
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/,

Evaluation of ’all weather’ microwave-derived land

surface temperatures with in situ CEOP

measurements

J. Catherinot

NOAA Cooperative Remote Sensing Science and Technology Center, City

College of New York, New York, New York, USA;

now at CNRS, Laboratoire d’Etudes du Rayonnement et de la Matière en

Astrophysique, Observatoire de Paris, France.

C. Prigent

CNRS, Laboratoire d’Etudes du Rayonnement et de la Matière en

Astrophysique, Observatoire de Paris, France.

Corresponding author, catherine.prigent@obspm.fr

R. Maurer

NASA Goddard Institute for Space Studies - Columbia University, New

York, New York, USA

F. Papa

NOAA Cooperative Remote Sensing Science and Technology Center, City

College of New York, New York, New York, USA;
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Abstract. Land surface skin temperature Ts plays a key role in mete-

orological and climatological processes but the availability and the accuracy

of Ts measurements over land are still limited, especially under cloudy con-

ditions. Ts estimates from infrared satellite observations can only be derived

under clear sky. Passive microwave measurements are much less affected by

clouds and can provide Ts regardless of the cloud conditions. A neural net-

work inversion including first guess information has been previously devel-

oped to retrieve Ts, along with atmospheric water vapor, cloud liquid wa-

ter, and surface emissivities over land from Special Sensor Microwave / Im-

ager measurements [Aires et al., 2001], with a spatial resolution of 0.25o×0.25o,

at least twice daily. In this study, Ts estimates are evaluated through care-

ful comparisons with in situ measurements in different environments over a

full annual cycle.

Under clear sky conditions, the quality of our microwave neural network

retrieval is equivalent to the infrared International Satellite Cloud Clima-

tology Project products, for most in situ stations, with errors ∼3K as com-

pared to in situ measurements. The performance of the microwave algorithm

is similar under clear and cloudy conditions, confirming the potential of the

microwaves under clouds. The Ts accuracy does not depend upon the sur-

face emissivity, as the variability of this parameter is accounted for in the

processing. Our microwave Ts have been calculated for more than 15 years

(1993-mid2008). These “all weather” Ts are a very valuable complement to

the IR-derived Ts, for use in atmospheric and surface models.
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1. Introduction

Land surface skin temperature (Ts) controls and is determined by the balance of ra-

diative heating/cooling and evaporative cooling at the surface. Despite the recognition

of its key role in meteorological and climatological processes, accurate Ts measurements

over land areas are not yet available for the whole globe under both clear and cloudy

conditions.

Surface skin temperature can be obtained from measurements of infrared radiation at

the surface, if the land surface emissivity is known; however, this measurement is not

routinely performed at weather and other research stations. Skin temperatures have been

estimated from satellite infrared radiance observations [e.g., Rossow et al., 1993 a and b,

Rossow and Schiffer 1999; Prata, 1993, 1994; Trigo et al., 2008], but direct determinations

are possible only under clear sky conditions because clouds block the surface view at these

wavelengths.

Several studies have already explored the potential of satellite microwave measurements

for land surface temperature retrieval. Microwave wavelengths, being much less affected

by water vapor and clouds than infrared, are an attractive alternative especially under

cloudy conditions. Note nevertheless that the spatial resolution of passive microwave is

much lower than that provided in the infrared (above 10 km with the current microwave

radiometers). In addition, passive microwave observations are only available from polar

orbitors, contrarily to infrared also observed from geostationary orbits, limiting the time

sampling of passive microwave. A few studies correlate the microwave brightness tem-

perature measurements to in situ measurements of near-surface air temperatures made
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at surface weather stations: since the microwave measurements do not actually sense

near-surface air temperature, this approach assumes that the surface air and skin temper-

atures vary together, but this is only approximately true at small spatial and temporal

scales and can be badly in error for arid or frozen locations. For instance, MacFarland

et al. [1990] investigated the correlation between observations from the Special Sensor

Microwave /Imager (SSM/I) and “surface air” temperature measurements and used a

multi-variate regression of the microwave brightness temperatures to retrieve the “sur-

face air” temperature. Later, Basist et al. [1998] suggested including the variation of

emissivity into account in the regression, using a simple land classification scheme (that

algorithm has been evaluated by Williams et al. [2000]). Jones et al. [2010] also derived a

daily estimate of the “surface air” temperature from AMSR-E observations. Njoku [1995]

concluded from simulations that surface skin temperatures could be estimated from multi-

channel microwave observations with an accuracy of 2.0 and 2.5 K. A physical retrieval of

surface skin temperature using SSM/I observations at 19 and 22 GHz has been developed

by Weng and Grody [1998]: the two frequencies have approximately the same emissivities

so that the emissivity effect on the measurements can be neglected. Note, however, that

the actual temperature error is nearly 3 K for every 1% error in surface emissivity at

microwave wavelengths. Compared to surface air temperature measurements, the Weng

and Grody results exhibited root mean square (r.m.s.) differences of 4.4 K, with a larger

bias in colder environments. Holmes et al. [2009] proposed a very simple land surface

temperature algorithm, based on a single frequency channel (37 GHz in vertical polar-

ization). Other methodologies have been developed for regional studies using algorithms

that cannot be directly adopted globally, e.g., Wen et al. [2003] over the Tibetan Plateau
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or Royer and Poirier [2010] in Boreal North America. Aires et al. [2001] developed a

method based on a neural network inversion of a radiative transfer model and ancillary

datasets describing the properties of the atmosphere. The scheme retrieves simultaneously

over land the surface skin temperature (Ts), the atmospheric column water vapor abun-

dance, the cloud liquid water path and the surface emissivities for all SSM/I channels.

The algorithm uses pre-calculated monthly-mean emissivities, cloud and surface param-

eters from infrared and visible satellite information, and the meteorological reanalysis as

first guess information. So far, the accuracy of these retrieved surface skin temperatures

under cloudy conditions has only been evaluated by comparison with in situ surface air

temperature [Prigent et al., 2003a].

In this study, we evaluate the microwave-based Ts retrieval based on neural network

inversion by comparison with in situ Ts measurements collected during the Coordinated

Energy and water cycle Observations Project (CEOP). The comparisons cover diverse

environments over a full annual cycle (for 2003). The neural network retrieval method

is briefly described, along with the data sets used in the comparison study in Section

2. In section 3, the microwave-derived Ts estimates are compared to the satellite IR

retrievals under clear sky conditions, and then carefully evaluated with respect to the

CEOP measurements, under both clear and cloudy conditions. Section 4 summarizes our

results and argues for the value of producing merged satellite infrared- and microwave-

derived surface skin temperature to better characterize the energy exchanges at the land-

atmosphere interface, regardless of the cloud conditions.
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2. Ts Retrieval Methodology and Evaluation Datasets

2.1. Microwave-Derived Ts Retrievals

2.1.1. Neural Network Retrieval

A Neural Network (NN) inversion scheme with a novel feature of employing a first guess

input has been developed by Aires et al. [2001] to retrieve simultaneously the land surface

Ts, the atmospheric column water vapor abundance WV , the cloud liquid water path

CLW , and the surface emissivities, ef , for all SSM/I channels between 19 and 85 GHz.

This NN method optimizes the use of all the SSM/I channels and a priori information

to constrain the inversion problem and retrieves simultaneously surface and atmospheric

parameters that are consistent among themselves and with the satellite observations.

The database used to train the NN is calculated with a radiative transfer model and

a global collection of coincident surface and atmospheric parameters extracted from the

National Center for Environmental Prediction (NCEP) [Kalnay et al., 1996], the Inter-

national Satellite Cloud Climatology Project (ISCCP) cloud parameters and Ts [Rossow

and Schiffer, 1999], and pre-calculated monthly-mean land surface emissivities [Prigent

et al., 1997, 2006].

To the extent that the training dataset provides a realistic joint distribution of the

surface and atmospheric parameters, including their correlations, the neural network rep-

resents a global statistical fit of the inverse radiative transfer model. The training database

is composed of 2 months of global data during 1993 (January and June). The atmospheric

relative humidity and temperature are taken from the NCEP reanalysis dataset, every 6

h with a spatial resolution of 2.5o in latitude and longitude. The WV is also used as the

first guess a priori information with an assigned error of 40 % of the initial value. This
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first guess errors is similar to that obtained from the error covariance of each humidity

level as given by Eyre et al. [1993]. In the ISCCP dataset, cloud and surface param-

eters are retrieved from visible and infrared radiances provided by the set of polar and

geostationary meteorological satellites. In this study, the ISCCP dataset provides esti-

mates of the cloud-top and surface skin temperatures (http://isccp.giss.nasa.gov). The

error assigned to the surface temperature values is estimated to be 4 K (see section 2.2.1

below for more details on the ISCCP Ts estimates). The first guess information for the

microwave emissivities at each location is derived from the monthly mean land surface

emissivities previously estimated by Prigent et al. [1997, 2006]. The standard deviation

of day-to-day variations of the retrieved emissivities within a month for each channel and

location is used as the estimate of first guess errors. For more information on the a priori

first guess information and related background errors, see Aires et al. [2001].

To better constrain the problem, the clear/cloudy flag information provided by the

ISCCP dataset is used to train two neural networks: one for clear scenes and one for

cloudy scenes. Both NN retrieve simultaneously Ts, seven SSM/I ef and the WV . For

the cloudy NN, CLW is also retrieved. Continuity between the NN retrievals at very low

CLW has been verified.

The inversion method provides Ts for each SSM/I observation over land with a theo-

retical r.m.s. error of 1.3 K in clear-sky and 1.6 K in cloudy scenes (see Aires [2004], and

Aires et al. [2004, a, b] for further analysis of the theoretical inversion errors). The Ts

values have been evaluated with respect to surface air temperature Tair in Prigent et al.

[2003a] by a comprehensive analysis of the differences expected between the estimated Ts

and the Tair measured at meteorological stations as a function of diurnal and seasonal
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solar insulation, vegetation cover, and cloudiness variations. The method has also been

applied with success over snow and ice [Prigent et al., 2003b].

2.1.2. Single Microwave Channel Ts Estimate

The neural network Ts estimates (hereafter MW1) will be systematically compared to

the single channel algorithm (hereafter MW2) developed by Holmes et al. [2009]. In MW2,

the 37 GHz vertical polarization channel is selected for its low sensitivity to the surface

characteristics and relatively high atmospheric transmittance. Over 2005, FLUXNET

observations were collected [Baldocchi et al., 2001] and the longwave fluxes were compared

to the SSM/I brightness temperatures (Tb) at 37 GHz vertical polarization (Tb37V ), using

carefully determined infrared emissivities. A simple linear regression was developed from

coincident data at 17 stations in mid-latitudes, over a year (2005). Tb37V < 259.8K

were discarded, as they likely represent frozen conditions. In addition, pixels with more

than 4% coverage of standing water are excluded as the authors specify that the accuracy

of the retrieval is reduced in cases of low emissivity surfaces (the fractional coverage of

ocean and permanent inland water bodies is calculated from the International Geosphere-

Biosphere Programme (IGBP) one-minute land ecosystem classification map [Loveland et

al., 2000]). Radiative transfer simulations were conducted to assess the sensitivity of the

retrieval to various parameters (atmospheric water vapor, scattering albedo, roughness,

soil moisture, incidence angle, and frequency). The standard deviation of the estimates, as

compared to the in situ measurements (not accounted for in the training of the regression

but representative of similar environments) is of the order of 2 K for forests and up to 4 K

for low density vegetation. The bias was estimated to be within 1 K for most surfaces. The

technique is applicable to a large set of microwave imagers (SSM/I, TMI, AMSR-E) all
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of which provide observations close to 37 GHz in vertical polarization, with an incidence

angle around 50o. The authors specify that changes in overpassing time from a satellite

to the other and satellite drift can increase the error budget, when calculating long time

series.

2.2. Evaluation Datasets

2.2.1. Infrared-Derived Ts

The ISCCP dataset provides the longest satellite Ts product available today, covering

the period from 1983 to present every 3 hours with a spatial sampling interval of 30 km

for the full globe under clear-sky conditions (a new version will soon be released with 10

km sampling). Some limitations of this product have been documented [e.g., Zhang et al.,

2006] but its potential for climate studies makes it a unique dataset. Jimenez et al. [2011]

also compare the ISCCP Ts database with other more recent infrared estimates of Ts.

Note that in the framework of the present work with SSM/I, MODIS estimates would not

be usable, due to the mis-match of its overpass time with the SSM/I for a given location.

In the ISCCP data, cloud parameters and related quantities are retrieved from visible

(VIS ∼0.6 µm wavelength) and infrared (IR ∼11 µm wavelength) radiances provided by

the set of polar and geostationary meteorological satellites [Rossow and Schiffer, 1999].

The surface skin temperature is retrieved from clear IR radiances using satellite-derived

products to specify the atmospheric temperature and humidity profiles (TIROS Opera-

tional Vertical Sounder (TOVS) estimates). Rossow and Garder [1993 b] show that the

ISCCP sea surface temperatures are in good agreement with other measurements. The

local uncertainty of about 2 K combines errors in cloud detection, the satellite radiance

calibration, the atmospheric temperature and humidity used in the retrieval, the radiative
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transfer model treatment of the water vapor absorption, the assumption of unit surface

emissivity (instead of roughly 0.98), and the effect of real differences between the skin

and bulk surface temperatures. Thus the uncertainties of land surface temperatures as-

sociated with these same factors (cloud detection, atmospheric correction, and radiance

calibration) are about the same magnitude, 2 K. Two other sources of surface temperature

uncertainty that are more important over land are larger and much more rapid tempera-

ture variations and larger emissivity variations. Rossow and Garder [1993 a, b] show how

the ISCCP algorithm successfully separates these two types of variations and confirm the

accuracy of individual surface temperature variations to within about 4 K. In our study,

the ISCCP Ts estimates, initially calculated with unit emissivity, are corrected for the

spatial variation of the surface infrared emissivities at 11 µm [Zhang et al., 2010]. The

correction is a simple fit to match the radiation calculations. The variation of emissivity

depends on surface type, based on the vegetation database from Matthews [1983]. The

impact of the correction is limited, less than 1 K even over deserts, because the decrease

of upward radiance as emissivity decreases is partially offset by increasing reflection of

the downwelling radiance from the atmosphere). We estimate that the infrared emissivity

variability is equivalent to a spurious temperature variability smaller than 2 K, well within

the 4 K uncertainty associated with synoptic variations [Zhang et al., 2006].

2.2.2. CEOP Measurements

The CEOP network was designed to provide in situ measurements of meteoro-

logical parameters in a variety of environments during the period 2001-2004 (see

http://www.ceop.net/ for more details). Specific references are available for each of the

measurement stations. In our study we use the surface skin and air temperature measure-
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ments from this network for comparison with the Ts derived from satellite data. Each

dataset in the CEOP network has been quality controlled by the provider by documented

procedures. We selected only those stations with good enough quality as specified by the

providers over the selected year (2003). The uncertainties in the in situ Ts measurements

are not discussed in detail in the CEOP documentations. Major sources of uncertainties

are expected to be related to uncertainties in the IR emissivities, to radiometric noise, and

to the variability of Ts during the measurement integration time. From very careful in situ

measurements, Trigo et al. [2008] estimated an uncertainty of the order of 0.5 K during the

night, and up to 1.5 K during the day. The uncertainties in the CEOP measurements are

expected to be of the same order. The in situ measurements are matched to the nearest in

space and time satellite observations: two measurements are considered coincident when

they are within 30 min in time and 25 km in space. Only a limited number of stations in

the network provide measurements coincident in time and space with the SSM/I retrievals.

For a meaningful comparison of the satellite spatially integrated measurement and the in

situ point measurement, stations located in heterogeneous environments are discarded,

especially the ones located in coastal regions. Microwave observations are particularly

sensitive to the presence of water (the ocean emissivity being much lower than the land

emissivity). The presence of the ocean in even a small portion of the field-of-view can

significantly impact the observations. Examination of maps (Google Maps) made it pos-

sible to filter out the stations located in heterogeneous areas. We also checked the spatial

variability of the Ts IR estimates. The selected stations are grouped into three categories,

temperate, tropical, and boreal, to provide a robust and consistent interpretation of the

results (see Figure 1).
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3. Evaluation of the Microwave-Derived Ts Estimates

3.1. Production of the Microwave-Derived Ts

The global SSM/I Ts product has been produced for a 15 year period from 1993 to

mid 2008. This involves collecting all SSM/I observations available from the different

platforms, along with the ISCCP cloud property and surface temperature data set, and

atmospheric properties from the NCEP reanalysis. The products are collocated in space

and time and are inputs to the trained neural network inversion process [Aires et al.,

2001]. In this study, we concentrate on the evaluation of the Ts values retrieved in this

analysis over the year 2003. To provide a simple reference, the retrieval by Holmes et al.

[2009] is also applied for 2003; this method does not require any ancillary data.

At the end of the neural network inversion process, the quality is checked by applying

a radiative transfer model to the retrieved parameters (Ts, ef , WV , and CLW ) and

comparing the results with the observed brightness temperatures. R.m.s. differences with

the input Tbs are calculated. When this quantity is larger than a threshold corresponding

to two standard deviations of the cost function distribution over a full year, the retrieval

is labeled as bad. Bad retrievals account for ∼1 % and ∼6 % of the observations under

clear sky and cloudy sky conditions, respectively. ∼61 % of the bad cases are related to

snow covered surfaces: since the snow emissivity is very variable in space and time, the

surface and atmospheric retrieval is particularly difficult [Prigent et al., 2003b; Cordisco

et al., 2006]. Unlike the NN method, the Holmes et al. method does not apply to land

surfaces with more than 4% of open water, and to frozen or snow covered surfaces. Using

the filter for frozen conditions (Tb37V < 259.8 K) suppresses ∼18% (resp. ∼32 %) under

clear (resp. cloudy) sky.
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3.2. Comparison with Infrared Estimates under Clear-Sky Conditions

Under clear sky conditions, the microwave retrieval can be compared to the ISCCP

collocated estimates obtained from infrared radiances. The overpass times of the SSM/I

satellite are around 6:00 in the morning and 18:00 at night. These times correspond

to significant changes in Ts within its diurnal cycle, but the largest variations observed

around noon are avoided. Note that in the litterature comparisons between Ts are often

limited to nightime to benefit from more thermal stability. Figure 2 presents maps of

monthly mean Ts for July, calculated for the SSM/I morning overpasses, under clear sky

condition only (as specified by the ISCCP cloud flag). The IR estimates and our retrieval

present similar Ts spatial structures. In the Holmes et al. Ts map, specific patterns

appear related more to changes in surface emissivities rather than to real changes in

Ts. This is the case for all unfiltered hydrological structures such as the Amazon River,

the Congo River, or the many lakes in Canada: the low emissivity of the standing water

induces a decrease of the measured Tbs at 37 GHz that is confused with a decrease in Ts in

this algorithm, which does not account for surface emissivity changes. By the same token,

the carbonate outcrops in Oman or in Egypt that are associated with low emissivities

[Prigent et al., 2005; Jimenez et al., 2010] are also falsely interpreted as low Ts. Figure 3

presents the histograms of the differences under clear sky conditions between the infrared

Ts from ISCCP and the microwave Ts derived from the NN method (solid line) and the

Holmes et al. scheme (dotted line), for January and July. The comparison is limited to

the pixels for which both microwave retrievals are valid (as described above). Since the NN

method uses the IR Ts as a priori information, only small biases are expected between the

IR Ts and our microwave estimates. Note nevertheless that the NN methodology has been
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trained over 2 months of data in 1993: any changes in the ISCCP methodology or drifts

in the different satellite observations (SSM/I and/or IR satellites) can introduce spurious

biases. The r.m.s. for January and July are smaller than the r.m.s. differences assigned

to the Ts first guess (4 K). Holmes et al. Ts shows much more bias: this methodology

underestimates Ts since it was tuned for high emissivities (vegetated areas) and cannot

account for lower values. Over snow, the NN method provides a mean difference of -1.0 K

and a r.m.s. of 3.5 K in January (the method from Holmes et al. does not provide many

estimates over snow because of the threshold on the Tbs).

In order to further analyze the microwave retrieval under clear condition, the compar-

ison results are separated into microwave emissivity ranges. The microwave emissivity is

highly variable in space and time, much more than the infrared emissivity. The lower the

emissivity, the lower the contribution from the surface to the radiation (it is proportional

to ef x Ts). Table 1 provides the mean and r.m.s. difference between the ISCCP Ts

estimates and the microwave retrievals, when stratified by the microwave emissivities at

37 GHz vertical polarization. The mean emissivities directly calculated from SSM/I data

[Prigent et al., 2006] are used here. The table shows that the NN results are insensitive to

changes in surface emissivities with similar performance regardless of the emissivity. This

is expected as the emissivity information is accounted for in the retrieval. In contrast, the

Holmes et al. retrieval implicitly assumes a constant surface emissivity. As a consequence,

varying surface emissivities (due for instance to the presence of soil moisture, standing

water, or snow) affect the Ts retrieval. The land surface emissivities are typically close to

0.95 at 37 GHz vertical polarization and the Holmes et al. Ts retrieval performs better

for high emissivities.
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3.3. Comparison with the CEOP Measurements

3.3.1. Detailed Analysis of Selected CEOP Stations

Detailed comparisons with the CEOP measurements are made for a few stations repre-

senting three very different environments over 2003. The selected stations provide quality

measurements for most of the year. The two first stations (stations 2 and 67) are located

in the temperate climate zone: station 2 is located in a rural landscape in eastern Ger-

many and station 67 is located in Bondville, Illinois, USA, in corn and soybean crops.

Station 44, located in northeast Thailand in a region of manioc fields, represents tropical

conditions. Station 100 is representative of the arctic climate and is located in northern

Alaska in a tundra environment. Note that this station is in a region of lakes and the

Holmes et al. algorithm cannot be applied. Initially, we had also selected stations in

Mongolia and Tibet, but found very large discrepancies between these measurements and

all satellite estimates. An examination of the spatial variability exhibited by the satellite

products suggested a correlation of the large discrepancies and very large spatial hetero-

geneity as would be expected in elevated, arid environments with significant variations

of topographic height. Thus it was not possible to conclude if differences were related

to the unrepresentativeness of the in situ measurements or to limitations of the satellite

retrievals in these environments.

Figure 4 shows the time series of the Ts (left, top panel for each station) and the

difference between the satellite estimates and the in situ measurement (left, lower panel

for each station). The microwave-derived estimates have the lowest temporal sampling

(about two overpasses a day), so the comparisons are limited to the times coincident with

the SSM/I microwave observations. The infrared Ts estimates are available under clear
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sky condition only, so the statistics are separated into clear and cloudy sky (clear and

cloudy Ts estimates are presented with different symbols in Figure 4, with the cloud flag

derived from the ISCCP dataset). The right panels of Figure 4 show the scatterplots of the

estimated Ts with respect to the in situ measurements. The mean and r.m.s. differences

between the Ts CEOP measurements and the satellite-derived estimates are indicated on

the left side of the figure, along with the linear correlation coefficient. The Holmes et al.

estimates are not available for low Ts values (Tb 37 GHz below 259.8 K) so the statistical

analysis is limited to the situations when the Holmes et al. estimates are available (in the

figures the NN retrievals are shown whenever they are available).

The Ts time series and scatterplots show that the two microwave estimates, clear and

cloudy, capture the in situ Ts variability reasonably well. For stations 2 and 67 (temperate

zone) the annual cycle is correctly reproduced (high correlation coefficient between the

satellite estimates and the in situ measurements), as well as significant synoptic changes

(e.g., the cold air outbreak in mid-March at station 2). At station 44 in the Tropics, the

amplitude of the annual cycle is small and, as a consequence, the correlation coefficient

tends to be lower. There are notable very large Ts values reported at CEOP station 44

(in May for instance) that are not reproduced by the satellites (similar situations occur

in summer for station 2). Measurements of the surface air temperature are more direct

and easier to make than in situ Ts measurements: the consistency of the Ts CEOP

measurements at station 44 has been evaluated by comparison to the observed surface air

temperatures. These large fluctuations observed under cloudy conditions in May for this

station do not coincide with comparable changes in surface air temperatures, so they are

suspect. For the two temperate stations, the performances of the Holmes et al. algorithm
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are very different: for instance the bias is -1.5 K under clear conditions at station 2 but

-5.16 K at station 67. This behavior is caused by different surface emissivities at these

two locations, a variable that is not accounted for in this algorithm. Our NN retrieval

obtained annual average emissivities at 37 GHz vertical of 0.92 and 0.95 at these two

locations, which would explain temperature differences of nearly 6 K. At station 100

(boreal climate) the differences between the in situ and satellite-derived estimates are

larger than elsewhere, although the correlation coefficient is still good for our retrieval.

The snow and ice emissivities are highly variable in time [Prigent et al., 2003b; Cordisco et

al., 2006], and as a consequence, larger errors in the Ts estimates are expected over these

surface types, especially during transition times, when the surface undergoes freezing and

thawing cycles.

Regardless of the station, our microwave retrieval performances are similar to the in-

frared products under clear conditions. In addition, the microwave retrieval approach

performs just about as well under cloudy as under clear conditions: the impact of clouds

on the microwave measurements is correctly accounted for in the retrievals. This confirms

the ability of the microwave observations to provide Ts estimates, regardless of the cloud

conditions.

Figure 5 examines the problem of comparing spatially integrated satellite measurements

and in situ point measurements. For two contrasted months (January and July), the

difference between the CEOP Ts measurements and the satellite estimates are plotted, for

stations 2 (temperate) and 44 (tropical). The analysis for the other stations showed similar

results. Regardless of the satellite estimates, microwave or infrared, the relationship

between the two variables shows a linear decrease with increasing CEOP Ts temperatures.
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Even larger variations and differences were found for other, less homogeneous locations.

Closer examination of this relationship shows that it is related to the averaging effect

of the satellite estimates: within a month, the extreme high and low temperatures that

are captured by the CEOP in situ measurements are smoothed out within the satellite

field-of-view, and, as a consequence, the satellite estimates tend to overestimate (resp.

underestimate), the lowest (resp. the highest) values.

As a further evaluation of the satellite estimates, their sensitivity to the water vapor

(WV ) and to the cloud water (CLW ) is analyzed. Figure 6 shows the difference between

the CEOP and satellite Ts, for stations 2 and 44, first versus the WV derived from

coincident NCEP reanalysis [Kalnay et al., 1996], second versus the CLW derived from

ISCCP [Rossow and Schiffer, 1999]. There is no obvious influence of WV or CLW on

the Ts retrieval, regardless of the method (of course, the IR estimates is not considered

under cloudy conditions). The lack of sensitivity of the microwave retrieval to the cloud

liquid water path is very encouraging, making this technique a powerful complement to

the infrared methods under cloudy conditions.

To evaluate the sensitivity of the microwave satellite retrieval to the changes in surface

emissivities, we compare differences between the CEOP and satellite Ts values versus the

emissivities at 37 GHz (vertical polarization), for all mid-latitude stations during 2003

(Figure 7). Here again, it appears that when the emissivity is not taken into account in

the retrieval as in the Holmes et al. method, the quality of the microwave estimate of Ts

depends upon the situation, with more errors attached to the situations that are not well

captured by the retrieval (the situations of lower emissivities in our case). This confirms

what has already been observed in section 3.1. Note nevertheless that a slighly negative
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slope is also observed for the ISCCP and microwave NN results: It is actually related to

the fact that higher emissivities tend to occur for higher temperatures in the dataset we

have, and larger differences are associated to these situations.

3.3.2. Statistical analysis of the CEOP Data for Different Environments

The previous comparisons are extended to the complete set of selected CEOP stations

over a full annual cycle. Table 2 presents the results for each station and each satellite

retrieval. For a specific environment, the results are similar among the stations, except

for the Holmes et al. retrieval. To summarize the results, Figure 8 shows the standard de-

viation of the differences between CEOP and satellite Ts versus the correlation coefficient

for all selected stations, along with the bias. For the IR and NN MW methodologies, the

stations located in the temperate region show rather large correlation with small standard

deviations and biases. For the microwave retrievals, the results are very similar for both

clear and cloudy situations, confirming the role of the microwave estimates to complement

the IR methodologies under cloudy conditions.

The r.m.s. differences are typically of the order of 4 K for the mid-latitude environment,

but can be larger for other environments. Particularly large errors are observed at station

6 in the Tropics, regardless of the satellite method. For this station, we compared the

Tair and Ts in situ measurements, along with the satellite Ts from different sources under

clear sky conditions (ISCCP, MODIS, AIRS, see Jimenez et al. [2011]). Both Ts and Tair

are lower during the day than during the night (more than 10 K lower in January) and it

seems that the Ts and Tair variables have been switched because there is good agreement

between the satellite Ts and the in situ Tair, but not with the in situ Ts. The validity

of the in situ measurements at this station is suspect.
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For all comparisons, a portion of the error is related to the comparison area-averaged

satellite data with in situ point measurements. It has been shown that for a given location,

satellite retrieval tends to underestimate the largest Ts values and to overestimate the

smallest Ts values because of the averaging. The errors that are observed in this study

are in line with other results, from independent comparisons involving satellite estimates

and in situ measurements. For instance, Trigo et al. [2008] compared Ts derived from

the Meteosat Second Generation SEVIRI instrument and in situ measurements under

very controlled conditions and found biases up to 2.5 K, during nighttime. At SSM/I

overpassing times (around 6:00 and 18:00), insolation can yield large temporal and spatial

gradients of Ts, making it more difficult to compare in situ and satellite observations that

are not exactly coincident in time and space.

4. Conclusion

Microwave satellite estimates of surface skin temperature are carefully evaluated

through comparisons with in situ CEOP measurements in different environments that

include temperate, tropical, and boreal regions, over a full annual cycle (2003). In ad-

dition, the IR ISCCP Ts are also examined and compared to the other measurements.

Comparison between satellite observations over extended pixels and in situ point mea-

surements is always challenging and requires great care. In this exercise, we select in

situ stations that are located in homogeneous environments and that provide a significant

amount of data all year long. A total of twelve stations are analyzed.

Under clear sky conditions, the quality of our microwave neural network retrieval is

equivalent to the IR ISCCP products, for most stations. For a given location, the perfor-

mance of the microwave algorithm is similar under clear and cloudy conditions, confirming
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that our retrieval has accounted for the limited effect of the clouds. A simpler approach,

the Holmes et al. algorithm also yields realistic estimates of Ts, when the surface emis-

sivity at 37 GHz (vertical polarization) is similar to that for the locations used to test

the algorithm, i. e., near unity. In these regions, this simple algorithm can provide a Ts

first guess that could be further refined in a more complex algorithm, such as in our NN

methodology.

Our microwave Ts estimates have been calculated for more than 15 years (1993 - mid

2008), from all available SSM/I observations. The same methodology could be applied to

AMSR-E measurements. These “all weather” Ts estimates are a very valuable comple-

ment to the IR-derived Ts, for use in atmospheric and surface models.

However, the accuracy of the products has to be carefully considered, especially when

used to calculate radiative and turbulent fluxes. The longwave fluxes at the surface vary

by about 7 W.m−2 for every degree of temperature [Zhang et al., 1995]. For sensible flux

estimation, the key variable is the difference between Ts and Tair and the uncertainty

in one estimate can result in large errors in the fluxes. One of the objectives of the

GEWEX LandFlux program [e.g., Jimenez et al., 2010] is to determine the potential for

estimating the turbulent fluxes, given the available input data, including Ts, and to guide

development of better products.
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Table 1. Statistics of the difference between the IR and the microwave estimates for different

surfaces, as separated by their microwave emissivities at 37 GHz vertical polarization. The mean

value is indicated as well as the standard deviation into brackets. MW1 indicates the neural

network microwave retrieval [Aires et al., 2001], and MW2 the single channel algorithm [Holmes

et al., 2009].

emis37V<0.90 0.90<emis37V<0.95 0.95<emis37V
MW1 retrieval
January 0.70 (3.52) 0.52 (3.40) 0.47 (3.89)
July 1.75 (4.43) 0.68 (3.54) 0.48 (3.49)
MW2 retrieval
January 14.49 (4.19) 4.52 (3.16) -1.50 (1.99)
July 17.32 (4.73) 4.45 (3.56) -1.31 (1.86)
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Table 2. Statistics of the difference between the satellite estimates and the CEOP in situ

measurements, over 2003, for all selected stations. The mean, the r.m.s. and the correlation

coefficient are indicated, separately for clear and cloudy situations, respectively for the IR ISCCP

estimates, for the NN microwave retrieval (MW1), and for the single channel microwave retrieval

(MW2). For the Boreal stations, MW2 cannot be applied as the pixels have more than 4% water

coverage.

Region TIR − TCEOP TMW1 − TCEOP TMW1 − TCEOP TMW2 − TCEOP TMW2 − TCEOP

and clear clear cloudy clear cloudy

Stat. mean rms corr mean rms corr mean rms corr mean rms corr mean rms corr

MidLat

1 -0.25 4.48 0.81 -0.21 3.73 0.85 -0.55 3.47 0.86 -7.96 8.69 0.87 -8.06 8.51 0.89

2 -1.64 4.97 0.91 -1.60 4.05 0.94 -1.61 3.51 0.94 -1.05 3.74 0.95 -1.47 3.30 0.95

3 -1.46 5.39 0.88 -1.50 4.22 0.93 -1.20 3.75 0.92 -0.89 3.78 0.93 -1.02 3.11 0.93

67 0.66 3.92 0.91 0.67 3.45 0.92 1.08 4.29 0.90 -5.16 6.57 0.87 -3.74 6.05 0.86

68 -1.12 4.89 0.71 -0.20 4.57 0.73 0.45 4.99 0.70 -3.75 6.68 0.54 -2.18 6.00 0.60

69 -2.26 4.97 0.80 -2.04 4.51 0.86 -1.09 3.13 0.88 -4.49 6.23 0.82 -3.37 4.69 0.85

Tropics

6 -8.54 11.48 0.06 -9.33 11.38 0.28 -8.79 10.53 0.30 -13.42 14.77 0.35 -12.24 13.51 0.29

44 0.94 6.16 0.29 0.57 5.31 0.49 -0.21 4.73 0.50 -4.00 6.52 0.53 -3.83 5.74 0.62

94 -1.97 3.91 0.22 -2.08 3.03 0.64 -2.20 3.09 0.56 -4.92 5.28 0.71 -4.03 4.44 0.64

95 -2.78 6.57 -0.05 -1.64 3.81 0.70 -1.12 3.87 0.62 -1.34 3.32 0.79 -1.45 3.63 0.69

Boreal

49 -6.46 9.11 0.74 -3.49 6.40 0.82 0.05 4.68 0.85

100 -1.86 7.04 0.86 4.93 6.79 0.81 5.92 7.74 0.77
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Figure 1. Map of the selected CEOP stations. The colors indicate the different environments:

green for temperature stations, orange for tropical ones, and blue for the boreal region.

Figure 2. Averaged maps of the retrieved Ts for July morning orbits, for clear pixels (as

indicated by the ISCCP cloud flag): (a) from the IR retrieval from ISCCP, (b) from the Neural

Network inversion [Aires et al., 2001] (MW1), and (c) from the single frequency method [Holmes

et al., 2009] (MW2).

Figure 3. For January (left) and July (right), histograms of the difference under clear sky

conditions between the infrared Ts from ISCCP and the microwave Ts derived from the NN

method MW1 (solid line) and the single frequency scheme MW2 (dotted line). The comparison

is limited to the pixels for which both retrievals are valid (condition on the cost function for the

first algorithm and threshold on the Tb at 37 GHz V for the second one, see text). The mean

values are indicated, along with the r.m.s. in brackets.

Figure 4. Left: Time series for the selected stations, from top to bottom: two temperature

stations (2 and 67), one tropical station (44), and one boreal station (100). For each of the station,

the top plot represents the different LST versus time and the lower one the Ts differences (CEOP

Ts -satellite Ts) versus time, for year 2003. Right: Relationship between the satellite-derived Ts

estimates and the CEOP measurements. The linear correlation (C), the r.m.s. of the difference

(R), and the mean difference (M), are indicated for each satellite retrieval, separated by clear

and cloudy conditions.
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Figure 5. Difference between the CEOP and the satellite Ts versus the CEOP Ts, for the two

selected stations and for two months.

Figure 6. For two selected stations, difference between the CEOP and the satellite Ts versus

the water vapor (WV ) estimated by NCEP (top for each station) and versus the cloud liquid

water path (CLW ) estimated by ISCCP (bottom for each station).

Figure 7. For the stations in mid latitude environment (group 2), difference between the CEOP

and the satellite Ts versus the surface microwave emissivity at 37 GHz vertical polarization. The

linear fits have been added to the plots.

Figure 8. Scatterplot of the standard deviation of the difference between CEOP and satellite

Ts versus the correlation coefficient between the two variables, for each selected stations. Symbols

(circles, squares, and triangles) indicate the considered satellite product. Empty symbols indicate

clear sky conditions and filled symbols indicate cloudy conditions. The color of the symbols is

representative of the station group (see Figure 1). The size of each symbol gives an idea of the

bias (in absolute value).
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