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Abstract

Variable selection is of major interest for NIR calibration, either as a feature selection
or for the design of multi-wavelength devices. Some dedicated methods have been
developed in chemometrics, but . Variable selection for NIR spectroscopy must face
two problems: (1) the huge number of variables yields a very large solution space;
(2) variables are highly correlated, and if no special attention is paid the model built
on the selection may be . This article presents a new method, CovSel, which tackles
these two problems by following this procedure: (1) Variable selection step by step on
the basis of their global covariance with all the responses; (2) Projection of the data
orthogonally to the selected variable. CovSel was applied on three problems: the first
one concerns a single response MIR calibration (Brix degree content in apricot), the

second one concerns a multi-response NIR calibration (4 main constituents in corn)
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and the last application concerns the NIR discrimination of 3 wine grape varieties.

Key words: Variable selection, Orthogonal projection

1 Introduction

Analytical chemistry and process monitoring involve more and more multi-
variate indirect sensors, such as spectrometers. For example, Near InfraRed
(NIR) spectrometry is a powerful analytical tool, increasingly used in indus-
try ([1],[2]). However these sensors require a calibration aiming at finding a
relation between the measured spectra and the response to be estimated. A
common practice involves collecting a sample set with spectral and response
value information. If the response values are quantitative (e.g. concentrations)
the usual method of calibration consists in a regression of the reference data
on the spectral data. In the case of a qualitative response (e.g. an origin), tools
for discrimination are used. For both model types, classical statistical methods
are not efficient since the space carrying the useful information is much smaller
than that of the spectra. Consequently a classical solution consists in using
factorial methods. For quantitative responses, partial least squares regression
(PLS) is the more commonly used method ([3]). In the case of qualitative
responses, a similar procedure can be applied on binary variables (indicator
variables) indicating the belonging of an observation to a given qualitative
group. PLS can then be applied on these indicator variables, making it possi-
ble to carry out a discriminant analysis based on latent variables (PLS-DA)
([4]). Another solution involves choosing a restricted number of significant vari-
ables and then applying an ordinary least square (OLS) linear regression or a

linear discriminant analysis (LDA). Moreover, numerous applications require



the conception of simplified instruments where only few variables are used.
This is the case of spectrometry devoted to agricultural applications where
practical specifications often impose conceiving robust and cheap filter instru-
ments. All these reasons make variable selection an appropriate chemometric
issue. Nevertheless, the nature of the data, i.e. NIR spectra, poses some par-
ticular problems because, on one side, variables are highly correlated and on
the other side, the searching space is huge (if p is the number of variables there
are 2P-1 solutions). A supplementary problem occurs when a multi-response

calibration is involved. The present paper addresses these problems.

There are numerous techniques of variable selection. In the context of PLS
regression, a review can be found in ([5]). In the general domain of machine

learning, the following taxonomy in three groups is commonly used ([6]):

e With filter methods, variable selection is done independently of the model
that eventually makes use of them. Filter methods use the intrinsic char-
acteristics of the whole data set in order to select some variables and/or
eliminate others. This selection can be viewed as a pre-treatment of predic-
tive variables. In the field of multivariate calibration, different filter criteria
are used such as the absolute value of correlation or covariance between
predictors and response ([7]). The theory of information is also used for se-
lecting the predictive variables that maximise the mutual information with
the variable to be predicted. However this method is difficult to implement
when multi-responses are involved. An application in chemomectrics is found
in ([8]). The UVE method ([|9]) allows variable elimination by comparing
them with noisy artificial variables.

e Wrapper methods scan the space of possible selections and use the pre-

diction model as a black box to test the relevancy of selections. This is



often evaluated by means of a simple or cross validation. Depending on the
strategies to perform the scan, there exist different wrapper methods (see
[10], for a review). These are in most cases stochastic optimisation meth-
ods inspired by natural phenomena: Genetic algorithms ([11]) or simulated
annealing ([12]). These methods are not repeatable due to their random
nature. Moreover, their complex algorithms may pose a problem when the
searching space is large and the relevancy of the selection is not easy to
assess in the case of multiple responses.

o [imbedded methods accomplish the variable selection during the calibration
process. The subset of selected variables, optimising the training criterion,
can be constructed by successive additions (forward), elimination (back-
ward) or a combination of both approaches. Backward methods are not
well adapted to the high multivariate cases because, at the beginning of the
selection process, they take into account all the variables. Stepwise multi-
ple linear regression (SMLR) ([13], pp 307-313) is one of the most popular

examples of this kind of methods.

Successive Projection Algorithm (SPA, [14]) is a forward selection method
that minimises colinearity between predictors by means of successive projec-
tions on interlinked sub-spaces. At each step, the selected variable is the one
showing the maximum projection on the orthogonal sub-space generated by
the already selected variables. SPA is a hybrid between filter and embedded
methods. This paper proposes a new method of variable selection called Cov-
Sel (Covariance selection). It can be considered a hybrid method as SPA, from
which it takes inspiration. CovSel is well adapted to multi-response calibra-
tion of spectrometers and can be applied to the problem of discrimination

considering indicator variables as responses.



2 Theory

This section presents the theoretical aspects of CovSel and emphasizes its
similarity with the construction of latent variables in PLS. Implementations

for regression and discrimination will be successively presented.

Upper case bold characters will be used for matrices, e.g. X will denote a
matrix of n individuals (lines) by p variables (columns); lower case bold char-
acters for column vectors, e.g. x will denote a simple individual (a spectrum);
non-bold characters will be used for scalars, e.g. matrix elements z;; or indices
i. I, will denote the identity matrix of R™. If U is a (nx k) matrix of rank &k, Py
will represent the matrix of the projector on U in R" : Py = U(UTU)~'U"
and Pg the matrix of the projector orthogonal to U : Py = I,, — Py. The
symbol s’ will denote a column vector containing null values, except the 5,

which is unitary: st = 0 for i # j and s} = 1.

Let X be a matrix of n objects described by p descriptors and Y a matrix
of the same n objects described by ¢ responses to be predicted. CovSel aims
at classifying the & most useful variables of X in decreasing order of their
interest. The procedure includes two main steps: (i) selecting the most useful
variable, (ii) projecting the data orthogonally to this selected variable. In
the same way as the Gram-Schmidt decomposition ([13], p 277) or as the SPA
selection, CovSel approximates the X row space R as a sum of complementary
subspaces. The difference with SPA lies in that CovSel carries out the variable

selection on the basis of their global covariance with all the responses.



2.1 Algorithm

CovSel method performs variable selection by iterating the following two steps:

(1) Searching index I; corresponding to the predictor closest to the responses,

by:
I, = ArgMax; (x; YY 'x;) (1)
(2) :
X+ Py X (2)
Y <P, Y (3)
This process is then repeated for I, I3, - - -, Ij.

2.2 Interpretation

Equation 1 can be written as:

I = ArgMax (diag (X"YY X)) (4)

Furthermore it can be demonstrated (Cf. annexes) that this equation is equiv-

alent to:

I, = ArgMax; (Maxvvvzzl (cov (x;, Yv)2)) (5)

Equation 4 is close to that of PLS where the first latent variable is given
by the first eigenvector of: X"YY"X ([15]). Equation 5 reminds the general
objective of PLS as it is expressed in the basic algorithms such as NIPALS ([3]).
To reach this objective, PLS allows any linear combinations of the columns

of X. CovSel aims at performing a similar optimisation, but by allowing only



linear combinations of the columns of X in the form [0,0,...,1,...0], since its
role is the selection of variables. At last, as for the PLS algorithm, orthogonal
projections accomplished by equations 2 and 3 ensure that variances of X and
Y are captured in a cumulative way by every step of the algorithm. Therefore

CovSel implements a PLS-like variable selection, as shown in table 1.

2.3  Implementation

The implementation of CovSel differs according to the objective of the user.

Three cases are addressed here:

e Data analysis: Running CovSel between X and Y without any modelling
phase makes it possible to identify the variables of X which explain Y at
the most. This analysis will exploit the evolution of the variances explained
by the successive steps of CovSel.

e Regression: If Y consists in continuous responses, like concentrations, Cov-
Sel could be used in a hierarchical process: (i) a first variable selection is
made on the basis of all responses and (ii) this global selection is refined for
each individual response in a second step.

e Discrimination: If Y contains the indicator variables, CovSel could use

this multi-response for selecting variables prior to a LDA.

2.4 Evolution of variances explained by CouvSel

In every iteration, during stages 4 and 5 as represented in table 1, the algorithm
of CovSel erodes a part of the variance contained in X and Y. Let V, (k) and

V, (k) be the sum of these variances, according to k, expressed in percentage



of the whole variances of X and Y. Curves V, and V|, as a function of the
iteration step are compulsorily increasing. Their shapes depend on the data
configuration. If the rank of X is p and all variables of X are independent,
V. (k) evolves linearly up to 100% for k = p, as illustrated on the two graphs
on the left of figure 1. If X variables are correlated, the shape is different.
The covariance maximized by CovSel is a compromise between X variance,
Y variance and their correlation. For two variables with the same correlation
with Y, the one with the highest covariance will be chosen. Therefore curve
V. will show a convex shape, as illustrated on the two graphs of the right of
figure 1. The shape of V, thus depends on the relation between X and Y.
If, on one extreme, Y variables are orthogonal to X, since the Y variance
captured in every step is void, V), is horizontal whereas V, increases rapidly.
On the other extreme, if the ¢ variables of Y are completely determined by
m variables of X, V,, adopts a regular growing behaviour to attain 100% for
k = m. Between these extreme situations, V,, should present a first step of fast
increase, corresponding to the most important variables to be selected and

then a step of slow increase, as illustrated on the bottom graphs of figure 1.

2.5 Regression case

If there is no technical interest in reducing the number of selected variables or
if there is only one response, CovSel may be performed individually on each
column of Y, as in any classical selection method. However, CovSel addresses
advantageously the other cases, where a unique common selection must be
found to multiple responses. Let’s assume that & is the maximal desired num-

ber of variables. The complete model building then relies on two steps:



e CovSel is first run on the centred X matrix and the autoscaled Y matrix,
with a limit of k& steps. This yields a selection {Iy, I, -, I} }.
e Secondly, CovSel is run between the submatrix [x;,,Xp,,- - ,Xy,| centred

and the columns y; of Y also centred, fori=1,--- 4.

This process gives ¢ ordered choices of the same list of k variables, which can
then be introduced stepwise in ¢ classical mono-response OLS models. A cross
validation of these ¢ x k£ models produces ¢ curves of SEC and ¢ curves of
SECYV which can guide the user to the choice of the best ¢ selections. A set
of ¢ OLS models are then built between each of these selections of X and the

corresponding column of Y.

2.6 Discrimination case

Let g be a vector of n integers indicating the belonging of each observation
of the calibration set to a given qualitative group. A value g; gives the num-
ber of the group in which the observation of index i is a prior: classified.
Let ¢ be the number of different groups. From g, a matrix of indicators Y,
dimensioned (n x ¢) is constructed. In this matrix an element y;; takes the
value 1 if j = ¢;, and 0 otherwise. A selection of k variables (sufficiently large
number) is performed using CovSel between X and Y, both centred. For each
step 7 in selection, a LDA is tested by cross-validation between the current
selection {Iy,I5,---,I;} and g. The classification procedure aims at finding
the minimal Mahalanobis distance to the centre of classes. Cross-validation
results are expressed in terms of percentage of wrong classified samples. Two
error curves are provided, one for calibration (SEC(j);=1..,) and the other

one for cross-validation (SECV (j);=1..,) which can help the user to choose



the best selection. A model of discrimination by LDA is then developed on

this selection.

3 Material and methods

CovSel was applied on several experimental data sets. A first example with
an unique response was used to compare CovSel with a classical SMLR. A
second one was used to illustrate the multi-response regression and the third

one addressed the discrimination problem :

e Set Apricots: The X matrix consisted of 731 mid infrared spectra of apri-
cots, acquired on p = 292 variables (a complete description of the collection
can be found in [16]). The Brix degree, evaluating the soluble solid content,
was measured on each fruit and was taken as the y single response. Calibra-
tion and validation sets were randomly drawn 100 times, with a proportion
of 2/3 and 1/3, respectively. Each time, CovSel was applied on the calibra-
tion set with a number of variables £ = 30. Then, 30 models were developed
by OLS, introducing one after the other the variables previously chosen
by CovSel. In parallel, two classical stepwise regressions (SMLR) were also
performed with P < 0.1 and P < 0.01 as limits of probability for introduc-
ing the variables. All these models were then applied on the validation set,
yielding 100 occurrences of 30 CovSel models and 100 occurrences of the
two SMLR models. These occurrences were used to compute boxplots of the
standard errors of validation (RMSEV) and of the norm of the models.

e Set Corn: The X data set, which can be found at http://software.eigen-
vector.com/Data/Corn, consisted of 80 near infrared spectra of corn sam-

ples. The wavelength range was 1100-2498 nm with a 2 nm step (p = 700

10



wavelengths). The moisture, oil, protein and starch contents of the samples
were taken as the Y multi-response. A calibration and a validation set were
randomly drawn in the proportion of 2/3 and 1/3, respectively. CovSel was
applied on the calibration set, with a predefined number of variables k = 15.
According to the implementation described in 2.5, CovSel was run a second
time for each response to produce 4 sorting of the 15 selected variables. Four
series of 15 OLS regressions were then calculated, using the variables in the
order previously obtained, and cross-validated on the calibration set, with
a leave-one-out splitting. The optimal models were then chosen by study-
ing the evolution of the SECYV, for each response independently. The four
models were then applied to the validation set.

Set Wine grapes: CovSel was applied to discriminate 3 varieties of wine
grapes, by means of Visible/very Near Infrared spectrometry (310 - 1050
nm). The experimentation related to 3 varieties: carignan (crg), grenache
blanc (grb) and grenache noir (grn). The X matrix contained 250 spectra
measured on p = 256 variables. According to the procedure described in
2.6, the ¢ = 3 class indicators were used as Y multi-response. The data
set was cut randomly in two equal parts, each set containing 50 samples
of crg, 50 samples of grb and 25 samples of grn. The selected variables
as given by CovSel were then used as input of LDA. The observation of
the leave-one-out cross-validation results allowed the determination of the
optimal number of selected variables. The discriminant model calibrated on
this subset was applied on the test set. The results were expressed with a
prediction error (PE(%), percentage of wrongly classified samples) and a

confusion matrix.
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4 Results and discussion

Figure 2 shows the results of the tests done on the apricot dataset. For each
value of k& between 1 and 30, a boxplot summarizes the distribution of the
RMSEV obtained by CovSel in each of the 100 validation tests. The two
boxplots on the right are devoted to SMLR results, with P < 0.1 (left) and
P < 0.01 (right). The dispersion is very similar for all the values of k. The
median value of RMSEV decreases rapidly from k& = 1 to k = 12 and reaches
a value close to the one of SMLR (about 0.75 Brix) and then decreases more
slowly down to 0.7 Brix, for £k = 20. The median values of the number of
variables selected by the SMLR models was 13 and 28, respectively for P <
0.01 and P < 0.1. Figure 3 shows the evolution of the norm of the regression
coefficients in the same way as previously. Contrarily to what was observed
with RMSEV, the dispersion of these norms increases with k. The regularity
of this increasing confirms the above conclusions about the insensitivity of
CovSel to overfitting. Moreover, for a same value of the norm of the regression
coefficients, CovSel generally gives smallest RMSEV than SMLR. Like PLS,
Covsel indeed presents the advantage of maximizing the covariance between
X and Y rather than the correlation. The consequence of such maximization
is that the variables showing high variances play a large role in the regression
model, which is not compulsorily the case in SMLR. The norm of the SMLR
models is much more variable than those produced by CovSel. This is probably
due (i) to the variability of the number of variables chosen by the SMLR (ii)
to the management of the variable colinearity, not explicitly performed in
SMLR method. This advantage of CovSel is clearly illustrated by the figure

4, showing the selections produced by SMLR (P < 0.1) and by CovSel on the
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whole data set. The variables selected by CovSel are well spread on the whole

spectrum and then obviously less correlated than those selected by SMLR.

Figure 5 illustrates the functioning of CovSel, on the corn dataset, without any
preprocessing. Each graph of this figure shows the quantity that is maximized
by CovSel, i.e. x;YY"x; as a function of the variable index ¢. The k = 8
first steps of CovSel are represented here. Vertical dashed lines indicate the
selected variables, located at the curve maximum. It is noticeable that each
curve (except the first one) presents a wide depression around the variable that
has been selected at the previous step. Two reasons can be put forward for
that: (i) the orthogonal projection carried out between two consecutive steps
(according to equations 2 and 3) removes the information which is correlated to
the selected variable, thus drastically decreases the variance of the neighboring
variables in the further steps; (ii) the criterion used by CovSel is based on
the covariance, so implicitely on the variance. This depression would not be
observed if the correlation was used in place of the covariance because high
correlation can be observed even if the variance is low. It is also noticeable
that the curves of figure 5 look like peak-shaped spectra that are very different
from one step to another. This clearly shows that the deflation achieved by
the orthogonal projections allows CovSel to deal with complementary and
structured information. Concerning steps 1, 3, 4 and 5, the position of the
maximum is neat and unambiguous. Contrarily, in step 2, two high peaks
(A and B on the figure) appear. The highest one (B) is chosen and the two
peaks totally disappear at the following step. That is explained by the high
correlation (r = 0.9) existing between the two variables associated with these
peaks. Once one peak is selected, all what is correlated to it disappears by

means of the orthogonal projection. A contrary situation can be observed in
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step 6. Three peaks (A, B and C) can be observed here. The highest one (B)
is selected and, at step 7, the peaks A and C remain. This is due to the poor
correlation existing between the variables of (A,B) and (B,C) (r = 0.2 in both
cases). Hence, the peaks A and C bring information that is complementary
to the one of peak B and are thus not affected by its selection. These two
examples show that, if two peaks have similar height, the choice of one peak
in place of the other is not a critical point of the method. At last, one can also
notice that in steps 3 and 5 extreme variables were selected. This is probably

due to the presence of a baseline, which must appear in the regression model.

Figure 6 shows the evolution of the variance captured by CovSel. It is notice-
able that the evolution of these variances complies with the shape illustrated
in figure 1, bottom right. This indicates that a model should exist between
X and Y. The curves drawn on figure 7 report the evolution of the SECV's
as a function of k for the four models (each SECV was divided by the stan-
dard deviation of the response, in order to produce comparable curves). Each
curve corresponds to a re-ordering of the k& = 15 variables previously chosen
at the first run of CovSel. The best model is the one addressing moisture, for
which a SECV/o of about 0.1 is reached for 11 variables. The other models
reach a SECV /o of about 0.4, with 13, 12 and 12 variables for oil, protein
and starch, respectively. Applying the corresponding models to the test set
yielded the results reported in figure 8. Considering the predictions, the re-
sults are very satisfactory for moisture (R? > 0.99), quite good for oil and
protein (R? ~ 0.90) and less good for starch (R? ~ 0.88). The same hierarchy
can be observed for the performances of individual PLS regressions calculated
on the whole spectra (not shown). Table 2 summarizes the wavelength selec-

tions for the 4 models and proposes some assignments. Globally, the selection
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seems coherent with the spectrocopic knowledge. However, some wavelengths
actually assigned to specific compounds are used for all the responses, like for
example the water at 1940 nm or the oil at 2306 nm. This clearly demon-
strates that CovSel performs a compromise among the responses. Some bands
are not directly assigned to chemical absorptions and are certainly useful for
geometrical features, like the baseline that is probably taken into account by

the two extreme wavelengths.

Figure 9 reports the results concerning the wine grapes discrimination prob-
lem. It shows the evolution of the calibration and cross-validation errors of
the linear discriminant model built with the variables selected by CovSel, as
a function of the number of steps (k). Both errors decrease very rapidly from
about 35% for k = 1 to less than 5% for kK = 5, and then more slowly, down
to less than 2% for k = 8. The discriminant model built with 8 variables and
applied to the test set yielded the errors reported in table 3. The performances
are quite satisfactory, in comparison with the ones obtained with a PLS-DA
model (not shown here, but published in [17]), which led to the same level
of prediction error. This example shows the potential of CovSel to process

variable selection in the framework of discriminant problems.

Conclusion

This paper proposes a new method (CovSel), dedicated to the problem of
variable selection for highly multivariate data related to single or multiple re-
sponses. CovSel consists in an iterative procedure that looks like PLS-NIPALS
algorithm. Thanks to the deflation operated at each step of the CovSel algo-

rithm, it produces selections that can be relevantly used in classical multivari-
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ate modeling methods. The comparison of CovSel with stepwise multilinear
regression in a mono-response case showed a better performance and a bet-
ter stability for the proposed method. An application to a multi-response
case dealing with Near Infrared spectrometry showed that CovSel performed
well and that the variable selection was meaningful according to spectrocopy
knowledge. A second application on wine variety discrimination from the spec-
tra of berries showed that CovSel is also relevantly applicable to discrimination

problems.
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Appendix

Proof of property 1 :
ArgMax (diag (X"YY"X)) = ArgMax; (Max‘,’vz:l (cov (%, YV)Z))

e Proof 1: Let m = Maxy y2_4 (cov (x, Yv)z)

Applying the Lagrange multipliers on F'(v) = cov (x, Yv)2 yields :

(Vv A (v 1)) = 0
2Y'x (x"Yv) —2\v =0
(Y'xx"Y)v = Av
(Y™)(Y™x)"v = Av
Then, m is the largest eigenvalue of the g—square matrix (Y'x)(Y"x)".
e Proof 2 : Let u be a non nul vector. The matrix uu™ has only one non nul
eigenvalue A = u'u
We have : rank(uu”) = 1, then uu™ has only one non nul eigenvalue.
Moreover, the trace of a matrix equals the sum of its eigenvalues. Then,
we have :

A = trace(uu”)
A=) uf=u"u

e Finally, combining proof 1 and 2, with u = Y7x, yields :
x'YY " 'x = Maxy y2_4 (cov (x, Yv)z)
And consequently :

ArgMax (diag (X"YY X)) = ArgMax; (Maxvvvzzl (cov (x;, YV)2))
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Table 1

Analogy between PLS and CovSelmethod.

PLS CovSel
1 j=1 j=1
2 u;=ArgMax, (Mauxv(cov(Xu,Yv)2))‘12",2:1 ;=ArgMax,, (Max, (cov(Xs™,Yv)?) ,_,)
3 z = Xu; z=Xsli = XI;
4 X+ PiX X+ PiX
5 Y « P;Y Y «+ PlY
6 j<4j+1;goto2 jj+1;goto?2
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Table 2

Corn: Summary of the selected wavelengths for the 4 models.

A (nm) | moisture oil protein starch | assignement
1100 X X X X baseline
1190 X X oil ([18])
1306 X X
1428 X X X starch ([19])
1500 X NH ([18])
1592 X X X X
1718 X X X X oil ([19])
1886 X X X X
1940 X X X X water
2106 X X X starch ([18], [19])
2204 X X X X
2250 X X X starch ([18])
2306 X X X X oil ([19])
2388 X X
2498 X X X X baseline
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Table 3
Wine grapes: confusion matrix of the model built with 8 variables and applied to

the test set.

YTY crg grb grn

crg 43 - -

grn 3 4 25

PE =88 %
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Fig. 1. Typical curves of the evolution of variance explained by CovSel applied to

simulated data. X is made up of 100 lines and 20 columns; Y is made up of 100 lines

and 3 columns. Left: X variables are independent. Right: X variables are dependent.

Top: no relationship between X and Y. Bottom: Y is built by a linear combination

of 10 variables de X and noise addition.
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RMSEV

Fig. 2. Apricot: Evolution of the RMSEV distribution according to the dimension
of the model based on CovSel selection (k = 1---30) and RMSEV distribution of

SLMR models (p < 0.1 and p < 0.01). Each boxplot represents the distribution for

the 100 trials

Norm of the models

Fig. 3. Apricot: Evolution of the distribution of the model norm according to the
dimension of the model based on CovSel selection (k = 1---30) and distribution

of the SLMR model norm (p < 0.1 and p < 0.01). Each boxplot represents the
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Fig. 4. Apricot: Selections performed by SMLR, p<0.1 (top) and by CovSel (bottom)

on the whole data set, superimposed to the mean spectrum.
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Fig. 5. llustration of CovSel functioning on the Corn dataset.
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Fig. 6. Corn: Evolution of the cumulated sum of square (explained variance) as a

function of the number of variables introduced by the covsel procedure
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Fig. 7. Corn: Evolution of the SECV according to the number of CovSel steps.
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Fig. 9. Wine grapes: evolution of calibration and cross-validation errors of the linear
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