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Abstract

We consider the problem of estimating a mean planar curve from a set of J random planar curves

observed on a k-points deterministic design. We study the consistency of a smoothed Procrustean

mean curve when the observations obey a deformable model including some nuisance parameters

such as random translations, rotations and scaling. The main contribution of the paper is to analyze

the influence of the dimension k of the data and of the number J of observed configurations on

the convergence of the smoothed Procrustean estimator to the mean curve of the model. Some

numerical experiments illustrate these results.
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1 Introduction

In this paper, we are interested in the statistical treatment of random planar curves observed through
rigid deformations of the plane. In many fields of interest, such data appear as, for instance, contours
extracted from digital images or level sets of a real function defined on the plane. In handwriting
recognition problems one typically compares curves that describe letters, digits or signatures and the
acquisition process often create some ambiguity of location, size and orientation. Our aim is then to
study an estimation procedure for a mean curve from a sample of J noisy and discretized planar curves
observed through translation, rotations and scaling. The group generated by this set of transformations
is usually called similarity group of the plane and in the sequel, an element of this group will be called
a deformation.

1.1 A deformable model coming from statistical shape analysis

Deformable model In many practical cases of interest, data are collected through a computer device
such as a digital camera or an image scanner. In order to take this into account in our model, we assume
that observations at hand are discretized versions of continuous planar curves. Each observation Y is
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then given by a set of k points of the plane called a configuration. It can be written as a k × 2 real
matrix

Y =






Y1
...
Yk




 ∈ R

k×2,

where Yℓ =
(
Y

(1)
ℓ , Y

(2)
ℓ

)
∈ R

2 with ℓ = 1, . . . , k. A degenerated configuration is a configuration

composed of k times the same point b = (b(1), b(2)) ∈ R
2. In tensorial notation, such a configuration is

written 1k ⊗ b ∈ R
k×2 where 1k denotes the (column) vector of Rk with all entries equal to one and

⊗ denotes the tensor product. From now on, we assume that the observations satisfy the following
functional regression model for j = 1, . . . , J ,

Yj = ea
∗
j (f + ζj)Rα∗

j
+ 1k ⊗ b∗j , with Rα∗

j
=

(
cos(α∗

j ) − sin(α∗
j )

sin(α∗
j ) cos(α∗

j )

)

, (1.1)

where the unknown mean pattern f ∈ R
k×2 has been obtained by sampling on an equi-spaced design

a planar curve f = (f (1), f (2)) : [0, 1] −→ R
2 satisfying f(0) = f(1). It means that we have

f =
(
f( ℓ

k
)
)k

ℓ=1
:=
(
f (1)( ℓ

k
), f (2)( ℓ

k
)
)k

ℓ=1
∈ R

k×2.

The error terms ζj ∈ R
k×2, j = 1, . . . , J are independent copies of a random perturbation ζ in R

k×2

with zero expectation. For j = 1, . . . , J , the scaling, rotation and translation parameters (a∗j , α
∗
j , b

∗
j ) ∈

R × [−π, π[×R
2 are independent and identically distributed (i.i.d) random variables independent of

the random perturbations ζj.
Model (1.1) is a deformable model in the sens of [Bigot & Charlier, 2011] and our aim is to estimate

the underlying mean curve f : [0, 1] −→ R
2 from Y1, . . . ,YJ ∈ R

k×2. More precisely, we study the
influence on the estimation procedure of the number J of configurations at hand and the number k of
discretization points composing the configurations Yj ’s. Note that the model (1.1) has been introduced
by Goodall in [Goodall, 1991] but with a fixed number k of points in each configuration and non-
random nuisance parameters (a∗j , α

∗
j , b

∗
j )’s. This framework has been highly popular in the statistical

shape community, see [Kent & Mardia, 1997, Le, 1998, Lele, 1993]. Note that the configuration f was
called a population mean in [Goodall, 1991] or a perturbation mean in [Huckemann, 2011].

Shape of a configuration. Since the seminal work of Kendall [Kendall, 1984], one considers that
the shape of a configuration Y ∈ R

k×2 is “what remains when translations, rotations and scaling are
filtered out”. More precisely, two configurations Y1,Y2 ∈ R

k×2 are said to have the same shape if
there exists a vector (a, α, b) ∈ R× [−π, π[×R

2 such that

Y2 = eaY1Rα + 1k ⊗ b, with Rα =

(
cos(α) − sin(α)
sin(α) cos(α)

)

, (1.2)

The Kendall’s Shape Space is the quotient space modulo this equivalent relation. It is usually denoted
by Σ

k
2 and defined as the set of normalized (i.e. centered and scaled to size one) configurations

quotiented by the rotation of the plane, see part 2.2 for further details.
The above definition can be trivially extended to the case of planar curves by replacing the config-

uration f ∈ R
k×2 by the planar curve f : [0, 1] −→ R

2. Thence, we call shape of f the set of planar
curves that can be written eafRα + 1⊗ b for some (a, α, b) ∈ R× [−π, π[×R

2.

1.2 Estimation of the mean curve and of the shape of the mean curve

Consistency in the Shape Space. In shape analysis, an important issue is the computation of
a sample mean shape from a set of J random planar configurations Y1, . . . ,YJ ∈ R

k×2 satisfying

2



model (1.1) and the study of its consistency as the number of samples J goes to infinity (k remain-
ing fixed). According to Goodall [Goodall, 1991] a sample mean pattern f̂ ∈ R

k×2 computed from
Y1, . . . ,YJ is said to be consistent if, as J → ∞, it has asymptotically the same shape than the
mean pattern f . In this framework, the deformations parameters are considered as nuisance param-
eters that contain no informations. That is why the data are first normalized (i.e. centered and
scale to unit size) without changes in the statistical analysis. The study of consistent procedures to
estimate the shape of the mean pattern f using this approach has been considered by various authors
[Kent & Mardia, 1997, Le, 1998, Lele, 1993, Huckemann, 2011]. In this setting, sample mean patterns
obtained by a Procrustes procedure have received a special attention. In particular, it is shown in
[Kent & Mardia, 1997, Le, 1998] that, in the very specific case of isotropic perturbations ζ, the so-called
full and partial Procrustes sample means are consistent estimators of the shape of f . Nevertheless, these
estimators can be inconsistent for non-isotropic perturbations. Therefore, it is generally the belief that
consistent statistical inference based on Procrustes analysis is restricted to very limited assumptions on
the distribution of the data, see also [Dryden & Mardia, 1998, Kendall et al., 1999, Huckemann, 2011]
for further discussions.

Estimation of the mean curve. Our approach differ from the one developed in Shape analysis
in two main aspects. First, we assume that the unknown mean pattern f ∈ R

k×2 in model (1.1) has
been obtained by sampling a planar curve f : [0, 1] −→ R

2 on an equi-spaced design. This allows us
to study the influence of the number k of points composing each configuration on the estimation of
f . Note that if f is sufficently regular and k is large, to estimate f ∈ R

k×2 (i.e. the values of f on
the design) roughly amounts to estimate f . The second difference concerns the randomness of the
deformation parameters (a∗j , α

∗
j , b

∗
j ) ∈ R × [−π, π[×R

2, j = 1, . . . , J , that we want to estimate rather
than to consider as nuisance parameters. Indeed, the values of the deformations parameters can be
informative in some cases : assume that the size of the data are very similar except for one. This
difference in size may be due to a (possibly) relevant factor and if the data are normalized as in Shape
analysis this information is lost.

Under a suitable smoothness assumption on f , we are able to estimate consistently, with an asymp-
totic in k only, the curve fj := ea

∗
j fRα∗

j
+1⊗b∗j from Yj for each j = 1, . . . , J . Note that, by definition,

the fj’s have the same shape as f . When J is fixed, this smoothing step allows us to estimate consis-
tently the deformations parameters (a∗j , α

∗
j , b

∗
j )

J
j=1 with a Procrustes matching step. Now, if we assume

that the deformations parameters (a∗j , α
∗
j , b

∗
j) are centered random variables, we show that it is possible

to recover the true mean shape f when min{J, k} → ∞. These results are rigorously stated in the
next section, see Theorem 1.1 below.

1.3 Main contribution

Our estimating procedure is composed of two steps. First, we perform a dimension reduction step
by projecting the data into a low-dimensional space of Rk×2 to eliminate the influence of the random
perturbations ζj . Then, in a second step, we apply Procrustes analysis in this low-dimensional space

to obtain a consistent estimator of f ∈ R
k×2.

The reduction dimension step is based on an appropriate smoothness assumptions on f . Let L > 0,
s > 0 and define the Sobolev ball of radius L and degree s as

Hs(L) =
{

f = (f (1), f (2)) ∈ L2([0, 1],R2),
∑

m∈Z
(1 + |m|2)s(|cm(f (1))|2 + |cm(f (2))|2) < L )

}

(1.3)

where cm(f) = (cm(f (1)), cm(f (2))) =
( ∫ 1

0 f (1)(t)e−i2πmtdt,
∫ 1
0 f (2)(t)e−i2πmtdt

)

∈ C
2 is the m-th

Fourier coefficient of f = (f (1), f (2)) ∈ L2([0, 1],R2), for m ∈ Z.

Assumption 1. The curve f : [0, 1] −→ R
2 is closed, i.e. f(0) = f(1) ∈ R

2, and belongs to Hs(L) for

some L > 0 and s > 3
2 . Moreover, the k×2 matrix f =

(
f( ℓ

k
)
)k

ℓ=1
is of rank two, i.e. the configuration

f is not degenerated.
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Assumption 1 implies that f is not reduced to a point, continuously differentiable and is equal to its
Fourier series. We introduce the following k × k matrix

A
λ =

(
1

k

∑

0≤|m|≤λ

ei2πm
ℓ−ℓ′

k

)k

ℓ,ℓ′=1

. (1.4)

The matrix A
λ is the smoothing matrix corresponding to a discrete Fourier low pass filter with

frequency cutoff λ ∈ N. It is a projection matrix in a sub-space V
λ of R

k of dimension 2λ + 1.
Then, we project the data on V

λ × V
λ ⊂ R

k×2, and we estimate the scaling, rotation and trans-
lation parameters in model (1.1) using M-estimation as follows: denote the scaling parameters by
a = (a1, . . . , aJ) ∈ R

J , the rotation parameters by α = (α1, . . . , αJ ) ∈ R
J and the translation param-

eters by b = (b1, . . . , bJ ) ∈ R
2J , and introduce the functional,

Mλ(a,α, b) =
1

Jk

J∑

j=1

∥
∥
∥
∥
e−ajA

λ(Yj −1k ⊗ bj)R−αj
− 1

J

J∑

j′=1

e−aj′A
λ(Yj′ −1k⊗ bj′)R−αj′

∥
∥
∥
∥

2

Rk×2

, (1.5)

where ‖·‖Rk×2 is the standard Euclidean norm in R
k×2. An M-estimator of

(
a∗,α∗, b∗

)
=
(
a∗1, . . . , a

∗
J , α

∗
1, . . . , α

∗
J , b

∗
1, . . . , b

∗
J

)
∈ R

J × [−π, π[J×R
2J

is given by
(âλ, α̂λ, b̂λ) ∈ argmin

(a,α,b)∈Θ0

Mλ(a,α, b), (1.6)

where
(
âλ, α̂λ, b̂λ

)
=
(
âλ1 , . . . , â

λ
J , α̂

λ
1 , . . . , α̂

λ
J , b̂

λ
1 , . . . , b̂

λ
J

)
∈ R

J × [−π, π[J×R
2J and

Θ0 =

{

(a,α, b) ∈ [−A,A]J × [−A,A]J × R
2J :

J∑

j=1

aj = 0,
J∑

j=1

αj = 0 and
J∑

j=1

bj = 0

}

, (1.7)

with A,A > 0 being parameters whose values will be discussed below.
Finally, the mean pattern f is estimated by the following smoothed Procrustes mean

f̂λ =
1

J

J∑

j=1

e−âλj

(

A
λ
Yj − 1k ⊗ b̂λj

)

R−α̂λ
j
. (1.8)

To analyze the convergence of the estimator f̂λ to the mean pattern f , let us introduce some reg-
ularity conditions on the covariance structure of the random variable ζ in R

k×2. Let ζ̃ = (ζ(1), ζ(2)) =

(ζ
(1)
1 , . . . , ζ

(1)
k , ζ

(2)
1 , . . . , ζ

(2)
k ) ∈ R

2k be the vectorized version of ζ = (ζ
(1)
ℓ , ζ

(2)
ℓ )kℓ=1 ∈ R

k×2.

Assumption 2. The random variable ζ̃ is a centered Gaussian vector in R
2k with covariance matrix

Σk ∈ R
2k×2k. Let γmax(k) be the largest eigenvalue of Σk. Then,

lim
k→∞

γmax(k)k
− 2s

2s+1 = 0,

where s is the smoothness parameter defined in Assumption 1.

For example, the isotropic Gaussian error model corresponds to Σk = Idk and γmax(k) = 1 satisfies
Assumption 2. If there exists correlations terms (i.e. non-zero off-diagonal entries in Σk), then the
level of the perturbation ζ̃ has to be sufficiently small. A simple model is the case where Σk =
[S(|ℓ− ℓ′|)]kℓ,ℓ′=1 for some function S : R −→ R satisfying

∫

R
|S(t)| dt < +∞ implying that γmax(k) ≤∑

ℓ∈Z |S(ℓ)| (see Lemma 4.11 in [Gray, 2006]) and thus Assumption 2 is again satisfied. The following
theorem is the main result of the paper.
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Theorem 1.1. Consider model (1.1) and suppose that Assumptions 1 and 2 hold. Suppose also that
the random variables (a∗,α∗, b∗) are bounded and belong to [−A

2 ,
A
2 ]

J × [−A
2 ,

A
2 ]

J × [−B,B]2J for some

0 < A,B and 0 < A < π
4 and that λ(k) = k

1
2s+1 .

• For any J ≥ 2 there exists fΘ0 = ea0fRα0 +1k ⊗ b0 for some (a0, α0, b0) ∈ R× [−π, π[×R
2 and

a function V1(k, x) such that for any x > 0,

P

(
1

k
‖f̂λ − fΘ0‖2Rk×2 ≥ V1(k, x)

)

≤ e−x, (1.9)

with V1(k, x) → 0 when k → ∞ and x remains fixed.

• Suppose, in addition, that the random variables (a∗,α∗, b∗) have zero expectation in [−A
2 ,

A
2 ]

J ×
[−A

2 ,
A
2 ]

J × [−B,B]2J with A,A < 0.1. Then, there exists a function V2(J, k, x) such that for
any x > 0,

P

(
1

k
‖f̂λ − f‖2

Rk×2 ≥ V2(J, k, x)

)

≤ e−x, (1.10)

where V2(J, k, x) → 0 when min{J, k} → ∞ and x remains fixed.

Statement (1.9) means that, under mild assumptions on the covariance structure of the error terms
ζj , it is possible to consistently estimate the shape of the mean curve f when the number of observations
J is fixed and the number k of discretization points increases. Note that (a0, α0, b0) depends on J and
is given by formula (3.3) in Section 3. The function V1(k, x) is explicitly given in Section 5.2. To
obtain statement (1.10), we assume the condition A,A < 0.1 which means that the random scaling
and rotations in model (1.1) are not too large. Also, it is assumed that random scaling, rotations
and translations have zero expectation, meaning that the deformations parameters in model (1.1)
are centered around the identity. Then, under such assumptions, statement (1.10) shows that one can
consistently estimate the true mean curve f when both the sample size J and the number of landmarks
k go to infinity. Again, the function V2(J, k, x) is explicitly given in Section 5.2. These results are
consistent with those obtained in [Bigot & Charlier, 2011], where we have studied the consistency of
Fréchet means in deformable models for signal and image processing.

1.4 Organization of the paper

In Section 2, we recall some properties on the similarity group of the plane, and we describe its action
on the mean pattern f . Then, we discuss General Procrustes Analysis (GPA) and we compare it to our
approach. In Section 3 we discuss some identifiability issues in model (1.1). The estimating procedure
is described in detail in Section 4. Consistency results are given in Section 5. Some experiments in
Section 6 illustrate the numerical performances of our approach. All the proofs are gathered in a
technical appendix.

2 Group structure and Generalized Procrustes Analysis

2.1 The similarity group

Group action First let us introduce some notations and definitions that will be useful throughout
the paper. The similarity group of the plane is the group (G, .) generated by isotropic scaling, rotations
and translations. The identity element in G is denoted e and the inverse of g ∈ G is denoted by g−1.
We parametrize the group G by a scaling parameter a ∈ R, an angle α ∈ [−π, π[ and a translation
b ∈ R

2, and we make no difference between g ∈ G and its parametrization (a, α, b) ∈ R× [−π, π[×R
2.
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For all g1 = (a1, α1, b1), g2 = (a2, α2, b2) ∈ R× [−π, π[×R
2 we have

g1.g2 = (a1, α1, b1).(a2, α2, b2) = (a1 + a2, α1 + α2, e
a1b2Rα1 + b1),

g−1
1 = (a1, α1, b1)

−1 = (−a1,−α1,−e−a1b1R−α1), (2.1)

e = (0, 0, 0).

The action of G onto R
k×2 is given by the mapping (g,x) 7−→ g.x := eaxRα+1k⊗b, for g = (a, α, b) ∈ G

and x ∈ R
k×2. Note that we use the same symbol “ .” for the composition law of G and its action on

R
k×2. This action can also be defined on L2([0, 1],R2) by replacing f by f ∈ L2([0, 1],R2). Coming

back to the final dimensional case, let
1k×2 = 1k ⊗ R

2

be the two dimensional linear subspace of Rk×2 consisting of degenerated configurations, i.e. configu-
rations composed of k times the same landmarks. The orthogonal subspace 1

⊥
k×2 is the set of centered

configurations. We have the orthogonal decomposition R
k×2 = 1

⊥
k×2 ⊕1k×2, and for any configuration

x ∈ R
k×2 we write x = x0 + x̄ ∈ 1

⊥
k×2 ⊕ 1k×2. We call x0 the centered configuration of x and

x̄ = 1k ⊗
(
1
k

∑k
ℓ=1 x

(1)
ℓ , 1

k

∑k
ℓ=1 x

(2)
ℓ

)

the degenerated configuration associated to x, see Figure 1 for

an illustration.

Orbit, stabilizer and section Given a configuration x in R
k×2, the orbit of x is defined as the set

G.x := {g.x, g ∈ G} ⊂ R
k×2.

This set is also called the shape of x. The orbit of any degenerated configuration is the entire subspace
1k×2. Note also that the linear subspace 1k×2 is stable by the action of G, and that the action of
G on 1k×2 is not free, meaning that for any x̄ ∈ 1k×2 the equality g1.x̄ = g2.x̄ does not imply that
g1 = g2. Now, if x ∈ R

k×2 \ 1k×2 is a non-degenerated configuration of k landmarks, its orbit G.x is a
sub-manifold of Rk×2 \ 1k×2 of dimension dim(G) = 4.

Given a configuration x ∈ R
k×2, the stabilizer I(x) is the closed subgroup of G which leaves x

invariant, namely
I(x) = {g ∈ G : g.x = x}.

If x̄ = 1k ⊗ (x̄(1), x̄(2)) ∈ 1k×2 is a degenerated configuration, its stabilizer is non trivial and is equal
to I(x̄) = {(a, α, (x̄(1), x̄(2)) − ea(x̄(1), x̄(2))Rα), a ∈ R, α ∈ [−π, π[}. If x ∈ R

k×2 \ 1k×2 is a non-
degenerated configuration, its stabilizer I(x) is trivial, i.e. is reduced to the identity {e}. The action
of G is said free if the stabilizer of any point is reduced to the identity. Hence, the action of G is free
on the set of non-degenerated configurations of k-ads in R

2.
A section of the orbits of G is a subset of Rk×2 containing a unique element of each orbit. A well-

known example of section for the similarity group acting on R
k×2 \ 1k×2 is the so-called Bookstein’s

coordinates system (see e.g. [Dryden & Mardia, 1998] p. 27).

2.2 Kendall’s shape space and Generalized Procrustes analysis

Shape space Let x ∈ R
k×2 \ 1k×2 be a non-degenerated configuration. Let H = Idk − 1

k
1k1

′
k

be a centering matrix. The effect of translation can be eliminated by centering the configuration x

using the matrix H (see [Dryden & Mardia, 1998] for other centering methods), while the effect of
isotropic scaling is removed by projecting the centered configuration on a unit sphere, which yields to
the so-called pre-shape x0 of x defined as

x0 =
Hx

‖Hx‖
Rk×2

∈ R
k×2.

Consider now the pre-shape sphere defined by S
k
2 :=

{
x0, x ∈ R

k×2 \ 1k×2

}
and see Figure 1 for an

illustration. Note that this normalization of the planar configurations amounts to choose a section for
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1
⊥
k×2

G.x

1k×2

x

x̄

x0

x0

Figure 1: Three orbits of the action of the similarity group G are represented in blue. The space
of centered configurations 1

⊥
k×2 is the green plane. The preshape sphere S

k
2 is the red circle. For a

particular x ∈ R
k×2, the centered version is x0 and the centered and normalized version is x0. The

degenerated configuration associated to x is x̄.

the action of the group generated by the translation and scaling in the plane. The Kendall’s shape
space is then defined as the quotient of Sk2 by the group SO(2) of rotations of the plane, namely

Σ
k
2 := S

k
2/SO(2) =

{

[x0] : x0 ∈ S
k
2

}

with [x0] =
{
x0Rα, α ∈ [−π, π[

}
.

The space Σ
k
2 can be endowed with a Riemannian structure and we refer to [Kendall et al., 1999] for

a detail discussion on its geometric properties.
Let us briefly recall the definition of the so-called partial and full Procrustes distances on S

k
2. The

partial Procrustes distance is defined on the pre-shape sphere S
k
2 as

d2P (x
0,y0) = inf

α∈[−π,π[
‖x0 − y0Rα‖2Rk×2 , x,y ∈ S

k
2 .

Hence, it is the (Euclidean) distance between the orbits [x0] = SO(2).x0 and [y0] = SO(2).y0 with
x0,y0 ∈ S

k
2 . Let now H be the group of transformations of the plane generated by scaling and

rotations. The action of h ∈ H on the centered configuration x0 is defined as h.x0 := eax0Rα where
h = (a, α) ∈ R× [−π, π[. The Full Procrustes distance is then defined as

d2F (x
0,y0) = inf

h∈H
‖x0 − h.y0‖2

Rk×2 , x,y ∈ S
k
2.

Generalized Procrustes analysis The full Procrustes sample mean ŶF of Y1, . . . ,YJ (see e.g.
[Goodall, 1991, Dryden & Mardia, 1998]) is defined by

ŶF = argmin
x0∈Sk2

J∑

j=1

d2F (Y
0
j ,x

0). (2.2)

The partial Procrustes mean ŶP is defined in the same way by replacing dF by dP in (2.2). Thence,
this two Procrustes means are Fréchet mean either on (Sk2, dF ) or (Sk2, dP ) endowed with the empirical
measure µJ =

∑J
j=1 δYj

.
In practice, there are several way to compute the full Procrustes mean. In [Kent, 1992] the author

used complex coordinates and expressed the full Procrustes mean as the biggest eigenvalue of a symmet-
rical positive definite complex matrix, see [Dryden & Mardia, 1998] result 3.2 and [Bhattacharya & Patrangenaru, 2
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The full Procrustes mean ŶF can also be approximated by General Procrustes procedure which
amounts to use the following identity

ŶF =
1

J

J∑

j=1

ĥj ·Y0
j (2.3)

where ĥ1, . . . , ĥJ are the argmins of the functional M(h1, . . . , hJ ) =
1
J

∑J
j=1

∥
∥hj .Y

0
j− 1

J

∑J
j′=1 hj′ .Y

0
j′

∥
∥2

Rk×2

subject to the constraint ‖ 1
J

∑J
j=1 hj.Y

0
j ‖2Rk×2 = 1. The configurations ĥ.Yj ’s are known as Full Pro-

crustes fits and the ĥ can be explicitly computed by using a singular value decomposition. In practice,
one can use the iterative General Procrustes algorithm to compute Ŷ, see [Dryden & Mardia, 1998]
pages 90-91.

2.3 Discussion on the double asymptotic setting and comparison with GPA

Asymptotic settings When random planar curves (such as digits or letters for instance) are ob-
served, a natural framework for statistical inference is an asymptotic setting in the number J of curves.
This setting means that increasing the number of curves at hand should help to compute a more ac-
curate empirical mean curve. Unfortunately, consistency results of Procrustes type procedures are
reduced to the very specific case of an isotropic perturbation. In this paper, we show that increasing
the number k of discretization points will ensure a consistent estimation of a mean shape in more
general cases.

Consider model (1.1) where k > 2 is fixed and the random perturbation ζ is isotropic, (see
Proposition 1 in [Le, 1998] for a precise definition of isotropy for random variables belonging to
R
k×2). In this framework, it has been proved in [Kent & Mardia, 1997] that the functional MJ(x

0) =
1
J

∑J
j=1 d

2
F (Yj ,x

0) defined on R
k×2 converge uniformly in probability to the functional M(x0) =

E(d2F (Y1,x
0)) which admits a unique minimum at [f0]. These two facts imply that [ŶF ] converges

almost surely to [f0] as J → +∞. In [Le, 1998] the author used a Fréchet mean approach to show
the consistency of ŶF with a slightly more general kind of noise. Finally, note that the estimator ŶP

defined above is also studied in [Kent & Mardia, 1997, Le, 1998] with similar consistency results.
When the random perturbation ζ in model (1.1) is non-isotropic, it has been argued in [Kent & Mardia, 1997]

that the Procrustes estimator ŶF can be arbitrarily inconsistent when the signal-to-noise ratio decrease.
The heuristic presented by the authors suggests that the main phenomenon that prevent the Procrustes
estimator to be consistent is the fact that the functional M do not attain its minimum at [f0]. In
section 4.2 of [Huckemann, 2011] the author makes this remark clear as he gives an explicit example :
given a mean pattern f0, the idea is to increase the level of noise ζ until the argmin of the functional
M which was initially equals to [f0] jumps abruptly to another point. This phenomenon seems to be
linked to the geometry of the sphere and properties of the Fréchet mean.

Comparison with GPA Hence, it is commonly the belief that Procrustes sample means can be
inconsistent when considering convergence in Σ

k
2 and the asymptotic setting J → +∞. Nevertheless,

the above discussion suggests that a sufficient condition to ensure the consistency of Procrutres type
estimators is to control the level of non-isotropic noise. That is why we introduced a pre-smoothing
step that takes advantage of increasing the number k of points composing each configuration in order
to ensure more general consistency results. Therefore, our approach and GPA share some similarities.
They are both based on the estimation of scaling, rotation and translation parameters by a Procrustean
procedure which leads to the M-estimators (1.6) which is related to (2.2). To compute a sample mean
shape, this M-estimation step is then followed by a standard empirical mean in R

k×2 of the aligned
data using these estimated deformation parameters, see equations (1.8) and (2.3).

However, one of the main differences between the approach developed in this paper and GPA
is the choice of the normalization of the data. In GPA, the deformation parameters ĥ1, . . . , ĥJ are
computed so that the full Procrustes sample mean ŶF belongs to the pre-shape sphere S

k
2, see the
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constraint appearing in (2.2). Therefore, the computation of ĥ1, . . . , ĥJ is somewhat independent of
any assumption on the true parameters (a∗,α∗, b∗) in model (1.1). In this paper, to ensure the well-
posedness of the problem (1.6), we chose to compute the estimator (âλ, α̂λ, b̂λ) by minimizing the
matching criterion (1.5) on the constrained set Θ0. The choice of the constraints in Θ0 is motivated
by the hypothesis that the true deformation parameters (a∗,α∗, b∗) in (1.1) are centered around the
identity.

3 Identifiability conditions

Recall that in model (1.1), the random deformations acting on the the mean pattern f are parametrized
by a vector (a∗,α∗, b∗) = (a∗1, . . . , a

∗
J , α

∗
1, . . . , α

∗
J , b

∗
1, . . . , b

∗
J ) in R

J × [−π, π[J×R
2J .

Assumption 3. Let 0 < A,B and 0 < A < π be three real numbers. The deformation parameters
(a∗

j ,α
∗
j , b

∗
j), are i.i.d random variables with zero expectation and and taking their values in

Θ∗ =

[

−A

2
,
A

2

]

×
[

−A
2
,
A
2

]

× [−B,B]2.

Let Θ
∗ =

[
−A

2 ,
A
2

]J ×
[
−A

2 ,
A
2

]J × [−B,B]2J . Under Assumption 3, we have (a∗,α∗, b∗) ∈ Θ
∗.

Note that the compactness of Θ∗ (and thus of Θ∗) is an essential condition to ensure the consistency of
our procedure. Indeed, the estimation of the deformation parameters (a∗,α∗, b∗) and the mean pattern
f is based on the minimization of the criterion (1.5). If there were no restriction on the amplitude of
the scaling parameter, the degenerate solution aj = −∞ for all j = 1, . . . , J is always a minimizer of
(1.5). Therefore, the minimization has to be performed under additional compact constraints.

3.1 The deterministic criterion D

Let (a,α, b) ∈ R
J × [−π, π[J×R

2J and consider the following criterion,

D(a,α, b) =
1

Jk

J∑

j=1

∥
∥
∥
∥
(g−1

j .g∗j ).f − 1

J

J∑

j′=1

(g−1
j′ .g∗j′).f

∥
∥
∥
∥

2

Rk×2

. (3.1)

where gj = (aj , αj , bj) and g∗j = (a∗j , α
∗
j , b

∗
j ) for all j = 1, . . . , J . The criterion D is a version without

noise of the criterion Mλ defined at (1.5). The estimation procedure described in Section 1.1 is based
on the convergence of the argmins of Mλ toward the argmin of D when k goes to infinity. As a
consequence, choosing identifiability conditions amounts to fix a subset Θ0 of RJ × [−π, π[J×R

2J on
which D has a unique argmin. In the rest of this section, we determine the zeros of D, and then we
fix a convenient constraint set Θ0 that contains a unique point at which D vanishes.

The criterion D clearly vanishes at (a∗,α∗, b∗) ∈ R
J × [−π, π[J×R

2J . This minimum is not unique
since easy algebra implies that

D(a,α, b) = 0 ⇐⇒ (g−1
j .g∗j ).f = (g−1

j′ .g∗j′).f , for all j, j′ = 1, . . . , J.

Suppose now that f /∈ 12×k is a non-degenerated planar configuration. In Section 2.1, we have seen
that the action of G on f is free, that is, the stabilizer I(f) is reduced to the identity. Thus, we obtain,

D(a,α, b) = 0 ⇐⇒ g−1
j .g∗j = g−1

j′ .g∗j′ , for all j, j′ = 1, . . . , J

⇐⇒







a∗j − aj = a∗j′ − aj′ ,

α∗
j − αj = α∗

j′ − αj′ ,

e−aj (b∗j − bj)R−αj
= e−aj′ (b∗j′ − bj′)R−αj′

for all j, j′ = 1, . . . , J

We have proved the folowing result,
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Lemma 3.1. Let f ∈ R
k×2 be a non-degenerated configuration of k-ads in the plane, i.e. f /∈ 12×k.

Then, D(a,α, b) = 0 if and only if (a,α, b) belongs to the set

(a∗,α∗, b∗) ∗ G =
{

(a∗,α∗, b∗) ∗ (a0, α0, b0), (a0, α0, b0) ∈ R× [−π, π[×R
2
}

,

where (a∗,α∗, b∗)∗(a0, α0, b0) = (a∗1+a0, . . . , a
∗
J+a0, α

∗
1+α0, . . . , α

∗
J+α0, e

a∗1b0Rα∗
1
+b∗1, . . . , e

a∗J b0Rα∗
J
+

b∗J) ∈ R
J × [−π, π[J×R

2J .

Remark 1. Lemma 3.1 is simpler than it appears. By reordering the entries of the vector (a∗,α∗, b∗)
there is an obvious correspondence between (a∗,α∗, b∗) ∈ Θ

∗ and (g∗1 , . . . , g
∗
J ) ∈ GJ via the parametri-

zation of the similarity group defined in Section 2.1. Hence, Lemma 3.1 tells us that the criterion D
vanishes for all the vectors (a,α, b) ∈ R

J × [−π, π[J×R
2J corresponding to the subset of the group GJ

given by
(g∗1 , . . . , g

∗
J ) ∗ G = {(g∗1 .g0, . . . , g∗J .g0), g0 ∈ G} ⊂ GJ .

The “∗” notation is nothing else than the right composition by a same g0 ∈ G of all the entries of a
(g1, . . . , gJ ) ∈ GJ . Hence the subset (g∗1 , . . . , g

∗
J)∗G can be interpreted as the orbit of (g∗1 , . . . , g

∗
J) ∈ GJ

under the (right) action of G. Indeed, G acts naturally by (right) composition on the all the coordinates
of an element of GJ .

3.2 The constraint set Θ0

By Lemma 3.1, the set Θ0 must intersect at a unique point, say (a∗
Θ0

,α∗
Θ0

, b∗
Θ0

), each set (a∗,α∗, b∗)∗
G. It is convenient to choose Θ0 to be of the form Θ0 = R

J × [−π, π[J×R
2J ∩L0 where L0 is a linear

space of R4J . The linear space L0 must be chosen so that for any (a∗,α∗, b∗) in Θ
∗, there exists a

unique point (a∗
Θ0

,α∗
Θ0

, b∗
Θ0

) in Θ0 that can be written as (a∗
Θ0

,α∗
Θ0

, b∗
Θ0

) = (a∗,α∗, b∗) ∗ (a0, α0, b0)
for some (a0, α0, b0) ∈ R× [−π, π[×R

2.

Remark 2. As we have seen in Remark 1, the set (a∗,α∗, b∗) ∗G can be interpreted as an orbit of the
action of G on GJ . In this terminology, the set Θ0 can be viewed as a section of the orbits. Indeed,
the section is the set of representatives (a∗

Θ0
,α∗

Θ0
, b∗

Θ0
) of each orbit. See Figure 2 for an illustration.

Let us consider a choice of Θ0 motivated by the fact that, under Assumption 3, the random
deformation parameters have zero expectation. In this setting, it is natural to impose that the estimated
deformation parameters sum up to zero by choosing L0 = 1

⊥
4J , which is the orthogonal of the linear

space 14J = 14J .R ⊂ R
4J . Such a choice leads to the set Θ0 defined equation (1.7) i.e.

Θ0 = {(a,α, b) ∈ ΘJ , (a1 + . . .+ aJ , α1 + . . .+ αJ , b1 + . . . + bJ) = 0}.

Now, let us show that for any (a∗,α∗, b∗) ∈ Θ
∗ there exists a unique (a∗

Θ0
,α∗

Θ0
, b∗

Θ0
) = (a∗,α∗, b∗) ∗

(a0, α0, b0) ∈ Θ0 for some (a0, α0, b0) ∈ R× [−π, π[×R
2. This amounts to solve the following equations







a∗1 + a0 + . . . + a∗J + a0 = 0,
α∗
1 + α0 + . . . + α∗

J + α0 = 0,
ea

∗
1b0Rα∗

1
+ b∗1 + . . . + ea

∗
J b0Rα∗

J
+ b∗J = 0.

(3.2)

After some computations, we obtain that equations (3.2) are satisfied if and only if

(a0, α0, b0) = (−ā∗,−ᾱ∗,−b̄
∗
(ea∗Rα∗)−1), (3.3)

where ā∗ = 1
J

∑J
j=1 a

∗
j ∈ R, ᾱ∗ = 1

J

∑J
j=1 α

∗
j ∈ R, b̄

∗
= 1

J

∑J
j=1 b

∗
j ∈ R

2 and ea∗Rα∗ = 1
J

∑J
j=1 e

a∗jRα∗
j

is a 2× 2 invertible matrix. Therefore, (a∗
Θ0

,α∗
Θ0

, b∗
Θ0

) is uniquely given by

([a∗
Θ0

]j , [α
∗
Θ0

]j, [b
∗
Θ0

]j) = (a∗j − ā∗, α∗
j − ᾱ∗, b∗j − ea

∗
j (b̄

∗
(ea∗Rα∗)−1)Rα∗

j
),

for j = 1, . . . , J .
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Θ1 Θ
∗

(a∗,α∗, b∗)

(a∗
Θ1

,α∗
Θ1

, b∗Θ1
)

(a∗
Θ0

,α∗
Θ0

, b∗Θ0
)

Θ0

(a∗,α∗, b∗) ∗ G

Figure 2: Choice of identifiability conditions when J = 2.

Remark 3. Another possible approach is to fix, say the first observation as a reference, meaning that
the criterion D could be optimized on the following subspace of RJ × [−π, π[J×R

2J

Θ1 = {(a,α, b) ∈ [−A,A]J × [−A,A]2J × R
2, (a1, α1, b1) = 0}.

With such a choice, for any (a∗,α∗, b∗) ∈ ΘJ , the j-th coordinate of (a∗
Θ1

,α∗
Θ1

, b∗
Θ1

) = (a∗,α∗, b∗) ∗
(a0, α0, b0) is given by

([a∗
Θ1

]j , [α
∗
Θ1

]j , [b
∗
Θ1

]j) = (a∗j − a∗1, α
∗
j − α∗

1, b
∗
j − ea

∗
j−a∗1b∗1Rα∗

j−α∗
1
),

where (a0, α0, b0) = (a∗1, α
∗
1, b

∗
1)

−1 = (−a∗1,−α∗
1,−e−a∗1b∗1R−α∗

1
). A graphical illustration of the choice

of identifiability conditions for J = 2 is given in Figure 2.

4 The estimating procedure

4.1 A dimension reduction step

We use Fourier filtering to project the data into a low-dimensional space as follows. Assume for
convenience that k is odd. For x = (x′

1, . . . ,x
′
k)

′ ∈ R
k×2 and m = −k−1

2 , . . . , k−1
2 , let

cm(x) =

k∑

ℓ=1

xℓe
−i2πm

ℓ
k =

(
k∑

ℓ=1

x
(1)
ℓ e−i2πm

ℓ
k ,

k∑

ℓ=1

x
(2)
ℓ e−i2πm

ℓ
k

)

∈ C
2 with xℓ = (x

(1)
ℓ , x

(2)
ℓ ),

be the m-th (discrete) Fourier coefficient of x. Let λ ∈ {1, . . . , k−1
2 } be a smoothing parameter, and

define for each Yj the smoothed shapes

f̂λ
j =

(
1

k

∑

0≤|m|≤λ

cm(Yj)e
i2πm ℓ

k

)k

ℓ=1

= A
λ
Yj ∈ R

k×2.

In Section 2.1, we have shown that the similarity group is not free on the subset 1k×2 of degenerated
configurations composed of k identical landmarks, see Section 2.1. That is why we are going to treat
separately the subspace 1k×2 and 1

⊥
k×2 by considering the matrices

Ā =
1

k
1k1

′
k and Aλ

0 =

(
1

k

∑

0<|m|≤λ

ei2πm
ℓ−ℓ′

k

)k

ℓ,ℓ′=1

. (4.1)

Remark that Ā is a projection matrix on the one dimensional sub-space V̄ := 1k.R = {c1k : c ∈ R} of
R
k. The matrix Aλ

0 is a projection matrix in a (trigonometric) sub-space Vλ
0 of dimension 2λ. Note
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that it is included in the linear space V̄⊥ = {x ∈ R
k : x′1k = 0}. Hence, Vλ

0 × Vλ
0 is a linear subspace

of 1⊥
k×2 which is the space of the centered configurations. We have,

A
λ = Aλ

0 + Ā and V
λ = Vλ

0 ⊕ V̄ . (4.2)

Thus, we can write the smoothed shape f̂
λ

j as

f̂
λ

j = A
λ
Yj = Aλ

0Yj + ĀYj ∈ (V̄ × V̄)⊕ (Vλ
0 × Vλ

0 )

where V̄ ×V̄ = 1k×2 and Vλ
0 ×Vλ

0 ⊂ 1
⊥
k×2. In other words, Aλ

0Yj is the smoothed centered configuration
associated to Yj and ĀYj is the degenerated configuration given by the Euclidean mean of the k
landmarks composing Yj. Finally, remark that the low pass filter and the action of similarity group
commute, that is, we have for all g ∈ G and f ∈ R

k×2

g.(Aλf) = eaAλfRα + 1k ⊗ b = A
λ(eafRα + 1k ⊗ b) = A

λ(g.f ).

4.2 Estimation of the deformation parameters

Recall that the estimator (âλ, α̂λ, b̂λ) of (a∗,α∗, b∗) is defined by the optimization problem (1.6).
Nevertheless, as it is suggested by the discussion of Sections 2.1 and 4.1, one can carry out the estimation
process in two steps. First, we estimate the rotation and scaling parameters on the space Vλ

0×Vλ
0 ⊂ 1

⊥
k×2

of the centered configurations. We then use these estimators to estimate the translation parameters
which act on V̄ × V̄ = 1k×2. Note that this procedure is equivalent to the optimization problem (1.6)
as shown by Lemma 4.1 below.

Estimation of rotations and scaling. Define

Mλ
0 (a,α) =

1

Jk

J∑

j=1

∥
∥
∥
∥
e−ajAλ

0YjR−αj
− 1

J

J∑

j′=1

e−aj′Aλ
0Yj′R−αj′

∥
∥
∥
∥

2

Rk×2

.

Let 1⊥
J = {(a1, . . . , aJ) ∈ R

J , a1 + . . . , aJ = 0} and consider the space Θ
a,α
0 = ([−A,A]J ∩ 1

⊥
J ) ×

([−A,A]J ∩ 1
⊥
J ). Then, estimators of the rotation and scaling parameters are given by

(âλ, α̂λ) ∈ argmin
(a,α)∈Θa,α

0

Mλ
0 (a,α). (4.3)

Estimation of translations. Now that we have computed estimators of the rotation and scaling
parameters, let us define the criterion,

M̄ (a,α, b) =
1

Jk

J∑

j=1

∥
∥
∥
∥
e−aj Ā(Yj − 1k ⊗ bj)R−αj

− 1

J

J∑

j′=1

e−aj′ Ā(Yj′ − 1k ⊗ bj′)R−αj′

∥
∥
∥
∥

2

Rk×2

and the space Θ
b
0 = {(b(1)1 , . . . , b

(1)
J , b

(2)
1 , . . . , b

(2)
J ) ∈ R

2J , b
(1)
1 + . . . + b

(1)
J = b

(2)
1 + . . . + b

(2)
J = 0}. The

estimator of the translation parameters is then given by,

b̂λ = argmin
b∈Θb

0

M̄(âλ, α̂λ, b). (4.4)

We emphasis that the estimators of the translation parameters depend on the estimated rotation and
scaling parameters. It is shown in the proof of Lemma 4.1 below that we have an explicit expression
of b̂λ given by

b̂λ = (Ȳ1 − ea1Ȳ(eaRα)
−1Rα1 , . . . , ȲJ − eaJ Ȳ(eaRα)

−1RαJ
) (4.5)
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where eaRα = 1
J

∑J
j=1 e

ajRαj
∈ R

2×2, Ȳj = 1
k

∑k
ℓ=1[Yj ]ℓ ∈ R

2, that is ĀYj = 1k ⊗ Ȳj ∈ R
k×2 is a

degenerated configuration, and Ȳ = 1
J

∑J
j=1 Ȳj ∈ R

2.

This two steps procedure is equivalent to the optimization problem (1.6) as we have the following
decompositions Mλ(a,α, b) = Mλ

0 (a,α)+ M̄ (a,α, b) and Θ0 = Θ
a,α
0 ×Θ

b
0, implying following result

(see the Appendix for a detailed proof)

Lemma 4.1. (âλ, α̂λ, b̂λ) ∈ argmin
(a,α,b)∈Θ0

Mλ(a,α, b) ⇐⇒







(âλ, α̂λ) ∈ argmin
(a,α)∈Θa,α

0

Mλ
0 (a,α)

b̂λ = argmin
b∈Θb

0

M̄(âλ, α̂λ, b).

5 Consistency results

In what follows, C,C0, C1 denote positive constants whose value may change from line to line. The
notation C(·) specifies the dependency of C on some quantities.

5.1 Consistent estimation of the deformation parameters

Rotation and scaling. Recall that the rotation and scaling parameters are estimated separately on
the smoothed and centered observations. We have the following result,

Theorem 5.1. Consider model (1.1) and suppose that Assumptions 1 and 2 hold and that Assumption
3 is verified with max{A,A} < 0.1. Consider (âλ, α̂λ) the estimators defined in equation (4.3). If

λ = k
1

2s+1 then for all x > 0 we have

P

(
1

J
‖(âλ, α̂λ)− (a∗,α∗)‖2

R2J ≥ C1(L, s,A,A,f 0)A1(k, J, x) + C2(A,A)A2(J, x)

)

≤ 4e−x, (5.1)

where C1(L, s,A,A,f 0), C2(A,A) > 0 are positive constants independent of k and J , A1(k, J, x) =

F
(
k−

2s
2s+1

)
+F

(
V1(k, J, x)

)
with V1(k, J, x) = 3γmax(k)k

− 2s
2s+1

(
1 +

√
2 x
Jk

+ 2 x
Jk

)
and A2(J, x) =

(
x
3J +

√
2x
J

)2
, where F (u) = u+

√
u, for all u ≥ 0.

Remark that a direct consequence of Theorem 5.1 is the consistency of (âλ, α̂λ) to (a∗,α∗) when
min{k, J} → ∞. Indeed, we have limu→0 F (u) = 0 and under Assumption 2 and for any fixed J ≥ 1
and x > 0, the term V1(k, J, x) tends to zero as k goes to infinity. Hence for any x > 0 and J ≥ 1, we
have

lim
k→∞

A1(k, J, x) = 0.

Under the same hypothesis as in Theorem 5.1 but without the bounds on A and A, Proposition A.1
then ensures the convergence of (âλ, α̂λ) to (a∗

Θ0
,α∗

Θ0
) as J remains fixed and k → ∞. Now, for all

x > 0, we have
lim
J→∞

A2(J, x) = 0.

Thus a double asymptotic min{k, J} → ∞ ensures that 1
J
‖(âλ, α̂λ) − (a∗,α∗)‖2

R2J tends to 0 in
probability.

Translation parameters. We have the following result,

Theorem 5.2. Consider the hypothesis and notations of Theorem 5.1 and the estimator b̂λ given by
formula (4.4). Then we have for all x > 0,

P

( 1

J
‖b̂λ − b∗‖2

R2J ≥ C3(L, s,A,A, B,f )A3(k, J, x) + C4(A,A, B)A2(J, x)
)

≤ 9e−x, (5.2)
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where C3(L, s,A,A, B,f ), C4(A,A, B) > 0 are positive constants independent of k and J , A3(k, J, x) =

F (k−
2s

2s+1 ) + F (V1(k, J, x)) + V2(k, J, x) with V2(k, J, x) = 4γmax(k)
k

(
1 +

√
2x
J
+ x

J

)
.

Similar comments to those made after Theorem 5.1 are still valid here. For any J ∈ N and x > 0,
we have

lim
k→∞

A3(k, J, x) = 0,

since V2(k, J, x) tends to 0 as k goes to infinity by Assumption 2. Under the same hypothesis as
in Theorem 5.2 but without the bounds on A and A, Proposition A.3 ensures the convergence in
probability of bλ to b∗

Θ0
with only an asymptotic in k. In the double asymptotic setting min{k, J} → ∞,

Theorem 5.2 ensure the consistency of b̂λ to the true value b∗ of the translation parameters.

5.2 Consistent estimation of the mean shape

Theorem 5.3. Consider model (1.1) and suppose that Assumptions 1 and 2 hold and that Assumption

3 is verified with max{A,A} < 0.1. Consider the estimator f̂λ defined in (1.8) and let λ = k
1

2s+1 .
Then, we have for all x > 0,

P

(
1

k
‖f̂λ − f‖2

Rk×2 ≥ C(L, s,A,A, B,f )
(

A1(k, J, x) +A3(k, J, x) +A2(J, x)
))

≤ 14e−x,

where C(L, s,A,A, B,f ) > 0 is a constant independent of k and J , A1(k, J, x) = F
(
k−

2s
2s+1

)
+

F
(
V1(k, J, x)

)
with V1(k, J, x) = 3γmax(k)k

− 2s
2s+1

(
1 +

√
2 x
Jk

+ 2 x
Jk

)
, A3(k, J, x) = V2(k, J, x) +

F (k−
2s

2s+1 ) + F (V1(k, J, x)) with V2(k, J, x) = 4γmax(k)
k

(
1 +

√
2x
J
+ x

J

)
and A2(J, x) =

(√
2x
J
+ x

3J

)2
.

The terms A1(k, J, x), A3(k, J, x) and A2(J, x) that appear in the statement of Theorem 5.3 are
the same to those appearing in Theorems 5.1 and 5.2. As a consequence, we have 1

k
‖f̂λ − f‖2

Rk×2 → 0

in probability when min{k, J} → ∞ and Theorem 5.3 gives rates of convergences of f̂λ to f thanks
to a concentration inequality.

Theorem 5.3 is similar to Theorems 5.1 and 5.2 and there is no need to assume an extra bound on
A and A to ensure the convergence in probability of f̂λ when J is fixed and k → ∞, see the discussion
following Theorems 5.1 and 5.2. Let

fΘ0 = eā
∗

(f + 1k ⊗ b̄
∗
(ea∗Rα∗)−1)Rᾱ∗ (5.3)

where ā∗ = 1
J

∑J
j=1 a

∗
j ∈ R, ᾱ∗ = 1

J

∑J
j=1 α

∗
j ∈ R, b̄

∗
= 1

J

∑J
j=1 b

∗
j ∈ R

2 and ea∗Rα∗ = 1
J

∑J
j=1 e

a∗jRα∗
j

is an invertible 2× 2 matrix, see also formula (3.3). A slight modification of the proof of Theorem 5.3
gives the following inequality,

P

(
1

k
‖f̂λ − fΘ0‖2 ≥ C(L, s,A,A, B,f)

(

A1(k, J, x) +A3(k, J, x)
))

≤ 14e−x.

This yields to statements (1.9) in Theorem 1.1.

6 Numerical experiments

6.1 Description of the data

We make here some numerical simulations to show the effect of the dimension k and the number
J of observations on the estimation of the deformation parameters and the mean pattern with data
generated by model (1.1). Different types of noise are considered. For all t ∈ [0, 1], let

f(t) = (10 sin2(πt) + cos(10π) + 20, 2 sin(6πt)− 11 sin2(πt) + 12 exp(−25(t− 0.4)2) + 1).

14
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Figure 3: (a) Plot of the mean pattern f = (f (1),f (2)) used in the simulations with k = 1024. (b)
The first coordinates f (1). (c) The second coordinates f (2).

This curve is plotted in Figure 3. The deformation parameters (a∗j , α
∗
j , b

∗
j), j = 1, . . . , J , are i.i.d

uniform random variables taking their values in Θ = [−1
4 ,

1
4 ] × [−1

2 ,
1
2 ] × [−1, 1]2. The law of the

deformation parameters is supposed to be unknown a priori and the minimization is performed on the
constraint set

Θ0 =

{

(a,α, b) ∈ [−1, 1]J × [−1, 1]J × [−5, 5]2J ,

J∑

j=1

aj = 0,

J∑

j=1

αj = 0 and

J∑

j=1

bj = 0

}

.

Recall our notations: the error term is denoted by ζ = (ζ(1), ζ(2)) ∈ R
k×2 and the vectorized version

of ζ is denoted by ζ̃ ∈ R
2k. The simulations were run with three different kinds of noise.

White noise : the random variable ζ̃ = (ζ
(1)
1 , ζ

(1)
2 , . . . , ζ

(k)
1 , ζ

(k)
2 )′ ∈ R

2k is a centered Gaussian vector
of variance

Σ1 = 4Id2k.

We have γmax(k) = 4 and this correspond to an isotropic Gaussian noise as in [Kent & Mardia, 1997,
Le, 1998], see Figure 4.

Weakly correlated noise : the random variable ζ̃ is a centered Gaussian vector of variance Σ2 with

Σ

1
2
2 = Id2 ⊗

[
1
2 exp

(

− |ℓ−ℓ′|
100

2)]k

ℓ,ℓ′=1

Hence, Σ2 is a Toeplitz matrix and it follows from classical matrix theory, see e.g. [Horn & Johnson, 1990],
that γmax(k) is bounded (here γmax ≤ 80). See Figure 5.

Highly correlated noise : the random variable ζ̃ is a centered Gaussian vector of variance

Σ3 = Id2 ⊗ P Diag
(

ℓ2

2k , ℓ = 1, . . . , k
)

P ′

where P is an arbitrary matrix in SO(k). Hence, in this case γmax(k) =
k
4 and the level of noise

increase with k, see Figure 6.

6.2 Description of the procedure

The estimation procedure follows the guidelines described in Section 4. We are testing the effect of the
number J of observations and the number k of landmarks on the estimation of the parameters of interest
of model (1.1). All the simulations are performed with J = 10, 100, 500 and k = 20, 50, 100, 1000, 3000

15
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Figure 4: Example of data generated by model (1.1) with white noise.
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Figure 5: Example of data generated by model (1.1) with weakly correlated noise.
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Figure 6: Example of observations generated by model (1.1) with the highly correlated noise.
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and for each combination of these two factors the simulations are performed with M = 30 repetitions
of model (1.1).

Moreover, estimations are done without and with the pre-smoothing step. In the former case we
have λ(k) = k

2 , that is, there is no reduction of the dimension. In the latter case, the smoothing
parameter λ(k) is fixed manually to ensure a proper reconstruction of the mean pattern f . Note that
we need λ > 7 to get correct results and we took λ20 = λ50 = λ100 = 7, λ1000 = 11 and λ3000 = 25.

We use a quasi-Newton trust-region based algorithm to solve the optimization problems (4.3) and
(4.4). The formula for the gradient is given in (B.1). All the computations are performed with Matlab.

6.3 Results: estimation of the mean pattern

For each of the 30 repetitions of model (1.1) with the possible values of k and J , we compute the
quantities 1

k
‖f̂λ−f∗

Θ0
‖2
Rk×2 where f̂λ corresponds to the smoothed Procrustes mean of the observations

defined in (1.8) and, 1
k
‖f̂ − f∗

Θ0
‖2
Rk×2 where f̂ is the (non smoothed) Procrustes mean of the data.

Recall that fΘ0 is defined by formula (5.3).
Boxplots of the results are given in Figures 7, 8 and 9 for the different kinds of error terms described

in Section 6.1. In the figures, the abscissa represents the different values of the number k of landmarks
and boxplots in red correspond to J = 10 observations, in green to J = 100 observations and in blue
to J = 500 observations.

The estimation of the mean pattern with the white noise error term is given by Figure 7. In Figure
7a, for a fixed k, the non-smoothed version 1

k
‖f̂ − f∗‖2

Rk×2 decreases when J increases. Moreover, the

values of 1
k
‖f̂−f∗‖2

Rk×2 remain stable when J remains fixed and k increases. Recall that this framework
corresponds to the isotropic Gaussian noise described in [Kent & Mardia, 1997]. The simulations seem
to confirm their conclusions and show that in this framework the dimension k is not preponderant. In
Figure 7b, the smoothed version 1

k
‖f̂λ−f‖2

Rk×2 decreases when J and k increase. The main difference

with the non-smoothed estimation is the convergence to 0 of 1
k
‖f̂λ−f‖2

Rk×2 when J remains fixed and
k increases.

In Figure 8, the results of the estimation of the mean pattern are plotted for the weakly correlated
noise term. Figure 8a shows us a similar behavior of the non-smoothed Procrustes mean but with non-
decreasing values of 1

k
‖f̂λ−f∗‖2

Rk×2 when k increases and J remains fixed. In Figure 8b, the smoothed
Procrustes mean converges as k goes to infinity and the bigger J is the faster the convergence is.

The results of the estimations of the mean pattern with the highly correlated noise are presented
Figure 9. The results that appear in Figure 9a are quite different compared to those presented Figures
7a and 8a. The estimation seems to be worst when k increases and J remains fixed. The reason is
that the level of noise, measured by γmax(k) is increasing with k. The smoothing step is efficient and
the estimations presented Figure 9b have a similar behavior to those given in Figures 7b and 8b.

A Proofs

A.1 Proof of Lemma 4.1

Using the decomposition (4.2), we obtain the following identity

Mλ(a,α, b) = Mλ
0 (a,α) + M̄(a,α, b). (A.1)

Note that we have used the fact that the subspaces Vλ
0 and V̄ are orthogonal and that Ā1k ⊗ bj =

1k ⊗ bj, for all bj ∈ R
2. Let us also introduce the notation Ȳj = 1

k

∑k
ℓ=1[Yj ]ℓ ∈ R

2, that is ĀYj =

1k ⊗ Ȳj ∈ R
k×2 is a degenerated configuration, and Ȳ = 1

J

∑J
j=1 Ȳj ∈ R

2. For a fixed (a,α) ∈
R
J × [−π, π[J , the functional b 7−→ M̄(a,α, b) vanishes if and only if there exists a b0 ∈ R

2 such
that e−aj (ĀYj − 1k ⊗ bj)R−αj

= 1k ⊗ b0 for all j = 1, . . . , J . Therefore, for this fixed (a,α),

there is a unique point b = b(a,α) := (Ȳ1 − ea1Ȳ(eaRα)
−1Rα1 , . . . , ȲJ − eaJ Ȳ(eaRα)

−1RαJ
) with
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Figure 7: Estimation of the mean pattern with the white noise. Boxplot in red correspond to J = 10,
in green to J = 100 and in blue to J = 500.
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(a) Boxplot of 1
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Rk×2 (estimation with-
out smoothing).
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Figure 8: Estimation of the mean pattern with the weakly correlated noise. Boxplot in red correspond
to J = 10, in green to J = 100 and in blue to J = 500.
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(a) Boxplot of 1
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Rk×2 (estimation with-
out smoothing). The missing red boxplot for
k = 20 and J = 10 belongs to the range
[70, 110].
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Figure 9: Estimation of the mean pattern with the highly correlated noise. Boxplot in red correspond
to J = 10, in green to J = 100 and in blue to J = 500.
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eaRα = 1
J

∑J
j=1 e

ajRαj
∈ R

2×2 and which satisfies,

b(a,α) = argmin
b∈Θb

0

M̄(a,α, b)

Thence, thanks to the decomposition (A.1) and the fact that M̄(a,α, b(a,α)) = 0, we have

argmin
(a,α,b)∈Θ0

Mλ(a,α, b) =

(

argmin
(a,α)∈Θa,α

0

Mλ
0 (a,α) , b

(

argmin
(a,α)∈Θa,α

0

Mλ
0 (a,α)

))

,

and the claim is proved.

A.2 Proof of Theorem 5.1

For all (âλ, α̂λ) ∈ Θ
a,α
0 and (a∗,α∗) ∈ [−A,A]× [−A,A], we have the following inequality

1

J
‖(âλ, α̂λ)− (a∗,α∗)‖2

R2J ≤ 2

J
‖(âλ, α̂λ)− (a∗

Θ0
,α∗

Θ0
)‖2

R2J +
2

J
‖(a∗

Θ0
,α∗

Θ0
)− (a∗,α∗)‖2

R2J .

The proof of Theorem 5.1 is a direct consequence of Proposition A.1 and Lemma A.2 below which
control the convergence in probability of the two terms in the right hand side in the preceding inequality.

Proposition A.1. Consider model (1.1) and suppose that Assumptions 1 and 2 hold and that Assump-

tion 3 is verified with A,A < 0.1. If λ = λ(k) = k
1

2s+1 then there exists a constant C(L, s,A,A,f0)
such that for all x > 0

P

(
1

J
‖(âλ, α̂λ)− (a∗

Θ0
,α∗

Θ0
)‖2

R2J ≥ C(L, s,A,A,f0)
(

F
(
k−

2s
2s+1

)
+ F

(
V1(k, J, x)

))
)

≤ 2e−x,

where V1(k, J, x) = 3γmax(k)k
− 2s

2s+1
(
1 +

√
2 x
Jk

+ 2 x
Jk

)
and F : R+ −→ R, with F (u) = u+

√
u.

The proof of Proposition A.1 is postponed to Section A.5. The following lemma is a direct consequence
of Bernstein’s inequality for bounded random variables, see e.g. Proposition 2.9 in [Massart, 2007].

Lemma A.2. Suppose that Assumption 3 holds and that the random variables (a∗j , α
∗
j ), j = 1, . . . , J

have zero expectation in [−A,A] × [−A,A]. Then, for any x > 0, we have

P

(
1

J
‖(a∗

Θ0
,α∗

Θ0
)− (a∗,α∗)‖2

R2J ≥ C(A,A)
(√

2x
J
+ x

3J

)2
)

≤ 4e−x,

where C(A,A) = 4max{A2,A2}.

A.3 Proof of Theorem 5.2

The proof of Theorem 5.2 follows the same guideline as the proof of Theorem 5.1. Consider the
inequality

1

J
‖b̂λ − b∗‖2

R2J ≤ 2

J
‖b̂λ − b∗Θ0

‖2
R2J +

2

J
‖b∗Θ0

− b∗‖2
R2J .

Theorem 5.2 is now a direct consequence of Proposition A.3 and Lemma A.4.

Proposition A.3. Under the hypothesis of Proposition A.1, there exists a constant C(L, s,A,A,
B,f) > 0 such that for all x > 0,

P

(
2

J
‖b̂λ − b∗Θ0

‖2
R2J ≥ C(L, s,A,A, B,f )

(

F (k−
−2s
2s+1 ) + F (V1(k, J, x)) + V2(k, J, x)

))

≤ 5e−x,

where V1(k, J, x) = 3γmax(k)k
− 2s

2s+1
(
1 +

√
2 x
Jk

+ 2 x
Jk

)
, V2(k, J, x) = 4

k
γmax(k)

(
1 +

√
2x
J
+ x

J

)
and

F (u) = u+
√
u, u ≥ 0.
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The proof of Proposition A.3 is postponed to Section A.6.

Lemma A.4. Suppose that Assumption 3 holds with A < π
4 and that the random variables (a∗j , α

∗
j , b

∗
j )

j = 1, . . . , J have zero expectation in Θ ⊂ R
4J . For any x > 0 , we have

P

( 2

J
‖b∗Θ0

− b∗‖2
R2J ≥ C(A,A, B)

(√
2x
J
+ x

3J

)2)

≤ 4e−x,

where C(A,A, B) = 8B2e4A(cosA− sinA)−2.

Proof. This result is a consequence of the Bernstein’s inequality for bounded random variable. We
have

‖b∗Θ0
− b∗‖R2J =

√
√
√
√

J∑

j=1

‖ea∗j b̄∗(eaRα)−1Rα∗
j
‖2
R2 ≤ eA

√
J‖b̄∗(ea∗Rα∗)−1‖R2 ,

where ea∗Rα∗ = 1
J

∑J
j=1 e

a∗jRα∗
j

is an invertible 2 × 2 matrix whose smallest eigenvalue is greater

than e−A(cosA − sinA) > 0 as A < π
4 . To see this, remark that the eigenvalues of ea∗Rα∗ are

1
J

∑J
j=1 e

a∗j (cosα∗
j ± i sinα∗

j ) and we have
∣
∣ 1
J

∑J
j=1 e

a∗j (cosα∗
j ± i sinα∗

j )
∣
∣ ≥ e−A(cosA− sinA) > 0. We

now have
1√
J
‖b∗Θ0

− b∗‖R2J ≤ C(A,A)‖b̄∗‖R2 ,

where C(A,A) = e2A(cosA − sinA)−1. Finally, for all u > 0 we have P( 1√
J
‖b∗

Θ0
− b∗‖R2J ≥ u) ≤

P(C(A,A)‖b̄∗‖R2 ≥ u) and a Bernstein type inequality (see e.g. Proposition 2.9 in [Massart, 2007])

gives us P

(

‖b̄∗‖R2 ≥ 2B
(
√

2x
J
+ x

3J

))

≤ 4e−x which yields

P

( 1

J
‖b∗Θ0

− b∗‖2
R2J ≥ C(A,A, B)

(√
2x
J
+ x

3J

)2)

≤ 4e−x,

where C(A,A, B) = 4B2e4A(cosA− sinA)−2.

A.4 Proof of Theorem 5.3

Recall the notations introduced Section 2.1: for ĝλj = (âλj , α̂
λ
j , b̂

λ
j ) we have ĝλj .f = eâ

λ
j fRα̂λ

j
+ b̂λj . Then,

we have

1

k

∥
∥
∥f̂

λ − f

∥
∥
∥

2

Rk×2

=
1

k

∥
∥
∥
1

J

J∑

j=1

(ĝλj )
−1.(Aλ

Yj)− f

∥
∥
∥

2

Rk×2

≤ 2

kJ

J∑

j=1

∥
∥
∥A

λ
(

(ĝλj )
−1.Yj − f

)∥
∥
∥

2

Rk×2

+
2

k

∥
∥
∥A

λf − f

∥
∥
∥

2

Rk×2

≤ 4

kJ

J∑

j=1

∥
∥
∥A

λ
(

(gλj )
−1.g∗j .f − f

)∥
∥
∥

2

Rk×2

+
∥
∥
∥ea

∗

j−âλ
j A

λζjRα∗

j
−α̂λ

j

∥
∥
∥

2

Rk×2

︸ ︷︷ ︸

V

+
2

k

∥
∥
∥A

λf − f

∥
∥
∥

2

Rk×2

︸ ︷︷ ︸

B

.

The rest of the proof is devoted to control the terms B and V. The term B is controlled by the bias
of the low pass filter. According to Lemma B.1, if Assumption 1 holds and by choosing the optimal

frequency cutoff λ = λ(k) = k
1

2s+1 , there exists a constant C(L, s) > 0 such that

B =
2

k
‖Aλf − f‖2

Rk×2 ≤ C(L, s)k−
2s

2s+1 . (A.2)
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The term V contains two expressions. To bound the first one we use Bessel’s inequality and Lemma
B.4. More precisely, we have for all j = 1, . . . , J

1

k

∥
∥A

λ
(
(gλj )

−1.g∗j .f − f
)∥
∥2

Rk×2 ≤ 1

k

∥
∥(gλj )

−1.g∗j .f − f
∥
∥2

Rk×2

≤ C(A,f)
∥
∥(a∗j − âλj , α

∗
j − α̂λ

j , e
âλj (b∗j − b̂λj )R−α̂λ

j
)
∥
∥2

R4

≤ C(A,f)
∥
∥(a∗j − âλj , α

∗
j − α̂λ

j )
∥
∥2

R2 + C(A,f)
∥
∥b∗j − b̂λj

∥
∥2

R2

We can now use Theorem 5.1 and 5.2 to derive the following concentration inequality,

P

(
4

kJ

J∑

j=1

∥
∥A

λ
(
(gλj )

−1.g∗j .f − f
)∥
∥2

Rk×2

≥ C(L, s,A,A, B,f )
(

A1(k, J, x) +A3(k, J, x) +A2(J, x)
))

≤ 13e−x

(A.3)

where C(L, s,A,A, B,f) > 0 is a constant independent of k and J and A1, A2, A3 are defined in the
statement of Theorem 5.1 and 5.2. The second term contained in V is treated by equation (A.10)
below. Hence, formulas (A.3) and (A.10) yield

P

(

V ≥ C(L, s,A,A, B,f)
(

A1(k, J, x) +A3(k, J, x) +A2(J, x)
))

≤ 14e−x, (A.4)

for some constant C(L, s,A,A, B,f) > 0. Putting together equations (A.2) and (A.4) gives

P

(
1

k
‖f̂λ − f‖2

Rk×2 ≥ C(L, s,A,A, B,f )
(

A1(k, J, x) +A3(k, J, x) +A2(J, x)
))

≤ 14e−x.

for some constant C(L, s,A,A, B,f) > 0. The proof of Theorem 5.3 is completed.

A.5 Proof of Proposition A.1

The mean pattern f can be decomposed as f = f̄ + f0 ∈ 1k×2 ⊕ 1
⊥
k×2. Then, f0 is the centered

version of f and we can consider the criterion,

D0(a,α) =
1

Jk

J∑

j=1

∥
∥
∥
∥
ea

∗
j−ajf0Rα∗

j−αj
− 1

J

J∑

j′=1

e
a∗
j′
−aj′f0Rα∗

j′
−αj′

∥
∥
∥
∥

2

Rk×2

.

We now have,

(âλ, α̂λ) = argmin
(a,α)∈Θa,α

0

Mλ
0 (a,α) and (a∗

Θ0
,α∗

Θ0
) = argmin

(a,α)∈Θa,α
0

D0(a,α).

Then, the convergence of (âλ, α̂λ) to (a∗
Θ0

,α∗
Θ0

) is guaranteed if (a∗
Θ0

,α∗
Θ0

) is uniquely defined and

if there is a uniform convergence in probability of Mλ
0 to D0, see e.g. [van der Vaart, 1998]. This is

the aim of Lemmas A.5 and A.6 below.

Lemma A.5. Let f be a non-degenerated configuration in R
k×2, i.e. f /∈ 1k×2. Then, the argmin

of D0 on Θ
a,α
0 is unique and denoted by (a∗

Θ0
,α∗

Θ0
) = (aj − ā∗, αj − ᾱ∗), where ā∗ = 1

J

∑J
j=1 a

∗
j ,

ᾱ∗ = 1
J

∑J
j=1 α

∗
j .

Proof. As f is a non-degenerated configuration, we have f0 6= 0. Thus, the stabilizer of f is reduced
to the identity, see Section 2.1. Then D0(a,α) = 0 if and only if there exists (a0, α0) ∈ R

2 such that
(a,α) = (a∗,α∗)∗(a0, α0) = (a∗1+a0, α

∗
1+α0, . . . , aJ+a0, α

∗
J+α0). By choosing (a0, α0) = (−ā∗,−ᾱ∗)

we have
∑J

j=1(a
∗
j , α

∗
j ) ∗ (a0, α0) = 0. That is (a∗

Θ0
,α∗

Θ0
) = (a∗,α∗) ∗ (a0, α0) ∈ Θ

a,α
0 .
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We now show the uniform convergence in probability,

Lemma A.6. Suppose that Assumptions 1, 2 and 3 hold and let F : R −→ R, with F (u) = u +
√
u.

For any x > 0 we have

P

(

sup
(a,α)∈Θa,α

0

∣
∣Mλ

0 (a,α)−D0(a,α)
∣
∣ ≥ C(L, s,A,f0)

(

F
(
k−

2s
2s+1

)
+ F

(
V (k, J, x)

))
)

≤ 2e−x

where C(L, s,A,f0) = e2A max
{

2√
k
‖f0‖Rk×2 ,

√
2eA√
k
‖f0‖Rk×2 , 2

}

and V (k, J, x) = 3γmax(k)k
− 2s

2s+1
(
1+

F
(
2x
Jk

) )
.

Proof. Let us write the following decomposition,

Mλ
0 (a,α)

=
1

Jk

J∑

j=1

∥
∥
∥
∥
ea

∗
j−ajf0Rα∗

j−αj
− 1

J

J∑

j′=1

e
a∗
j′
−aj′f0Rα∗

j′
−αj′

∥
∥
∥
∥

2

Rk×2

(A.5)

+
1

Jk

J∑

j=1

∥
∥
∥
∥
ea

∗
j−aj (Aλ

0f − f0)Rα∗
j−αj

− 1

J

J∑

j′=1

e
a∗
j′
−aj′ (Aλ

0f − f0)Rα∗
j′
−αj′

∥
∥
∥
∥

2

Rk×2

(A.6)

+
2

Jk

J∑

j=1

〈

ea
∗
j−ajf0Rα∗

j−αj
− 1

J

J∑

j′=1

e
a∗
j′
−aj′f0Rα∗

j′
−αj′

,

ea
∗
j−aj (Aλ

0f − f0)Rα∗
j−αj

− 1

J

J∑

j′=1

e
a∗
j′
−aj′ (Aλ

0f − f0)Rα∗
j′
−αj′

〉

Rk×2

(A.7)

+
1

Jk

J∑

j=1

∥
∥
∥
∥
ea

∗
j−ajAλ

0ζjRα∗
j−αj

− 1

J

J∑

j′=1

e
a∗
j′
−aj′Aλ

0ζj′Rα∗
j′
−αj′

∥
∥
∥
∥

2

Rk×2

(A.8)

+
2

Jk

J∑

j=1

〈

ea
∗
j−ajAλ

0fRα∗
j−αj

− 1

J

J∑

j′=1

e
a∗
j′
−aj′Aλ

0fRα∗
j′
−αj′

,

ea
∗
j−ajAλ

0ζjRα∗
j−αj

− 1

J

J∑

j′=1

e
a∗
j′
−aj′Aλ

0ζj′Rα∗
j′
−αj′

〉

Rk×2

(A.9)

Then, criterion Mλ
0 is viewed as a perturbed version of the criterion D0(a,α) = (A.5),

Mλ
0 (a,α) = D0(a,α) +B

λ
0 (a,α) +V

λ
0 (a,α)

where the bias term is B
λ
0 (a,α) = (A.6) + (A.7) and the variance term is V

λ
0 (a,α) = (A.8) + (A.9).

The bias term. We have for any (a,α) ∈ Θ
a,α
0 ,

(A.6) =
1

Jk

J∑

j=1

∥
∥
∥
∥
ea

∗
j−aj (Aλ

0f − f0)Rα∗
j−αj

∥
∥
∥
∥

2

Rk×2

−
∥
∥
∥
∥

1

J

J∑

j′=1

e
a∗
j′
−aj′ (Aλ

0f − f0)Rα∗
j′
−αj′

∥
∥
∥
∥

2

Rk×2

≤ e2A
1

k

∥
∥
∥
∥
Aλ

0f − f0

∥
∥
∥
∥

2

Rk×2

.
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A double application of Cauchy-Schwarz inequality implies that,

|(A.7)| ≤ 2

Jk

J∑

j=1

∥
∥
∥
∥
ea

∗
j−ajf0Rα∗

j−αj
− 1

J

J∑

j′=1

e
a∗
j′
−aj′f0Rα∗

j′
−αj′

∥
∥
∥
∥
Rk×2

∥
∥
∥
∥
ea

∗
j−aj (Aλ

0f − f0)Rα∗
j−αj

− 1

J

J∑

j′=1

e
a∗
j′
−aj′ (Aλ

0f − f0)Rα∗
j′
−αj′

∥
∥
∥
∥
Rk×2

≤ 2

k

(
1

J

J∑

j=1

e2A‖f0Rα∗
j−αj

‖2
Rk×2

)1
2
(
1

J

J∑

j=1

e2A‖(Aλ
0f − f0)Rα∗

j−αj
‖2
Rk×2

)1
2

= 2e2A
1

k
‖f0‖Rk×2‖Aλ

0f − f0‖Rk×2 .

Finally, by using Lemma B.1 we have,

sup
(a,α)∈Θa,α

|Bλ
0 (a,α)| ≤ C1(L, s,A,f )

(

k−
2s

2s+1 + k−
s

2s+1

)

.

where C1(L, s,A,f ) = C(L, s)e2A max
{

2 1√
k
‖f0‖Rk×2 , 1

}

.

The variance term. First, the term (A.9) is by the Cauchy-Schwarz inequality controlled by 2e2A 1√
k

‖f 0‖Rk×2

√

(A.8). The term (A.8) is bounded from above by 1
Jk

∑J
j=1 e

2A‖Aλ
0ζj‖2Rk×2 . To derive an

upper bound in probability, note that we have the following equality in law,

J∑

j=1

‖Aλ
0ζj‖2Rk×2 = ξ′B ξ,

with B =
[
IdJ ⊗ Σ

1
2

][
Id2J ⊗ (Aλ

0 )
′Aλ

0

][
IdJ ⊗ Σ

1
2

]
∈ R

2Jk×2Jk and ξ = (ξ1, . . . , ξ2Jk)
′ is a centered

Gaussian vector of variance Id2Jk. We have tr(IdJ ⊗Σ) ≤ 2Jkγmax(k) and tr((Aλ
0 )

′Aλ
0 ) =

2λ+1
k

. Using
a classical concentration inequality for quadratic form of multivariate Gaussian random variables,

see e.g. [Laurent & Massart, 2000] Lemma 1, we have for all x > 0, P

(

ξ′Bξ ≥ 2Jkγmax(k)
2λ+1
k

+

2γmax(k)
2λ+1
k

√
x2Jk + 4xγmax(k)

2λ+1
k

)

≤ e−x, which yields together with formula (A.2),

P

(
1

Jk

J∑

j=1

e2A‖Aλ
0ζj‖2Rk×2 ≥ 6e2Aγmax(k)k

− 2s
2s+1

(

1 +

√

2
x

Jk
+ 2

x

Jk

))

≤ e−x. (A.10)

Hence we have,

P

(

sup
(a,α)∈Θa,α

|Vλ
0 (a,α) +B

λ
0(a,α)|

≥ C(L, s,A,f0)
(

k−
2s

2s+1 + k−
s

2s+1 + V1(k, J, x) +
√

V1(k, J, x)
))

≤ 2e−x,

where C(L, s,A,f 0) = e2A max
{

2√
k
‖f0‖Rk×2 , 1√

k
‖f0‖Rk×2

√
2eA, 2

}
and V1(k, J, x) = 3γmax(k)

k
2s

2s+1

(
1 +

√
2 x
Jk

+ 2 x
Jk

)
.

For a fixed J ∈ N, the convergence of the M-estimator (âλ, α̂λ) to (a∗
Θ0

,α∗
Θ0

) when k → ∞ is
guaranteed by Lemma A.5 and A.6, see e.g. [van der Vaart, 1998]. Nevertheless, we are able to give a
rate of convergence and non-asymptotic bounds in k and J by using the classical inequality,

|D0(â
λ, α̂λ)−D0(a

∗
Θ0

,α∗
Θ0

)| ≤ 2 sup
(a,α)∈Θa,α

0

|D0(a,α)−Mλ
0 (a,α)|.

This, together with Lemma A.7 below will prove Proposition A.1.
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Lemma A.7. Assume that A,A < 0.1. There exists a constant C(A,A) > 0 independent of J such
that for all (a,α) ∈ Θ

a,α we have

∣
∣D0(a,α)−D0(a

∗
Θ0

,α∗
Θ0

)
∣
∣ ≥ C(A,A,f0)

1

J

∥
∥(a− a∗

Θ0
,α−α∗

Θ0
)
∥
∥2

R2J ,

where C(A,A,f0) = C(A,A) 1
k
‖f0‖2Rk×2 .

Proof. By definition, given a (a∗,α∗) ∈ [−A,A]J × [−A,A]J , the point (a∗
Θ0

,α∗
Θ0

) is the unique

minimum of D0 on Θ
a,α
0 = [−A,A]J ∩ 1

⊥
J × [−A,A]J ∩ 1

⊥
J . Then, for all (a,α) ∈ Θ

a,α
0 , there exists

a c = c(a,α) ∈ Θ
a,α
0 such that the Taylor expansion of D0 at (a∗

Θ0
,α∗

Θ0
) can be written,

D0(a,α)−D0(a
∗
Θ0

,α∗
Θ0

) =
1

2
(a− a∗

Θ0
,α−α∗

Θ0
)′[∇2D0(a

∗
Θ0

,α∗
Θ0

)](a − a∗
Θ0

,α−α∗
Θ0

)

+
1

6
[∇3D0(c)](a − a∗

Θ0
,α−α∗

Θ0
).

Let δ = max{A,A}. This, together with Lemma B.2 and B.3 imply that

D0(a,α)−D0(a
∗
Θ0

,α∗
Θ0

) ≥ 1

2
(a− a∗

Θ0
,α−α∗

Θ0
)′[∇2D0(a

∗
Θ0

,α∗
Θ0

)](a − a∗
Θ0

,α−α∗
Θ0

)

− δ
40

6
e2A‖f0‖2Rk×2

1

Jk

∥
∥(a− a∗

Θ0
,α−α∗

Θ0
)
∥
∥2

R2J

≥ ‖f0‖2Rk×2

1

Jk

∥
∥(a− a∗

Θ0
,α−α∗

Θ0
)
∥
∥2

R2J

(

e−2A − δ
40

6
e2A
)

.

Hence, one can choose δ > 0 sufficiently small such that
(
e−2A − δ 40

6 e
2A
)

is strictly positive for all J
and k. For example, we have

(
e−2δ − δ 40

6 e
2δ
)
> 0, if δ < 0.1. Then, using such a δ it follows that for

all (a,α) ∈ Θ
a,α
0 ,

∣
∣D0(a,α)−D0(a

∗
Θ0

,α∗
Θ0

)
∣
∣ ≥ C(A,A)

1

k
‖f0‖2Rk×2

1

J

∥
∥(a− a∗

Θ0
,α−α∗

Θ0
)
∥
∥2

R2J .

The proof of Proposition A.1 is almost done. Remark that Lemma A.7 ensures that for all u ≥ 0 we
have P

(
1
J
‖(âλ, α̂λ) − (a∗

Θ0
,α∗

Θ0
)‖2

R2J ≥ u
)
≤ P

(
2

C(A,A,f0)
sup(a,α)∈Θa,α

0

∣
∣Mλ

0 (a,α)−D0(a,α)
∣
∣ ≥ u

)
.

Lemma A.6 ensures that there is a constant C(L, s,A,A,f 0) such that for all x > 0,

P

( 1

J
‖(âλ, α̂λ)− (a∗

Θ0
,α∗

Θ0
)‖2

R2J ≥ C(L, s,A,A,f0)(F (k−
2s

2s+1 ) + F (V1(k, J, x))
)

≤ 2e−x.

where V1(k, J, x) = γmax(k)k
− 2s

2s+1
(
1 +

√
2 x
Jk

+ 2 x
Jk

)
and F : R −→ R, with F (u) = u+

√
u.

A.6 Proof of Proposition A.3

First of all remark that, thanks to formulas (3.3) and (4.5), we have explicit expressions of b∗
Θ0

=

argminb∈Θb

0
D̄(a∗,α∗, b) and of b̂λ = argminb∈Θb

0
M̄(âλ, α̂λ, b). Indeed, we have,

b∗Θ0
= (b∗1 − ea

∗
1 b̄

∗
(ea

∗
Rα∗)−1Rα∗

1
, . . . , b∗J − ea

∗
J b̄

∗
(ea

∗
Rα∗)−1Rα∗

J
),

where ea∗Rα∗ = 1
J

∑J
j=1 e

a∗jRα∗
j
∈ R

2×2, b̄
∗
= 1

J

∑J
j=1 b

∗
j ∈ R

2 and

b̂λ = (Ȳ1 − eâ
λ
1 Ȳ(eâ

λ
Rα̂λ)−1Rα̂λ

1
, . . . , ȲJ − eâ

λ
J Ȳ(eâ

λ
Rα̂λ)−1Rα̂λ

J
)

where eâ
λ
Rα̂λ = 1

J

∑J
j=1 e

âλj Rα̂λ
j

∈ R
2×2, Ȳj = 1

k

∑k
ℓ=1[Yj ]ℓ = ea

∗
j f̄Rα∗

j
+ b∗j + ea

∗
j ζ̄jRα∗

j
∈ R

2

where f̄ = 1
k

∑k
ℓ=1 f ℓ ∈ R

2, ζ̄j = 1
k

∑k
ℓ=1[ζj ]ℓ ∈ R

2 and Ȳ = 1
J

∑J
j=1 Ȳj = f̄(ea∗Rα∗) + b̄

∗
+
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1
J

∑J
j=1 e

a∗j ζ̄jRα∗
j
∈ R

2. Thence, we have

1

J
‖b∗Θ0

− b̂λ‖2
R2J ≤ 1

J

J∑

j=1

‖f̄(ea∗jRα∗
j
− eâ

λ
j (ea∗Rα∗)(eâ

λ
Rα̂λ)−1Rα̂λ

j
)‖2

R2 (A.11)

+ ‖b̄∗(ea∗j (ea∗Rα∗)−1Rα∗
j
− eâ

λ
j (eâ

λ
Rα̂λ)−1Rα̂λ

j
)‖2

R2 (A.12)

+ ‖ea∗j ζ̄jRα∗
j
‖2
R2 + ‖eâλj (ea∗ζRα∗)(eâ

λ
Rα̂λ)−1Rα̂λ

j
‖2
R2 (A.13)

where (ea∗ζRα∗) = 1
J

∑J
j=1 e

a∗j ζ̄jRα∗
j
∈ R

2. The rest of the proof is devoted to the control of the terms

(A.11), (A.12) and (A.13).
In this section, we denotes by ‖ · ‖op the operator norm of a 2 × 2 matrix, i.e. ‖A‖op = |γmax(A)|

where γmax(A) denotes the largest eigenvalue of a matrix A ∈ R
2×2. Note by the way that the

eigenvalues of the matrix 1
J

∑J
j=1 e

ajRαj
∈ R

2×2 are 1
J

∑J
j=1 e

aj (cos(αj) ± i sin(αj)) for any J and

(a1, . . . , aJ , α1, . . . , αJ) ∈ [−A,A]J × [−A,A]J . It yields ‖e−ajR−αj
‖op ≤ eA and ‖(eaRα)

−1‖op ≤
eA(cos(A) − sin(A))−1 which is a positive real number since by hypothesis we have A < π

4 . We are
now able to derive an upper bound for (A.11),

(A.11) ≤ ‖f̄‖2
R2

1

J

J∑

j=1

‖ea∗jRα∗
j
− eâ

λ
j (ea∗Rα∗)(eâ

λ
Rα̂λ)−1Rα̂λ

j
‖2op

≤ e2A‖f̄‖2
R2

1

J

J∑

j=1

‖ea∗jRα∗
j
(e−âλj R−α̂λ

j
)− (ea

∗
Rα∗)(eâ

λ
Rα̂λ)−1‖2op

≤ 2e2A‖f̄‖2
R2

1

J

J∑

j=1

‖e−âλj R−α̂λ
j
‖2op‖ea

∗
jRα∗

j
− eâ

λ
j Rα̂λ

j
‖2op

+ 2e2A‖f̄‖2
R2‖(eâλ

Rα̂λ)−1‖2op‖(ea∗Rα∗)− (eâ
λ
Rα̂λ)‖2op

It is now easy to show that there exists a constant C(A,A,f ) > 0 independent of k and J such that

(A.11) ≤ C(A,A,f)
1

J

J∑

j=1

‖(a∗j − âλj , α
∗
j − α̂λ

j )‖2R2 . (A.14)

The term (A.12) is very similar to the term (A.11) and we have

(A.12) ≤ C(A,A, B)
1

J

J∑

j=1

‖(a∗j − âλj , α
∗
j − α̂λ

j )‖2R2 , (A.15)

for some constant C(A,A, B) > 0 independent of k and J . By using formula (A.14), (A.15) and
Proposition A.1 together, there exists a constant C(L, s,A,A, B,f ) independent of k and J such that
for all x > 0,

P

(

(A.11) + (A.12) ≥ C(L, s,A,A, B,f)
(
F (k−

2s
2s+1 ) + F (V1(k, J, x))

))

≤ 4e−x, (A.16)

where V1(k, J, x) is defined in statement of proposition A.1 and F (u) = u+
√
u for u ≥ 0.

The term (A.13) can be bounded in probability as follows. First of all, remark that there exists a
constant C(A,A) > 0 such that

(A.13) ≤ C(A,A)
1

J

J∑

j=1

‖ζ̄j‖2R2 .

25



Then, for all j = 1, . . . , J , the random variable ζ̄j =
1
k

∑k
ℓ=1([ζ

(1)
j ]ℓ, [ζ

(2)
j ]ℓ) ∈ R

2 can be written

(ζ̄
1
j , ζ̄

2
j)

′ =
1

k

(
1
′
k 0′k

0′k 1
′
k

)

([ζ
(1)
j ]1, . . . , [ζ

(1)
j ]k, [ζ

(2)
j ]1, . . . , [ζ

(2)
j ]k)

′

where 0k is a column vector of k zeros. The random vector (ζ̄
1
j , ζ̄

2
j)

′ is a two dimensional centered

Gaussian vector of variance V = 1
k2

(
1
′
k 0′k

0′k 1
′
k

)

Σ

(
1k 0k
0k 1k

)

. The 2 × 2 matrix V is of trace less or

equal to 2
k
γmax(k). Hence, the random variable 1

J

∑J
j=1‖ζ̄j‖2R2 = 1

J

∑J
j=1(ζ̄

(1)
j , ζ̄

(2)
j )(ζ̄

(1)
j , ζ̄

(2)
j )′ has the

same probability distribution as 1
J
ξ′[IdJ ⊗V]ξ where ξ is a centered Gaussian vector of variance Id2J .

A standard concentration inequality of χ2 distribution (see e.g. [Laurent & Massart, 2000] Lemma 1)

is P

(

ξ′[IdJ ⊗V]ξ ≥ J 4
k
γmax(k) +

4
k
γmax(k)

√
2Jx+ x 4

k
γmax(k)

)

≤ e−x for any x > 0. It yields that

there exists a constant C(A,A) > 0 such that for all x > 0

P

(

(A.13) ≥ C(A,A)
γmax(k)

k

(

1 +

√

2
x

J
+

x

J

))

≤ e−x. (A.17)

To end the proof remark that for all u ≥ 0 we have P( 1
J
‖b∗

Θ0
− b̂λ‖2

R2J ≥ u) ≤ P((A.11)+ (A.12)+
(A.13) ≥ u). This together with (A.16) and (A.17) yield that there exists a constant C(L, s,A,A, B,
f) > 0 independent of k and J such that for all x > 0 we have

P

( 1

J
‖b∗Θ0

− b̂λ‖2
R2J ≥ C(L, s,A,A, B,f)

(
F (k−

−2s
2s+1 ) + F (V1(k, J, x)) + V2(k, J, x)

))

≤ 5e−x,

where V2(k, J, x) =
γmax(k)

k

(
1 +

√
2x
J
+ x

J

)
and the proof of Proposition A.3 is completed.

B Technical Lemma

Lemma B.1. Assume that Assumption 1 holds, i.e. f ∈ Hs(L) with s > 3
2 (see (1.3)) and f =

(f( ℓ
k
))kℓ=1 ∈ R

k×2. If λ(k) = k
1

2s+1 then there exists a constant C(L, s) such that for all f ∈ Hs(L) we
have

1

k
‖Aλf − f‖2

Rk×2 ≤ C(L, s)k−
2s

2s+1 ,

where A
λ is the projection matrix defined in (4.2).

Proof. Recall the notations introduced Sections 1.1 and 4.1 : cm(f) = (cm(f (1)), cm(f (2))) ∈ C
2 is the

m-th Fourier coefficient of f ∈ L2([0, 1],R2) and cm(f) = (c
(1)
m (f), c

(2)
m (f )) ∈ C2 is the m-th discrete

Fourier coefficient of f ∈ R
k×2. Thus, we have by Parseval’s equality

1

k

∥
∥
∥
∥
A

λf − f

∥
∥
∥
∥

2

Rk×2

=
1

k

∥
∥
∥
∥

(
1

k

∑

|m|>λ

cm(f)ei2πm
ℓ
k

)k

ℓ=1

∥
∥
∥
∥

2

Rk×2

=
1

k2

∑

|m|>λ

∥
∥
∥
∥
cm(f)

∥
∥
∥
∥

2

C2

.

where for all c = (c(1), c(2)) ∈ C
2, ‖c‖2

C2 = |c(1)|2 + |c(2)|2. It yields

1

k
‖Aλf − f‖2

Rk×2 ≤ 2
∑

|m|>λ

‖1
k
cm(f)− cm(f)‖2

C2 + 2
∑

|m|>λ

‖cm(f)‖2
C2 .

Firstly, Lemma 1.10 in [Tsybakov, 2009] ensures that if s > 1
2 then

∣
∣ 1
k
cm(f (i))− cm(f (i))

∣
∣ ≤ C(L, s)k−s+ 1

2

for any m ∈ N and i = 1, 2. Secondly, equation (1.87) in [Tsybakov, 2009] ensure that if λ(k) = k
1

2s+1

then
∑

|m|>λ|cm(f (i))|2 ≤ C(L, s)k−
2s

2s+1 . Thence, there is a constant C(L, s) independent of k such
that

1

k
‖Aλf − f‖2

Rk×2 ≤ C(L, s)(k2−2s + k−
2s

2s+1 ).
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If s ≥ 3
2 then we have

1

k
‖Aλf − f‖2

Rk×2 ≤ C(L, s)k−
2s

2s+1 .

We now give a general expression of the gradient and of the Hessian of the criterion D. Recall that
we have

D(a,α, b) =
1

J

J∑

j=1

∥
∥
∥
∥
e−aj (ea

∗

j fRα∗

j
+1k ⊗ (b∗j − bj))R−αj

+
1

J

J∑

j′=1

e−aj′ (ea
∗

j′fRα∗

j′
+1k ⊗ (b∗j′ − bj′))R−αj′

∥
∥
∥
∥

2

Rk×2

where (a,α, b) = (a1, . . . , aJ , α1, . . . , αJ , b1, . . . , bJ) ∈ R
J × [−π, π[J×R

2J . To shorten the formulas

below we note gj = (g
(1)
j , g

(2)
j , g

(3)
j , g

(4)
j ) = (aj , αj , bj), that is g

(1)
j = aj, g

(2)
j = αj, g

(3)
j = b

(1)
j and

g
(4)
j = b

(2)
j . Let fgj = g−1.g∗j .f = e−aj (ea

∗
j fRα∗

j
+ 1k ⊗ (b∗j − bj))R−αj

, and for all j1 = 1, . . . , J and
p1 = 1, . . . , 4,

∂
g
(p1)
j1

D(a,α, b) =
2

Jk

〈

∂
g
(p1)
j1

fgj1
,f gj1

− 1

J

J∑

j′=1

fgj′

〉

Rk×2

. (B.1)

The second order derivatives are

∂
g
(p2)
j2

∂
g
(p1)
j1

D(a,α, b) = − 2

J2k

〈

∂
g
(p1)
j1

f gj1
, ∂

g
(p2)
j2

f gj2

〉

Rk×2

, if j1 6= j2, (B.2)

∂
g
(p2)
j1

∂
g
(p1)
j1

D(a,α, b) =
2

Jk

〈

∂
g
(p2)
j1

∂
g
(p1)
j1

f gj1
,

(

f gj1
− 1

J

J∑

j′=1

f gj′

)〉

Rk×2

+

(
2

Jk
− 2

J2k

)〈

∂
g
(p1)
j1

f gj1
, ∂

g
(p2)
j1

f gj1

〉

Rk×2

. (B.3)

The expressions of the gradient and the Hessian of D simplify on the set (a∗,α∗, b∗)∗G, see Lemma
3.1. For any g0 = (a0, α0, b0) ∈ R × [−π, π[×R

2, we have f g∗j1
.g0 − 1

J

∑J
j′=1 f g∗

j′
.g0 = e−a0(f − 1k ⊗

b0)R−α0 − 1
J

∑J
j′=1 e

−a0(f − 1k ⊗ b0)R−α0 = 0. It yields that for all (a0, α0, b0) ∈ R× [−π, π[×R
2 we

have ∇D((a∗,α∗, b∗) ∗ (a0, α0, b0)) = 0, and

∂
g
(p2)
j2

∂
g
(p1)
j1

D((a∗,α∗, b∗) ∗ (a0, α0, b0)) =







− 2
J2k

〈

∂
g
(p1)
j1

f g∗j1
.g0 , ∂g(p2)j2

fg∗j2
.g0

〉

Rk×2

, if j1 6= j2,

(
2
Jk

− 2
J2k

)
〈

∂
g
(p1)
j1

f g∗j1
.g0 , ∂g(p2)j2

f g∗j1
.g0

〉

Rk×2

.

(B.4)

Lemma B.2. The smallest eigenvalue of ∇2D0(a
∗
Θ0

,α∗
Θ0

) restricted to the subset Θ0 is greater than

e−2A 2
Jk

‖f0‖2Rk×2 .

Proof. In this proof, h = (a,α) ∈ R
J×[−π, π[J and f0

hj
= ea

∗
j−ajf0Rα∗

j−αj
. We have ∂aj1f

0
hj1

= −f0
hj1

and ∂αj1
f0
hj1

= f0
hj1

R−π
2

for all j1 = 1, . . . , J . By using Formulas (B.4), the Hessian of D0 at the

point (a∗
Θ0

,αΘ0) = (a∗ − ā∗,α∗ − ᾱ∗) ∈ Θ
a,α
0 is given by,

∂αj1
∂αj2

D0(a
∗ − ā∗,α∗ − ᾱ∗) = ∂aj1∂aj2D0(a

∗ − ā∗,α∗ − ᾱ∗) =

{

− 2
J2k

‖eā∗
f0‖2Rk×2 , if j1 6= j2,

(
2
Jk

− 2
J2k

)
‖eā∗

f0‖2Rk×2

and the second order cross derivatives are 0. The Hessian of D0 at (a∗ − ā∗,α∗ − ᾱ∗) can be written,

∇2D0(a
∗ − ā∗,α∗ − ᾱ∗) =

2

J2k
‖eā∗

f0‖2Rk×2

(
JIdJ − 1J×J 0

0 JIdJ − 1J×J

)

, (B.5)

where IdJ is the identity in R
J and 1J is the J × J matrix of ones. The eigenvalues of JIdJ − 1J×J

are 0 with eigenvector 1J and J with eigenspace 1⊥
J . It yields that on Θ

a,α
0 the smallest eigenvalue of

∇2D0(a
∗ − ā∗,α∗ − ᾱ∗) is e2ā

∗ 2
Jk

‖f0‖2Rk×2 . To finish the proof, remark that ā∗ ≤ A.
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Lemma B.3. Let δ = max{A,A}. For all c = (a1, . . . , aJ , α1, . . . , αJ ) ∈ Θ
a,α
0 and (a,α) ∈ R

2J we
have

∣
∣
[
∇3D0(c)

]
(a,α)

∣
∣ ≤ 40δe2A‖f 0‖2Rk×2

1

Jk
‖(a,α)‖2

R2J .

Proof. In this proof, h = (a,α) ∈ R
J × [−π, π[J , that is h

(1)
j = aj is the parameter of scaling and

h
(2)
j = αj is the parameter of rotation. We have f0

hj
= ea

∗
j−ajf0Rα∗

j−αj
. Then, from equations (B.2)

and (B.3), it follows that for all j1, j2, j3 = 1, . . . , J and p1, p2, p3 = 1, . . . , 2,

∂
h
(p3)
j3

∂
h
(p2)
j2

∂
h
(p1)
j1

D0(a,α) = 0, if j1 6= j2 and j2 6= j3 and j1 6= j3,

∂
h
(p3)
j2

∂
h
(p2)
j1

∂
h
(p1)
j1

D0(a,α) = − 2

J2k

〈

∂
h
(p2)
j1

∂
h
(p1)
j1

f0
hj1

, ∂
h
(p3)
j2

f0
hj2

〉

Rk×2

, if j1 6= j2,

∂
h
(p3)
j1

∂
h
(p2)
j1

∂
h
(p1)
j1

D0(a,α) =
2

Jk

〈

∂
h
(p3)
j1

∂
h
(p2)
j1

∂
h
(p1)
j1

f0
hj1

,

(

f0
hj1

− 1

J

J∑

j′=1

f0
hj′

)〉

Rk×2

+

(
2

Jk
− 2

J2k

)(〈

∂
h
(p2)
j1

∂
h
(p1)
j1

f0
hj1

, ∂
h
(p3)
j1

f0
hj1

〉

Rk×2

+

〈

∂
h
(p3)
j1

∂
h
(p1)
j1

f0
hj1

,

∂
h
(p2)
j1

f0
hj1

〉

Rk×2

+

〈

∂
h
(p3)
j1

∂
h
(p2)
j1

f0
hj1

, ∂
h
(p1)
j1

f0
hj1

〉

Rk×2

)

By Cauchy-Schwarz inequality we have,

∣
∣
∣
∣

〈

∂
h
(p2)
j1

∂
h
(p1)
j1

f0
hj1

, ∂
h
(p3)
j2

f0
hj2

〉

Rk×2

∣
∣
∣
∣
≤ ‖∂

h
(p2)
j1

∂
h
(p1)
j1

f0
hj1

‖Rk×2‖∂
h
(p3)
j2

f0
hj2

‖Rk×2 ≤ e2A‖f0‖2Rk×2 . (B.6)

and

∣
∣
∣
∣

〈

∂
h
(p3)
j1

∂
h
(p2)
j1

∂
h
(p1)
j1

f0
hj1

,

(

f0
hj1

− 1

J

J∑

j′=1

f0
hj′

)〉

Rk×2

∣
∣
∣
∣

≤
∥
∥
∥
∥
∂
h
(p3)
j1

∂
h
(p2)
j1

∂
h
(p1)
j1

f0
hj1

∥
∥
∥
∥
Rk×2

∥
∥
∥f

0
hj1

− 1

J

J∑

j′=1

f0
hj′

∥
∥
∥
Rk×2

≤ 2e2A‖f0‖2Rk×2 (B.7)

For κ = (κ1, . . . , κ2J ) ∈ N
2J , denote by |κ| = κ1 + . . .+ κ2J and

(∂h)
κ = (∂a1)

κ1(∂α1)
κ2 . . . (∂aJ )

κ2J−1(∂αJ
)κ2J .

Then, the differential of order 3 of D0 at c ∈ Θ
a,α
0 applied at (a,α) ∈ R

2J writes as

[
∇3D0(c)

]
(a,α) =

∑

|κ|=3

(∂h)
κD0(c)h

κ
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where hκ = aκ1
1 ακ2

1 . . . a
κ2J−1

J ακ2J
J . This formula together with equations (B.6) and (B.7) give,

∣
∣
∣
∣

[
∇3D0(c)

]
(a,α)

∣
∣
∣
∣
=

∣
∣
∣
∣

2∑

p1,p2,p3=1

J∑

j1=1

∂
h
(p3)
j1

∂
h
(p2)
j1

∂
h
(p1)
j1

D0(c)h
(p1)
j1

h
(p2)
j1

h
(p3)
j1

+ 3

J∑

j1 6=j2=1

∂
h
(p3)
j2

∂
h
(p2)
j1

∂
h
(p1)
j1

D0(c)h
(p1)
j1

h
(p2)
j1

h
(p3)
j2

∣
∣
∣
∣

≤ 2e2A
1

k
‖f0‖2Rk×2

2∑

p1,p2,p3=1

(
4

J

J∑

j1=1

|h(p1)j1
h
(p2)
j1

h
(p3)
j1

|+ 6

J2

J∑

j1 6=j2=1

|h(p1)j1
h
(p2)
j1

h
(p3)
j2

|
)

≤ 2δe2A
1

k
‖f0‖2Rk×2

2∑

p1,p2=1

(
4

J

J∑

j1=1

|h(p1)j1
h
(p2)
j1

|+ 6(J − 1)

J2

J∑

j1=1

|h(p1)j1
h
(p2)
j1

|
)

≤ 20δe2A
1

k
‖f0‖2Rk×2

1

J

J∑

j=1

2∑

p1,p2=1

|h(p1)j h
(p2)
j |

= 20δe2A
1

k
‖f0‖2Rk×2

1

J

J∑

j=1

( 2∑

p1=1

|h(p1)j |
)2

≤ 40δe2A
1

k
‖f0‖2Rk×2

1

J

J∑

j=1

2∑

p1=1

|h(p1)j |2.

And the claim is now proved.

Lemma B.4. For all f ∈ R
k×2 and (a1, α1, b1), (a2, α2, b2) ∈ [−A,A] × [−A,A] × [−B,B]2, let

gi.f = eaifRαi
+ 1k ⊗ bi, i = 1, 2. Then, we have

1

k
‖g1.f − g2.f‖2Rk×2 ≤ C(A,f)‖(a1, α1, b1)− (a2, α2, b2)‖2R4 ,

where C(A,f) = 2max{4e4A 1
k
‖f‖2

Rk×2 , 1}.

Proof. We have

1

k
‖g1.f − g2.f‖2Rk×2 ≤ 2e2A

1

k
‖ea1−a2fRα1−α2 − f‖2

Rk×2 + 2
1

k
‖1k ⊗ (b1 − b2)‖2Rk×2 (B.8)

Let now F (a, α) = 1√
k
‖eafRα − f‖Rk×2 . We have |∂aF (a, α)| = 1√

k‖eafRα−f‖Rk×2
|〈eafRα, e

afRα −
f〉Rk×2 | ≤ eA√

k
‖f‖Rk×2 and |∂αF (a, α)| = 1√

k‖eafRα−f‖Rk×2
|〈eafRα+π

2
, eafRα − f〉Rk×2 | ≤ eA√

k
‖f‖Rk×2 .

The Euclidean norm of the gradient of F satisfies

‖∇F (a, α)‖R2 =
√

|∂aF (a, α)|2 + |∂αF (a, α)|2 ≤
√
2eA

1√
k
‖f‖Rk×2 .

Since we have |F (a, α)| = |F (a, α) − F (0, 0)| ≤
√
2eA 1√

k
‖f‖Rk×2‖(a, α)‖R2 , equation (B.8) yields

1

k
‖g1.f − g2.f‖2Rk×2 ≤ 2max

{
4e4A 1

k
‖f‖2

Rk×2 , 1
}(

|a1 − a2|2 + |α1 − α2|2 + |b(1)1 − b
(1)
2 |2 + |b(2)1 − b

(2)
2 |2

)
,

which concludes the proof.
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