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Introduction

This paper, which can be seen as a continuation of [START_REF] Bayart | Multifractal analysis of the divergence of Fourier series[END_REF], deals with the divergence of Fourier series of functions in L p (T), p ≥ 1, where T = R/Z, or in C(T), from the multifractal point of view. More precisely, let f be in L p (T), or in C(T), and let (S n f ) n≥0 the sequence of partial sums of its Fourier series. We are interested in the size of the sets of the real numbers x such that (S n f (x)) n≥0 diverges with a prescribed growth. We will measure the size of subsets of T using the Hausdorff dimension. Let us recall the relevant definitions (we refer to [START_REF] Falconer | Fractal geometry: Mathematical foundations and applications[END_REF] and to [START_REF] Mattila | Geometry of Sets and Measures in Euclidian Spaces[END_REF] for more on this subject). If φ : R + → R + is a nondecreasing continuous function satisfying φ(0) = 0 (φ is called a dimension function or a gauge function), the φ-Hausdorff outer measure of a set E ⊂ R d is

H φ (E) = lim ε→0 inf r∈Rε(E) B∈r φ(|B|),
where R ε (E) is the set of (countable) coverings of E with balls B of diameter |B| ≤ ε. When φ s (x) = x s , we write for short H s instead of H φs . The Hausdorff dimension of a set E is defined by dim H (E) := sup{s > 0; H s (E) > 0} = inf{s > 0; H s (E) = 0}.

The first result studying the Hausdorff dimension of the divergence sets of Fourier series is due to J-M. Aubry [START_REF] Aubry | On the rate of pointwise divergence of Fourier and wavelet series in L p[END_REF].

Theorem 1.1. Let f ∈ L p (T), 1 < p < +∞. If β ≥ 0, define E(β, f ) = x ∈ T; lim sup n→+∞ n -β |S n f (x)| > 0 .
Then dim H E(β, f ) ≤ 1βp. Conversely, given a set E such that dim H (E) < 1βp, there exists a function f ∈ L p (T) such that, for any x ∈ E, lim sup

n→+∞ n -β |S n f (x)| = +∞.
This result motivated us to introduce in [START_REF] Bayart | Multifractal analysis of the divergence of Fourier series[END_REF] the notion of divergence index. For a given function f ∈ L p (T) and a given point x 0 ∈ T, we can define β(x 0 ) as the infimum of the nonnegative real numbers β such that |S n f (x 0 )| = O(n β ). The real number β(x 0 ) will be called the divergence index of the Fourier series of f at point x 0 . It is well-known that, for any function f ∈ L p (T) (1 ≤ p < +∞) and any point x 0 ∈ T, 0 ≤ β(x 0 ) ≤ 1/p (see [START_REF] Zygmund | Trigonometric series[END_REF]). Moreover, when p > 1, Carleson's theorem implies that β(x 0 ) = 0 almost surely. In [START_REF] Bayart | Multifractal analysis of the divergence of Fourier series[END_REF], we gave precise estimates on the size of the level sets of the function β. These are defined as

E(β, f ) = {x ∈ T; β(x) = β} = x ∈ T; lim sup n→+∞ log |S n f (x)| log n = β .
Theorem 1.2 ( [START_REF] Bayart | Multifractal analysis of the divergence of Fourier series[END_REF]). Let 1 < p < +∞. For quasi-all functions f ∈ L p (T), for any β ∈ [0, 1/p], dim H E(β, f ) = 1βp.

The terminology "quasi-all" used here is relative to the Baire category theorem. It means that this property is true for a residual set of functions in L p (T).

In the case of continuous functions, the situation breaks down dramatically. If (D n ) n≥0 denotes the Dirichlet kernel, we can first observe that, when f ∈ C(T),

S n f ∞ ≤ D n 1 f ∞ ≤ C f ∞ log n.
This motivated us in [START_REF] Bayart | Multifractal analysis of the divergence of Fourier series[END_REF] to introduce the following level sets:

F(β, f ) = x ∈ T; lim sup n→+∞ (log n) -β |S n f (x)| > 0 F (β, f ) = x ∈ T; lim sup n→+∞ log |S n f (x)| log log n = β .
Whereas, on L p (T), 1 < p < +∞, the divergence index takes its biggest value (β(x) = 1/p) on small sets, this is far from being the case on C(T), as the following very surprizing result indicates.

Theorem 1.3 ([2]

). For quasi-all functions f ∈ C(T), for any β ∈ [0, 1], F (β, f ) is non-empty and has Hausdorff dimension 1.

However, several questions were left open in [START_REF] Bayart | Multifractal analysis of the divergence of Fourier series[END_REF].

Question 1: what happens on L 1 (T)? In view of the differences between L p (T), p ∈ (1, +∞), and C(T), it seems a priori not clear what situation should be expected on L 1 (T). Moreover, Carleson's theorem is false on L 1 (T) and Kolmogorov Theorem ensures that there exist functions in L 1 (T) with everywhere divergent Fourier series. The proof of Theorem 1.2 proceeds in two steps. In a first time, we build a residual set of functions in L p (T) such that, if f lies in this residual set and if 0 ≤ β ≤ 1/p, dim H (E(β, f )) ≥ 1-βp. In a second time, we use Theorem 1.1 to conclude that necessarily dim H (E(β, f )) = 1βp. The first step works as well in L 1 (T) and the trouble comes from Aubry's result, which uses the Carleson Hunt maximal inequality. In Section 2, we succeed to overcome this difficulty by proving a (very weak!) version of Carleson's maximal inequality in L 1 (T) which is sufficient to prove the analogue of Theorem 1.1. Thus, we will show that Theorem 1.4. For quasi-all functions f ∈ L 1 (T), for any

β ∈ [0, 1], dim H E(β, f ) = 1 -β.
Question 2: what about the size of the set of multifractal functions? Theorem 1.2 and Theorem 1.4 say that, in L p (T) (p ≥ 1), the set of multifractal functions is big in a topological sense. One can ask if it remains big for other points of view. We deal here with an infinite-dimensional version of the notion of "almost-everywhere". This notion, called prevalence, has been introduced by J. Christensen in [START_REF] Christensen | On sets of Haar measure zero in Abelian Polish groups[END_REF] and has been widely studied since then. In multifractal analysis, some properties which are true on a dense G δ -set are also prevalent (see for instance [START_REF] Fraysse | Kahane Quelques propriétés génériques en analyse. (French) [Some generic properties in analysis[END_REF] or [START_REF] Fraysse | How smooth is almost every function in a Sobolev space?[END_REF]), whereas some are not (see for instance [START_REF] Fraysse | Kahane Quelques propriétés génériques en analyse. (French) [Some generic properties in analysis[END_REF] or [START_REF] Olsen | Fractal and multifractal dimensions of prevalent measures[END_REF]). This motivated us to examine Theorem 1.2 and Theorem 1.4 under this point of view.

Definition 1.5. Let E be a complete metric vector space. A Borel set A ⊂ E is called Haar-null if there exists a compactly supported probability measure µ such that, for any x ∈ E, µ(x + A) = 0. If this property holds, the measure µ is said to be transverse to A.

A subset of E is called Haar-null if it is contained in a Haar-null Borel set. The complement of a Haar-null set is called a prevalent set.

The following results enumerate important properties of prevalence and show that this notion supplies a natural generalization of "almost every" in infinite-dimensional spaces:

• If A is Haar-null, then x + A is Haar-null for every x ∈ E.

• If dim(E) < +∞, A is Haar-null if and only if it is negligible with respect to the Lebesgue measure. • Prevalent sets are dense.

• The intersection of a countable collection of prevalent sets is prevalent.

• If dim(E) = +∞, compacts subsets of E are Haar-null.

In Section 3, we will prove the following result.

Theorem 1.6. Let 1 ≤ p < +∞. The set of functions f ∈ L p (T) such that, for any

β ∈ [0, 1/p], dim H (E(β, f )) = 1 -βp, is prevalent.
Thus, almost every function in L p (T) is multifractal with respect to the summation of its Fourier series.

Question 3: can we say more on C(T)? Theorem 1.3 implies that there exists a residual subset A ⊂ C(T) such that, if f ∈ A and if β < 1, one can find a set E ⊂ T with Hausdorff dimension 1 such that lim sup

n→+∞ |S n f (x)| (log n) β = +∞ for any x ∈ E. (1)
On the other hand, we know that, for any fixed f ∈ C(T), S n f ∞ is negligible compared to log n and that, conversely, given any sequence (δ n ) n≥2 of positive real numbers going to zero, we can find f ∈ C(T) such that lim sup

n→+∞ |S n f (0)| δ n log n = +∞.
These statements can be found for example in [START_REF] Zygmund | Trigonometric series[END_REF]. It seems then natural to ask whereas this property can be ensured in a set with Hausdorff dimension equal to 1 ( (1) meaning that this is true when δ n = (log n) β-1 , 0 < β < 1). This is indeed true.

Theorem 1.7. Let (δ n ) n≥2 be a sequence of positive real numbers going to zero. For quasi-all functions f ∈ C(T), there exists E ⊂ T with Hausdorff dimension 1 such that, for any x ∈ E,

lim sup n→+∞ |S n f (x)| δ n log n = +∞.
The same result also holds in a prevalent subset of C(T).

Theorem 1.8. Let (δ n ) n≥2 be a sequence of positive real numbers going to zero. For almost every function f ∈ C(T), there exists E ⊂ T with Hausdorff dimension 1 such that, for any x ∈ E,

lim sup n→+∞ |S n f (x)| δ n log n = +∞.
The proof of Theorems 1.7 and 1.8 are proposed in Section 4.

2. Multifractal analysis of the divergence of Fourier series in L 1 (T)

We first recall some basic facts on Fourier series and Fourier transforms in L p . Let ξ ∈ R and e ξ : t → e 2πiξt . The Fourier transform of f ∈ L 1 (R) is the continuous function

f : ξ → R f (x) ēξ (x)dx.
The operator makes also sense in the space L p (R) when 1 ≤ p < +∞. In that case, f ∈ L q (R) where 1 p + 1 q = 1. In L p (R) we can define the band-limiting operator S n by

S n f = 1 [-n,n] f .
It is well known that, on L p (R), the projections (S n ) n≥0 are uniformly bounded; this is the Riesz theorem. This is not the case on L 1 (R). However, there exists some absolute constant C > 0 such that, for any n ≥ 2 and any f ∈ L 1 (R),

S n f 1 ≤ C log n f 1 . A function g ∈ L 1 (T) is identified to a 1-periodic function on R. Its Fourier transform is the tempered distribution ĝ = k∈Z g, e k δ k ,
where g, e k = T g(t) ēk (t)dt are the Fourier coefficients of g and δ k denotes the Dirac mass at point k. If g ∈ L 1 (T), the band limiting operator corresponds to taking the partial sum of the Fourier series,

S n g : t → n k=-n
g, e k e k (t).

We can also write S n g = D n * g where

D n (t) = n k=-n e k (t) = sin π(2n + 1)t sin(πt)
is the Dirichlet kernel and the Riesz theorem always occurs in this context.

Let us also recall the definition of σ n g, the n-th Féjer sum of g, namely

σ n (g) = 1 n S 0 g + • • • + S n-1 g .
We write E n (T) := S n (L 1 (T)) the set of trigonometric polynomials of degree less than n and E n (R) := S n (L 1 (R)). The classical Nikolsky inequality (see for example [START_REF] Nikolsky | Inequalities for entire functions of finite degree and their applications in the theory of differentiable functions of many variables[END_REF]) says that if P ∈ E n (T) or P ∈ E n (R) and 1 ≤ p ≤ q ≤ ∞, then

P q ≤ n 1 p -1 q P p .
Our first lemma will be helpful to control a function which is locally a Dirichlet kernel.

Lemma 2.1. There exists a constant A > 0 such that, for any N ≥ 2, for any measurable function n : T → {1, . . . , N }, for any t ∈ T, then

T |D n(x) (x -t)|dx ≤ A log N. Proof. It is obvious from the above expression of D n that, if k ≤ N and if u ∈ [-1/2, 1/2], |D k (u)| ≤ CN C |u|
for some absolute constant C > 0. We then split the integral into two parts:

|x-t|≤1/N |D n(x) (x -t)|dx ≤ 2CN 1 N and 1/N <|x-t|≤1/2 |D n(x) (x -t)|dx ≤ C 1/N <|x-t|≤1/2 dx |x -t| ≤ 2C log N. Writing S n(x) f (x) = (f ⋆ D n(x)
)(x) and using Fubini's theorem, it is straightforward to deduce the following inequality on partial sums of Fourier series of L 1 -functions.

Lemma 2.2. There exists a constant A > 0 such that, for any N ≥ 2, for any measurable function n : T → {1, . . . , N }, for any f ∈ L 1 (T), then

T |S n(x) f (x)|dx ≤ A log N f 1 .
We are now ready to prove the following weak version of the maximal inequality of Carleson and Hunt, on L 1 (T).

Corollary 2.3. Let α > 0. There exists

C := C α > 0 such that, for any f ∈ L 1 (T), T sup n≥2 |S n f (x)| (log n) 1+α dx ≤ C f 1 .
Proof. Using the monotone convergence theorem, we first observe that it is sufficient to prove that, for any N ≥ 2,

T sup 2≤n≤N |S n f (x)| (log n) 1+α dx ≤ C f 1 (2)
where, of course, C does not depend on N . Now, we take a measurable function n : T → N\{0, 1} not necessarily bounded, and observe that (2) will be proved if we are able to show that

T |S n(x) f (x)| (log n(x)) 1+α dx ≤ C f 1 for some constant C independent of the function n. If k ≥ 0, let A k = {x ∈ T; 2 2 k ≤ n(x) < 2 2 k+1 }. Lemma 2.2 ensures that T |S n(x) f (x)| (log n(x)) 1+α dx = k≥0 A k |S n(x) f (x)| (log n(x)) 1+α dx ≤ k≥0 1 (2 k log 2) 1+α A k |S n(x) f (x)|dx ≤ k≥0 C 2 k+1 log 2 2 k(1+α) (log 2) 1+α f 1 = C α f 1 .
The following lemma is inspired by Aubry's paper. It means that, as soon as a trigonometric polynomial is large at some point a ∈ T, it is also large in small intervals around a, with a rather good control of the L p -norm. Lemma 2.4. Let p ≥ 1 and ε > 0. There exists δ > 0 such that, if n is large enough, if P ∈ E n (T) and if a ∈ T is such that |P (a)| ≥ P p , then, for any interval I with center a and with length |I| ≤ 1 n ,

P L p (I) ≥ δ|P (a)| × |I| 1/p ×      1 (log n) (1+ε)/p provided p > 1 1 (log n) 1+ε log(1/|I|) provided p = 1.

Remarks:

-Such a point a does exist because P is continuous.

-In fact, we will only need the lemma in the case p = 1, but we give the general case for completeness.

Proof of Lemma 2.4. Without loss of generality, we may assume that a = 0. The idea is to localize P around 0, and to use Nikolsky inequality to estimate the L p -norm knowing the L ∞ -norm. Let γ ∈ (0, 1) such that γ(1 + ε) > 1. We introduce a function w with support in [-1, 1] satisfying 0 ≤ w ≤ 1, w(0) = 1 and for which there exist two strictly positive constants D and E such that

∀ξ ∈ R, | ŵ(ξ)| ≤ De -E|ξ| γ .
It is a classical result in Fourier analysis that such a function does exist (see e.g. [1, Lemma 6]). We then set w I (x) = w(x/|I|). We decompose P w I as

f 1 + f 2 with f 1 = S N P w I and N = [|I| -1 (log n) 1+ε
], the integer part of |I| -1 (log n) 1+ε . On the one hand, if p > 1 we get

f 1 ∞ ≤ N 1/p f 1 p (Nikolsky inequality) ≤ C p |I| -1/p (log n) (1+ε)/p P w I p (Riesz theorem) ≤ C p |I| -1/p (log n) (1+ε)/p P L p (I) .
When p = 1, we have to add the norm of the Riesz projection, and we get

f 1 ∞ ≤ C 1 |I| -1 (log n) 1+ε log(1/|I|) P L 1 (I) .
On the other hand, we may write

f2 (ξ) = 1 {|ξ|>N } (ξ)( P ⋆ ŵI )(ξ) = n j=-n 1 {|ξ|>N } (ξ) P (j) ŵI (ξ -j).
Now, if n is large enough and j ≤ n, we have

|ξ|>N | ŵI (ξ -j)|dξ ≤ |ξ|> 1 2 |I| -1 (log n) 1+ε | ŵI (ξ)|dξ = |ξ|> 1 2 (log n) 1+ε | ŵ(ξ)|dξ.
Observe that

+∞ A e -Eξ γ dξ = 1 γ +∞ A γ e -Et t 1/γ-1 dt ≤ Ce -(E/2)A γ .
It follows easily that

|ξ|>N | ŵI (ξ -j)|dξ ≤ Cn -2
provided n is large enough. This implies

f 2 ∞ ≤ f2 1 ≤ Cn -2 n j=-n | P (j)| ≤ Cn -2 (2n + 1) P 1 ≤ Cn -2 (2n + 1) P p ≤ 1 2 P p
provided n is large enough. If we recall that |P (0)| ≥ P p , we get

f 1 ∞ ≥ |P (0)| -f 2 ∞ ≥ 1 2 |P (0)|
and the result follows from the above estimates of f 1 ∞ .

We can now conclude by proving the following proposition (Proposition 2.5) and its corollary on the Hausdorff dimension of E(β, f ) (Corollary 2.6). Recall that it is all that we need to obtain Theorem 1.4 since the construction done in [START_REF] Bayart | Multifractal analysis of the divergence of Fourier series[END_REF] is always true when p = 1 and shows that there exists a residual set of functions

f ∈ L 1 (T) with dim H (E(β, f )) ≥ 1 -β for any β ∈ [0, 1].
Proposition 2.5. Let f ∈ L 1 (T) and τ : (0, +∞) → (0, +∞) be an increasing function. Define

E(τ, f ) := x ∈ T; lim sup n→+∞ |S n f (x)| τ (n) = +∞ . If ν > 3 and if φ is a dimension function satisfying c 1 s ≤ φ(s) ≤ c 2 sτ (s -1 )
log(s -1 ) ν , then

H φ (E(τ, f )) = 0.
Proof. Let M > 0 and ε = ν -3. Define

E M (τ, f ) = x ∈ T; lim sup n→+∞ |S n f (x)| τ (n) > M .
If x ∈ E M (τ, f ), one can find n x as large as we want such that

|S nx f (x)| ≥ M τ (n x ). Set I x = x -1 2nx , x + 1 2nx and observe that S nx f 1 ≤ C(log n x ).
The hypothesis on the function τ implies that, if n x is large enough, S nx f 1 ≤ |S nx f (x)|. We can then apply Lemma 2.4 and we get

S nx f L 1 (Ix) ≥ δ M τ (n x ) n x (log n x ) 2+ε/2 . (I x ) x∈E M (τ,f
) is a covering of E M (τ, f ). We can extract a Vitali's covering, namely a countable family of disjoint intervals (I i ) i∈N , of length 1/n i , such that E M (τ, f ) ⊂ i∈N 5B i . Then, Corollary 2.3 implies

C f 1 ≥ T sup n≥2 |S n f (x)| (log n) 1+ε/2 dx ≥ i I i |S n i f (x)| (log n i ) 1+ε/2 dx ≥ δM i |I i |τ (1/|I i |) log(1/|I i |) 3+ε .
This yields i φ(5|I i |) ≤ C f 1 δM (we recall that τ is increasing), with C another absolute constant and M > 0 as large as we want. Hence,

H φ (E M (τ, f )) ≤ C f 1
δM (the length of the intervals of the covering can be arbitrarily small). This in turn implies

H φ (E(τ, f )) = 0, since E(τ, f ) = M >0 E M (τ, f ).
By applying the previous proposition to τ (s) = s β and φ(s) = s 1-β / log(s -1 ) 4 , we get:

Corollary 2.6. For any f ∈ L 1 (T) and any β ∈ [0, 1], dim H (E(β, f )) ≤ 1 -β.

Prevalence of multifractal behaviour

3.1. Strategy. In all this part, p is a fixed real number such that 1 ≤ p < +∞. To prove that a set A ⊂ E is Haar-null, the Lebesgue measure on the unit ball of a finitedimensional subspace V can often play the role of the transverse measure. Precisely, if there exists a finite-dimensional subspace V of E such that, for any x ∈ E, V ∩ (x + A) has full Lebesgue-measure, then A is prevalent. Such a finite-dimensional subspace V is called a probe for A. Of course, it is the same to prove that for any x ∈ E, (x + V ) ∩ A has full Lebesgue-measure. We shall use this property to prove prevalence. More precisely, we shall first prove that, for a fixed β ∈ [0, 1/p], the set of functions f in L p (T) satisfying dim H E(β, f ) = 1βp is prevalent. Then we will conclude because a countable intersection of prevalent sets is prevalent.

3.2. The construction of saturating functions with disjoint spectra. In this subsection, α > 1 is fixed. For j ≥ 1, we define J = [j/α] + 1, which is smaller than j -2 if j is large enough, say j ≥ j α . For 0 ≤ K ≤ 2 J -1, we define the dyadic intervals

I K,j := K 2 J - 1 2 j ; K 2 J + 1 2 j .
We also define

I j := 2 J -1 K=0 I K,j and I ′ j := 2 J -1 K=0 2I K,j .
The condition j ≥ j α ensures that the 2I K,j do not overlap. We finally introduce D α the set of real numbers in [0, 1] which are α-approximable by dyadics. Namely, x ∈ [0, 1] belongs to D α if there exist two sequences of integers (k n ) n≥0 and (j n ) n≥0 such that

x - k n 2 jn ≤ 1 2 αjn .
It is easy to check that D α is contained in lim sup j→+∞ I j . Indeed, let x ∈ D α . One may find J as large as we want and K such that |x -K/2 J | ≤ 1/2 αJ . Let j be an integer such that J -1 = [j/α] (such an integer exists because α ≥ 1). We get

x - K 2 J ≤ 1 2 j .
Finally, x ∈ I j . Furthermore, it is well-known that dim H (D α ) = 1/α and even that H 1/α (D α ) = +∞ (see for instance [START_REF] Beresnevich | A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures[END_REF] and the mass transference principle). It follows that dim H lim sup j→+∞

I j ≥ 1 α .
We are going to build finite families of functions which behave badly on each I j , and which have disjoint spectra. The starting point is a modification of the basic construction of [START_REF] Bayart | Multifractal analysis of the divergence of Fourier series[END_REF].

Lemma 3.1. Let j ≥ j α and J = [j/α] + 1. There exists a trigonometric polynomial P j with spectrum contained in (0, 2 j+1 -1] such that

• P j p ≤ 1 • |P j (x)| ≥ C2 -(J-j)/p for any x ∈ I j
where the constant C is independant of j.

Proof. Let χ j be a continuous piecewise linear function equal to 1 on I j , equal to 0 outside I ′ j and satisfying 0 ≤ χ j ≤ 1 and χ ′ j ∞ ≤ 2 j . P j is defined by P j := 2 -(J-j+2)/p e 2 j σ 2 j χ j .

The L p -norm of P j is clearly less than or equal to 1 (observe that the measure of I ′ J is 2 J-j+2 ). Applying Lemma 1.7 of [START_REF] Bayart | Multifractal analysis of the divergence of Fourier series[END_REF] to 1χ j , we find that σ 2 j χ j (x) ≥ 1/4 for any x ∈ I j . This gives the second assertion of the lemma.

We now collapse these polynomials to get as many saturating functions as necessary, with disjoint spectra. Lemma 3.2. Let s ≥ 1. There exist functions g 1 , . . . , g s in L p (T) and sequences of integers (n j,r ) j≥jα,1≤r≤s , (m j,r ) j≥jα,1≤r≤s satisfying

• 1 ≤ m j,r < n j,r ≤ C2 j for any j and any r;

• for any j ≥ j α , any x ∈ I j , any r ∈ {1, . . . , s}, S n j,r g r (x) -S m j,r g r (x) ≥ C j 2 2 (j-J)/p • for any r ∈ {1, . . . , s}, the spectrum of g r is included in j≥jα (m j,r , n j,r ] =:

G r • if r 1 = r 2 , G r 1 ∩ G r 2 = ∅.
Proof. For r ∈ {1, . . . , s}, we set g r := j≥jα 1 j 2 e (s+r)2 j+1 P j . Define m j,r := (s + r)2 j+1 n j,r := (s + r)2 j+1 + (2 j+1 -1) so that each g r belongs to L p with spectrum included in j≥jα (m j,r , n j,r ]. Moreover, the intervals (m j,r , n j,r ] are disjoint, so that S n j,r g r -S m j,r g r = 1 j 2 |P j |. Let us also remark that, for any j ≥ j α and any r < s, n j,r < m j,r+1 and n j,s < m j+1,1 so that the spectra G 1 , • • • , G s are disjoint. This ends up the proof.

It is easy to show that, if x ∈ lim sup j I j , r ∈ {1, . . . , s} and β <

1 p 1 -1 α , then lim sup n→+∞ |S n g r (x)| n β = +∞.
In some sense, the functions g r have the worst possible behaviour on I j if we keep in mind that they have to belong to L p (T). We now show that this property remains true almost everywhere (in the sense of the lebesgue measure) on any affine subspace f + span(g 1 , . . . , g s ) provided s is large enough. This is the main step towards the proof of Theorem 1.6.

3.3.

Prevalence of divergence for a fixed divergence index. We keep the notations of the previous subsection.

Proposition 3.3. Let 0 < β < 1 p 1 -1 α .
There exists s ≥ 1 such that, for every f ∈ L p (T), for almost every c = (c 1 , . . . , c s ) in R s , the function

g = f + c 1 g 1 + • • • + c s g s satisfies for every x ∈ D α lim sup n→+∞ |S n g(x)| n β = +∞.
Proof. We set ε = 1 p 1 -1 αβ. Let s > 4/ε and let f be an arbitrary function in L p (T). For such a value of s, we will prove the conclusion of the proposition for every x ∈ lim sup j I j (recall that D α ⊂ lim sup j I j ).

Let M > 0 and let us introduce

S M := g ∈ L p (T); ∃x ∈ lim sup j→+∞ I j s.t. ∀n ≥ 1, |S n g(x)| ≤ M n β .
It is enough to show that for every R > 0, the set of c ∈ R s satisfying c ∞ ≤ R and such that f + c 1 g 1 + • • • + c s g s belongs to S M has Lebesgue measure 0. In the sequel, we will fix such values of M and R.

If j ≥ 1, we split each interval I K,j into 2 j subintervals. Each of them has size 2 -2j+1 , and we get 2 J+j intervals O l,j with 2 J +j l=1 O l,j = I j . For j ≥ 1, l ∈ {1, . . . , 2 J+j }, we set

S (l,j) M := g ∈ L p (T); ∃x ∈ O l,j s.t. ∀n ≥ 1, |S n g(x)| ≤ M n β .
Clearly,

S M ⊂ lim sup j→+∞ 2 J +j l=1 S (l,j) M
and we shall first control the size of the c ∈ R s with c ∞ ≤ R such that

f + c 1 g 1 + • • • + c s g s ∈ S (l,j) M .
We denote by λ s the Lebesgue measure on R s and we fix j ≥ j α , l in {1, . . . , 2 J+j } and c, c

0 in R s such that c ∞ ≤ R, c 0 ∞ ≤ R and f + c 1 g 1 + • • • + c s g s ∈ S (l,j) M f + c 0 1 g 1 + • • • + c 0 s g s ∈ S (l,j) M .
Let r ∈ {1, . . . , s} and let us apply the definition of S (l,j)

M with n = n j,r and n = m j,r . The spectra (G l ) l =r being disjoint from G r , we can find x ∈ O l,j such that

S n j,r f (x) -S m j,r f (x) + c r S n j,r g r (x) -S m j,r g r (x) ≤ M n β j,r + M m β j,r ≤ 2CM 2 βj .
In the same way, we can find y ∈ O l,j such that S n j,r f (y) -S m j,r f (y) + c 0 r S n j,r g r (y) -S m j,r g r (y) ≤ 2CM 2 βj .

Using the triangle inequality, we get c r S n j,r g r (x) -S m j,r g r (x)c 0 r S n j,r g r (y) -S m j,r g r (y)

≤ 4CM 2 βj + |S n j,r f (x) -S n j,r f (y)| + |S m j,r f (x) -S m j,r f (y)|. (3)
Now, by combining the norm of the Riesz projection, Nikolsky's inequality and Bernstein's inequality, we know that

(S n f ) ′ ∞ ≤ C(log n)n 1+1/p f p
(the factor log n disappears when p > 1). This yields

|S n j,r f (x) -S n j,r f (y)| ≤ C log(n j,r )n 1+1/p j,r |x -y| f p ≤ Cj2 j(1+1/p) 2 -2j+1 f p ≪ 2 βj .
The same is true for |S m j,r f (x) -S m j,r f (y)| and we get c r S n j,r g r (x) -S m j,r g r (x)c 0 r S n j,r g r (y) -S m j,r g r (y) ≤ κ2 βj (4) for some constant κ depending on M and f p but not on j. In the same way,

(S n g r ) ′ ∞ ≤ C(log n)n 1+1/p g r p ≤ C(log n)n 1+1/p .
It follows that c 0 r S n j,r g r (x) -S m j,r g r (x) -S n j,r g r (y) -S m j,r g r (y)

≤ CRj2 j(1+1/p) 2 -2j+1 ≪ 2 βj .
Combining with (4) we obtain a new constant κ depending on M , f p and R but not on j such that

(c r -c 0 r ) S n j,r g r (x) -S m j,r g r (x) ≤ κ2 βj . (5) 
Dividing ( 5) by |S n j,r g r (x) -S m j,r g r (x)| (which is not equal to zero), we find

|c r -c 0 r | ≤ κ2 βj |S n j,r g r (x) -S m j,r g r (x)| -1 ≤ κ C 2 βj j 2 2 -(j-J)/p ≤ κ2 1/p C j 2 2 -εj ≤ 2 -εj/2
provided j is large enough. Thus, the set of c ∈ R s with c ∞ ≤ R and such that f

+ c 1 g 1 + • • • + c s g s ∈ S (l,j) M
is contained in a ball (for the l ∞ -norm) of radius 2 -εj/2 . Taking the s-dimensional Lebesgue measure, this yields

λ s c ∈ R s ; c ∞ ≤ R and f + c 1 g 1 + • • • + c s g s ∈ S (l,j) M ≤ 2 s 2 -εsj/2 .

This in turn gives

λ s      c ∈ R s ; c ∞ ≤ R and f + c 1 g 1 + • • • + c s g s ∈ 2 J +j l=1 S (l,j) M      ≤ 2 s 2 2j-εsj/2 .
Thus, since εs/2 > 2, this last quantity is the general term of a convergent series. Remember that

S M ⊂ lim sup j→+∞ 2 J +j l=1 S (l,j) M .
The conclusion of Proposition 3.3 follows from Borel Cantelli's lemma.

Corollary 3.4. Let α > 1. For almost every function f in L p (T), for every x ∈ D α , lim sup n→+∞ log |S n f (x)| log n ≥ 1 p 1 - 1 α .
Proof. This follows immediately from Proposition 3.3, taking a sequence (β n ) increasing to 1 p 1 -1 α and using the fact that a countable intersection of prevalent sets remains prevalent.

3.4. The general case. We are now able to complete the proof of Theorem 1.6, that is to prove that almost every function f ∈ L p (T) in the sense of prevalence has a multifractal behaviour with respect to the summation of its Fourier series. Indeed, let (α k ) k≥0 be a dense sequence in (1, +∞). By Corollary 3.4, for almost every function f ∈ L p (T), for every k ∈ N and every x ∈ D α k , lim sup

n→+∞ log |S n f (x)| log n ≥ 1 p 1 - 1 α k .
Now, let α > 1 and consider a subsequence (α φ(k) ) k≥0 which increases to α. Then D α ⊂ k≥0 D α φ(k) and for any x ∈ D α , lim sup

n→+∞ log |S n f (x)| log n ≥ 1 p 1 - 1 α .
The conclusion follows now exactly the argument of [START_REF] Bayart | Multifractal analysis of the divergence of Fourier series[END_REF]. For the sake of completeness, we give a complete account. Define

D 1 α = x ∈ D α ; lim sup n→+∞ log |S n f (x)| log n = 1 p 1 - 1 α D 2 α = x ∈ D α ; lim sup n→+∞ log |S n f (x)| log n > 1 p 1 - 1 α , so that H 1/α (D 1 α ∪ D 2 α ) = H 1/α (D α ) = +∞.
It suffices to prove that H 1/α (D 2 α ) = 0. Let (β n ) n≥0 be a sequence of real numbers such that

β n > 1 p 1 - 1 α and lim n→+∞ β n = 1 p 1 - 1 α .
Let us observe that

D 2 α ⊂ n≥0 E(β n , f ).
Moreover, Theorem 1.1 for p > 1 and Corollary 2.6 for p = 1 imply that H 1/α (E(β n , f )) = 0 for all n. Hence, H 1/α (D 2 α ) = 0 and H 1/α (D 1 α ) = +∞, which proves that

dim H E 1 p 1 - 1 α , f ≥ 1 α .
By Theorem 1.1 and Corollary 2.6 again, this inequality is necessarily an equality. Finally, such a function f satisfies the conclusion of Theorem 1.6, setting 1βp = 1/α.

Rapid divergence on big sets for Fourier series of continuous functions

This section is devoted to the proof of Theorem 1.7 and Theorem 1.8. We need to construct functions in C(T) for which the Fourier series behave badly on a set with Hausdorff dimension 1. We will construct these functions by blocks. For k ≥ 1 and ω > 1, we set

J ω k := k-1 j=0 j k - 1 2ωk , j k + 1 2ωk
which will be seen as a subset of T = R/Z. The construction makes use of holomorphic functions, so that we will also see T as the boundary of the unit disk D and J ω k as a part of ∂D. Lemma 4.1. There exist three absolute constants C 1 , C 2 , C 3 > 0 such that, for any k ≥ 3, for any ω ≥ log k, one can find a function f which is holomorphic in a neighbourhood of D and which satisfies :

∀z ∈ D, ℜef (z) ≥ C 1 ωk (6) ∀z ∈ J ω k , |f (z)| ≥ C 2 ω (7) ∀z ∈ T, |f (z)| ≤ C 3 ω (8) ∀z ∈ T, f ′ (z) f (z) ≤ ωk. (9) 
Proof. We set:

ε = 1 ωk z j = e 2πij k , j = 0, . . . , k -1 f (z) = 1 k k-1 j=0 1 + ε 1 + ε -z j z
and we claim that f is the function we are looking for. Indeed, for any z ∈ D and any j ∈ {0, . . . , k -1},

ℜe 1 + ε 1 + ε -z j z = 1 + ε |1 + ε -z j z| 2 ℜe 1 + ε -z j z ≥ 1 + ε (2 + ε) 2 × ε ≥ C 1 ε, (10) 
which proves [START_REF] Fraysse | How smooth is almost every function in a Sobolev space?[END_REF]. To prove [START_REF] Fraysse | Kahane Quelques propriétés génériques en analyse. (French) [Some generic properties in analysis[END_REF], we may assume that z = e 2πiθ with θ ∈ -ε 2 ; ε 2 . Then

ℜe 1 + ε 1 + ε -z 0 z = 1 + ε |1 + ε -z| 2 ℜe 1 + ε -z ≥ C 2 ε .
Moreover, [START_REF] Olsen | Fractal and multifractal dimensions of prevalent measures[END_REF] says that for any j, ℜe 1+ε 1+ε-z j z ≥ 0. It follows that

ℜef (z) ≥ C 2 kε = C 2 ω.
Conversely, we want to control sup z∈T |f (z)|. Pick any z = e 2πiθ ∈ T. By symmetry, we may and shall assume that |θ| ≤ 1 2k . Then we get

1 + ε 1 + ε -z 0 z ≤ C ε
for some constant C > 0. Now, for any j ∈ {1, . . . , k/4}, we can write

|1 + ε -z j z| ≥ |ℑm(z j z)| ≥ sin 2πj k -2πθ ≥ 2 π × 2π j k -θ ≥ 4 k j - 1 2 . 
Taking the sum,

k/4 j=1 1 + ε 1 + ε -z j z ≤ k(1 + ε) 4 k/4 j=1 1 j -1/2
≤ Ck log k (the constant C may change from line to line). In the same way, we have

k-1 j=3k/4 1 + ε 1 + ε -z j z ≤ Ck log k. If j ∈ [k/4, 3k/4], we also have |1 + ε -z j z| ≥ C, so that 3k/4 j=k/4 1 + ε 1 + ε -z j z ≤ Ck.
Putting this together, we get

|f (z)| = 1 k k-1 j=0 1 + ε 1 + ε -z j z ≤ C 1 kε + log k + 1 ≤ C 3 ω
(this is the place where we need that ω ≥ log k). Finally, it remains to prove [START_REF] Nikolsky | Inequalities for entire functions of finite degree and their applications in the theory of differentiable functions of many variables[END_REF]. We observe that

f ′ (z) f (z) = k-1 j=0 z j (1+ε-z j z) 2 k-1 j=0 1 1+ε-z j z . We deduce that f ′ (z) f (z) ≤ k-1 j=0 1 |1+ε-z j z| 2 k-1 j=0 ℜe(1+ε-z j z) |1+ε-z j z| 2 ≤ k-1 j=0 1 |1+ε-z j z| 2 k-1 j=0 ε |1+ε-z j z| 2 ≤ 1 ε = ωk.
The crucial step is given by the following lemma.

Lemma 4.2. Let (ε n ) n≥1 be a sequence of positive real numbers decreasing to zero. Then, if n is large enough, one can find an integer k n , a real number ω n > 1 and a trigonometric polynomial P n with spectrum in [1, 2n -1] such that

• P n ∞ ≤ 1; • For any x ∈ J ωn kn , |S n P n (x)| ≥ ε n log(n). Moreover, we can choose k n and ω n such that (k n ) goes to +∞ and ω n = o(k α n ) for any α > 0.
Proof. It is clear that the conclusion of the lemma is more difficult to obtain when the sequence (ε n ) is large. Thus, we may assume that ε n ≥ log log n 4π log n .

In particular, ε n log n goes to infinity. We define k n and ω n by

• ω n is equal to exp 4π(log n)ε n • k n is the biggest integer k satisfying 2πkω n ≤ n.
Observe that ω n ≥ log n and ω n = o(n α ) for all α > 0. Then, the inequalities

2πk n ω n ≤ n ≤ 2π(k n + 1)ω n ensure that k n ≤ n ≤ Ck n n 1/2
if n is large enough. It follows that (k n ) goes to +∞, that ω n ≥ log k n and that ω n = o(k α n ) for any α > 0. Let f n be the holomorphic function given by Lemma 4.1 for the values k = k n and ω = ω n . We take h n (z) = log(f n (z)), which defines a holomorphic function in a neighbourhood of D (remember (6)). Moreover, |ℑm(h n (z))| ≤ π/2 for any z ∈ D and h n (0) = 0. Now, we look at the function h n on the boundary of the unit disk D, that is we introduce the function g n (x) = h n (e 2iπx ) defined on the circle T = R/Z. The properties satisfied by f n translate into

∀x ∈ J ωn kn , |g n (x)| ≥ log ω n + log C 2 ∀x ∈ T, |g n (x)| ≤ log ω n + log C 3 ∀x ∈ T, |g ′ n (x)| ≤ 2πk n ω n ≤ n.
We apply Lemma 1.7 of [START_REF] Bayart | Multifractal analysis of the divergence of Fourier series[END_REF], which is a precised version of Féjer's theorem, to the function

θ x (t) = g n (t) -g n (x) for x ∈ T. Since θ x ∞ ≤ 2 log ω n + 2 log C 3 , θ ′ x ∞ ≤ n and θ x (x) = 0, we get |σ n θ x (x)| ≤ 1 2 log ω n + C 4
for some absolute constant C 4 . If x ∈ J ωn kn we deduce that

|σ n g n (x)| ≥ 1 2 log ω n -C 5 .
Finally we set

P n = 2 π e n σ n (ℑmg n ) = 2 π e n ℑm(σ n g n ),
so that P n ∞ ≤ 1. Now, remember that g n is the restriction to the circle of an holomorphic function h n satisfying h n (0) = 0. We can then write σ n g n = n-1 j=1 a j e j , so that 2iℑm σ n g n = -n-1 j=1 a j e -j + n-1 j=1 a j e j . Thus, the spectrum of P n is contained in [1, 2n -1]. Moreover, for any x ∈ J ωn kn , we get We are now ready to construct the dense G δ -set of functions required in Theorem 1.7.

Proof of Theorem 1.7. Let (δ n ) n≥2 be a sequence going to 0. We first consider an auxiliary sequence (δ ′ n ) n≥1 such that Let (g n ) n≥1 be a dense sequence in C(T), such that the spectrum of g n is contained in [-n, n]. We set η n = max(δ ′ k ; n ≤ k). The sequence (η n ) n≥1 decreases to zero. Moreover, we fix a sequence (ε n ) n≥1 , going to zero, such that ε n /η n tends to infinity. Lemma 4.2 gives us an integer N , a sequence (P j ) j≥N of trigonometric polynomials with spectrum contained in [1, 2j -1], a sequence (k j ) j≥N of integers going to +∞ and a sequence (ω j ) j≥N satisfying ω j > 1, such that |S j P j (x)| ≥ ε j log j for any x ∈ J ω j k j . Moreover, we can choose ω j such that ω j = o(k α j ) for any α > 0. Let us define for j ≥ N h j := g j + η j ε j e j P j .

The sequence (h j ) j≥N remains dense in C(T). Let us also observe that the spectra of g j and η j

ε j e j P j are disjoint. It follows that if x ∈ J ω j k j , |S 2j h j (x) -S j h j (x)| = η j ε j S j P j (x) ≥ η j log j.

Thus, for any x ∈ J ω j k j , one may find n ∈ {j, 2j} such that

|S n h j (x)| ≥ 1 2 η j log j ≥ 1 2 δ ′ n (log n -log 2).
Let r j > 0 be small enough so that

|S n h(x)| ≥ |S n h j (x)| -1
for any h ∈ B(h j , r j ) and any n ∈ {j, 2j} (the open balls are related to the norm ∞ ). Then, we claim that the following dense G δ -set of C(T) fulfills all the requirements: G := p≥N j≥p B(h j , r j ). Indeed, pick any h in G and any increasing sequence (j p ) such that h belongs to B(h jp , r jp ). Setting ρ p = ω jp and s p = k jp , it is not hard to show that We can finally construct the prevalent set of functions required in Theorem 1.8.

ω n -C 6 = 2ε n log n -C 6 ≥

 66 ε n log n if n is large enough.

E

  := lim sup p→+∞ E p , with E p = J ρp sphas Hausdorff dimension 1. Indeed, remember that for any α > 0, ω j = o(k α j ). It follows for any α > 0 and for p large enough, E p contains F p = is well-known that lim sup p F p has Hausdorff dimension equal to 1/(1 + α) (this follows for instance from the mass transference principle of[START_REF] Beresnevich | A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures[END_REF]). Finally, dim H (E) ≥ 1 1+α . Moreover, for any x ∈ E, the work done before and the fact that δ ′ n log n goes to +∞ show that|S n h(x)| ≥ 1 2 δ ′ n (log nlog 2) -1 ≥ 1 4δ ′ n log n for infinitely many values of n. We then get|S n h(x)| δ n log n ≥ δ ′ n 4δ nfor infinitely many values of n. This achieves the proof of Theorem 1.7.

Proof of Theorem 1.8. Let (δ n ) n≥2 be a sequence going to 0 and denote by A the set of continuous functions

We have to prove that A is Haar-null in C(T). Let f 0 be a fixed function in the complementary of A (such a function does exist by Theorem 1.7) and let g be an arbitrary function in C(T). Suppose that t 1 and t 2 are two real numbers such that

We can then find

In particular, the Lebesgue-measure in span (f 0 ) is transverse to A and A is Haar-null in C(T).

Remark : We have just only proved that a proper subspace in a complete metric vector space is Haar-null. This property is probably well-known.