
HAL Id: hal-00635417
https://hal.science/hal-00635417v3

Preprint submitted on 27 Mar 2012 (v3), last revised 30 Jul 2012 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint-Based BMC: A Backjumping Strategy
Hélène Collavizza, Le Vinh Nguyen, Olivier Ponsini, Michel Rueher, Antoine

Rollet

To cite this version:
Hélène Collavizza, Le Vinh Nguyen, Olivier Ponsini, Michel Rueher, Antoine Rollet. Constraint-Based
BMC: A Backjumping Strategy. 2011. �hal-00635417v3�

https://hal.science/hal-00635417v3
https://hal.archives-ouvertes.fr

Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Constraint-Based BMC: A Backjumping Strategy?

Hélène Collavizza1, Nguyen Le Vinh1, Olivier Ponsini1, Michel Rueher1, Antoine Rollet2

1 University of Nice � Sophia Antipolis / I3S�CNRS, 2000 route des Lucioles - Les Algorithmes - bât. Euclide B,
BP 121 - 06903 Sophia Antipolis Cedex - France, e-mail: lvnguyen@polytech.unice.fr, helen@polytech.unice.fr,

michel.rueher@gmail.com, ponsini@i3s.unice.fr,
2 University of Bordeaux / LABRI�CNRS, 351 Cours de la Libération - 33405 Talence cedex - France, e-mail: rollet@labri.fr

The date of receipt and acceptance will be inserted by the editor

Abstract. Safety property checking is mandatory in the
validation process of critical software. When formal veri-
�cation tools fail to prove some properties, the automatic
generation of counterexamples for a given loop depth
is therefore an important issue in practice. We investi-
gate in this paper the capabilities of constraint-based
bounded model checking for program veri�cation and
counterexample generation on real applications. We in-
troduce DPVS (Dynamic Post-condition Variable driven
Strategy), a new backjumping strategy we have devel-
oped to handle an industrial application from a car man-
ufacturer, the Flasher Manager . This backjumping strat-
egy is used to search a faulty path and to collect the
constraints of such a path. The simpli�ed control �ow
graph (CFG) of the program is explored in a backward
way, starting from the post-condition and jumping to
the most promising node where the variables of the post-
condition are de�ned. In other words, the constraints are
collected by exploring the CFG in a dynamic and non-
sequential backward way.

The Flasher Manager application has been designed
and simulated using the Simulink platform. However,
this module is concretely embedded as a C program in a
car computer, thus we have to check that the safety prop-
erties are preserved on this C code. We report experi-
ments on the Flasher Manager with our constraint-based
bounded model checker, and with CBMC , a state-of-
the-art bounded model checker. Experiments show that
DPVS and CBMC have similar performances on one
property of the Flasher Manager ; DPVS outperforms
CBMC to �nd a counterexample for two properties; two
of the properties of the Flasher Manager remain in-
tractable both for CBMC and DPVS .

? A preliminary version of this paper appeared in Proceedings of
SAC 2011 [13]. This work was partially supported by the ANR-07-
SESUR-003 project CAVERN and the ANR-07 TLOG 022 project
TESTEC.

Key words: embedded systems, validation, constraint-
based bounded model checking, counterexample genera-
tion

1 Introduction

In modern critical systems, software is often the weak-
est link. Thus, more and more attention is devoted to
the software veri�cation process [7]. Software veri�cation
includes formal proofs (automatic or semi-automatic),
functional and structural testing, manual code review
and analysis. In practice, formal proof methods that en-
sure the absence of all bugs in a design are usually too
expensive, or require manual e�orts. Thus, automatic
generation of counterexamples violating a property on a
limited model of the program is an important issue, as
illustrated by the very successful SLAM project [3]. Typ-
ically, this is an open challenge in real time applications
where bugs must be found for realistic time periods.

Bounded Model Checking (BMC) techniques have
been widely used in semiconductor industry for �nding
deep bugs in hardware designs [5] and are also applicable
for software [20]. In BMC, falsi�cation of a given pro-
gram property is checked for a given bound k. BMC [21]
mainly transforms the unwound program and the prop-
erty into a propositional formula φ such that φ is satis�-
able iff there exists a counterexample of depth less than
k. A SAT-solver or SMT-solver is used for checking the
satis�ability of φ.

1.1 Constraint-based bounded model checking

We investigate in this paper the capabilities of constraint-
based BMC for program veri�cation and counterexample
generation on real applications. The goal is to verify the

ha
l-0

06
35

41
7,

 v
er

si
on

 2
 -

27
 M

ar
 2

01
2

http://hal.archives-ouvertes.fr/hal-00635417
http://hal.archives-ouvertes.fr

2 Hélène Collavizza et al.: Constraint-Based BMC: A Backjumping Strategy

conformity of a program with its speci�cation, that is,
to demonstrate that the speci�cation is a consequence
of the program under the boundedness restrictions. The
key idea in constraint-based BMC is to use constraint
stores to represent both the speci�cation and the pro-
gram, and to explore execution paths of bounded length
over these constraint stores. The initial constraint store
consists of the pre-condition and the negation of the
post-condition. The constraint-based symbolic execution
incrementally re�nes this constraint store by adding con-
straints generated from program conditions and assign-
ments. Like in standard BMC, we assume a bound on
the program inputs (e.g., the array length, the size of
the integers and the variable values) and on the number
of iterations for loops. Boundedness guarantees termi-
nation but it may induce incompleteness: indeed, the
veri�er is inconclusive if executable paths with a length
greater than the speci�ed bound exist. The input pro-
gram is correct if each constraint store produced by the
symbolic execution implies the post-condition and the
loop unwinding assertion (terminating a loop early) does
not fail.

The main di�erence between constraint-based BMC
and standard BMC (i.e., BMC based on SAT or SMT
solvers) [20] lies in the representation of the program and
the assertions: the standard BMC approach generates a
big Boolean formula whereas we generate the constraints
on the �y. We proposed in a previous work a constraint-
based BMC framework named CPBPV [11,12]. CPBPV
is based on a depth �rst search strategy that explores
the Control Flow Graph (CFG) of a program starting
from the pre-condition. CPBPV incrementally adds the
constraints associated to the nodes of the CFG, prun-
ing unfeasible paths as early as possible. CPBPV has
been successful on classical benchmarks, such as sort-
ing algorithms or the binary search algorithm. However,
CPBPV was unable to prove or to disprove any of the
properties of the Flasher Manager application. There-
fore, we investigated new search strategies and designed
DPVS (Dynamic Post-condition Variable driven Strat-
egy), a backjumping strategy that is used to search a
faulty path and to collect the constraints of such a path.
The CFG is explored in a backward way, starting from
the post-condition and jumping to the most promising
node where the variables of the post-condition are de-
�ned. In other words, the constraints are collected by ex-
ploring the CFG in a dynamic and non-sequential back-
ward way. This helps to detect inconsistencies as early
as possible.

The contribution of this paper is twofold:

i) We provide a new industrial application which is
still a challenge for state-of-the-art bounded model
checkers. While software BMC has widely been ap-
plied on device drivers, this application comes from
the automotive industry. This class of application is
generally simulated or veri�ed using platforms such
as Simulink or SCADE , but we are interested in the

correction of the C code which is actually embed-
ded in the car computer1. All the source code of this
new kind of application is publicly available.

ii) We introduceDPVS : a dynamic backjumping search
strategy. It behaves well on this application: DPVS
and CBMC have similar performances on three prop-
erties of the Flasher Manager but DPVS outper-
forms CBMC to �nd a counterexample for two other
properties.

1.2 Outline of the paper

We �rst recall the basics on constraint-based bounded
model checking. Then, we introduce the search strat-
egy we have developed to handle the Flasher Manager

application. Next, we describe the Flasher Manager ap-
plication, a real time industrial application from a car
manufacturer. We describe the Simulink module of the
Flasher Manager and the properties we have to check.
We also explain how the Simulink module and the prop-
erties have been translated into C programs which are
used as inputs to the bounded model checkers. Finally,
we report experiments on the Flasher Manager applica-
tion with DPVS and with CBMC .

2 Constraint-based BMC

We �rst recall some basics on Constraint Programming
(CP) techniques [31] that are useful to understand the
rest of the paper; the reader familiar with CP techniques
can skip the next subsection.

In a second part, we introduce constraint-based BMC
and the DPVS strategy.

2.1 Basics on CP

Constraint Programming (CP) is a way of modeling and
solving combinatorial optimization problems. CP com-
bines techniques from arti�cial intelligence, logic pro-
gramming, and operations research. Several industrial
solvers (e.g., ILOG/IBM2, Comet3) and academic solvers
(e.g., Gecode4, Choco5, Minion6) are available. There are
many successful industrial applications, e.g., timetabling
(Dutch railway), hardware veri�cation (Intel), schedul-
ing, planning (see [31], Part II).

The key features of CP are:

1 Otherwise, the compiler from Simulink to C should be for-
mally veri�ed.
2 http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer/
3 http://www.comet-online.org
4 http://www.gecode.org
5 http://choco.sourceforge.net/api/choco/Solver.html
6 http://minion.sourceforge.net

ha
l-0

06
35

41
7,

 v
er

si
on

 2
 -

27
 M

ar
 2

01
2

Hélène Collavizza et al.: Constraint-Based BMC: A Backjumping Strategy 3

� Domain �ltering that considers each constraint sep-
arately and removes values that are trivially incon-

sistent;
� Search strategies that try to exploit the structure of

the problem;
� Global constraints that use (e�cient) speci�c polyno-
mial algorithms for some subclasses of constraints.

To illustrate the intuition behind �domain �ltering�
consider the following example:

� variables/domains:
x1 ∈ {1, 2}, x2 ∈ {0, 1, 2, 3}, x3 ∈ {2, 3};

� constraints:
{x1 > x2, x1 + x2 = x3, alldifferent(x1, x2, x3)}.

A naive search process would explore the following tree,
starting by assigning 1 to variable x1:

However, if we just consider constraint x1 > x2, we can
remove values {2, 3} from the domain of variable x2.
That is what domain �ltering does in the �rst step. Then,
the search process starts on the following reduced search
tree:

Value 1 is assigned to variable x1 and the �ltering process
is restarted. Now, if we consider constraint x1+x2 = x3
the domains of variables x2 and x3 become empty. So,
we will backtrack and assign value 2 to variable x2. The
�ltering process will use again constraint x1 + x2 = x3
to remove value 0 from the domain of variable x2 and
the global constraint alldifferent to remove value 2 from
the domain of variable x3. Thus, we only needed two
assignments to �nd the unique solution. The �nal search
tree is:

Global Constraints are very important to solve di�-
cult problems. The alldifferent global constraint [30] is
probably one of the most famous global constraint. It
uses matching algorithms for bipartite graph and net-
work �ow algorithms to handle a set of constraints of
the form xi 6= xj . In program veri�cation, we can use
a linear programming solver (LP) as a global constraint
for handling a set of linear constraints.

The solver e�ciency also highly depends on search
strategies. These strategies use heuristics for choosing
the variable to instantiate and for choosing the value for
the selected variable. First fail is one of the most popular
heuristic. The intuition behind First fail is: "to succeed,
try �rst where you are most likely to fail".

2.2 CP framework & BMC: overview

The goal of BMC is to mechanically check properties of
models. In BMC, the falsi�cation of a given property is
checked for a given bound k. BMC mainly involves three
steps:

1. The program is unwound k times.
2. The unwound program and the property are trans-

lated into a big propositional formula φ. φ is satis�-
able iff there exists a counterexample of depth less
than k.

3. A SAT-solver or SMT-solver is used for checking the
satis�ability of φ.

In our CP framework, the falsi�cation of a given
property is also checked for a given bound and also in-
volves three steps:

1. The program is unwound k times.
2. An annotated and simpli�ed CFG is built.
3. This CFG and the speci�cation are translated into

constraints on the �y. Unfeasible paths are pruned

as early as possible.

The main di�erence between the two approaches are:

� Standard BMC builds a big propositional formula
whereas CP-based BMC generates constraints on the
�y, according to the exploration strategy of the CFG.

� Standard BMC uses e�cient SAT-solvers (or more
recently SMT-solvers) whereas CP-based BMC uses
a set of solvers, some of which are well suited for
handling numeric expressions.

ha
l-0

06
35

41
7,

 v
er

si
on

 2
 -

27
 M

ar
 2

01
2

4 Hélène Collavizza et al.: Constraint-Based BMC: A Backjumping Strategy

2.3 CP framework & BMC: details

More precisely, consider a program P with pre-condition
pre, post-condition post which is a conjunction of some
properties, and a particular property prop from post7.
The following pre-processing steps are �rst performed:

1. P is unwound k times yielding program Puw ;
2. Puw is then translated into DSAPuw , its DSA (Dy-

namic Single Assignment) form [4], where each vari-
able is assigned exactly once on each program path;

3. DSAPuw
is simpli�ed according to the speci�c prop-

erty prop by applying slicing techniques8;
4. the CFG (called G) of the simpli�ed DSAPuw is built;
5. the domains of all the variables of G are �ltered by

propagating constant values along G.

Then G is explored and a constraint system is gen-
erated on the �y as follows:

1. A constraint system CS is created and initialized
with the constraints associated with the pre-condition
pre and the negation of the property to be proven
¬prop.

2. Nodes of G are translated and added to CS on the
�y. If the current node n is non-conditional, then it is
simply translated as a constraint and added to CS.
If n is a conditional node, then its condition is tem-
porarily added to CS to check its feasibility. If it is
not consistent with CS, the corresponding path is
cut.

3. When the end of an execution path has been reached,
CS is solved. If it has a solution, it is a counterex-
ample, since it satis�es the constraints of the pre-
condition, of the program path and the negation of
the post-condition. If CS has no solution, the pro-
gram is correct along this path (under the bounded-
ness hypothesis).

To increase performances, our constraint framework
is parametrized with a list of solvers which are tried
in sequence, starting with the least expensive and the
least general one. Our prototype implementation uses a
linear programing solver, a mixed integer-programming
system and a �nite domain constraint solver. The fea-
sibility check in the above step 2 is only a partial con-
sistency test: it may not detect some inconsistencies. In
contrast, in step 3, the constraint system solving relies
on a complete decision procedure.

As we already mentioned, the main di�erence with
standard BMC that uses a SAT or SMT solver is that our
constraint-based BMC approach builds the constraint

7 post is a conjunction, so its negation (which is added into the
constraint system) is a disjunction. Practically, it is often more
e�cient to handle each conjunct individually.
8 We perform a static backward program slicing similar to the

cone-of-in�uence computed in hardware model-checking, i.e. we
only keep program statements that may modify directly or indi-
rectly the value of the variables in the property to check.

system on the �y during CFG exploration. A major lever
to improve our method is therefore the way the CFG is
explored. Thus, we developed some search strategies that
best meet these two objectives:

1. cut unfeasible paths as early as possible;
2. when there is a counterexample, explore the faulty

path as early as possible.

The �rst strategy we have developed was a naive
depth �rst search strategy, called CPBPV [12]. This
strategy was successful on academic benchmarks, in par-
ticular for programs with a strong pre-condition (e.g.,
the binary search program). However, this strategy fails
on the Flasher Manager application because it has no
pre-condition and its main function manages many func-
tionalities while the properties to be proven cover a small
subset of these functionalities (see discussion in Sect. 5).

We have thus developed the DPVS search strategy,
that takes bene�ts of the post-condition to explore the
CFG in a bottom-up way. This is detailed in the next
subsection.

2.4 DPVS: a dynamic backjumping search strategy

Contrary to CPBPV , DPVS is a non-sequential bottom-
up strategy which has been designed to �nd counterex-
amples for program properties. InDPVS, the exploration
of G is guided by the variables. The �rst explored node is
the post-condition. Then DPVS jumps to a node where
a variable of the post-condition occurs, and so on. At
each step, the explored node provides constraints on a
variable of the post-condition or a variable linked to a
variable of the post-condition. Practically, DPVS uses a
queue of variables and various ordering heuristics.

This strategy is based on the following observation:
when the program is in an SSA-like form9, a faulty path
can be built in a dynamic way. In other words, the CFG
does not have to be explored in a top-down (or bottom-
up) sequential way, and compatible nodes can just be
collected as needed. When the path is faulty, this strat-
egy may �nd the error before all the nodes of the path
have been collected. Of course, when the path is cor-
rect and executable, all the nodes of the path will be
collected.

Next section explains how DPVS works in an infor-
mal way.

2.4.1 Informal presentation

The constraint based dynamic exploration of G works as
follows. DPVS uses a constraint store S and a queue of

9 SSA (Static Single Assignment) form is an intermediate rep-
resentation used in compilation: it is a semantics-preserving trans-
formation of a program in which each variable is assigned exactly
once [17]. Because our method is dynamic and proceeds path after
path, we actually use DSA form: variables are de�ned once on each
path only [4].

ha
l-0

06
35

41
7,

 v
er

si
on

 2
 -

27
 M

ar
 2

01
2

Hélène Collavizza et al.: Constraint-Based BMC: A Backjumping Strategy 5

1 void foo(int a, int b)

2 int c, d, e, f;

3 if(a >= 0) {

4 if(a < 10) {

5 f = b-1;

6 }

7 else {

8 f = b - a;

9 }

10 c = a;

11 if(b >= 0) {

12 d = a; e = b;

13 }

14 else {

15 d = a; e = -b;

16 }

17 }

18 else {

19 c = b; d = 1; e = -a;

20 if(a > b) {

21 f = b + e + a;

22 }

23 else {

24 f = e * a - b;

25 }

26 }

27 c = c + d + e;

28 assert(c >= d + e); // property p1
29 assert(f >= -b * e); // property p2
30 }

Fig. 1. Program foo

variables Q. Q is initialized with the variables in prop
(written V (prop) in the following), S is initialized with
pre and the negation of prop. As long as Q is not empty,
DPVS dequeues the �rst variable v and searches for a
program block where variable v is de�ned. All new vari-
ables (except input variables) of the de�nition of variable
v are enqueued on Q. The de�nition of variable v as well
as all conditions required to reach the de�nition of v
are added to the constraint store S. If S is inconsistent,
DPVS backtracks and searches for another de�nition;
otherwise, the dual condition to the one added to S is
cut o� to prevent DPVS from losing time in exploring
trivially inconsistent paths. When Q is empty, the con-
straint solver searches for an instantiation of the input
variables that violates the property, that is to say a coun-
terexample. If no solution exists, DPVS backtracks.

Now, let us illustrate this process on a very small
example, the program foo displayed in Fig. 1. Program
foo has two post-conditions: p1 : c >= d + e and p2 :
f > −b ∗ e. Assume we want to prove property p1. Fig-
ures 2 and 3 depict the paths explored by DPVS on the
simpli�ed CFG (i.e., the CFG where slicing techniques
have removed lines 4 to 9 and 20 to 25 which have no
impact on p1). At this step, S is equal to c1 < d0 + e0.

<0>
l.3: a >= 00

(12)
l.27: c = c + d + e00 01

(7)
l.15: d = a0 0

e = -b0 0

(6)
l.12: d = a0 0

e = b0 0

(8)
l.19: c = b0 0

e = -a0 0

d = 10

<5>
l.11: b >= 00

True

True

False

False

(4)
l.10: c = a0 0

Fig. 2. Simpli�ed CFG for p1, step 1

The search process selects node (4)10 where variable c0
is de�ned (for simplicity reasons, we omit the �rst step
where c1 is treated, and c0 is trivially added to Q; see
Algorithm 1 for more details). To reach node (4), the
condition in node 〈0〉 must be true. Thus, this condition
is added to the constraint store S and the other alter-
native (a0 < 0) is cut o�. At this stage (see Fig. 2), S
contains the following constraints: {c1 < d0 + e0 ∧ c1 =
c0 + d0 + e0 ∧ c0 = a0 ∧ a0 ≥ 0} which can be simpli�ed
to {a0 < 0 ∧ a0 ≥ 0}. This constraint store is incon-
sistent and thus DPVS selects node (8) where variable
c0 is also de�ned. To reach node (8), the condition in
node 〈0〉 must be false. Thus, the negation of this con-
dition is added to the constraint store S and the other
alternative is cut o�. Now (see Fig. 3), constraint store
S contains the following constraints: {c1 < d0+e0∧c1 =
c0+d0+e0∧c0 = b0∧a0 < 0∧d0 = 1∧e0 = −a0} which
can be simpli�ed to {a0 < 0 ∧ b0 < 0}. This constraint
store is consistent and the solver will compute a solution,
e.g., {a0 = −1, b0 = −1}. These values of the input vari-
ables are a test case that demonstrates that program foo
violates property p1. DPVS was able to �nd this coun-
terexample without ever visiting nodes (5), (6) and (7).

This small example illustrates how DPVS works in a
general way. It can also help to understand the intuition
behind this new strategy: DPVS collects incrementally
all the information on the variables that occur in post-
condition to detect inconsistencies as early as possible;
this is especially e�cient when a small subset of the con-
straint system is inconsistent.

Next subsection details algorithm DPVS .

2.4.2 Algorithm

Algorithm DPVS (see Algorithm 1) is called with four
parameters:

10 Notation (n) is used for statement nodes, and 〈n〉 for condi-
tional nodes in the CFG of Fig. 2 and 3. Statement Line numbers
are given before corresponding constraints.

ha
l-0

06
35

41
7,

 v
er

si
on

 2
 -

27
 M

ar
 2

01
2

6 Hélène Collavizza et al.: Constraint-Based BMC: A Backjumping Strategy

<0>
l.3: a >= 00

(12)
l.27: c = c + d + e00 01

(7)
l.15: d = a0 0

e = -b0 0

(6)
l.12: d = a0 0

e = b0 0

(8)
l.19: c = b0 0

e = -a0 0

d = 10

(4)
l.10: c = a0 0

<5>
l.11: b >= 00

True

True

False

False

Fig. 3. Simpli�ed CFG for p1, step 2

� S: the constraint store; S is initialized with cstr(pre∧
¬(prop)) where cstr is a function that transforms an
expression in DSA form into a set of constraints.

� Q: the queue of temporary variables; Q is initialized
with V (prop).

� M : the set of marked variables (a variable is marked
if it has already been put into the queue); M is ini-
tialized with V (prop) �the variables of prop� and the
input variables of the function.

� choice[n]: the choice made at a conditional node, used
to mark the paths. The value can either be None
when n has not been explored yet, Left when n was
explored coming from left (condition must be true)
and Right when coming from right (condition must
be false).

Algorithm DPVS also uses the following data struc-
tures:

� def _nodes[v]: the set of nodes where variable v is
de�ned.

� cond_anc[n]: the set of conditional nodes that are
ancestors of n and whose condition value determines
the reachability of n.

� left [n, ancn]: a Boolean which is true (resp. false)
when the condition of ancestor ancn of node n has
to be true (resp. false) to reach n.

DPVS selects a variable in Q and tries to �nd a coun-
terexample with its �rst de�nition; if it fails, it iteratively
tries with the other de�nitions of the selected variable.

DPVS sets the choice of conditional node n to Left
(resp. Right) when condition of n is set to true (resp.
false) in the current path. In other words, when choice[n]
is set to Left (resp. Right) the right (resp. left) successor
link of n is cut o�. choice[n] is initialized to None for all
conditional nodes.

DPVS returns an instantiation of the input vari-
ables of P satisfying constraint system S or it returns
∅ if S does not have any solution. Solutions are com-
puted by function solve (line 28), using the �nite domain

solver (CP). Function solve is a complete decision proce-
dure over the �nite domains. On the contrary, function
isfeasible used in line 33 only performs a partial con-
sistency test. In other words, it detects some inconsis-
tencies but not all of them. However, function isfeasible
is much faster than function solve; this is the reason
why we chose to perform only this test each time the
constraints derived from the de�nition of a variable are
added to the constraint store. This partial consistency
check can either be done with the �nite domain solver
(CP) or with the linear programming solver (LP) �of
course, the LP solver can only work on a linear relax-
ation of the constraint system. Thus, the solve function
is called only once when the end of a path has been
reached.

2.4.3 Soundness of Algorithm 1

It is easy to show that Sol , the solution computed by
DPVS , is actually a counterexample. Indeed, these val-
ues of the input data satisfy the constraints generated
from:

� pre, the required pre-condition;
� ¬prop, the negation of a conjunct of the post-condi-
tion;

� one de�nition of all variables in V (prop) and one def-
inition of all variables (except the input variables)
introduced by these de�nitions;

� all conditions required to reach the above mentioned
de�nitions.

Thus, there exists at least one executable path which
takes as input values Sol and computes an output that
violates the property prop.

Conversely, if there exists a counterexample violating
prop, then there exists at least one executable path in the
CFG corresponding to this case. Algorithm 1 guaranties
that:

� any node with a de�nition of a variable involved in
prop is explored (with the corresponding constraints
added to S);

� any conditional node ancestor of an explored node is
considered with the appropriate predicate added to
S;

� any node with a de�nition of a variable used in an ex-
plored node is also explored (with the corresponding
constraints added to S).

Consequently, a consistent constraint system S corre-
sponding to the faulty path has been built and solved
by Algorithm 1. The solution of this constraint system
provides a counterexample of prop.

Otherwise, when no solution can be found, we can
state that there does not exist any input values violating
property prop; in other words, no counterexample can be
found with the boundedness hypothesis.

ha
l-0

06
35

41
7,

 v
er

si
on

 2
 -

27
 M

ar
 2

01
2

Hélène Collavizza et al.: Constraint-Based BMC: A Backjumping Strategy 7

Algorithm 1 : DPVS
Function DPVS(S,Q,M, choice) returns a counterexample

Require: Q 6= ∅
1: v ← POP(Q)
2: for all n ∈ def_nodes[v] do
3: Cut ← false; SAVE(S,Q,M, choice)
4: S1 ← S∧ cstr(def [v, n])

{% def [v, n] denotes the de�nition of v in node n}
5: Vnew ← V (def [v, n]) \M
6: PUSH(Q,Vnew); add(Vnew ,M)
7: for all anc ∈ cond_anc[n] do
8: if ¬Cut then
9: if choice[anc] = None then {%�rst visit of anc}
10: Vnew ← V (condition[anc]) \M
11: PUSH(Q,Vnew); add(Vnew ,M)
12: if left [n, anc] then {%Condition must be

true}
13: S1 ← S1∧ cstr(condition[anc]))
14: choice[anc] ← Left {% Cut the right

branch}
15: else {% Condition must be false}
16: S1 ← S1 ∧ ¬ cstr(condition[anc])
17: choice[anc] ← Right {% Cut the left

branch}
18: end if

19: else

20: if (choice[anc] = Left ∧ ¬left [n, anc])
∨ (choice[anc] = Right ∧ left [n, anc]) then

{%no branch is reachable}
21: Cut ← true

22: end if

23: end if

24: end if

25: end for

26: if ¬Cut then
27: if Q = ∅ then {% end of a path }
28: Sol ← solve(S1)
29: if Sol 6= ∅ then
30: return Sol {% a counterexample has been

found}
31: end if

32: else

33: if isfeasible(S1) then {% current path is feasible,
so recursive call}

34: Sol ← DPVS(S1, Q,M, choice)
35: if Sol 6= ∅ then
36: return Sol {% a counterexample has been

found}
37: end if

38: end if

39: end if

40: end if

41: RESTORE(choice,M,Q, S)
42: end for

43: return ∅

1

2

6

4

int32(1)

3

5
2

1
L

R

F

ULK

constant

Flasher Manager

LK

W
outR

outL

Fig. 4. Simpli�ed Simulink model of the Flasher Manager

3 The Flasher Manager application

In this section we describe the Flasher Manager appli-
cation.

This real time industrial application from a car man-
ufacturer has been provided by Geensoft / Dassault

Systems11. The Flasher Manager application was de-
signed and simulated using the Simulink platform. Its
speci�cation was given by Geensoft and consists of four
main properties. The Flasher Manager is concretely em-
bedded as a C program in a car computer, thus our aim
is to check that the four properties are preserved on this
C program. This is a challenging software veri�cation
problem: its complexity comes from the size of the C

function generated from the Simulink module and from
the number of clock cycles required for verifying each
property.

We �rst describe the Simulink module of the Flasher
Manager , then the properties we have to check and last,
we explain how the Simulink module and the properties
have been translated as a C program in order to use a
bounded model checker for the veri�cation. A descrip-
tion of this application �with all source code� can be
found at http://users.polytech.unice.fr/~rueher/
Benchs/FM.

3.1 Description of the Simulink module

The Flasher Manager is a controller that drives several
functions related to the �ashing lights of a car. Each
function is enabled by some input commands, activates
one or two �ashing lights, and is described by its dura-
tion and its �ashing period (i.e., time-units required to
oscillate from 1 to 0 or 0 to 1). The next subsections de-
tail these points for the three main functionalities of the
Flasher Manager . Figure 4 shows a simpli�ed Simulink

model (i.e., inputs/outputs) and Fig. 5 provides a more
detailed model.

3.1.1 Direction change

When the driver indicates a direction change, Boolean
input R or L rises from 0 to 1. The corresponding light

11 See http://www.geensoft.com/en

ha
l-0

06
35

41
7,

 v
er

si
on

 2
 -

27
 M

ar
 2

01
2

8 Hélène Collavizza et al.: Constraint-Based BMC: A Backjumping Strategy

Enable W_active

Switch6

W W_out

Warning

Switch1

Switch2

Switch

Switch3

2

outR

1

outL

L L_out

Flashers_left

Switch5

Off2

Boolean(0)

Off3

1

L

4

LK

AND

NOT

lock

unlock

lock state

doors_
unlocked

Switch7

OR

int32(20)

Duration tick 1

Input Rising edge

Input Rising edge

Enable

Duration

Activation

Delay for unlock

Enable

Duration

Activation

Delay for lock5

ULK

2

R

6

F

R R_out

Flashers_right

Switch4
Off1

ORW_fast

Warning_fast

W_fast_out

W_slow W_slow_out

Warning_slow
OR

int32(10)

Duration tick 2

3

W Edge detection

Rising edgeInput

data type conversion

Boolean

Front edge detection

Failing edge detection

Fig. 5. Detailed Simulink model of the Flasher Manager

(respectively driven by the outR or outL output) then
oscillates between on/o� states with a period of 6 time-
units (typically 3 seconds). Thus, an output sequence
of the form [111000] is repeated on one of the lights.
Then, when the input falls back to 0, the corresponding
output light stops �ashing. The light starts oscillating
immediately when the command is enabled, and stops
immediately when the command is disabled. These are
the Flashers_left and Flashers_right functions.

3.1.2 Lock and unlock of the car

The driver has the ability to lock and unlock the car from
the distance using an RF-key. The state of the unlock
and lock buttons of the key is reported to Boolean inputs
ULK and LK respectively.

When an RF-key is pressed, the manager indicates
the state of the doors to the user using the following
convention:

� If the unlock button is pressed while the car is un-
locked, nothing shall happen.

� If the unlock button is pressed while the car is locked,
both lights shall �ash with a period of 2 time-units
during 20 time-units (fast �ashes for a short time).
More precisely, when the ULK input is activated, the
oscillation starts two cycles after the activation, pro-
duces an output sequence of the form [10101...010]

on both lights and stops on the 22nd cycle after the
activation. This is the Unlock_flash function.

� If the lock button is pressed while the car is unlocked,
both lights shall go on for 10 time-units, and then
shall go o� for another 10 time-units, producing an
output sequence of the form [11111111110000000000]
on both lights.

� If the lock button is pressed while the car is locked,
both lights shall �ash during 60 time-units with a
period of 2 time-units (fast �ashes for a long time).
More precisely, when the LK input is activated, the
oscillation starts the next cycle, produces an output
sequence of the form [10101...010] on both lights that
stops on the 61st cycle. This is the Lock_flash func-
tion. It is typically used to locate the car in an over-
�lled place.

Note that in the initial state, the doors are locked.

3.1.3 Warning function

Finally, the driver has the ability to press the warning
button. When the warning is on, both lights �ash with a
period of 6 time-units (slow �ashes). This is the Warning

function. The W input is a push-down button. In the ini-
tial state of the manager, the warning is o�. A rising
edge of W activates the warning and the next rising edge
of W deactivates the warning.

ha
l-0

06
35

41
7,

 v
er

si
on

 2
 -

27
 M

ar
 2

01
2

Hélène Collavizza et al.: Constraint-Based BMC: A Backjumping Strategy 9

3.2 Properties

We checked four properties of the Flasher Manager mod-
ule.

Property 1: "Warning function has priority over other
�ashing functions."

Property 2: "When the warning button has been pushed
and then released, the Warning function resumes to
the Flashers_left (or Flashers_right) function, if
this function was active when the warning button
was pushed."

Property 3: "When the F signal (for �asher active) is o�,
then the Flashers_left, Flashers_right and Warning

functions are disabled. On the contrary, all the func-
tions related to the lock and unlock of the car are
maintained."

Property 4: "Lights should never remain lit in�nitely."

Restrictions For checking the four properties, we will
adopt the following restrictions in accordance with the
designers of the Flasher Manager module:

1. L and R inputs cannot both be TRUE on the same cycle;
2. LK and ULK inputs cannot both be TRUE on the same

cycle.

First restriction means that we do not consider a de-
graded use when the lever of the indicators is damaged.
Second restriction excludes a misuse of the RF-key.

The next subsection describes how the four proper-
ties have been modeled as C programs in order to be
checked with bounded model checkers.

3.3 Programs under veri�cation

We �rst describe the C function built from the Simulink
model, then we give the general principles to model the
properties as C programs using this function, and last
we detail each property.

3.3.1 The f1 function

The Simulink model of the Flasher Manager was auto-
matically translated into a C function, named f1, using
a Geensoft proprietary tool. This function f1, together
with the scheme of the Simulink model and an informal
textual description of the properties of the module, is the
material that was provided to us by the designers. Func-
tion f1 involves 81 Boolean variables including 6 inputs
and 2 outputs and 28 integer variables. It contains 300
lines of code and mainly consists of nested conditionals
including linear operations and constant assignments, as
illustrated by the piece of code displayed in Fig. 6.

A call to the f1 function simulates one cycle of the
Simulink module: state variables and output variables
are modi�ed according to the values of the input vari-
ables.

1 and1_a=((Switch5==TRUE)

2 &&(TRUE!=Unit_Delay3_a_DSTATE));

3 if ((TRUE==((and1_a-Unit_Delay_c_DSTATE)!= 0))) {

4 rtb_Switch_b=0;

5 }

6 else {

7 add_a = (1+Unit_Delay1_b_DSTATE);

8 rtb_Switch_b = add_a;

9 }

10 superior_a = (rtb_Switch_b>=3);

Fig. 6. Piece of code of the f1 function

3.3.2 Modeling for BMC

In order to verify the properties using a BMC tool, we
associate a C program to each property. Such a pro-
gram starts with a call to the function that initializes
the module, and then mainly consists of a loop that:

1. reads the inputs,
2. calls the f1 function,
3. states some assertions on the outputs; these asser-

tions may depend on current and previous values.

In step 1, unknown input values are represented by a
call to function nondet_in(). This is the syntax required
by the BMC tools we use. Statement int v=nondet_in()

is translated by our BMC tools as the creation of a vari-
able v with an initial domain that contains the whole set
of machine integers (the integer format can be set as an
option of the BMC tools). In step 3, we use some assert

statements which are checked in sequence by the BMC
tools.

For each property, the loop must be checked for a
number of iterations that is tractable, but nevertheless
meaningful. BMC tools make a bounded veri�cation. Gen-
erally, the bound is progressively increased until an error
is found, or the size of the formula is too large and ex-
ceeds the capacity of the tool. For the Flasher Manager

module, the longest function is the Lock_flash function:
it requires 61 cycles. However, in our experiments (see
Sect. 4), properties often require much more cycles.

3.3.3 Property 1

To check the property 1, we have to show that whatever
input commands are, if the warning is on, the lights must
�ash as described by the Warning function: both lights
shall oscillate with a time period of 6 time-units. The
C program used to model this property (called prop1) is
shown in Fig. 7:

� Each iteration of the main loop (line 8) is a clock cy-
cle where input values are read (lines 9 to 15) and f1

function is called (line 25). Note that lines 11 and 13
apply the restrictions mentioned in Sect. 3.2.

ha
l-0

06
35

41
7,

 v
er

si
on

 2
 -

27
 M

ar
 2

01
2

10 Hélène Collavizza et al.: Constraint-Based BMC: A Backjumping Strategy

1 void prop1(int d) {

2 init(); f1() // module initialization
3 F=TRUE; // the �ashing function is active
4 _Bool oldW; // old value of warning input
5 _Bool Won = FALSE; // true if warning function is on
6 int count=0;// number of cycles when Won was TRUE
7 // consider d time−units
8 for (int i=0;i<d;i++) {

9 // non−deterministic values of the inputs
10 L=nondet_in();

11 if (L) R=FALSE; else R=nondet_in();

12 LK=nondet_in();

13 if (LK) ULK=FALSE; else ULK=nondet_in();

14 oldW=W;

15 W=nondet_in();

16 // warning is a push−down button
17 // Won is TRUE if it was FALSE before
18 // and there has been a rising edge of input W
19 if (W && !oldW){

20 count=0;

21 Won = !Won;

22 }

23 // call to f1 () to simulate one pass through
24 // the module
25 f1();

26 // if the warning function is on, the �ashing
27 // lights shall oscillate with a period of
28 // 6 time−units, starting with value 1
29 if (Won) {

30 if ((count/3)%2==0)

31 assert(outL==TRUE && outR==TRUE);

32 else

33 assert(outL==FALSE && outR==FALSE);

34 count++;

35 }

36 }

37 }

Fig. 7. Function under veri�cation for Property 1

� The command of the warning is a push-down button.
Thus the variable Won in the program becomes TRUE

only when it was FALSE before, and there is a rising
edge of the input W (lines 19 to 22).

� If Won is TRUE, then the lights shall oscillate with a
time period of 6 time-units, producing an output se-
quence of the form [111000111000...]. We use a vari-
able count that counts the number of cycles since Won
is true. Value of variable count is set to 0 on each ris-
ing edge of W (line 20), and is increased when Won is
true (line 34). count/3 brings the oscillation back to a
one time-unit oscillation. Since the oscillation starts
with 1, the lights shall be TRUE when (count/3)%2==0

and shall be FALSE when (count/3)%2==1. The assert

statements at lines 31 and 33 are stating this.

3.3.4 Property 2

Property 2 concerns a scenario that hosts three succes-
sive events: a direction change, a warning activation,
and a warning deactivation. Since Property 1 is false
(because lock and unlock functions have priority on the
warning), we set the entries LK and ULK to FALSE to sim-
plify the modeling12.

The C program associated with property 2 (called
prop2 and shown in Fig. 8), works as follows:

� It uses counter countR (resp. countL) to count the
number of cycles since R (resp. L) has been TRUE. Note
that countL has the initial value −2 because a left
direction change activates the left light on the next
cycle of the rising edge of L.

� The �rst loop (line 11) is used to repeat the scenario.
� When the warning is activated, and a right or left
direction change is also active (line 22), then another
loop starts and stops when the warning is cut down
(line 24).

� When the warning has been cut and a right or left di-
rection change is active, the lights shall behave as the
Flashers_left or Flashers_right functions (lines 38
to 49).

3.3.5 Property 3

Property 3 concerns the behavior of the module when
the �ashing function is deactivated, i.e., input signal F
is FALSE. We wrote two versions of this property: Prop-
erties 3a and 3b. Property 3a corresponds to the origi-
nal property which states that F=FALSE deactivates the
Flashers_left, Flashers_right and Warning functions,
but does not deactivate the functions related to lock and
unlock commands. However, we restricted LK and ULK in-
puts so that they are ignored while a �ashing function
due to a previous lock or unlock of the car is not yet com-
pleted. Even with this restriction on the combinations of
LK and ULK inputs, Property 3a is not tractable because
of combinatorial explosion (see Sect. 4.2.3). Hence, we
introduced Property 3b which only deals with Warning,
Flashers_left and Flashers_right functions: unlock and
lock inputs are disabled. We �rst describe Property 3b,
as it is a simpli�cation of Property 3a; next, we detail
Property 3a.

The C program associated with Property 3b �called
prop3b� is shown in Fig. 9. It mainly consists in a loop
where inputs are read (lines 7 to 12), f1 function is called,
and lights are checked to be o� each time F is equal to
FALSE (line 16).

The C program associated with Property 3a �called
prop3a� is shown in Fig. 10 and 11. The main di�culty
to model this property is that there are four possible sce-
narios, which depend on the LK and ULK inputs, and also

12 Experimental results (see Sect. 4.2.2) show that even this sim-
pli�ed version is not tractable.

ha
l-0

06
35

41
7,

 v
er

si
on

 2
 -

27
 M

ar
 2

01
2

Hélène Collavizza et al.: Constraint-Based BMC: A Backjumping Strategy 11

1 void prop2(int d) {

2 init();

3 // LK and ULK are not active
4 LK=FALSE; ULK=FALSE;

5 // the �ashing function is active
6 F=TRUE;

7 _Bool oldW; // old value of W input
8 _Bool Won = FALSE; // true if warning function is on
9 int countR=-1; // number of cycles since R was TRUE

10 int countL=-2; // number of cycles since L was TRUE
11 for (int i=0;i<d;i++) {

12 // read non deterministic inputs with restrictions
13 L=nondet_in();

14 if (L) R=FALSE; else R=nondet_in();

15 if (R) countR++; else countR=-1;

16 if (L) countL++; else countL=-2;

17 oldW=W; W=nondet_in();

18 if (W && !oldW) Won = !Won;

19 // call to the module
20 f1();

21 // R or L has been activated later (or equal) than W
22 if ((Won && R) || (Won && L)) {

23 // read inputs until the warning is released
24 for (int j=0;j<d && Won;j++) {

25 L=nondet_in();

26 if (L) R=FALSE; else R=nondet_in();

27 if (R) countR++; else countR=-1;

28 if (L) countL++; else countL=-2;

29 oldW=W; W=nondet_in();

30 if (W && !oldW) Won = !Won;

31 // call to the module
32 f1();

33 }

34 // if the warning function is released
35 // and a direction change is still active ,
36 // the �asher_right or �asher_left function is
37 // active
38 if (!Won && R) {

39 if ((countR/3)%2==0)

40 assert(outL==FALSE && outR==TRUE);

41 else

42 assert(outL==FALSE && outR==FALSE);

43 }

44 if (!Won && L) {

45 if (countL==-1 || (countL/3)%2==0)

46 assert(outL==TRUE && outR==FALSE);

47 else

48 assert(outL==FALSE && outR==FALSE);

49 }

50 }

51 }

Fig. 8. Function under veri�cation for Property 2

1 void prop3b(int d) {

2 init();

3 // LK and ULK are not active
4 LK=FALSE;

5 ULK=FALSE;

6 for (int i=0;i<d;i++) {

7 // read non deterministic inputs with restrictions
8 F=nondet_in();

9 L=nondet_in();

10 if (L) R=FALSE; else R=nondet_in();

11 W=nondet_in();

12 f1();

13 // if F is disabled , left , right and
14 // warning functions are deactivated
15 if (!F) {

16 assert(outL==FALSE && outR==FALSE);

17 }

18 }

19 }

Fig. 9. Function under veri�cation for Property 3b: left, right and
warning �ashing functions

on the state of the doors (closed or not). Furthermore,
combination of functions related to lock/unlock must be
ignored, thus one has to record if a previous function is
now complete. prop3a works as follows:

� Lines 3 to 14 initialize the state variables related to
lock and unlock functions.

� Lines 17 to 19 read values of inputs F, L, R and W.
� Lines 20 to 40 read values of inputs LK and ULK, only
if no lock/unlock function is active; state variables
related to LK and ULK are also updated.

� Assertions must only be checked when F is FALSE

(line 46).
� Lines 47 to 49 concern the case where no function
related to lock or unlock is active. Thus the lights
shall be o�.

� Lines 50 to 64 concern the case where a function re-
lated to lock is active. The assertion to be checked
depends on the state of the doors (opened or not)
when the lock was activated.

� Lines 65 to 76 concern the case where a function re-
lated to unlock is active. Here also, the assertion to
be checked depends on the state of the doors (opened
or not) when the unlock was activated.

� Lines 80 to 87 are used to set LKon and ULKon to FALSE

when the term of the current �ashing function has
expired.

3.3.6 Property 4

Property 4 of the Flasher Manager concerns the behav-
ior of the Flasher Manager for an in�nite time period.
Practically, we can only check a bounded version of this
property: we consider that the property is violated when

ha
l-0

06
35

41
7,

 v
er

si
on

 2
 -

27
 M

ar
 2

01
2

12 Hélène Collavizza et al.: Constraint-Based BMC: A Backjumping Strategy

1 void prop3a(int d){

2 init();

3 _Bool doorsLocked=TRUE; // doors are closed
4 // state variables for lock function
5 _Bool oldLK=FALSE; // old value of LK
6 _Bool LKon=FALSE; // no active function related to lock
7 _Bool LK_on_lkd=TRUE; // lock when door is closed
8 int countLK=-1; // number of cycles since LKon is true
9 // state variables for unlock function

10 _Bool oldULK=FALSE; // old value of LK
11 _Bool ULKon=FALSE; // no active function related
12 // to unlock
13 _Bool ULK_on_lkd=TRUE; // unlock when door is closed
14 int countULK=-1; // number of cycles since ULKon
15 // is true
16 for (int i=0;i<d;i++) {

17 // input values which exclude L=R=1
18 F=nondet_in(); W=nondet_in(); L=nondet_in();

19 if (L) R=FALSE; else R=nondet_in();

20 // input values of LK and ULK which exclude
21 // combination of lock/unlock functions
22 if (!LKon && !ULKon) {

23 oldLK=LK; LK=nondet_in(); oldULK=ULK;

24 if (LK) ULK=FALSE; else ULK=nondet_in();

25 // initialization of state variables
26 if (LK && !oldLK) {// rising edge of LK
27 LKon=TRUE; countLK=-1;

28 if (!doorsLocked) {

29 LK_on_lkd=FALSE; doorsLocked=TRUE;

30 }

31 else LK_on_lkd=TRUE;

32 }

33 if (ULK && !oldULK) {// rising edge of ULK
34 ULKon=TRUE; countULK=-1;

35 if (!doorsLocked) ULK_on_lkd=FALSE;

36 else {

37 ULK_on_lkd=TRUE; doorsLocked=FALSE;

38 }

39 }

40 }

41 // counters update
42 if (LKon) countLK++;

43 if (ULKon) countULK++;

44 // call to f1
45 f1();

Fig. 10. Function under veri�cation for Property 3a: lock and
unlock functions

the lights remain on for d consecutive time periods. The
C program under veri�cation for this bounded version
of property 4 is displayed in Fig. 12. We thus introduce
a loop bounded by d (line 10) that counts the number
of times when the outputs of the Flasher Manager have
consecutively been true (lines 27 to 40). After the loop, if
these counters are equal to d (line 44), then the property
is violated in the sense that the outputs have remained
true during the whole time period that was considered.
The value of the bound d is set as large as possible as

46 if (!F) {

47 if (!LKon && !ULKon)

48 // neither lock nor unlock is active
49 assert(outL==FALSE && outR==FALSE);

50 else {

51 if (LKon) {

52 // should be 11111111110000000000
53 if (!LK_on_lkd && countLK>=2){

54 if (countLK<=11)

55 assert(outL==TRUE && outR==TRUE);

56 else assert(outL==FALSE && outR==FALSE);

57 }

58 // should be 101010... during 60 cycles
59 if (LK_on_lkd && countLK>=1){

60 if (countLK%2!=0)

61 assert(outL==TRUE && outR==TRUE);

62 else assert(outL==FALSE && outR==FALSE);

63 }

64 }

65 else { // ULKon is true
66 // nothing shall happen
67 if (!ULK_on_lkd && countULK>=1)

68 assert(outL==FALSE && outR==FALSE)

69 // should be 010101... during 20 cycles
70 if (ULK_on_lkd && countULK>=1){

71 if (countULK%2==0)

72 assert(outL==TRUE && outR==TRUE);

73 else assert(outL==FALSE && outR==FALSE);

74 }

75 }

76 }

77 }

78 // to update LKon and ULKon when the �ashing
79 // period is �nished
80 if (LKon) {

81 if (!LK_on_lkd && countLK==22) LKon=FALSE;

82 if (LK_on_lkd && countLK==60) LKon=FALSE;

83 }

84 if (ULKon) {

85 if (!ULK_on_lkd && countULK==2) ULKon=FALSE;

86 if (ULK_on_lkd && countULK==20) ULKon=FALSE;

87 }

88 }

89 }

Fig. 11. Function under veri�cation for Property 3a: lock and
unlock functions (cont.)

shown in Sect. 4; its maximal value is mainly determined
by the capabilities of the tools.

4 Experimental results

This section presents our experiments with constraint-
based BMC for checking the properties of the Flasher

Manager (see Sect. 3.2 and 3.3). For each property, we
compare the results obtained with DPVS [13] to those
obtained with CBMC [10], a state-of-the-art bounded

ha
l-0

06
35

41
7,

 v
er

si
on

 2
 -

27
 M

ar
 2

01
2

Hélène Collavizza et al.: Constraint-Based BMC: A Backjumping Strategy 13

1 void prop4(int d) {

2 init();

3 // number of time where the left light has been
4 // consecutively true
5 int countL = 0;

6 // number of time where the right light has been
7 // consecutively true
8 int countR = 0;

9 // consider d units of time
10 for(int i=0;i<d;i++) {

11 // non−deterministic values of the inputs
12 L=nondet_in();

13 if (L)

14 R=FALSE;

15 else

16 R=nondet_in();

17 W=nondet_in();

18 LK=nondet_in();

19 if (LK)

20 ULK=FALSE;

21 else

22 ULK=nondet_in();

23 F=nondet_in();

24 // call to f1 () to simulate one pass through
25 // the module
26 f1();

27 if (outL)

28 // the left light has been consecutively true
29 // one more time
30 countL++;

31 else

32 // the left light has not been consecutively true
33 countL=0;

34 if (outR)

35 // the right light has been consecutively true
36 // one more time
37 countR++;

38 else

39 // the right light has not been consecutively true
40 countR=0;

41 }

42 // if countL and countR are less than d,
43 // then the lights did not remain lit
44 assert (countL<d && countR<d);

45 }

Fig. 12. Function under veri�cation for Property 4

model checker. Moreover, we also investigated the contri-
bution of a Satis�ability Modulo Theories (SMT) solver
to the resolution of the constraint problems issued from
our experiments. Thus, each experiment was ran with
the default solver of each tool and with the z3 SMT
solver [28] as an alternative solver.

First, we outline in Sect. 4.1 the strategies and tools
involved in the experiments, then we detail the results,
property by property, in Sect. 4.2.

4.1 Strategies and tools

DPVS is a strategy that we devised for constraint-based
bounded model checking. DPVS was presented in de-
tails in Sect. 2.4; here, we only give an insight into the
implementation. We also brie�y recall the main features
of CBMC and z3.

4.1.1 DPVS

DPVS is implemented in Comet [27]: a hybrid optimiza-
tion platform for solving complex combinatorial opti-
mization problems. Comet combines the methodologies
used for constraint programming, linear and integer pro-
gramming, constraint-based local search, and dynamic
stochastic combinatorial optimization with a language
for modeling and searching13.

Our prototype works from an XML representation of
imperative programs. This allows our tool not to be tied
to a single programming language. Simple translators
from actual programming languages into the XML format
are available, e.g., for C and Java. The current prototype
imposes many restrictions on the C programs. Espe-
cially, input data are restricted to Booleans, integers and
arrays of these primitive types. Pointers are not handled.
Run-time errors �e.g., division by zero� are not checked
for. However, the prototype has all the C language fea-
tures required for the Flasher Manager properties. In
particular, function calls are inlined.

As presolving, DPVS performs constant propagation
and program slicing. Slicing is done backward on the
CFG in DSA form. It removes all assignments of vari-
ables not relevant to the property to check. Useless nodes
are removed from the CFG.

Comet has a default �nite domain constraint solver
which we used in the experiments; this default solver is
denoted by CP in the results. However, Comet also al-
lows to call other solvers in the form of external libraries.
Thus, we developed an interface to call z3 instead of
Comet's default solver.

4.1.2 CBMC

CBMC [10] is a state-of-the-art bounded model checker
for ANSI-C and C++ programs. It allows the veri�ca-
tion of array bounds (bu�er over�ows), pointer safety,
exceptions, and user-speci�ed assertions. CBMC builds
a propositional formula whose models correspond to ex-
ecution paths of bounded length k violating some prop-
erty of a program. This formula is then checked for satis-
�ability using a SAT solver. If the formula is satis�able,
the given property does not hold; otherwise, the property
is guaranteed to hold up to k steps.

CBMC also o�ers the option to use z3 instead of the
embedded SAT solver, but this is yet an experimental

13 See http://dynadec.com

ha
l-0

06
35

41
7,

 v
er

si
on

 2
 -

27
 M

ar
 2

01
2

14 Hélène Collavizza et al.: Constraint-Based BMC: A Backjumping Strategy

feature. For the experiments, we used CBMC version
3.6 since this was the latest version to correctly work
with z3.

CBMC was called without any speci�c option ex-
cept for specifying the unfolding bound with --unwind,
the size of integers (32 bits) and the function to check
with --function. In particular, all optional checks were
disabled. Moreover, CBMC implements its own slicing
techniques. We chose the one that gave the best results
in the experiments when increasing loop unfoldings.

4.1.3 z3

A fundamental issue faced by model checkers is the state
space explosion of the model. SMT-based model check-
ing has been proposed as a generalization of SAT-based
model checking to address this challenge. The idea is
that parts of the model could be more easily expressed
and more e�ciently solved in more general, but still de-
cidable, theories than propositional logic. SMT solvers
integrate dedicated solvers for the di�erent theories and
share some of the motivations of constraint program-
ming. SMT-based model checking has already been used
with success in [2,14].

For the experiments, we used the SMT [28] solver z3
version 2.19, which supports:

� equality over free function and predicate symbols;
� real and integer arithmetic (with limited support for
non-linear arithmetic);

� quanti�ers;
� bit-vectors;
� arrays;
� tuple types and algebraic data-types.

4.2 Results

We report in the following sections on the time spent by
the tools to check the Flasher Manager properties. We
give both presolving and search times when relevant.

� For DPVS , presolving time is used for building the
simpli�ed unfolded control �ow graph from the XML

representation of the program of a property.
For CBMC , presolving time is the time spent to
translate the C program into a Boolean formula.
Presolving time also includes applying several simpli-
�cation techniques (e.g., cone of in�uence, constant
propagation), which may di�er according to the tool.

� Search time is the time actually spent for searching
for a solution, that is total time of the experiment
minus presolving time. For CBMC , it corresponds to
the time spent in the solver (SAT or SMT), whereas
for DPVS it covers the time needed to dynamically
explore the control �ow graph and to solve the con-
straint systems.

Table 1. Presolving, search, and total times in seconds for check-
ing Property 1 with 10 unfoldings

Tool Presolving Search Total
CBMC 0.89 0.23 1.12
CBMC z3 0.85 2.7 3.55

DPVS
3.89

0.08 3.97
DPVSz3 0.34 4.23

A time limit of 10 minutes was allowed for each experi-
ment, beyond which we stopped the experiment and re-
ported a time-out (T.O.).

All the properties of the experiments are expressed
as safety properties. In bounded model checking, the
greater is the number of unfoldings the more con�dent
one can be that the property holds. For the experiments,
we started with a bound of 10 unfoldings which we in-
creased next until we reached the given time limit.

All benchmarks were run on a 64-bit Linux quad-core
Intel Xeon (3.16 GHz) platform with 16 GB of RAM.
However, tools were run on a single core and did not
take advantage of the three supplementary cores. More-
over, to our knowledge, CBMC 3.6 only exists in 32-bit
version.

4.2.1 Property 1

Property 1 states that the warning function should have
priority over the other �ashing functions. This prop-
erty does not hold: the lock and unlock �ashing func-
tions have priority over the warning function. All the
tools found a counterexample with our starting bound
of 10 unfoldings. Actually, 3 unfoldings are enough for
the shortest counterexample. The results are shown in
Table 1. z3 subscripts denote versions of the tools that
use z3 instead of the native solvers of the tools.

CBMC performs very well on this property where a
counterexample can be found with very few unfoldings.
DPVS behaves also well: the presolving simpli�cations
require more time but the search process is very fast.
Note that the implementation of the presolving in DPVS
has not been optimized at all.

On this property, the search time is much more im-
portant when z3 is used instead of the native solvers of
the di�erent systems.

4.2.2 Property 2

This property is much more complex than Property 1:
it involves nested loops and numerous conditional state-
ments with combinations of disjunctions and conjunc-
tions. None of the used tools could check the property
within the 10-minute time limit, even for 10 unfold-
ings. CBMC did not �nish building the Boolean for-
mula. DPVS could build and simplify the control �ow

ha
l-0

06
35

41
7,

 v
er

si
on

 2
 -

27
 M

ar
 2

01
2

Hélène Collavizza et al.: Constraint-Based BMC: A Backjumping Strategy 15

0

60

120

180

240

300

360

420

480

540

600

0 100 200 300 400

Total time (s)

Unfoldings

DPVS

DPVSz3

CBMC

CBMC z3

Fig. 13. Total time in seconds for checking Property 3b (without
lock and unlock functions) when varying the number of unfoldings

Table 2. Total time in seconds for checking Property 3b (without
lock and unlock functions) when varying the number of unfoldings

Unfoldings CBMC CBMC z3 DPVS DPVSz3

10 0.56 0.7 3.04 3.44
50 6.56 7.11 16.59 21.02
100 44.71 53.72 37.47 55.92
200 202.18 288.76 94.8 155.33
300 510.91 T.O. 152.88 307.65
400 T.O. T.O. 248.31 576.18

graph in around 40 s, but it reached the time limit dur-
ing search. This property is not easy to reformulate in
a more tractable form without losing its semantics. It
shows that a relatively simple application as the Flasher
Manager is still challenging for modern bounded model
checking tools.

4.2.3 Property 3

The unrestricted version of Property 3, Property 3a,
could not be checked within the 10-minute time limit. At
least 120 unfoldings are required to include one sequence
of all the lock and unlock related functions. However, for
100 unfoldings, CBMC fails to build the Boolean formula
within the time limit. Our tool could build and simplify
within the time limit the control �ow graph for 100 un-
foldings but DPVS failed to �nish the graph exploration.

There are less combinations on the inputs for Prop-
erty 3b since lock and unlock inputs are set to false.
Figure 13 shows that DPVS and CBMC could check
the property up to 300 unfoldings within the time limit.
On small number of unfoldings, CBMC performs bet-
ter than DPVS , but DPVS scales better than CBMC :
at around 100 unfoldings and above, DPVS is faster.

0

60

120

180

240

300

360

420

480

540

600

0 200 400 600 800 1000 1200 1400 1600

Total time (s)

Unfoldings

DPVS

CBMC

Fig. 14. Total time in seconds for checking Property 4 when vary-
ing the number of unfoldings

DPVS could even check the property for 400 unfoldings.
As with Property 1, the use of z3 increases the search
time by a factor ranging from 2 to 4.

Neither DPVS nor CBMC found any counterexam-
ple within the unfolding bounds. This means that DPVS
had to explore all executable paths relevant to this prop-
erty.

4.2.4 Property 4

Property 4 is false if there are combinations of inputs
so that one of the light remains always lit. However, in
bounded model checking we cannot show that a light
is actually always lit. We can only increase as much as
possible the unfolding bound and show that on the cor-
responding time duration a light remains lit. Figure 14
reports the CPU time required to �nd a counterexample
to Property 4 when the number of unfoldings increases.
DPVS outperforms CBMC for this property. DPVS al-
lows to reach up to 1600 unfoldings whereas CBMC fails
at 200 unfoldings within the 10-minute time limit. In
typical settings, 1600 cycles of the Flasher Manager con-
trol loop are more than 13 minutes of working.

Presolving and search times for CBMC and DPVS

are given in Fig. 15. DPVS search time is very low com-
pared to presolving time. In bounded model checking,
the bound is usually progressively increased. So, in an
optimized system the total checking time could bene�t
from an incremental building of the control �ow graph
from one unfolding bound to another, instead of rebuild-
ing the graph from scratch for each bound as done here.

ha
l-0

06
35

41
7,

 v
er

si
on

 2
 -

27
 M

ar
 2

01
2

16 Hélène Collavizza et al.: Constraint-Based BMC: A Backjumping Strategy

Table 3. Presolving, search, and total times in seconds for checking Property 4 when varying the number of unfoldings

Unfoldings
CBMC DPVS

Presolving Search Total Presolving Search Total
10 0.84 0.15 0.99 2.02 0.09 2.11
50 12.72 8.08 20.8 7.19 0.5 7.69
100 96.21 58.52 154.73 14.9 1.11 16.01
200 T.O. T.O. T.O. 48.99 1.7 50.69
300 T.O. T.O. T.O. 53.42 4.27 57.68
400 T.O. T.O. T.O. 83.81 3.83 87.64
500 T.O. T.O. T.O. 127.97 6.13 134.09
600 T.O. T.O. T.O. 132.97 9.62 142.59
800 T.O. T.O. T.O. 218.15 9.35 227.5
1000 T.O. T.O. T.O. 277.47 13.91 291.39
1200 T.O. T.O. T.O. 356.93 21.4 378.33
1400 T.O. T.O. T.O. 433.82 36.24 470.05
1600 T.O. T.O. T.O. 531.82 26.2 558.02

0

60

120

180

240

300

360

420

480

540

0 200 400 600 800 1000 1200 1400 1600

Time (s)

Unfoldings

DPVS search
DPVS presolving
CBMC search
CBMC presolving

Fig. 15. Presolving and search times in seconds for checking Prop-
erty 4 when varying the number of unfoldings

5 Discussion and related work

In this section, we �rst analyze the advantages and draw-
backs of the di�erent search strategies, then we discuss
related work.

5.1 DPVS & CPBPV

We designed DPVS because CPBPV was not able to
prove or disprove any property of the Flasher Manager

application at a reasonable depth. We evaluated various
strategies in our framework, but only DPVS worked. In
particular, performances of a sequential backward strat-
egy were even worse than those of the depth-�rst strat-
egy of CPBPV .

We also tested DPVS on other well known exam-
ples: the Tritype program for triangle classi�cation [12],

Table 4. Time in seconds for checking the Binary search bench-
mark when varying the array length (with 16-bit integers)

Array length CBMC DPVS CPBPV

4 5.732 0.529 0.107
8 110.081 35.074 0.298
16 T.O. T.O. 1.149
32 T.O. T.O. 5.357
64 T.O. T.O. 27.714
128 T.O. T.O. 153.646

the TCAS program from avionics [23], and the Binary

search that determines whether a value v is present in a
sorted array t. DPVS and CPBPV have similar perfor-
mances on the two �rst examples, and compare favorably
with CBMC. The main impact on performances for both
DPVS and CPBPV is the way we combine the solvers
(i.e., CP and LP solvers).

On the contrary, DPVS and CPBPV have very dif-
ferent performances on the Binary search example. The
characteristic of this example is that it is correct, which
means that all executable paths must be explored, and
above all, it has a very strong pre-condition. Thus a top-
down strategy like CPBPV is well adapted to take ad-
vantage of this pre-condition for cutting unfeasible paths
(i.e., paths where the array is not sorted).

Table 4 reports the results of the experiments on a
correct version of the Binary search program. CBMC

andDPVS do not handle this benchmark. CBMC wastes
a lot of time in building and exploring the whole for-
mula. DPVS strategy is not well adapted for this very
speci�c program. On the contrary, the top-down strat-
egy used in CPBPV outperforms the other checkers.
CPBPV incrementally adds the decisions taken along
a path. This is particularly well adapted for the Binary
search program which has a strong pre-condition. This
pre-condition combined with the decisions taken along

ha
l-0

06
35

41
7,

 v
er

si
on

 2
 -

27
 M

ar
 2

01
2

Hélène Collavizza et al.: Constraint-Based BMC: A Backjumping Strategy 17

a path have a strong impact on feasibility of the next
conditions and help to prune infeasible paths.

This benchmark clearly shows that neither DPVS

nor CBMC work well on all problems. Of course, this
is due to the combinatorial complexity behind the used
algorithms. However, we can point out that DPVS and
CBMC are much more e�cient than CPBPV for (par-
tially) proving properties on real applications without a
complete formal speci�cation.

There are no pointers in the code of the Flasher Man-

ager application. However, in a new version of DPVS ,
we implemented a point-to analysis quite similar to the
one done in Euclide [22]. Thanks to constraint propa-
gation, slicing is still e�cient. Experiments on academic
benchmarks are encouraging but they still have to be
validated on more complex applications.

5.2 Related work

Standard bounded model checkers transform a program
and a property into a Big Boolean formula and use SAT
solvers to prove that the property holds or to �nd a coun-
terexample [20]. SMT solvers are now used in most of the
state-of-the-art BMC tools to directly work on high-level
formula (see [2,21,15] and CBMC). Many improvements
have been studied for high-level BMC, such as the one
proposed in [21], in particular during the unfolding step
and to reuse previously learned lemmas. But to the best
of our knowledge, these approaches do not explore the
CFG in a dynamic bottom-up approach that collects non
consecutive program blocks.

Constraint Logic Programming (CLP) was used for
test generation of programs (e.g., [24,25,32,1]) and pro-
vides a nice implementation tool extending symbolic ex-
ecution techniques [8]. Gotlieb et al. showed how to rep-
resent imperative programs as constraint logic programs:
InKa [24] was a pioneer in the use of CLP for generating
test data for C programs.

GATeL [26] is a testing environment for Lustre and
SCADE programs which belongs to the family of CLP-
based test generation and veri�cation tools. The LUS-
TRE language is declarative and describes synchronous
data-�ow computations. GATeL interprets the language
constructs as Boolean and integer interval constraints.
Test sequence generation is automated using constraint
logic programming techniques. Recently, in [6], the au-
thors added explicit constraints to manage the clock type
hierarchy as well as constraints re�ecting properties of
state-machines built by SCADE . In other words, the au-
thors provide a CLP interpretation of the multi-clocked
kernel of the SCADE language. The constraint manage-
ment rules are based on sequential backward derivations.

Denmat et al. developed TAUPO, a successor of InKa
which uses dynamic linear relaxations [19]. It increases
the solving capabilities of the solver in the presence of
non-linear constraints but the authors only published
experimental results for a few academic C programs.

Euclide [22] is also a successor of InKa. It has three
main functions: structural test data generation, coun-
terexample generation and partial program proving for
critical C programs. Euclide combines standard con-
straint programming techniques and speci�c techniques
to handle �oating-point numbers and linear constraints.
C programs are translated into an Euclide program. Af-
ter a constraint propagation step, the constraint solvers
of Euclide start a variable labelling step to �nd a solu-
tion. That is to say, all constraints are posted before the
propagation and search processes start. So, the search
strategy of Euclide only concerns the choice of values
for variables whereas in DPVS , the search selects the
constraints that have to be posted14.

JAUT [9] is a constraint-based tool for generating au-
tomatically unit tests for Java bytecode programs. Like
in CPBPV and in DPVS , the constraints are generated
on the �y in JAUT. However, the exploration strategy is
a sequential backward strategy since the goal of JAUT
is to generate test input for executing some speci�c lo-
cations in a program.

To sum up, besides the fact that our system is not
dedicated to generating test cases but to disproving prop-
erties, the main di�erence between our approach and all
these systems is that DPVS is based on a dynamic back-
jumping strategy.

6 Conclusion

In this paper, we have introduced DPVS, a dynamic
constraint based strategy for bounded model checking.
Experiments with DPVS are very encouraging: DPVS
behaves very well on a non trivial real application. Gen-
erating test cases for realistic time periods is a critical
issue in real time applications. For the Flasher Manager

application, DPVS generated counterexamples for more
signi�cant time periods than CBMC . These results are
impressive since DPVS is still an unoptimized prototype
whereas CBMC is a state-of-the-art solver.

The backjumping strategy of DPVS is well adapted
for problems with a strong post-condition. In contrast,
the top-down strategy of CPBPV is much more e�cient
for problems with a strong pre-condition, like the Binary
search benchmark. Clearly, it would be worth investigat-
ing new strategies combining the capabilities of DPVS
and CPBPV .

Future work also concerns extending our prototype
to be able to evaluate the proposed approach on a larger
class of programs. We are working on a new version that
is interfaced with a �oating-point number solver [8].

Our system does not handle run-time errors. How-
ever, tools dedicated to reporting possible run-time er-

14 Euclide [22] could not handle the Flasher Manager application
due to a bug. On academic benchmarks and on the well-known
TCAS (Tra�c Collision Avoidance System) application, CBMC ,
DPVS and CPBPV outperformed Euclide (see [29]).

ha
l-0

06
35

41
7,

 v
er

si
on

 2
 -

27
 M

ar
 2

01
2

18 Hélène Collavizza et al.: Constraint-Based BMC: A Backjumping Strategy

rors and based on abstract interpretation (ASTRÉE [16],
FLUCTUAT [18] for instance) could be used in conjunc-
tion with our tools.

We are also working on a solver more adapted to
software veri�cation problems, for instance a solver that
handles disequalities in a more e�cient way. Let us ex-
plain this point on a small example. Consider a test such
that x == y, the negation of this test corresponds to the
constraint x 6= y. If the domains are large, consistency
checks with CP may be very costly; if we want to use LP,
we have to create two choice points: x < y and x > y.

In this paper, we have also provided a new industrial
case study. We have proposed models of the di�erent
properties to prove15 and evaluated di�erent tools and
strategies. Although this application seems quite simple
in regard to other applications like ABS controllers, some
properties could neither be proven nor disproven by the
tools we evaluated. So, it is still a challenge for state-of-
the-art bounded model checkers.

Acknowledgements. The authors would like to thank Geen-
soft for providing the Flasher Manager application and espe-
cially Thierry Gueguen and Samuel Devulder for their help.

References

1. Albert, E., Gómez-Zamalloa, M., Puebla, G.: Test Data
Generation of Bytecode by CLP Partial Evaluation.
In: LOPSTR 2008(Logic-Based Program Synthesis and
Transformation), Revised Selected Papers, LNCS, vol.
5438, pp. 4�23. Springer (2008)

2. Armando, A., Mantovani, J., Platania, L.: Bounded
model checking of software using SMT solvers instead
of SAT solvers. International Journal on Software Tools
for Technology Transfer 11(1), 69�83 (2009)

3. Ball, T., Levin, V., Rajami, S.K.: A Decade of Software
Model Checking with SLAM. CACM 54(7), 68�76 (2011)

4. Barnett, M., Leino, K.R.M.: Weakest-precondition of un-
structured programs. Information Processing Letters
93(6), 281�288 (2005)

5. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic
model checking without bdds. In: TACAS, pp. 193�207.
Springer (1999)

6. Blanc, B., Junke, C., Marre, B., Gall, P.L., Andrieu, O.:
Handling state-machines speci�cations with gatel. MBT
2010, Electr. Notes Theor. Comput. Sci. 264(3), 3�17
(2010)

7. Bochot, T., Virelizier, P., Waeselynck, H., Wiels, V.:
Model checking �ight control systems: The Airbus ex-
perience. In: ICSE 2009 (31st International Conference
on Software Engineering),Companion Volume, pp. 18�27.
IEEE (2009)

8. Botella, B., Gotlieb, A., Michel, C.: Symbolic execution
of �oating-point computations. Softw. Test., Verif. Re-
liab. 16(2), 97�121 (2006)

15 All these programs, as well as the source code of the Flasher
Manager application, are publicly available at http://users.

polytech.unice.fr/~rueher/Benchs/FM.

9. Charreteur, F., Gotlieb, A.: Constraint-based test input
generation for java bytecode. In: IEEE 21st Interna-
tional Symposium on Software Reliability Engineering,
pp. 131�140. IEEE Computer Society (2010)

10. Clarke, E., Kroening, D., Lerda, F.: A tool for checking
ANSI-C programs. In: TACAS, LNCS, vol. 2988, pp.
168�176 (2004)

11. Collavizza, H., Rueher, M., Hentenryck, P.V.: CPBPV: A
Constraint-Programming Framework for Bounded Pro-
gram Veri�cation. In: CP 2008 (14th International Con-
ference on Principles and Practice of Constraint Pro-
gramming), LNCS, vol. 5202, pp. 327�341. Springer
(2008)

12. Collavizza, H., Rueher, M., Hentenryck, P.V.: A
constraint-programming framework for bounded pro-
gram veri�cation. Constraints Journal 15(2), 238�264
(2010)

13. Collavizza, H., Vinh, N.L., Rueher, M., Devulder, S.,
Gueguen, T.: A dynamic constraint-based bmc strategy
for generating counterexamples. In: Proceedings of the
2011 ACM Symposium on Applied Computing (SAC),
TaiChung, Taiwan, March 21 - 24, 2011, pp. 1633�1638.
ACM (2011)

14. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based
bounded model checking for embedded ANSI-C soft-
ware. In: Proceedings of the 24th IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE'09), pp. 137�148. IEEE Computer Society (2009)

15. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-Based
Bounded Model Checking for Embedded ANSI-C Soft-
ware. ASE 0, 137�148 (2009). DOI http://doi.
ieeecomputersociety.org/10.1109/ASE.2009.63

16. Cousot, P., Cousot, R., Feret, J., Miné, A., Mauborgne,
L., Monniaux, D., Rival, X.: Varieties of static analyzers:
A comparison with ASTRÉE. In: First Joint IEEE/I-
FIP Symposium on Theoretical Aspects of Software En-
gineering (TASE'07), pp. 3�20. IEEE Computer Society
(2007)

17. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N.,
Zadeck, F.K.: E�ciently computing static single assign-
ment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451�490 (1991)

18. Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal,
K., Védrine, F.: Towards an industrial use of �uctuat on
safety-critical avionics software. In: 14th International
Workshop on Formal Methods for Industrial Critical Sys-
tems (FMICS'09), Lecture Notes in Computer Science,
vol. 5825, pp. 53�69. Springer (2009)

19. Denmat, T., Gotlieb, A., Ducassé, M.: Improving
constraint-based testing with dynamic linear relaxations.
In: Proc. of ISSRE, The 18th IEEE International Sympo-
sium on Software, pp. 181�190. IEEE Computer Society
(2006)

20. D'Silva, V., Kroening, D., Weissenbacher, G.: A survey
of automated techniques for formal software veri�cation.
IEEE Trans. on CAD of Integrated Circuits and Systems
27(7), 1165�1178 (2008)

21. Ganai, M.K., Gupta, A.: Accelerating high-level bounded
model checking. In: International Conference on
Computer-Aided Design (ICCAD'06), pp. 794�801
(2006)

22. Gotlieb, A.: Euclide: A Constraint-Based Testing Frame-
work for Critical C Programs. In: ICST 2009, Second In-

ha
l-0

06
35

41
7,

 v
er

si
on

 2
 -

27
 M

ar
 2

01
2

Hélène Collavizza et al.: Constraint-Based BMC: A Backjumping Strategy 19

ternational Conference on Software Testing Veri�cation
and Validation, 1-4 April 2009, Denver, Colorado, USA,
pp. 151�160. IEEE Computer Society (2009)

23. Gotlieb, A.: TCAS software veri�cation using constraint
programming. The Knowledge Engineering Review, (Ac-
cepted for publication) (2010)

24. Gotlieb, A., Botella, B., Rueher, M.: Automatic test data
generation using constraint solving techniques. In: IS-
STA,International Symposium on Software Testing and
Analysis, pp. 53�62 (1998)

25. Jackson, D., Vazir, M.: Finding bugs with a constraint
solver. In: ISSTA, International Symposium on Software
Testing and Analysis, pp. 14�25. ACM Press (2000)

26. Marre, B., Arnould, A.: Test sequences generation from
lustre descriptions: Gatel. In: ASE (2000)

27. Michel, L., Hentenryck, P.V.: The comet programming
language and system. In: P. van Beek (ed.) Proceedings
of the 11th International Conference on Principles and
Practice of Constraint Programming (CP'05), LNCS,
vol. 3709, pp. 881�881. Springer (2005)

28. de Moura, L.M., Bjørner, N.: Z3: An e�cient SMT solver.
In: C.R. Ramakrishnan, J. Rehof (eds.) Proceedings of
the 14th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems
(TACAS'08), LNCS, vol. 4963, pp. 337�340. Springer
(2008)

29. Nguyen, L.V., Collavizza, H., Rueher, M., Devulder,
S., Gueguen, T.: Stratégies dynamiques pour la généra-
tion de contre-exemples. In: Actes des Sixièmes
Journées Francophones de Programmation par Con-
traintes (JFPC'2010), pp. 207�216 (2010)

30. Régin, J.C.: A �ltering algorithm for constraints of dif-
ference in csps. In: AAAI, pp. 362�367 (1994)

31. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of
Constraint Programming. Elsevier (2006)

32. Sy, N.T., Deville, Y.: Automatic test data generation for
programs with integer and �oat variables. In: ASE (16th
IEEE International Conference on Automated Software
Engineering), pp. 13�21. IEEE Computer Society (2001)ha

l-0
06

35
41

7,
 v

er
si

on
 2

 -
27

 M
ar

 2
01

2

