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CovSel: Variable sele
tion for highlymultivariate and multi-response 
alibration.Appli
ation to IR spe
tros
opy.J.M. ROGER*, B. PALAGOS*, D. BERTRAND** E.FERNANDEZ-AHUMADA**Cemagref BP 5095 - 34033 Montpellier Cedex1 Fran
e**INRA BP 71627 - 44316 Nantes 
edex 3 Fran
e
Abstra
tVariable sele
tion is of major interest for NIR 
alibration, either as a feature sele
tionor for the design of multi-wavelength devi
es. Some dedi
ated methods have beendeveloped in 
hemometri
s, but . Variable sele
tion for NIR spe
tros
opy must fa
etwo problems: (1) the huge number of variables yields a very large solution spa
e;(2) variables are highly 
orrelated, and if no spe
ial attention is paid the model builton the sele
tion may be . This arti
le presents a new method, CovSel, whi
h ta
klesthese two problems by following this pro
edure: (1) Variable sele
tion step by step onthe basis of their global 
ovarian
e with all the responses; (2) Proje
tion of the dataorthogonally to the sele
ted variable. CovSel was applied on three problems: the �rstone 
on
erns a single response MIR 
alibration (Brix degree 
ontent in apri
ot), these
ond one 
on
erns a multi-response NIR 
alibration (4 main 
onstituents in 
orn)Preprint submitted to Elsevier S
ien
e 29 O
tober 2010



and the last appli
ation 
on
erns the NIR dis
rimination of 3 wine grape varieties.Key words: Variable sele
tion, Orthogonal proje
tion
1 Introdu
tionAnalyti
al 
hemistry and pro
ess monitoring involve more and more multi-variate indire
t sensors, su
h as spe
trometers. For example, Near InfraRed(NIR) spe
trometry is a powerful analyti
al tool, in
reasingly used in indus-try ([1℄,[2℄). However these sensors require a 
alibration aiming at �nding arelation between the measured spe
tra and the response to be estimated. A
ommon pra
ti
e involves 
olle
ting a sample set with spe
tral and responsevalue information. If the response values are quantitative (e.g. 
on
entrations)the usual method of 
alibration 
onsists in a regression of the referen
e dataon the spe
tral data. In the 
ase of a qualitative response (e.g. an origin), toolsfor dis
rimination are used. For both model types, 
lassi
al statisti
al methodsare not e�
ient sin
e the spa
e 
arrying the useful information is mu
h smallerthan that of the spe
tra. Consequently a 
lassi
al solution 
onsists in usingfa
torial methods. For quantitative responses, partial least squares regression(PLS) is the more 
ommonly used method ([3℄). In the 
ase of qualitativeresponses, a similar pro
edure 
an be applied on binary variables (indi
atorvariables) indi
ating the belonging of an observation to a given qualitativegroup. PLS 
an then be applied on these indi
ator variables, making it possi-ble to 
arry out a dis
riminant analysis based on latent variables (PLS-DA)([4℄). Another solution involves 
hoosing a restri
ted number of signi�
ant vari-ables and then applying an ordinary least square (OLS) linear regression or alinear dis
riminant analysis (LDA). Moreover, numerous appli
ations require2



the 
on
eption of simpli�ed instruments where only few variables are used.This is the 
ase of spe
trometry devoted to agri
ultural appli
ations wherepra
ti
al spe
i�
ations often impose 
on
eiving robust and 
heap �lter instru-ments. All these reasons make variable sele
tion an appropriate 
hemometri
issue. Nevertheless, the nature of the data, i.e. NIR spe
tra, poses some par-ti
ular problems be
ause, on one side, variables are highly 
orrelated and onthe other side, the sear
hing spa
e is huge (if p is the number of variables thereare 2p-1 solutions). A supplementary problem o

urs when a multi-response
alibration is involved. The present paper addresses these problems.There are numerous te
hniques of variable sele
tion. In the 
ontext of PLSregression, a review 
an be found in ([5℄). In the general domain of ma
hinelearning, the following taxonomy in three groups is 
ommonly used ([6℄):
• With �lter methods, variable sele
tion is done independently of the modelthat eventually makes use of them. Filter methods use the intrinsi
 
har-a
teristi
s of the whole data set in order to sele
t some variables and/oreliminate others. This sele
tion 
an be viewed as a pre-treatment of predi
-tive variables. In the �eld of multivariate 
alibration, di�erent �lter 
riteriaare used su
h as the absolute value of 
orrelation or 
ovarian
e betweenpredi
tors and response ([7℄). The theory of information is also used for se-le
ting the predi
tive variables that maximise the mutual information withthe variable to be predi
ted. However this method is di�
ult to implementwhen multi-responses are involved. An appli
ation in 
hemome
tri
s is foundin ([8℄). The UVE method ([9℄) allows variable elimination by 
omparingthem with noisy arti�
ial variables.
• Wrapper methods s
an the spa
e of possible sele
tions and use the pre-di
tion model as a bla
k box to test the relevan
y of sele
tions. This is3



often evaluated by means of a simple or 
ross validation. Depending on thestrategies to perform the s
an, there exist di�erent wrapper methods (see[10℄, for a review). These are in most 
ases sto
hasti
 optimisation meth-ods inspired by natural phenomena: Geneti
 algorithms ([11℄) or simulatedannealing ([12℄). These methods are not repeatable due to their randomnature. Moreover, their 
omplex algorithms may pose a problem when thesear
hing spa
e is large and the relevan
y of the sele
tion is not easy toassess in the 
ase of multiple responses.
• Embedded methods a

omplish the variable sele
tion during the 
alibrationpro
ess. The subset of sele
ted variables, optimising the training 
riterion,
an be 
onstru
ted by su

essive additions (forward), elimination (ba
k-ward) or a 
ombination of both approa
hes. Ba
kward methods are notwell adapted to the high multivariate 
ases be
ause, at the beginning of thesele
tion pro
ess, they take into a

ount all the variables. Stepwise multi-ple linear regression (SMLR) ([13℄, pp 307-313) is one of the most popularexamples of this kind of methods.Su

essive Proje
tion Algorithm (SPA, [14℄) is a forward sele
tion methodthat minimises 
olinearity between predi
tors by means of su

essive proje
-tions on interlinked sub-spa
es. At ea
h step, the sele
ted variable is the oneshowing the maximum proje
tion on the orthogonal sub-spa
e generated bythe already sele
ted variables. SPA is a hybrid between �lter and embeddedmethods. This paper proposes a new method of variable sele
tion 
alled Cov-Sel (Covarian
e sele
tion). It 
an be 
onsidered a hybrid method as SPA, fromwhi
h it takes inspiration. CovSel is well adapted to multi-response 
alibra-tion of spe
trometers and 
an be applied to the problem of dis
rimination
onsidering indi
ator variables as responses.4



2 Theory
This se
tion presents the theoreti
al aspe
ts of CovSel and emphasizes itssimilarity with the 
onstru
tion of latent variables in PLS. Implementationsfor regression and dis
rimination will be su

essively presented.
Upper 
ase bold 
hara
ters will be used for matri
es, e.g. X will denote amatrix of n individuals (lines) by p variables (
olumns); lower 
ase bold 
har-a
ters for 
olumn ve
tors, e.g. x will denote a simple individual (a spe
trum);non-bold 
hara
ters will be used for s
alars, e.g. matrix elements xij or indi
es
i. In will denote the identity matrix of Rn. IfU is a (n×k)matrix of rank k, PUwill represent the matrix of the proje
tor on U in R

n : PU = U(UTU)−1UTand P⊥

U
the matrix of the proje
tor orthogonal to U : P⊥

U
= In − PU. Thesymbol si will denote a 
olumn ve
tor 
ontaining null values, ex
ept the ith,whi
h is unitary: sij = 0 for i 6= j and sii = 1.

Let X be a matrix of n obje
ts des
ribed by p des
riptors and Y a matrixof the same n obje
ts des
ribed by q responses to be predi
ted. CovSel aimsat 
lassifying the k most useful variables of X in de
reasing order of theirinterest. The pro
edure in
ludes two main steps: (i) sele
ting the most usefulvariable, (ii) proje
ting the data orthogonally to this sele
ted variable. Inthe same way as the Gram-S
hmidt de
omposition ([13℄, p 277) or as the SPAsele
tion, CovSel approximates theX row spa
e Rn as a sum of 
omplementarysubspa
es. The di�eren
e with SPA lies in that CovSel 
arries out the variablesele
tion on the basis of their global 
ovarian
e with all the responses.5



2.1 AlgorithmCovSel method performs variable sele
tion by iterating the following two steps:(1) Sear
hing index I1 
orresponding to the predi
tor 
losest to the responses,by:
I1 = ArgMaxi (xTi YYTxi) (1)(2) :

X← P⊥

xI1
X (2)

Y ← P⊥

xI1
Y (3)This pro
ess is then repeated for I2, I3, · · · , Ik.2.2 InterpretationEquation 1 
an be written as:

I1 = ArgMax (diag (XTYYTX)) (4)Furthermore it 
an be demonstrated (Cf. annexes) that this equation is equiv-alent to:
I1 = ArgMaxi (Maxv,v2=1

(
ov (xi,Yv)2
)) (5)Equation 4 is 
lose to that of PLS where the �rst latent variable is givenby the �rst eigenve
tor of: XTYYTX ([15℄). Equation 5 reminds the generalobje
tive of PLS as it is expressed in the basi
 algorithms su
h as NIPALS ([3℄).To rea
h this obje
tive, PLS allows any linear 
ombinations of the 
olumnsof X. CovSel aims at performing a similar optimisation, but by allowing only6



linear 
ombinations of the 
olumns of X in the form [0,0,...,1,...0℄, sin
e itsrole is the sele
tion of variables. At last, as for the PLS algorithm, orthogonalproje
tions a

omplished by equations 2 and 3 ensure that varian
es of X and
Y are 
aptured in a 
umulative way by every step of the algorithm. ThereforeCovSel implements a PLS-like variable sele
tion, as shown in table 1.2.3 ImplementationThe implementation of CovSel di�ers a

ording to the obje
tive of the user.Three 
ases are addressed here:
• Data analysis: Running CovSel between X and Y without any modellingphase makes it possible to identify the variables of X whi
h explain Y atthe most. This analysis will exploit the evolution of the varian
es explainedby the su

essive steps of CovSel.
• Regression: IfY 
onsists in 
ontinuous responses, like 
on
entrations, Cov-Sel 
ould be used in a hierar
hi
al pro
ess: (i) a �rst variable sele
tion ismade on the basis of all responses and (ii) this global sele
tion is re�ned forea
h individual response in a se
ond step.
• Dis
rimination: If Y 
ontains the indi
ator variables, CovSel 
ould usethis multi-response for sele
ting variables prior to a LDA.2.4 Evolution of varian
es explained by CovSelIn every iteration, during stages 4 and 5 as represented in table 1, the algorithmof CovSel erodes a part of the varian
e 
ontained in X and Y. Let Vx(k) and
Vy(k) be the sum of these varian
es, a

ording to k, expressed in per
entage7



of the whole varian
es of X and Y. Curves Vx and Vy as a fun
tion of theiteration step are 
ompulsorily in
reasing. Their shapes depend on the data
on�guration. If the rank of X is p and all variables of X are independent,
Vx(k) evolves linearly up to 100% for k = p, as illustrated on the two graphson the left of �gure 1. If X variables are 
orrelated, the shape is di�erent.The 
ovarian
e maximized by CovSel is a 
ompromise between X varian
e,
Y varian
e and their 
orrelation. For two variables with the same 
orrelationwith Y, the one with the highest 
ovarian
e will be 
hosen. Therefore 
urve
Vx will show a 
onvex shape, as illustrated on the two graphs of the right of�gure 1. The shape of Vy thus depends on the relation between X and Y.If, on one extreme, Y variables are orthogonal to X, sin
e the Y varian
e
aptured in every step is void, Vy is horizontal whereas Vx in
reases rapidly.On the other extreme, if the q variables of Y are 
ompletely determined by
m variables of X, Vy adopts a regular growing behaviour to attain 100% for
k = m. Between these extreme situations, Vy should present a �rst step of fastin
rease, 
orresponding to the most important variables to be sele
ted andthen a step of slow in
rease, as illustrated on the bottom graphs of �gure 1.
2.5 Regression 
aseIf there is no te
hni
al interest in redu
ing the number of sele
ted variables orif there is only one response, CovSel may be performed individually on ea
h
olumn of Y, as in any 
lassi
al sele
tion method. However, CovSel addressesadvantageously the other 
ases, where a unique 
ommon sele
tion must befound to multiple responses. Let's assume that k is the maximal desired num-ber of variables. The 
omplete model building then relies on two steps:8



• CovSel is �rst run on the 
entred X matrix and the autos
aled Y matrix,with a limit of k steps. This yields a sele
tion {I1, I2, · · · , Ik}.
• Se
ondly, CovSel is run between the submatrix [xI1 ,xI2, · · · ,xIk ] 
entredand the 
olumns yi of Y also 
entred, for i = 1, · · · , q.This pro
ess gives q ordered 
hoi
es of the same list of k variables, whi
h 
anthen be introdu
ed stepwise in q 
lassi
al mono-response OLS models. A 
rossvalidation of these q x k models produ
es q 
urves of SEC and q 
urves of
SECV whi
h 
an guide the user to the 
hoi
e of the best q sele
tions. A setof q OLS models are then built between ea
h of these sele
tions of X and the
orresponding 
olumn of Y.2.6 Dis
rimination 
aseLet g be a ve
tor of n integers indi
ating the belonging of ea
h observationof the 
alibration set to a given qualitative group. A value gi gives the num-ber of the group in whi
h the observation of index i is a priori 
lassi�ed.Let q be the number of di�erent groups. From g, a matrix of indi
ators Y,dimensioned (n × q) is 
onstru
ted. In this matrix an element yij takes thevalue 1 if j = gi, and 0 otherwise. A sele
tion of k variables (su�
iently largenumber) is performed using CovSel between X and Y, both 
entred. For ea
hstep i in sele
tion, a LDA is tested by 
ross-validation between the 
urrentsele
tion {I1, I2, · · · , Ii} and g. The 
lassi�
ation pro
edure aims at �ndingthe minimal Mahalanobis distan
e to the 
entre of 
lasses. Cross-validationresults are expressed in terms of per
entage of wrong 
lassi�ed samples. Twoerror 
urves are provided, one for 
alibration (SEC(j)j=1···k) and the otherone for 
ross-validation (SECV (j)j=1···k) whi
h 
an help the user to 
hoose9



the best sele
tion. A model of dis
rimination by LDA is then developed onthis sele
tion.3 Material and methodsCovSel was applied on several experimental data sets. A �rst example withan unique response was used to 
ompare CovSel with a 
lassi
al SMLR. Ase
ond one was used to illustrate the multi-response regression and the thirdone addressed the dis
rimination problem :
• Set Apri
ots: The X matrix 
onsisted of 731 mid infrared spe
tra of apri-
ots, a
quired on p = 292 variables (a 
omplete des
ription of the 
olle
tion
an be found in [16℄). The Brix degree, evaluating the soluble solid 
ontent,was measured on ea
h fruit and was taken as the y single response. Calibra-tion and validation sets were randomly drawn 100 times, with a proportionof 2/3 and 1/3, respe
tively. Ea
h time, CovSel was applied on the 
alibra-tion set with a number of variables k = 30. Then, 30 models were developedby OLS, introdu
ing one after the other the variables previously 
hosenby CovSel. In parallel, two 
lassi
al stepwise regressions (SMLR) were alsoperformed with P < 0.1 and P < 0.01 as limits of probability for introdu
-ing the variables. All these models were then applied on the validation set,yielding 100 o

urren
es of 30 CovSel models and 100 o

urren
es of thetwo SMLR models. These o

urren
es were used to 
ompute boxplots of thestandard errors of validation (RMSEV) and of the norm of the models.
• Set Corn: The X data set, whi
h 
an be found at http://software.eigen-ve
tor.
om/Data/Corn, 
onsisted of 80 near infrared spe
tra of 
orn sam-ples. The wavelength range was 1100-2498 nm with a 2 nm step (p = 70010



wavelengths). The moisture, oil, protein and star
h 
ontents of the sampleswere taken as the Y multi-response. A 
alibration and a validation set wererandomly drawn in the proportion of 2/3 and 1/3, respe
tively. CovSel wasapplied on the 
alibration set, with a prede�ned number of variables k = 15.A

ording to the implementation des
ribed in 2.5, CovSel was run a se
ondtime for ea
h response to produ
e 4 sorting of the 15 sele
ted variables. Fourseries of 15 OLS regressions were then 
al
ulated, using the variables in theorder previously obtained, and 
ross-validated on the 
alibration set, witha leave-one-out splitting. The optimal models were then 
hosen by study-ing the evolution of the SECV , for ea
h response independently. The fourmodels were then applied to the validation set.
• Set Wine grapes: CovSel was applied to dis
riminate 3 varieties of winegrapes, by means of Visible/very Near Infrared spe
trometry (310 - 1050nm). The experimentation related to 3 varieties: 
arignan (
rg), grena
heblan
 (grb) and grena
he noir (grn). The X matrix 
ontained 250 spe
trameasured on p = 256 variables. A

ording to the pro
edure des
ribed in2.6, the q = 3 
lass indi
ators were used as Y multi-response. The dataset was 
ut randomly in two equal parts, ea
h set 
ontaining 50 samplesof crg, 50 samples of grb and 25 samples of grn. The sele
ted variablesas given by CovSel were then used as input of LDA. The observation ofthe leave-one-out 
ross-validation results allowed the determination of theoptimal number of sele
ted variables. The dis
riminant model 
alibrated onthis subset was applied on the test set. The results were expressed with apredi
tion error (PE(%), per
entage of wrongly 
lassi�ed samples) and a
onfusion matrix.

11



4 Results and dis
ussion
Figure 2 shows the results of the tests done on the apri
ot dataset. For ea
hvalue of k between 1 and 30, a boxplot summarizes the distribution of theRMSEV obtained by CovSel in ea
h of the 100 validation tests. The twoboxplots on the right are devoted to SMLR results, with P < 0.1 (left) and
P < 0.01 (right). The dispersion is very similar for all the values of k. Themedian value of RMSEV de
reases rapidly from k = 1 to k = 12 and rea
hesa value 
lose to the one of SMLR (about 0.75 Brix) and then de
reases moreslowly down to 0.7 Brix, for k = 20. The median values of the number ofvariables sele
ted by the SMLR models was 13 and 28, respe
tively for P <

0.01 and P < 0.1. Figure 3 shows the evolution of the norm of the regression
oe�
ients in the same way as previously. Contrarily to what was observedwith RMSEV, the dispersion of these norms in
reases with k. The regularityof this in
reasing 
on�rms the above 
on
lusions about the insensitivity ofCovSel to over�tting. Moreover, for a same value of the norm of the regression
oe�
ients, CovSel generally gives smallest RMSEV than SMLR. Like PLS,Covsel indeed presents the advantage of maximizing the 
ovarian
e between
X and Y rather than the 
orrelation. The 
onsequen
e of su
h maximizationis that the variables showing high varian
es play a large role in the regressionmodel, whi
h is not 
ompulsorily the 
ase in SMLR. The norm of the SMLRmodels is mu
h more variable than those produ
ed by CovSel. This is probablydue (i) to the variability of the number of variables 
hosen by the SMLR (ii)to the management of the variable 
olinearity, not expli
itly performed inSMLR method. This advantage of CovSel is 
learly illustrated by the �gure4, showing the sele
tions produ
ed by SMLR (P < 0.1) and by CovSel on the12



whole data set. The variables sele
ted by CovSel are well spread on the wholespe
trum and then obviously less 
orrelated than those sele
ted by SMLR.Figure 5 illustrates the fun
tioning of CovSel, on the 
orn dataset, without anyprepro
essing. Ea
h graph of this �gure shows the quantity that is maximizedby CovSel, i.e. xTi YYTxi as a fun
tion of the variable index i. The k = 8�rst steps of CovSel are represented here. Verti
al dashed lines indi
ate thesele
ted variables, lo
ated at the 
urve maximum. It is noti
eable that ea
h
urve (ex
ept the �rst one) presents a wide depression around the variable thathas been sele
ted at the previous step. Two reasons 
an be put forward forthat: (i) the orthogonal proje
tion 
arried out between two 
onse
utive steps(a

ording to equations 2 and 3) removes the information whi
h is 
orrelated tothe sele
ted variable, thus drasti
ally de
reases the varian
e of the neighboringvariables in the further steps; (ii) the 
riterion used by CovSel is based onthe 
ovarian
e, so impli
itely on the varian
e. This depression would not beobserved if the 
orrelation was used in pla
e of the 
ovarian
e be
ause high
orrelation 
an be observed even if the varian
e is low. It is also noti
eablethat the 
urves of �gure 5 look like peak-shaped spe
tra that are very di�erentfrom one step to another. This 
learly shows that the de�ation a
hieved bythe orthogonal proje
tions allows CovSel to deal with 
omplementary andstru
tured information. Con
erning steps 1, 3, 4 and 5, the position of themaximum is neat and unambiguous. Contrarily, in step 2, two high peaks(A and B on the �gure) appear. The highest one (B) is 
hosen and the twopeaks totally disappear at the following step. That is explained by the high
orrelation (r = 0.9) existing between the two variables asso
iated with thesepeaks. On
e one peak is sele
ted, all what is 
orrelated to it disappears bymeans of the orthogonal proje
tion. A 
ontrary situation 
an be observed in13



step 6. Three peaks (A, B and C) 
an be observed here. The highest one (B)is sele
ted and, at step 7, the peaks A and C remain. This is due to the poor
orrelation existing between the variables of (A,B) and (B,C) (r = 0.2 in both
ases). Hen
e, the peaks A and C bring information that is 
omplementaryto the one of peak B and are thus not a�e
ted by its sele
tion. These twoexamples show that, if two peaks have similar height, the 
hoi
e of one peakin pla
e of the other is not a 
riti
al point of the method. At last, one 
an alsonoti
e that in steps 3 and 5 extreme variables were sele
ted. This is probablydue to the presen
e of a baseline, whi
h must appear in the regression model.Figure 6 shows the evolution of the varian
e 
aptured by CovSel. It is noti
e-able that the evolution of these varian
es 
omplies with the shape illustratedin �gure 1, bottom right. This indi
ates that a model should exist between
X and Y. The 
urves drawn on �gure 7 report the evolution of the SECV sas a fun
tion of k for the four models (ea
h SECV was divided by the stan-dard deviation of the response, in order to produ
e 
omparable 
urves). Ea
h
urve 
orresponds to a re-ordering of the k = 15 variables previously 
hosenat the �rst run of CovSel. The best model is the one addressing moisture, forwhi
h a SECV/σ of about 0.1 is rea
hed for 11 variables. The other modelsrea
h a SECV/σ of about 0.4, with 13, 12 and 12 variables for oil, proteinand star
h, respe
tively. Applying the 
orresponding models to the test setyielded the results reported in �gure 8. Considering the predi
tions, the re-sults are very satisfa
tory for moisture (R2 > 0.99), quite good for oil andprotein (R2 ≃ 0.90) and less good for star
h (R2 ≃ 0.88). The same hierar
hy
an be observed for the performan
es of individual PLS regressions 
al
ulatedon the whole spe
tra (not shown). Table 2 summarizes the wavelength sele
-tions for the 4 models and proposes some assignments. Globally, the sele
tion14



seems 
oherent with the spe
tro
opi
 knowledge. However, some wavelengthsa
tually assigned to spe
i�
 
ompounds are used for all the responses, like forexample the water at 1940 nm or the oil at 2306 nm. This 
learly demon-strates that CovSel performs a 
ompromise among the responses. Some bandsare not dire
tly assigned to 
hemi
al absorptions and are 
ertainly useful forgeometri
al features, like the baseline that is probably taken into a

ount bythe two extreme wavelengths.Figure 9 reports the results 
on
erning the wine grapes dis
rimination prob-lem. It shows the evolution of the 
alibration and 
ross-validation errors ofthe linear dis
riminant model built with the variables sele
ted by CovSel, asa fun
tion of the number of steps (k). Both errors de
rease very rapidly fromabout 35% for k = 1 to less than 5% for k = 5, and then more slowly, downto less than 2% for k = 8. The dis
riminant model built with 8 variables andapplied to the test set yielded the errors reported in table 3. The performan
esare quite satisfa
tory, in 
omparison with the ones obtained with a PLS-DAmodel (not shown here, but published in [17℄), whi
h led to the same levelof predi
tion error. This example shows the potential of CovSel to pro
essvariable sele
tion in the framework of dis
riminant problems.Con
lusionThis paper proposes a new method (CovSel), dedi
ated to the problem ofvariable sele
tion for highly multivariate data related to single or multiple re-sponses. CovSel 
onsists in an iterative pro
edure that looks like PLS-NIPALSalgorithm. Thanks to the de�ation operated at ea
h step of the CovSel algo-rithm, it produ
es sele
tions that 
an be relevantly used in 
lassi
al multivari-15



ate modeling methods. The 
omparison of CovSel with stepwise multilinearregression in a mono-response 
ase showed a better performan
e and a bet-ter stability for the proposed method. An appli
ation to a multi-response
ase dealing with Near Infrared spe
trometry showed that CovSel performedwell and that the variable sele
tion was meaningful a

ording to spe
tro
opyknowledge. A se
ond appli
ation on wine variety dis
rimination from the spe
-tra of berries showed that CovSel is also relevantly appli
able to dis
riminationproblems.A
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AppendixProof of property 1 :ArgMax (diag (XTYYTX)) = ArgMaxi (Maxv,v2=1

(
ov (xi,Yv)2
))

• Proof 1 : Let m = Maxv,v2=1

(
ov (x,Yv)2
)Applying the Lagrange multipliers on F (v) = 
ov (x,Yv)2 yields :

∂

∂v

(
(xTYv)2 − λ

(
v2 − 1

))
= 0

2YTx (xTYv)− 2λv = 0

(YTxxTY)v = λv

(YTx)(YTx)Tv = λvThen, m is the largest eigenvalue of the q−square matrix (YTx)(YTx)T.
• Proof 2 : Let u be a non nul ve
tor. The matrix uuT has only one non nuleigenvalue λ = uTuWe have : rank(uuT) = 1, then uuT has only one non nul eigenvalue.Moreover, the tra
e of a matrix equals the sum of its eigenvalues. Then,we have :

λ = tra
e(uuT)
λ =

∑

i

u2
i = uTu

• Finally, 
ombining proof 1 and 2, with u = YTx, yields :
xTYYTx = Maxv,v2=1

(
ov (x,Yv)2
)And 
onsequently :ArgMax (diag (XTYYTX)) = ArgMaxi (Maxv,v2=1

(
ov (xi,Yv)2
))
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Table 1Analogy between PLS and CovSelmethod.PLS CovSel1 j = 1 j = 12 uj=ArgMax
u
(Maxv(
ov(Xu,Yv)2))

u
2,v2=1

Ij=ArgMaxm(Maxv(
ov(Xs
m,Yv)2)

v
2=1

)3 z = Xuj z = Xs
Ij = xIj4 X← P

⊥
z X X← P

⊥
z X5 Y ← P

⊥
z Y Y ← P

⊥
z Y6 j ← j + 1 ; goto 2 j ← j + 1 ; goto 2
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Table 2Corn: Summary of the sele
ted wavelengths for the 4 models.
λ (nm) moisture oil protein star
h assignement1100 × × × × baseline1190 × × oil ([18℄)1306 × ×1428 × × × star
h ([19℄)1500 × NH ([18℄)1592 × × × ×1718 × × × × oil ([19℄)1886 × × × ×1940 × × × × water2106 × × × star
h ([18℄, [19℄)2204 × × × ×2250 × × × star
h ([18℄)2306 × × × × oil ([19℄)2388 × ×2498 × × × × baseline

21



Table 3Wine grapes: 
onfusion matrix of the model built with 8 variables and applied tothe test set.
Ŷ

T
Y 
rg grb grn
rg 43 - -grb 4 46 -grn 3 4 25PE = 8.8 %
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al 
urves of the evolution of varian
e explained by CovSel applied tosimulated data. X is made up of 100 lines and 20 
olumns; Y is made up of 100 linesand 3 
olumns. Left: X variables are independent. Right: X variables are dependent.Top: no relationship between X and Y. Bottom: Y is built by a linear 
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