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Endovascular Navigation of a Ferromagnetic Microrobot Using

MRI-based Predictive Control

Karim Belharet, David Folio and Antoine Ferreira

Abstract— This paper presents real-time MRI-based control
of a ferromagnetic microcapsule for endovascular navigation.
The concept was studied for future development of microdevices
designed to perform minimally invasive interventions in remote
sites accessible through the human cardiovascular system. A
system software architecture is presented illustrating the dif-
ferent software modules to allow 3D navigation of a microdevice
in blood vessels, namely: (i) vessel path planner, (ii) magnetic
gradient steering, (iii) tracking and (iv) closed-loop navigation
control. First, the position recognition of the microrobot into the
blood vessel is extracted using Frangi vesselness filtering from
the pre-operation images (3D MRI imaging). Then, a set of
minimal trajectory is predefined, using Fast Marching Method
(FMM), to guide the microrobot from the injection point to the
tumor area through the anarchic vessel network. Based on the
pre-computed path, a Generalized Predictive Controller (GPC)
is proposed for robust time-multiplexed navigation along a 2D
path in presence of pulsative flow. The simulation results suggest
the validation of the proposed image processing and control
algorithms. A series of disturbances introduced in the presence
and absence of closed-loop control affirms the robustness and
effectiveness of this predictive control system.

I. INTRODUCTION

Microrobots designed to perform targeted therapy by nav-

igating in the cardiovascular system are a prolific research

area for minimally invasive surgeries [1][2] and treatments

efficiency through early diagnosis of diseases [3]. Cardiovas-

cular problems are generally correlated with the obesity, hu-

man sedentary lifestyle, or hereditary characteristics. When

microrobots are propelled in the body fluids, especially in

the blood circulatory system, a very large number of remote

locations in the human body become accessible. However,

since the diameters of the blood vessels in the human

body may vary from approximately 25 mm (aorta) down

to 0.010 mm (capillaries), it is obvious that propelling such

wireless microdevices in the human cardiovascular system

with existing technologies represents a great technical chal-

lenge [4]. Because the method of propulsion should allow

such a microrobot to navigate through the cardiovascular

system, the use of the normal blood flow itself must be

considered only as a complementary means of propulsion

when the travel path is in the direction of the blood flow.

These untethered microrobots have been mainly developed

according to three different designs: magnetic bead pulling

[2], biomimetic flagellated robot [5] and magnetotactic bac-

teria [6]. Furthermore, navigation requires observation of

the scene in order either to plan the trajectory by off-line
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mapping, or to correct on-line the microrobot’s pose error

between the planned and the observed trajectory. Recently,

magnetic resonance imaging (MRI)-based medical micro-

robotic platforms are investigated to reach locations deep in

the human body while enhancing targeting efficacy using

real-time navigational and trajectory control [7]. For the

position recognition of the microrobot in the blood vessels,

from the pre-operation images, 3D path planning and route

optimization solutions have been proposed. The authors in

[8] proposed an endovascular path-planning method based

on 3D potential fields and enhanced breath-first search algo-

rithms based on MR-imaging. In [9], Intra-Vascular Ultra-

Sound medical imaging technique coupled to pre-operational

images of computerized tomography renders possible 3D

navigation in blood vessels. Based on these path-planning

techniques, only explorative 2D control strategies have been

adopted so far using simple proportional-integral-derivative

(PID) controller [10]. However, stability and robustness are

not ensured against important perturbations. First, pulsatile

flow whose variations in waveform, amplitude, and frequency

exists from one vessel to another. Second, variation of

time-multiplexed sequence parameters (duty cycle of the

propulsion gradients, and repetition time of the tracking se-

quence) produce important trajectory errors during real-time

navigation. Finally, random imaging signal noise degrades

the localization of the microrobot during tracking.

The main objective of this paper is to propose an au-

tomated technique based on image processing and control

algorithms for path finding, reconstruction and navigation

control of a ferromagnetic microrobot using an MRI system.

The MRI-based control of a ferromagnetic microcapsule

presented here is dedicated to macroscale navigation, which

focuses in conveying the device in vessels such as arteries

and arterioles. As illustration of the concept, we consider a

possible way for the microrobot get into the body through

the femoral artery in the leg, which is the normal access

point to the circulatory system. One possible application is

to locate atherosclerotic lesions in stenosed blood vessels,

particularly in vasculary circulation, and treat them either

chemically or pharmacologically by targeted drug delivery.

Based on slice images provided by an MRI system, rel-

evant information related to detection of blood vessels is

extracted using robust Frangi vesselness filtering from the

pre-operation images. Then, a set of minimal trajectory is

predefined, using Fast Marching Method (FMM), to guide

the ferromagnetic microrobot from the injection point to the

tumor area through the anarchic vessel network. Based on

the precomputed path, a Generalized Predictive Controller



(GPC) is designed for robust time-multiplexed navigation

along a 2D path in presence of pulsative flow. The simu-

lation results suggest the validation of the proposed image

processing and control algorithms. A series of disturbances

introduced in the presence and absence of closed-loop control

affirms the robustness and effectiveness of this predictive

control system.

II. ENDOVASCULAR NAVIGATION

A. Finding Endovascular Navigation Path

In our context, the problem of finding the navigation path

within the MRI data can be formulated as finding the correct

way through the data which follows the vessel of interest

between its start and end point. Finding a navigation path

within the vessel network is then an essential, primary, and

important step which must be addressed prior to the control

procedure. The problem of vessels extraction has received

considerable attention in the computer vision and medical

imaging communities [11]. Hence, several class of methods

have been proposed to find a path from a set of medical

imaging, such as using tracking methods [12] [7] [13], path

extraction methods [14][15][16], and so on. Most works

based on in vivo MR-tracking methods usually need many

user-defined way points as the input of a controller module

for the navigation computation. A major drawback in general

remains when the user must define many points (e.g. way

or fiducial points) manually. Hence, for a complex structure

(e.g. colon, small vessels. . . ) the required interactivity can

be very tedious. As consequence, if the path is not correctly

build, it can cross an anatomical wall during the in vivo

navigation. In opposition, path extraction approaches depend

only on the manual definition of the start and end points of

the desired vascular path. Therefore, we propose in this work

to use path extraction technique to find the desired path to

be followed in the vessel network.

1) Endovascular Path Extraction: The path extraction is

useful for a range of application domains including medical

image analysis, robot navigation, and artificial intelligence.

The path extraction technique needs a very simple ini-

tialisation and leads to global minimum of a snake-like

energy, thus avoiding local minima. Moreover it is fast and

accurate. This path finding problem has been studied for

ages by mathematicians, and has been solved numerically

using graph theory or dynamic programming. Cohen and

Kimmel [17] solved the minimal path problem in 2D with

a front propagation equation between the two fixed end

points, using the Eikonal equation (that physically models

wave-light propagation), with a given initial front. Wink et

al.[15] explored different methods to determine the minimum

cost path through a pre-defined cost image, for extraction of

vessel centrelines from medical image data. Among them

are Dijikstra’s algorithm [18], the A⋆ algorithm [19], which

makes use of additional heuristics to steer the search process,

and wave front propagation analysis [16]. Early, Sethian

[20] explore the use of Fast Marching Method (FMM) to

extract minimal paths. This method relies on the fact that

the gradient of the FMM arrival function has only one

local minimum, with is guaranteed to be global minimum

[14]. Therefore the minimal path can be extracted by back-

propagating from given seeds (e.g. the end point of the

desired path) to the starting point implicitly embedded in

the arrival function.

In this work the FMM is adopted to design a set of

trajectory to guide the micro-device from the injection point

to the tumor area through the vessel network. Our aim

is to focus on the automation of the path construction,

reducing the need of interaction and improving performance,

in a robust way. Finally, as the proposed control strategy,

presented in section III-B, is designed for 2D navigation

problem, we have limited our path extraction procedure to

2D application.

2) Applications and Navigation Path Extraction Results:

The FMM algorithm, introduced by Sethian [20] is applied

here to extract a targeted navigation path within the vessel

network. The FMM is very closely related to Dijkstra’s

method [18], which is a very well-known method from the

1950’s for computing the shortest path on a network. Hence,

from the set of MRI data we have first to compute a speed

map (ie. a weighting image map), which must enhance the

relevant intravascular network. Choosing an appropriate and

efficient image cost function is the most difficult part of the

entire process. The definition of the optimal speed function

is case dependent and should be set by the user, along with

the start and end points of the path. Hence, an optimal path

could be found only if the optimal cost function is provided.

In this work, we focus mainly on finding a path allowing

reaching the targeted zone.

Fig. 1. Image processing pipeline.

We describe in the sequel presented in Fig. 1, the process

used to extract navigation path. First, we need a relevant

cost function which allow to enhance vessel in the image.

To this aim we use some a priori knowledge about vessel

shape and intensity in MRI data (cf. Fig. 2). Vessels are

expected to appear as bright tubular structures in a darker

environment. One way to account for the varying size of

vessels is by multiscale analysis. It allows us to detect

structures of different sizes according to the scale at which

they give maximal response. In this context, a typical speed

image is produced by using a Frangi vesselness filter [21]

which uses the eigenvectors of the Hessian matrix at each

voxel of the image to compute the likeliness of an image

region to vessels. This mapping is selected in such a way

that vessels regions will have higher speed (high level in

speed image, see Fig. 2). Once the speed map is generated,

the user has to select a start and end points (ie. seed points)



(a) (b)

(c) (d)

Fig. 2. 2D Navigation path extraction processing of atherosclerotic lesions in the upper right leg: a) Original MRI data; b) Computed cost function using
Frangi filter (light pixel have higher weight); c) FFM propagation to build the distance to targeted seed map; d) Extracted navigation path between the
start and end seeds.

in the viewer of the input original image. The FFM will

then propagate a front from the start seed and traveling to

the targeted area, thanks to the speed map. This step allow

to build an image of distance between the start seed and all

other pixels. The corresponding shortest path is then traced

thanks to the distance map.

We have applied the described approach on some rep-

resentative MRI data which validate our image processing

pipeline. The application is to locate atherosclerotic lesions

in stenosed blood vessels, particularly in vascular circulation.

We consider that the microrobot get into the body through the

femoral artery in the leg, and treat them pharmacologically,

by tageted drug delivery. Let us also notice that the proposed

image processing pipeline (cf. Fig. 1) could be applied to 3D

MRI data, and then provide 3D navigation path.

III. MRI-BASED CONTROL DESIGN

A. Problem formulation

Endovasular navigation requires observation of the scene

in order either to plan the trajectory by off-line mapping,

or to correct online the microcapsule’s pose error between

the planned and the observed trajectory. To insure a smooth

conveyance of the microrobot to destination, collisions and

the risk to be trapped by the endothelium, optimal navigation

performance will be affected by external perturbations and

MRI technological constraints:

• Nonnegligible pulsatile flow, whose variations in wave-

form, amplitude, and frequency exist from one vessel to

another (such as arteries and arterioles).

• Magnetic gradients are used both for observation and

control purposes in a time-multiplexed sequence. It

requires different trade-offs in terms of refresh rate, duty

cycle of the propulsion gradients, and repetition time of

the tracking sequence.

• MRI overheating avoidance leading to limitations on

the MRI duty cycle, tends to increase the dispropor-

tional scaling between magnetic forces used for control

purpose and perturbation forces (drag forces and net

buoyancy forces).

• Limitations on the magnetic gradient amplitude in avail-

able MRI devices.

• Proper delay in the image processing algorithms that

renders the navigation control unstable.

B. Real-Time Sequence Design

Fig. 4. Timeline of acquisition and control prediction.

The overall concept of the in-vivo MRI-tracking system is

based on the fact that both tracking and propulsion is possible

with the gradient coils of the MRI system. Software based

upgrading of a clinical MRI system is the least expensive

approach to convert a platform that is used for imaging to an

effective interventional platform. At any instant only one of

the functions could be applied (i.e. either tracking or propul-

sion), but both will be executed over the same MRI interface.

The MRI interface has therefore to be shared and a time-

division-multiple-access scheme for it has to be developed.

Fig.4 shows an overview of the real-time sequence with time-

multiplexed positioning and propulsion phases introduced by

Martel et al. [7]. The main aspect relevant to the controller’s

performance is (i) the duty cycle TProp/Ts that stands for



Fig. 3. Navigation based-Generalized Predictive Control (GPC) strategy.

the ratio between the propulsion time and the time between

two successive position requests, and (ii) the synchronization

event delay TSync that stands for the minimum time allowed

for image processing and real-time control feedback (see

Fig. 4). First, the duty cycle should be adapted to apply

sufficient magnetic propulsion gradients during a predefined

propulsion time TProp to prevent the microrobot from drift-

ing away from the trajectory. Second, a large time delay

TSync produces oscillations as the microrobot approaches the

reference trajectory leading to position instabilities. Such

limitations have been pointed out by Mathieu et al. [10] when

implementing simple proportional-integral-derivative (PID)

controller. We proposed a Generalized Predictive Controller

(GPC) including microrobot’s motion and dynamics with

estimation of the pulsative blood flow and time-multiplexed

positioning. A predictive trajectory-tracking control consider

a prediction window (cf. Fig. 4). The propulsion phase starts

during TProp seconds at the same initial condition as the

prediction phase, recording the performance of the system

according to a prediction horizon. After this phase the system

ends after a imaging-propulsion sequence at a final position

q which is set as the new initial condition of the next pre-

diction output q̂. The proposed navigation based predictive

controller offers stability by design and allows the designer

to trade-off performance for (computation) speed, stability

margins according to the MRI application and technological

requirements outlined in section III-A.

C. Model description

The linear model that was used in this work, derived from

the nonlinear model developed in a previous study [22].

In [22], we used this model to combine the backstepping

controller and high gain observer in order to control the

trajectory of microrobot inside a vessel using the MRI

gradients, as shown on Fig. 3.

The different forces acting on the microrobot are (see

figure 5): drag force
−→
Fd , apparent weight

−→
Wa and magnetic

force
−→
Fm. The application of Newton’s third law and the

Fig. 5. Forces applied on microrobot navigating in blood vessel.

projection on the −→x -axis and −→y -axis leads to:
{

mẍ =
−→
F dx +

−→
F mx

mÿ =
−→
F dy +

−→
F my +

−→
Wa

(1)

where m is the mass of the microrobot.

Let
−→
v = (v fx ,v fx) denotes the blood flow velocity, and

(x,y) the robot location in the blood vessel wrt. to a given

frame F (O,
−→x ,

−→y ). Taking the drag coefficient Cd =
24
Re

, the

linear model can be written as follow:
{

ẍ = α1

(
ẋ− v fx

)
+α2ux

ÿ = β1

(
ẏ− v fy

)
+β2uy

(2)

with the following parameters αi and βi, and the magnetic

gradients considered as control inputs ux and uy, that is:





α1 = −4.5
η cosθ

r2ρ
, ux =

∥∥∥
−→
∇ Bx

∥∥∥

β1 = −4.5
η sinθ

r2ρ
, uy =

∥∥∥
−→
∇ By

∥∥∥
α1 = β2 = m

ρ

(3)

where ρ is the density of the fluid; η is the fluid viscosity; r

is the spherical radius of the microrobot; and B = (Bx,By)
T

is the magnetic field generate by the MRI system.

Finally, the state space representation is deduce from (2):

(S)





ẋ = vx

v̇x = α1vx −α1v fx +α2ux

}
(Sx)

ẏ = vy

v̇y = β1vy −β1v fy +β2uy

}
(Sy)

(4)

where (vx,vy)
T denote the robot velocity along −→x -axis and

−→y -axis. Assuming that microrobot location (x,y) can be



measured thanks to the MRI system, we denote by q=(x,y)T

the process measure. We can notice that system (S) can be

divided into two subsystems (Sx) and (Sy), which allow us to

define two independents GPC schemes to track the reference

trajectory in 2D MRI data.

In this paper we aim to embed the system model (4) in

high level a GPC scheme in order to follow efficiently a pre-

planed path extracted with the method proposed in section II-

A. Our controller is entended to be above our low level robust

controller designed in [22] (see Fig. 3).

D. Generalized Predictive Control (GPC)

Generalized Predictive Control (GPC) belongs to the class

of Model Predictive Control (MPC) techniques and was

first introduced by Clarck et al.[23]. GPC approach is a

popular control predictive method, experienced on several

applications [24] [25], especially in industrial process [26].

It combines the prediction of future behavior of the system

with feedback control (see figure 3). A process model is

explicitly used to predict the future behavior of the system

over the given time horizon. From this prediction, a control

is computed by minimizing a quadratic cost function.

1) GPC Scheme Design: The system is modeled using

the model Controlled Auto-Regressive Integrated Moving-

Average (CARIMA) with integrator form, that is [23]:

A(z−1)q(t) = B(z−1)u(t −1)+C(z−1)
ζ (t)

∆(z−1)
, (5)

where ∆(z−1) = 1− z−1 define the difference operator; ζ (t)
is a zero mean white noise; and A(z−1), B(z−1) and C(z−1)
are polynomial matrix in the backward shift operator z−1.

The GPC is classicaly obtained by minimizing a weighted

sum of square predicted future errors and square control

signal increments:

J{N1,N2,Nu,λ}=
N2

∑
j=N1

(ŷ(t + j)−w(t + j))2+λ
Nu

∑
j=1

∆u2(t + j−1)

(6)

where ŷ(t + j) is the optimum predicted output of the system

at time t + j; w(t + j) is the future reference; N1 and N2 are

the minimum and the maximum of the prediction horizon;

Nu is the control horizon; and λ > 0 is the control increment

weighting. {N1,N2,Nu,λ} are the design parameters of the

GPC scheme.

The optimal predictor built from the measured output data

up to time t and any given u(t + j) for j > 1 is:

q̂ = Gũ+ f(z−1)q(t)+h(z−1)∆u(t −1) (7)

where f(z−1) and h(z−1) are the polynomial calculated by

solving the Diophantine equations:
{

A(z−1)J j(z
−1)∆(z−1)+ z−1Fj(z

−1) = 1

B(z−1)J j(z
−1) = G j(z

−1)+ z−1H j(z
−1)

f =
[
FN1

(z−1) . . . FN2
(z−1)

]T

h =
[
HN1

(z−1) . . . HN2
(z−1)

]T

ũ = [∆u(t) . . . ∆u(t +Nu −1)]T

q̂ = [q̂(t +N1) . . . q̂(t +N2)]
T

G =




g
N1
N1

g
N1
N1−1 . . .

g
N1+1
N1+1 g

N1+1
N1

. . .

...
...

g
N2
N2

g
N2
N2−1 . . . g

N2
N2−Nu+1




(8)

where G j represents the future; Fj and H j define respectively

the present and the past; and J j is related to the disturbance.

Hence, the optimal control is then defined by:

ũ = M
[
w− f(z−1)q(t)−h(z−1)∆u(t −1)

]
(9)

with w= [w(t +N1) . . .w(t +N2)]; M=QGT with dimension

Nu × (N2 −N1 + 1); and Q =
[
GT G+λ INu

]−1
with dimen-

sion Nu ×Nu. Only the first element of ũ is applied to the

system, that is:

∆uOpt(t) = mT
1

[
w− f(z−1)q(t)−h(z−1)∆u(t −1)

]
(10)

where mT
1 is the first row of M.

Classicaly a RST polynomial structure is introduced at

the end to determine a relation between the output q(t),
the control signal u(t) and the setpoint w(t), according to

the scheme of Fig. 3. The advantage of RST polynomial

structure is that these modules can be computed off-line,

providing a very short real-time loop and on the other hand

offers the possibility to analyze the stability of the controlled

open loop in the frequency domain. In fact, this off-line

operation is a very helpful strategy to determine the stable

set of tuning parameters just before applying the control law

on the real system.

2) GPC implementation: In order to design the GPC

controller the transfer functions of the two subsystems (Sx)
and (Sy) of Eq.(4) are obtained:

Hx(s) =
243.8

s2 +49.25s
(11)

Hy(s) =
243.8

s2 +79.77s
(12)

To ensure good stability, our GPC scheme under RST

polynomial form requires tuning of the set parameters{
N1,N2,Nu,λx,λy

}
, where λx and λy are the control in-

crement weighting for the two subsystems (Sx) and (Sy)
respectively. Some guidelines may be found in the literature

[23] [27]. Thus, two independants GPC controller have to

be designed for the system sampling period Ts = 50 ms. For

instance, we consider the following tuning parameters, which

satisfy stability and robustness features [27]:

{
N1 = 1; N2 = 4; Nu = 1; λx = 0.77; λy = 0.34

}
(13)

According to these parameters, the model of the process

using (11) and (12) in CARIMA (5) form is given by:

(Sx)

{
Ax(z

−1) =
[
1−1.085z−1 +0.085z−2

]

Bx(z
−1) =

[
0.155+0.071z−1

] , (14)

(Sy)

{
Ay(z

−1) =
[
1−1.018z−1 +0.018z−2

]

By(z
−1) =

[
0.115+0.034z−1

] , (15)



Fig. 6. Longitudinal position microrobot control.

and where Cx(z
−1) and Cy(z

−1) are set to 1. The RST form

optimal control is:

∆uOpt
x (t)Sx(z

−1) = Tx(z
−1)wx(t)−Rx(z

−1)qx(t) (16)

∆uOpt
y (t)Sy(z

−1) = Ty(z
−1)wy(t)−Ry(z

−1)qy(t) (17)

with



Rx(z
−1) = 2.855−2.222z−1 +0.169z−2

Sx(z
−1) = 1+0.140z−1

Tx(z
−1) = 0.123z+0.273z2 +0.405z3

(18)





Ry(z
−1) = 4.0.61−2.906z−1 +0.052z−2

Sy(z
−1) = 1+0.098z−1

Ty(z
−1) = 0.206z+0.410z2 +0.592z3

(19)

E. Results

Simulations are conducted within the scope of actual

commonly spread MRI system abilities. At the moment,

MRI systems are able to generate magnetic gradients with

an intensity of some tens of mT.m−1. Let us note that this

limitation is additionally affected by the gradient coils duty

cycle and by the multiplexing needed both for controlling and

observing. In order to make sure that the amplitude of the

control inputs remains bounded by physical actuators limits

ui,max and to protect the system, we perform a simple time

scaling. Thus, the applied control law is given by ui

k(t) , with

k(t) =max
{

1, ui
ui,max

}
. The set of simulations corresponds to

microcapsule’s radius of r = 300 µm and a time scaling

settled at k(t) = 0.55. Different situations are considered in

this section to illustrate and validate the performance and

robustness of the proposed MRI-based predictive controller

shown on Fig. 3. As the considered system is decoupled into

two subsystems (Sx) and (Sy) (4), we have first validate the

control strategy onto 1D longitudinal path. As illustration, the

microrobot has to follow a sinusoidal reference trajectory (cf.

Fig. 6 and 7) for different time horizons N =N2−N1 (namely

N = 3,10, and 15).

Fig. 6 presents the trajectories followed by the microrobot,

and the relative error between the current position q and

Fig. 7. Longitudinal position microrobot control with white noise.

the reference w. As one can see the system output follows

correctly the reference trajectory w for each considered

prediction horizon N. The output of the closed loop system

is dependent on the setting parameters of the GPC. The

previous curves show the impact of N on the system. More-

over, comparing the different plots, the nature of anticipation

of the GPC scheme is illustrate —greater is N more is

anticipate the path behaviour— Hence, a great value of

N does not necessarily guarantee good performance, and

classicaly increase the complexity of the scheme.

To evalute the efficiency of the proposed MRI-based

predictive controller, we added a white Gaussian noise on the

sytem output measure q. Fig. 7 shows the system response

in the presence of this disturbance on the system. Globally,

tracking is not too much affected by the noise, since position

standard deviation (std) and root mean square (RMS) error

are quite satisfactory (see table I).

TABLE I

ERROR STATISTICS

1D with noise 2D navigation
N = 3 N = 10 N = 15 without noise with noise

std 0.2303 0.2971 0.2949 1.0438 1.2121

RMS 0.2368 0.2967 0.2959 1.0480 1.2306

We validated the proposed control strategy on 2D en-

dovascular navigation path extracted from MRI-data with

the method presented in section II-A. As shown in Fig. 8

and 9, the system output q follows perfectly the reference

trajectory w, either without or with white Gaussian noise

added. In particular, the microrobot are able to reach quickly

the navigation path, in spite of a big gap between the initial

position q and the begin of reference w (about 50 pixels).

Fig. 8(b) and 9(b) describe the error evolution in both cases.

Once again the error remains small with low values of std and

RMS parameters. Let us notice that these 2D error statistics

given in table I take into account the gap between the initial

microrobot position and the start of the reference path.



(a) 2D trajecrories without noise.

(b) Tracking error (N = 3): ‖q−w‖

Fig. 8. 2D MRI-based microrobot endovascular navigation (N = 3).

(a) 2D trajecrories with white noise.

(b) Tracking error: ‖q−w‖

Fig. 9. 2D MRI-based microrobot endovascular navigation (N = 3) with
a white noise.

Fig. 10. 2D trajectory tracking error ‖q−w‖, with noise and wrong model
paramaters (r+30% and η +10%)

Finally, to evaluate the robustness of our strategy, we have

performed some tests in which some model parameters (4)

are not well identified, and the white noise still added. As

illustrated in Fig. 10, the 2D trajecrory tracking error is quite

important, but still remains satisfactory.

IV. CONCLUSIONS

The proposed MRI-based ferromagnetic microcapsule

steering and navigation strategy has been developed at

milliscale and microscale, where endovascular navigation

path extraction and predictive controller have been designed.

The main drawback of MRI-based navigation stems from

the strong limitations on the magnetic gradient amplitude

of available MRI devices. As magnetic forces used for

propelling are volumetric, whereas the drag force is at

best dependent on the microcapsule’s area, the smaller the

capsule, the higher the required control forces with respect

to hydrodynamic perturbations. Consequently, this approach

is well conditioned for beads whose radius is up to a few

dozen micrometers with actual MRI devices. Targeting aims

at focusing these micro-carriers and stopping them through

embolization at the arterioles entry close to the occluded

blood vessels. Possible releasing mechanisms could rely on

biodegradable polymer and techniques used in hyperthermia

where aggregates of nanocapsules can be heated to melt

polymer. Such a solution is actually under experimentation

for validation of the proposed minimally invasive MRI-based

microrobotic system.
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