. 4: Experimental third-order velocity structure function
compensated by 4/5-law (Eq. 11) obtained in superfluid helium
turbulent flow at T = 1.56K (blue circles) and in classical
liquid helium at T = 2.2K (red squares). Inset: Skewness of
the distribution of longitudinal velocity increments (same color
code). The smallest abscissa r/L0 = 7× 10−2 corresponds to
the probe cut-off. The oscillation at large scale corresponds to
the frequency of the vortex shedding.

where indices n and s refer to the normal component and
the superfluid one, respectively, ~fextn and ~fexts are external
forcing terms, µ is the dynamic viscosity. The mutual
coupling term is approximated by its first order expression:

~Fns = −B2 |~ωs| (~vn − ~vs) (14)

where ~ωs = ∇ × ~vs is the superfluid vorticity and B = 2
is taken as the mutual friction coefficient [27].

We impose that the simulation cut-off scale corresponds
to the quantum inter-vortex scale δ, estimated from the
quantum of circulation κ around a single superfluid vortex
and from the average vorticity,

δ2 = κ√〈
|~ωs|2

〉 (15)

This truncation procedure was validated by the accurate
prediction of the vortex line density in experiments [20].

The velocity power spectra for normal and superfluid
components are shown in figure 5 in the very low and
high temperature limits (resp. 1.15K and 2.1565K corre-
sponding to ρs/ρn = 40 and ρs/ρs = 0.1). To allow closer
comparison with the experiments, the Reynolds number
Re is estimated as,

Re = L0
√
〈v2
m〉

µ/ρ
(16)

where vm = 1
ρ (ρnvn + ρsvs) is the momentum velocity2,

L0 = π is the length corresponding to the forcing wave-
number k0 and the kinematic viscosity is µ/ρ. The power

2We used the one-dimensional rms, vrms,1d = vrms,3d√
3 to be com-

parable with experiments.
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Fig. 5: Simulated 3D velocity power spectra. Solid lines are
obtained from the velocity field of the superfluid component ~vs.
Dashed lines are obtained from the velocity field of the normal
component ~vn. The sky blue spectra were obtained at very
low temperature (T = 1.15K, 10243) ; the chocolate spectra
were obtained at high temperature (T = 2.1565K, 5123). The
smallest resolved scale matches the inter-vortex spacing. L0 is
defined as the forcing scale.

spectrum of the momentum velocity is not plotted but
nearly matches the normal component spectrum at high
temperature and the superfluid component spectrum at
very low temperature, as expected.

The 10243 very low temperature simulation, where
ρs/ρn = 40, and the 5123 high temperature simulation,
where ρs/ρn = 0.1, have nearly the same Reynolds number
(Re = 1960 and Re = 2280 respectively), much smaller
than the Reynolds number in the experiments (of order
1.8× 105). Yet, in both cases, the spectra collapse at
large scales close to a Kolmogorov-like k−5/3 scaling but
differ at smaller scales, named “meso-scales” [20]. In this
range of meso-scales, larger than the inter-vortex scale but
smaller than inertial scales, the superfluid component is
no longer locked to the normal component. At the low-
est temperatures, its energy distribution approaches a k2

scaling, as evidenced in figure 5, which is compatible with
the equipartition of superfluid energy.

The momentum velocity third-order longitudinal struc-
ture functions are computed by averaging the longitudinal
increment along each three directions in one “snapshot” of
the flow3.
One does not expect the 4/5-law to hold at such mod-

erate Reynolds number. Yet, at high temperature: (i)
the compensated third-order structure function reaches a
maximum lower than one, as expected in classical turbu-
lence at such Reynolds number [26], for which there is no
clear separation between dissipative and inertial dynam-
ics and (ii) the small-scale behavior goes typically like r2

3We obtain similar results if the velocity increments are computed
with the velocity field from the dominant component rather than vm.
The momentum velocity is convenient because it is defined for all
temperatures and comparable to what is measured in experiments.
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corresponding to the linear limit δu(r) ∼ r. At very low
temperature, the velocity field is no longer smooth at very
small scale. It exhibits irregular fluctuations down to the
smallest scales due to the equipartition noise. This results
in a different behavior of

〈
δv(r)3〉 at small scales, as shown

in figure 6. As a side remark, reasons for large scale devi-
ations are discussed in the classical turbulence literature
[24].

10−2 10−1

10−1

100

r2

r/L0

− 5
4
〈δv(r)3〉

εr

Fig. 6: Compensated third-order structure function obtained in
numerical simulations at high temperature (chocolate squares)
and very low temperature (sky blue circles) for nearly the same
Reynolds numbers.

In the end of this paper, we address the departure from
the ideal 4/5-law at small scale. In classical turbulence,
this deviation, fully due to viscosity, can be derived from
the Kármán-Howarth equation and generalizes the 4/5-
law at small scales:

〈
δv(r)3〉+ 4

5εr = 6ν
d
〈
δv(r)2〉

dr (17)

This Kármán-Howarth equation is the expression of a
scale-by-scale energy budget. Physically, the right-hand
side of Eq. 17 corresponds to the energy that leaks out
of the cascade due to viscous dissipation. The generaliza-
tion of Kármán-Howarth to the two-fluid model contains
a term associated with the coupling between the super-
fluid and normal components. It is delicate to integrate it
into a form similar to Eq. 17. In the following, we follow
an empirical approach and assess how the classical relation
(Eq. 17) could be applied to the case of He II. Analogously
to the classical case, an effective kinematic viscosity νvisc
can be defined in He II from the deviation to the 4/5-law
in the small-scale side of the inertial range. Let’s define
N (r) as

N (r) =
〈
δv3〉+ 4

5εr

6 d〈δv2〉
dr

(18)

The value of ε is a parameter of the simulation. In a
Navier-Stokes fluid, the Eq. 17 implies that N (r) matches

10−2 10−1

100

101

r/L0

ρ

µ
N (r)

1 1.5 2

0.8

1.2

T

ρ

µ
νvisc

40 20 10 1 0.1

ρs/ρn

Fig. 7: Compensated effective viscosity versus scale obtained in
numerical simulations at high temperature (chocolate squares)
and very low temperature (sky blue circles) for nearly the same
Reynolds number. Inset: effective viscosity estimated from the
“plateau” of N (r) for various temperatures.

the kinetic viscosity µ/ρ from the “center” of the inertial
range down to the smallest scales.

The values of N (r) computed from the simulated vm
fields3 in He II are plotted versus scale in figure 7 nor-
malized by µ/ρ. For all simulated temperatures, ranging
from 1.15K (ρs/ρn = 40) where the superfluid component
dominates to ' 2.1565K (ρs/ρn = 0.1) where the nor-
mal component dominates, this plot shows a “plateau” in
the inertial range, quite analogous to the Navier-Stokes
case. It implies that the deviation to the 4/5-law can
be described to some extent using an effective viscosity,
down to very low temperature, even though the density
of the normal component can be negligible. This shows
that the mutual friction term in the superfluid equation
(Eq. 13), although it is proportional to ρn/ρ cannot be ne-
glected even at very low temperature and that it mimics
to some extent a viscous term along the cascade. Nev-
ertheless, N (r) deviates from the plateau at the smallest
scales, where both components are no longer locked, es-
pecially at very low temperature (sky blue circles). This
contrasts with classical turbulence where the “plateau”
would extend down to the smallest scales [25].

From the value of this “plateau”, we define the effective
viscosity νvisc. The values obtained for νvisc for various
temperature and Reynolds conditions are shown in the
inset of figure 7 compensated by µ/ρ. It is remarkable
that this effective viscosity matches the dynamic viscosity
of the normal component normalized by the total density
within 20% at all temperatures. Thus, these simulations
show that superfluid helium (He II) behaves as a viscous
fluid in the inertial range of the turbulent cascade, when
both components are nearly locked, even down to the low-
est temperatures where the normal component fraction is
smaller than 3%.
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Concluding remarks. – Using longitudinal third-
order structure functions, we have shown both experimen-
tally and numerically that superfluid helium can undergo
an energy cascade in the sense of Kolmogorov in station-
ary turbulence. In particular, our experimental data is
quantitatively compatible with the classical 4/5-law in the
inertial range. It is worth pointing out that the structure
functions were analyzed in the usual way because the vor-
tex singularities have been smoothed out, either by finite
probe size effects or by the continuous simulation model.
Without this low-pass filtering of the details of superfluid
tangle, comparison with classical turbulence would be less
straightforward.

The energy “leak” from the cascade was assessed ap-
plying the Kármán-Howarth equation on the velocity field
of the simulation. We find that He II behaves as a vis-
cous fluid in its inertial range, with an effective viscosity
νvisc inherited from the normal component, even down to
the lowest temperature (ρs/ρn = 40). This conclusion
does not extent down to the smallest (meso)-scales when
both components are unlocked and quasi-equipartition ev-
idenced. It is interesting to compare νvisc to the effective
viscosity νeff usually defined in the literature as [3],

ε = νeff

( κ
δ2

)2
' νeff |ωs|2 . (19)

This effective viscosity is compatible with νvisc at high
temperature [8], which can be understood writing that
both components are roughly locked down to the (viscous)
dissipation length scale:

νeff = ε |ωs|−2 ' ε |ωn|−2 = µ

ρn
' µ

ρ
= νvisc (20)

However, νeff departs from the “viscous viscosity” νvisc
as the temperature is lowered [8–10], but becomes compat-
ible with the “friction viscosity” νfrict = κρnB

2ρ . This latter
viscosity can be derived from Eqs. 12 and 13 assuming that
both components are unlocked at small scales which en-
tails dissipation by friction of one fluid component on the
other [28] (see [3] for a microscopic derivation). Thus, the
definition of νeff encompasses the two dissipative mecha-
nisms that occur in He II at finite temperature (T > 1K):
the “viscous dissipation”, νvisc, that we discussed in this
work and the “friction dissipation”, νfrict. It would be in-
teresting to understand how this empirical effective viscos-
ity νeff (Eq. 19) depends on the relative weight of the two
dissipation mechanisms and on a third dissipation mecha-
nism relevant in the zero temperature limit: sound emis-
sion by vortex line [29–31]. The analytical integration of
the Kármán-Howarth for the two-fluid model, which im-
plies additional modeling, would open this perspective.

As a perspective, to further understand the mechanisms
leading to viscous-like behavior, we point out a possible
analogy with classical truncated Euler systems, in which
the presence of an equipartitioned reservoir at small scales
acts as a molecular viscosity at larger scales [32–34].
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