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Improved interpolation inequalities, relative entropy and fast diffusion equations

Introduction and main results

Consider the following sub-family of the Gagliardo-Nirenberg-Sobolev inequalities [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] 

f 2 p ≤ C GN p,d ∇f θ 2 f 1-θ p+1 with θ = θ(p) := p-1 p d d+2-p (d-2) , 1 < p ≤ d d-2 if d ≥ 3 and 1 < p < ∞ if d = 2
. Such an inequality holds for any smooth function f with sufficient decay at infinity and, by density, for any function f ∈ L p+1 (R d ) such that ∇f July 11, 2012 is square integrable. We shall assume that C GN p,d is the best possible constant in [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]. In [START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF], it has been established that equality holds in [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] 

if f = F p with (2) F p (x) = (1 + |x| 2 ) -1 p-1 ∀ x ∈ R d
and that all extremal functions are equal to F p up to a multiplication by a constant, a translation and a scaling. See Appendix A for an expression of C GN p,d . If d ≥ 3, the limit case p = d/(d -2) corresponds to Sobolev's inequality and one recovers the optimal functions found by T. Aubin and G. Talenti in [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF][START_REF] Talenti | Best constant in Sobolev inequality[END_REF]. When p → 1, the inequality becomes an equality, so that we may differentiate both sides with respect to p and recover the euclidean logarithmic Sobolev inequality in optimal scale invariant form (see [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF][START_REF] Weissler | Logarithmic Sobolev inequalities for the heat-diffusion semigroup[END_REF][START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF] for details).

It is rather straightforward to observe that Inequality (1) can be rewritten, in a non-scale invariant form, as a non-homogeneous Gagliardo-Nirenberg-Sobolev inequality:

for any f ∈ L p+1 ∩ D 1,2 (R d ), (3) 
R d |∇f | 2 dx + R d |f | p+1 dx ≥ K p,d Å R d |f | 2 p dx ã γ with (4) γ = γ(p, d) := d+2-p (d-2) d-p (d-4) .
The optimal constant K p,d can easily be related with C GN p,d . Indeed, by optimizing the left hand side of (3) written for f λ (x) := λ d/(2 p) f (λ x) for any x ∈ R d , with respect to λ > 0, one recovers that (3) and (1) are equivalent. The detailed relation between K p,d and C GN p,d can be found in Section 7.

Define now

C M := Å M * M ã 2 (p-1) d-p (d-4)
, M * :=

R d Ä 1 + |x| 2 ä -2 p p-1 dx = π d 2 Γ Ä d-p (d-4) 2 (p-1) ä Γ Ä 2 p p-1 ä .
Consider next a generic, non-negative optimal function, f

M,y,σ (x) := σ -d To simplify our statement, we will introduce a normalization constraint and assume that f ∈ L 2 p (R 2 , (1 + |x| 2 ) dx) is such that Such a condition is not restrictive, as it is always possible to cover the general case by rescaling the inequality, but significantly simplifies the expressions. As we shall see in the proof, the only goal is to fix σ = 1.

4 p Å C M + 1 σ |x -y| 2 ã -1 p-1 ∀ x ∈ R d
Our main result goes as follows.

Theorem 1. Let d ≥ 2, p > 1 and assume that p < d/(d -2) if d ≥ 3. For any f ∈ L p+1 ∩ D 1,2 (R d ) such that Condition (5) holds, we have R d |∇f | 2 dx + R d |f | p+1 dx -K p,d Å R d |f | 2 p dx ã γ ≥ C p,d Ä R (p) [f ] ä 2 R d |f | 2 p dx γ
where γ is given by (4).

The constant C p,d is positive and explicit. We do not know its optimal value. See Appendix A for an expression of C p,d , which is such that

lim p→1 + C p,d = 0 and lim p→d/(d-2) - C p,d = 0 .
The space L p+1 ∩ D 1,2 (R d ) is the natural space for Gagliardo-Nirenberg inequalities as it can be characterized as the completion of the space of smooth functions with compact support with respect to the norm • such that

f 2 = ∇f 2 2 + f 2 p+1 .
In this paper, we shall also use the notations f p,q := ( R d |x| p |f | q dx) 1/q , so that f q = f 0,q .

Under Condition (5), we shall deduce from Theorem 4 that ( 6)

R (p) [f ] ≥ C CK f 2 p (γ-2) 2 p inf g∈M (p) d |f | 2 p -g 2 p 2 1 with δ = d + 2 -p (d + 6
) for some constant C CK whose expression is given in Section 3, Eq. [START_REF] Carrillo | Fine asymptotics for fast diffusion equations[END_REF]. Putting this estimate together with the result of Theorem 1, with

C p,d := C d,p C CK 2 ,
we obtain the following estimate.

Corollary 2. Under the same assumptions as in Theorem 1, we have

R d |∇f | 2 dx + R d |f | p+1 dx -K p,d Å R d |f | 2 p dx ã γ ≥ C p,d f 2 p (γ-4) 2 p inf g∈M d (p) |f | 2 p -g 2 p 4 1 .
The critical case p = d/(d-2) corresponding to Sobolev's inequality raises a number of difficulties which are not under control at this stage. However, results which have been obtained in such a critical case, by different methods, are the main motivation for the present paper.

In d is controlled by the difference of the two terms in the critical Sobolev inequality written with an optimal constant. Some partial answers have been provided over the years, of which we can list the following ones. First G. Bianchi and H. Egnell gave in [START_REF] Bianchi | A note on the Sobolev inequality[END_REF] a result based on the concentration-compactness method, which determines a non-constructive estimate for a distance to the set of optimal functions. In [START_REF] Cianchi | The sharp Sobolev inequality in quantitative form[END_REF], A. Cianchi, N. Fusco, F. Maggi and A. Pratelli established an improved inequality using symmetrization methods. Also see [START_REF] Cianchi | Quantitative Sobolev and Hardy inequalities, and related symmetrization principles[END_REF] for an overview of various results based on such methods. Recently another type of improvement, which relates Sobolev's inequality to the Hardy-Littlewood-Sobolev inequalities, has been established in [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF], based on the flow of a nonlinear diffusion equation, in the regime of extinction in finite time. Theorem 1 does not provide an answer in the critical case, but gives an improvement with fully explicit constants in the subcritical regime. Our method of proof enlightens a new aspect of the problem. Indeed, Theorem 1 shows that the difference of the two terms in the critical Sobolev inequality provides a better control under the additional information that f 2,2 p is finite. Such a condition disappears in the setting of Corollary 2.

In this paper, our goal is to establish an improvement of Gagliardo-Nirenberg inequalities based on the flow of the fast diffusion equation in the regime of convergence towards Barenblatt self-similar profiles, with an explicit measure of the distance to the set of optimal functions. Our approach is based on a relative entropy functional. The method relies on a recent paper, [START_REF] Dolbeault | Fast diffusion equations: Matching large time asymptotics by relative entropy methods[END_REF], which is itself based on a long series of studies on intermediate asymptotics of the fast diffusion equation, and on the entropy -entropy production method introduced in [START_REF] Bakry | Hypercontractivité de semi-groupes de diffusion[END_REF][START_REF] Arnold | On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations[END_REF] in the linear case and later extended to nonlinear diffusions: see [START_REF] Newman | A Lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity. I[END_REF][START_REF] Ralston | A Lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity. II[END_REF][START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF][START_REF] Carrillo | Asymptotic L 1 -decay of solutions of the porous medium equation to self-similarity[END_REF][START_REF] Carrillo | Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities[END_REF]. In this setting, having a finite second moment is crucial. Let us give some explanations.

Consider the fast diffusion equation with exponent m given in terms of the exponent p of Theorem 1 by

(7) p = 1 2 m -1 ⇐⇒ m = p + 1 2 p .
More specifically, for m ∈ (0, 1), we shall consider the solutions of ( 8)

∂u ∂t + ∇ • î u Ä η ∇u m-1 -2 x äó = 0 t > 0 , x ∈ R d with initial datum u(t = 0, •) = u 0 .
Here η is a positive parameter which does not depend on t. Let u ∞ be the unique stationary solution such that

M = R d u dx = R d u ∞ dx. It is given by u ∞ (x) = Å K + 1 η |x| 2 ã 1 m-1 ∀ x ∈ R d
for some positive constant K which is uniquely determined by M . The following exponents are associated with the fast diffusion equation [START_REF] Bonforte | Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities[END_REF] and will be used all over this paper:

m c := d -2 d , m 1 := d -1 d and ‹ m 1 := d d + 2 .
To the critical exponent 2 p = 2 d/(d -2) for Sobolev's inequality corresponds the critical exponent m 1 for the fast diffusion equation. For d ≥ 3, the con-

dition p ∈ (1, d/(d -2)) in Theorem 1 is equivalent to m ∈ (m 1 , 1) while for d = 2, p ∈ (1, ∞) means m ∈ (1/2, 1).
It has been established in [START_REF] Newman | A Lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity. I[END_REF][START_REF] Ralston | A Lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity. II[END_REF] that the relative entropy (or free energy)

F[u|u ∞ ] := 1 m -1 R d î u m -u m ∞ -m u m-1 ∞ (u -u ∞ ) ó dx decays according to d dt F[u(•, t)|u ∞ ] = -I[u(•, t)|u ∞ ]
if u is a solution of [START_REF] Bonforte | Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities[END_REF], where

I[u(•, t)|u ∞ ] := η m 1 -m R d u ∇u m-1 -∇u m-1 ∞ 2 dx
is the entropy production term or relative Fisher information. If m ∈ [m 1 , 1), according to [START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF], these two functionals are related by a Gagliardo-Nirenberg interpolation inequality, namely

(9) F[u|u ∞ ] ≤ 1 4 I[u|u ∞ ] .
We shall give a concise proof of this inequality in the next section (see Remark 1) based on the entropy -entropy production method, which amounts to relate

d dt I[u(•, t)|u ∞ ] and I[u(•, t)|u ∞ ].
We shall later replace the diffusion parameter η in (8) by a time-dependent coefficient σ(t), which is itself computed using the second moment of u, R d |x| 2 u(x, t) dx. By doing so, we will be able to capture the best matching Barenblatt solution and get improved decay rates in the entropy -entropy production inequality. Elementary estimates allow to rephrase these improved rates into improved functional inequalities for f such that |f | 2 p = u, for any p ∈ (1, d/(d -2)), as in Theorem 1.

This paper is organized as follows. In Section 2, we apply the entropyentropy production method to the fast diffusion equation as in [START_REF] Carrillo | Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities[END_REF]. The key computation, without justifications for the integrations by parts, is reproduced here since we need it later in Section 6, in the case of a time-dependent diffusion coefficient. Next, in Section 3, we establish a new estimate of Csiszár-Kullback type. By requiring a condition on the second moment, we are able to produce a new estimate which was not known before, namely to directly control the difference of the solution with a Barenblatt solution in L 1 (R d ).

Second moment estimates are the key of a recent paper and we shall primarily refer to [START_REF] Dolbeault | Fast diffusion equations: Matching large time asymptotics by relative entropy methods[END_REF] in which the asymptotic behaviour of the solutions of the fast diffusion equation was studied. In Section 4 we recall the main results that were proved in [START_REF] Dolbeault | Fast diffusion equations: Matching large time asymptotics by relative entropy methods[END_REF], and that are also needed in the present paper.

With these preliminaries in hand, an improved entropy -entropy production inequality is established in Section 5, which is at the core of our paper. It is known since [START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF] that entropy -entropy production inequalities amount to optimal Gagliardo-Nirenberg-Sobolev inequalities. Such a rephrasing of our result in a more standard form of functional inequalities is done in Section 6, which contains the proof of Theorem 1. Further observations have been collected in Section 7. One of the striking results of our approach is that all constants can be explicitly computed. This is somewhat technical although not really difficult. To make the reading easier, explicit computations have been collected in Appendix A.

The entropy -entropy production method

Consider a solution u = u(x, t) of Eq. ( 8) and define z(x, t) := η ∇u m-1 -2 x so that Eq. ( 8) can be rewritten as

∂u ∂t + ∇ • (u z) = 0 .
To keep notations compact, we shall use the following conventions.

If A = (A ij ) d i,j=1 and B = (B ij ) d i,j=1 are two matrices, let A : B = d i,j=1 A ij B ij and |A| 2 = A : A. If a and b take values in R d , we adopt the definitions: a•b = d i=1 a i b i , ∇•a = d i=1 ∂a i ∂x i , a⊗b = (a i b j ) d i,j=1 , ∇⊗a = Å ∂a j ∂x i ã d i,j=1
.

Later we will need a version of the entropy -entropy production method in case of a time-dependent diffusion coefficient. Before doing so, let us recall the key computation of the standard method. With the above notations, it is straightforward to check that

∂z ∂t = η (1 -m)∇ Ä u m-2 ∇ • (u z) ä and ∇ ⊗ z = η ∇ ⊗ ∇u m-1 -2 Id . With these definitions, the time-derivative of 1-m m η I[u|u ∞ ] = R d u |z| 2 dx can be computed as d dt R d u |z| 2 dx = R d ∂u ∂t |z| 2 dx + 2 R d u z • ∂z ∂t dx .
The first term can be evaluated by

R d ∂u ∂t |z| 2 dx = - R d ∇ • (u z) |z| 2 dx = 2 R d u z ⊗ z : ∇ ⊗ z dx = 2 η R d u z ⊗ z : ∇ ⊗ ∇u m-1 dx -4 R d u |z| 2 dx = 2 η (1 -m) R d u m-2 ∇u ⊗ ∇ : (u z ⊗ z) dx -4 R d u |z| 2 dx = 2 η (1 -m) R d u m-2 (∇u • z) 2 dx + 2 η (1 -m) R d u m-1 (∇u • z) (∇ • z) dx + 2 η (1 -m) R d u m-1 (z ⊗ ∇u) : (∇ ⊗ z) dx -4 R d u |z| 2 dx .
The second term can be evaluated by 2

R d u z • ∂z ∂t dx = 2 η (1 -m) R d (u z • ∇) Ä u m-2 ∇ • (u z) ä dx = -2 η (1 -m) R d u m-2 Ä ∇ • (u z) ä 2 dx = -2 η (1 -m) R d î u m (∇ • z) 2 + 2 u m-1 (∇u • z) (∇ • z) + u m-2 (∇u • z) 2 ó dx .
Summarizing, we have found that

R d ∂u ∂t |z| 2 dx + 4 R d u |z| 2 dx = -2 η (1-m) R d u m-2 î u 2 (∇•z) 2 +u (∇u • z) (∇ • z)-u (z⊗∇u) : (∇⊗ z) ó dx .
Using the fact that

∂ 2 z j ∂x i ∂x j = ∂ 2 z i ∂x 2 j , we obtain that R d u m-1 (∇u • z) (∇ • z) dx = - 1 m R d u m (∇ • z) 2 dx - 1 m R d u m d i,j=1 z i ∂ 2 z j ∂x i ∂x j dx and - R d u m-1 (z ⊗ ∇u) : (∇⊗ z) dx = 1 m R d u m |∇z| 2 dx + 1 m R d u m d i,j=1 z i ∂ 2 z i ∂x 2 j dx can be combined to give R d u m-2 î u (∇u • z) (∇ • z) -u ∇u ⊗ z : ∇ ⊗ z ó dx = - 1 m R d u m (∇ • z) 2 dx + 1 m R d u m |∇z| 2 dx .
This shows that (10)

d dt R d u |z| 2 dx + 4 R d u |z| 2 dx = -2 η 1 -m m R d u m Ä |∇z| 2 -(1 -m) (∇ • z) 2 ä dx .
By the arithmetic geometric inequality, we know that

|∇z| 2 -(1 -m) (∇ • z) 2 ≥ 0 if 1 -m ≤ 1/d, that is, if m ≥ m 1 .
Altogether, we have formally established the following result.

Proposition 3. Let d ≥ 1, m ∈ (m 1 , 1)
and assume that u is a nonnegative solution of (8) with initial datum u 0 in L 1 (R d ) such that u m 0 and x → |x| 2 u 0 are both integrable on R d . With the above defined notations, we get that

d dt I[u(•, t)|u ∞ ] ≤ -4 I[u(•, t)|u ∞ ] ∀ t > 0 .
The proof of such a result requires to justify that all integrations by parts make sense. We refer to [START_REF] Carrillo | Asymptotic L 1 -decay of solutions of the porous medium equation to self-similarity[END_REF][START_REF] Carrillo | Fine asymptotics for fast diffusion equations[END_REF] for a proof in the porous medium case (m > 1) and to [START_REF] Carrillo | Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities[END_REF] for m 1 ≤ m < 1. The case m = 1 was covered long ago in [START_REF] Bakry | Hypercontractivité de semi-groupes de diffusion[END_REF].

Remark 1. Proposition 3 provides a proof of (9). Indeed, with a Gronwall estimate, we first get that

I[u(•, t)|u ∞ ] ≤ I[u 0 |u ∞ ] e -4 t ∀ t ≥ 0 if I[u 0 |u ∞ ] is finite. Since I[u(•, t)|u ∞ ] is non-negative, we know that lim t→∞ I[u(•, t)|u ∞ ] = 0 ,
which proves the convergence of u(•, t) to u ∞ as t → ∞. As a consequence, we also have

lim t→∞ F[u(•, t)|u ∞ ] = 0 and since d dt Ä I[u(•, t)|u ∞ ] -4 F[u(•, t)|u ∞ ] ä = d dt I[u(•, t)|u ∞ ] + 4 I[u(•, t)|u ∞ ] ≤ 0 ,
an integration with respect to t on (0, ∞) shows that

I[u 0 |u ∞ ] -4 F[u 0 |u ∞ ] ≥ 0 ,
which is precisely (9) written for u = u 0 .

A Csiszár-Kullback inequality

Let m ∈ (‹ m 1 , 1) with ‹ m 1 = d d+2 and consider the relative entropy

F σ [u] := 1 m -1 R d î u m -B m σ -m B m-1 σ (u -B σ ) ó dx for some Barenblatt function (11) B σ (x) := σ -d 2 Ä C M + 1 σ |x| 2 ä 1 m-1 ∀ x ∈ R d
where σ is a positive constant and C M is chosen such that B σ 1 = M > 0.

With p and m related by [START_REF]Asymptotics of the fast diffusion equation via entropy estimates[END_REF], the definition of C M coincides with the one of Section 1. See details in Appendix A.

Theorem 4. Let d ≥ 1, m ∈ (‹ m 1 , 1) and assume that u is a non-negative function in L 1 (R d ) such that u m and x → |x| 2 u are both integrable on R d . If u 1 = M and R d |x| 2 u dx = R d |x| 2 B σ dx, then F σ [u] σ d 2 (1-m) ≥ m 8 R d B m 1 dx Å C M u -B σ 1 + 1 σ R d |x| 2 |u -B σ | dx ã 2 .
Notice that the condition R d |x| 2 u dx = R d |x| 2 B σ dx is explicit and determines σ uniquely:

σ = 1 K M R d |x| 2 u dx with K M := R d |x| 2 B 1 dx .
For further details, see Lemma 5 and (20) below, and Appendix A for detailed expressions of

K M and R d B m 1 dx. With this choice of σ, since B m-1 σ = σ d 2 (1-m) C M + σ d 2 (mc-m) |x| 2 , we remark that R d B m-1 σ (u -B σ ) dx = 0 so that the relative entropy reduces to F σ [u] := 1 m -1 R d [u m -B m σ ] dx
Proof of Theorem 4. Let v := u/B σ and dµ σ := B m σ dx. With these notations, we observe that

R d (v -1) dµ σ = R d B m-1 σ (u -B σ ) dx = σ d 2 (1-m) C M R d (u -B σ ) dx + σ d 2 (mc-m) R d |x| 2 (u -B σ ) dx = 0 . Thus R d (v -1) dµ σ = v>1 (v -1) dµ σ - v<1 (1 -v) dµ σ = 0 , which, coupled with v>1 (v -1) dµ σ + v<1 (1 -v) dµ σ = R d |v -1| dµ σ , implies R d |u -B σ | B m-1 σ dx = R d |v -1| dµ σ = 2 v<1 |v -1| dµ σ .
On the other hand, a Taylor expansion shows that

F σ [u] = 1 m -1 R d î v m -1 -m (v -1) ó dµ σ = m 2 R d ξ m-2 |v -1| 2 dµ σ
for some function ξ taking values in the interval (min{1, v}, max{1, v}), thus giving the lower bound

F σ [u] ≥ m 2 v<1 ξ m-2 |v -1| 2 dµ σ ≥ m 2 v<1 |v -1| 2 dµ σ .
Using the Cauchy-Schwarz inequality, we get

Å v<1 |v -1| dµ σ ã 2 = Å v<1 |v -1| B m 2 σ B m 2 σ dx ã 2 ≤ v<1 |v -1| 2 dµ σ R d B m σ dx
and finally obtain that

F σ [u] ≥ m 2 Ä v<1 |v -1| dµ σ ä 2 R d B m σ dx = m 8 R d |u -B σ | B m-1 σ dx 2 R d B m σ dx
, which concludes the proof.

Notice that the inequality of Theorem 4 can be rewritten in terms of |f | 2 p = u and g 2 p = B σ with p = 1/(2 m -1). See Appendix A for the computation of R d B m σ dx, σ, C M and K M in terms of R d |x| 2 u dx and M * . In the framework of Corollary 2, we observe that Condition (5) can be rephrased as

(12) σ = 1 K M f 2 p 2,2 p = 1 K 1 f 2 p 2,2 p f 2 p γ 2 p = σ * .
Altogether we find in such a case that

R (p) [f ] = p-1 p+1 F σ * [u] ≥ C CK |f | 2 p -|g| 2 p 2 with (13) C CK = p-1 p+1 d+2-p (d-2) 32 p σ d p-1 4 p * M 1-γ * . Remark 2.
Various other estimates can be derived, based on second order Taylor expansions. For instance, as in [START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF], we can write that

F σ [u] = R d î ψ(v m ) -ψ(1) -ψ ′ (1) (v m -1) ó dµ σ
with v := u/B σ and ψ(s) := m 1-m s 1/m , and get

F σ [u] ≥ 1 m 2 -2 m v m -1 2 L 1/m (R d ,dµσ) max ¶ v m L 1/m (R d ,dµσ) , 1 L 1/m (R d ,dµσ) © 2-1 m . Using v m L 1/m (R d ,dµσ) = 1 L 1/m (R d ,dµσ) = B m σ m 1 and R d |u m -B m σ | dx = R d |u m -B m σ | B m (m-1) σ B m (1-m) σ dx ≤ v m -1 L 1/m (R d ,dµσ) B m σ 1-m 1
by the Cauchy-Schwarz inequality, we find

F σ [u] ≥ u m -B m σ 2 1 m 2 2 m B m σ 1
.

With f = u m-1 2 , this also gives another estimate of Csiszár-Kullback type, namely

R (p) [f ] ≥ κ p,d f d 2 (p-1) 2,2 p f 1 2 (d+2-p (d-2)) 2 p inf g∈M (p) d |f | p+1 -g p+1 2 1
, for some positive constant κ p,d , which is valid for any

p ∈ (1, ∞) if d = 2 and any p ∈ (1, d d-2 ] if d ≥ 3.
Also see [START_REF] Unterreiter | On generalized Csiszár-Kullback inequalities[END_REF][START_REF] Carrillo | Asymptotic L 1 -decay of solutions of the porous medium equation to self-similarity[END_REF][START_REF] Cáceres | Nonlinear stability in L p for a confined system of charged particles[END_REF][START_REF] Dolbeault | Large time behaviour of solutions to nonhomogeneous diffusion equations[END_REF] for further results on Csiszár-Kullback type inequalities corresponding to entropies associated with porous media and fast diffusion equations.

Recent results on the optimal matching by Barenblatt solutions

Consider on R d the fast diffusion equation with harmonic confining potential given by ( 14)

∂u ∂t + ∇ • u σ d 2 (m-mc) ∇u m-1 -2 x = 0 t > 0 , x ∈ R d ,
with initial datum u 0 . Here σ is a function of t. Let us summarize some results obtained in [START_REF] Dolbeault | Fast diffusion equations: Matching large time asymptotics by relative entropy methods[END_REF] and the strategy of their proofs.

Result 1. At any time t > 0, we can choose the best matching Barenblatt as follows. Consider a given function u and optimize λ → F λ [u].

Lemma 5. For any given u ∈ L 1 + (R d ) such that u m and |x| 2 u are both integrable, if m ∈ (‹ m 1 , 1), there is a unique λ = λ * > 0 which minimizes λ → F λ [u], and it is explicitly given by

λ * = 1 K M R d |x| 2 u dx where K M = R d |x| 2 B 1 dx. For λ = λ * , the Barenblatt profile B λ satisfies R d |x| 2 B λ dx = R d |x| 2 u dx .
As a consequence, we know that d dλ 14), the value of λ in Lemma 5 may depend on t. Now we choose σ(t) = λ(t), i.e., [START_REF] Cianchi | The sharp Sobolev inequality in quantitative form[END_REF] 

Ä F λ [u] ä λ=λ * = 0 . Of course, if u is a solution of (
σ(t) = 1 K M R d |x| 2 u(x, t) dx ∀ t ≥ 0 .
This makes ( 14) a non-local equation.

Result 2. With the above choice, if we consider a solution of ( 14) and compute the time derivative of the relative entropy, we find that

d dt F σ(t) [u(•, t)] = σ ′ (t) Å d dσ F σ [u] ã |σ=σ(t) + m m -1 R d u m-1 -B m-1 σ(t) ∂u ∂t dx .
However, as a consequence of the choice (15) and of Lemma 5, we know that

Å d dσ F σ [u] ã |σ=σ(t) = 0 ,
and finally obtain

(16) d dt F σ(t) [u(•, t)] = - m σ(t) d 2 (m-mc) 1 -m R d u ∇ u m-1 -B m-1 σ(t) 2 dx .
The computation then goes as in [START_REF]Asymptotics of the fast diffusion equation via entropy estimates[END_REF][START_REF] Bonforte | Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities[END_REF] (also see [START_REF] Newman | A Lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity. I[END_REF][START_REF] Ralston | A Lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity. II[END_REF][START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF] for details). With our choice of σ, we gain an additional orthogonality condition which is useful for improving the rates of convergence (see [START_REF] Dolbeault | Fast diffusion equations: Matching large time asymptotics by relative entropy methods[END_REF]Theorem 1]) in the asymptotic regime t → ∞, compared to the results of [START_REF] Bonforte | Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities[END_REF] (also see below).

Result 3. Now let us state one more result of [START_REF] Dolbeault | Fast diffusion equations: Matching large time asymptotics by relative entropy methods[END_REF] which is of interest for the present paper. Lemma 6. With the above notations, if u and σ are defined respectively by ( 14) and (15), then the function t → σ(t) is positive, decreasing, with σ ∞ := lim t→∞ σ(t) > 0 and

(17) σ ′ (t) = -2 d (1 -m) 2 m K M σ d 2 (m-mc) F σ(t) [u(•, t)] ≤ 0 .
The main difficulty is to establish that σ ∞ is positive. This can be done with an appropriate change of variables which reduces [START_REF] Cianchi | Quantitative Sobolev and Hardy inequalities, and related symmetrization principles[END_REF] to the case where σ does not depend on t. In [START_REF] Dolbeault | Fast diffusion equations: Matching large time asymptotics by relative entropy methods[END_REF], a proof has been given, based on asymptotic results for the fast diffusion equation that were established in [START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF][START_REF]Asymptotics of the fast diffusion equation via entropy estimates[END_REF][START_REF] Blanchet | Hardy-Poincaré inequalities and applications to nonlinear diffusions[END_REF][START_REF] Bonforte | Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities[END_REF]]. An alternative proof will be given in Remark 3, below.

The scaled entropy -entropy production inequality

Consider the relative Fisher information

I σ [u] := σ d 2 (m-mc) m 1 -m R d u ∇u m-1 -∇B m-1 σ 2 dx .
By applying [START_REF] Brezis | Sobolev inequalities with remainder terms[END_REF] with u ∞ = B 1 and η = 1 to x → σ d/2 u( √ σ x) and using the fact that B 1 (x) = σ d/2 B σ ( √ σ x), we get the inequality

F σ [u] ≤ 1 4 I σ [u] .
Now, if σ is time-dependent as in Section 4, we have the following relations. [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF]. Moreover, for any t ≥ 0, we have

Lemma 7. If u is a solution of (14) with σ(t) = 1 K M R d |x| 2 u(x, t) dx, then σ satisfies
(18) d dt F σ(t) [u(•, t)] = -I σ(t) [u(•, t)] and (19) 
d dt I σ(t) [u(•, t)] ≤ - ñ 4 + 1 2 (m -m c ) (m -m 1 ) d 2 |σ ′ (t)| σ(t) ô I σ(t) [u(•, t)] .
Proof. Eq. ( 17) and ( 18) have already been stated respectively in Lemma 6 and in [START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF]. They are recalled here only for the convenience of the reader. It remains to prove [START_REF] Dolbeault | Fast diffusion equations: Matching large time asymptotics by relative entropy methods[END_REF].

For any given σ = σ(t), Proposition 3 gives

d dt I σ(t) [u(•, t)] = Å d dt I λ [u(•, t)] ã |λ=σ(t) + σ ′ (t) Å d dλ I λ [u] ã |λ=σ(t) ≤ -4 I σ(t) [u(•, t)] + σ ′ (t) Å d dλ I λ [u] ã |λ=σ(t)
.

Owing to the definition of I λ , we obtain

d dλ I λ [u] = d 2 (m -m c ) 1 λ I λ [u] - m 1 -m λ d 2 (m-mc) R d 2 u Ä ∇u m-1 -∇B m-1 λ ä • d dλ Ä ∇B m-1 λ ä dx .
By definition [START_REF] Carrillo | Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities[END_REF],

∇B m-1 λ (x) = 2 x λ -d 2 (m-mc) , which implies λ d 2 (m-mc) d dλ Ä ∇B m-1 λ ä = - d λ (m -m c ) x .
Substituting this expression into the above computation and integrating by parts, we conclude with the equality

d dλ I λ [u] = d 2 (m -m c ) 1 λ I λ [u] - 2 d λ (m -m c ) 2 m λ -d 2 (m-mc) 1 -m R d |x| 2 u dx -d R d u m dx .
A simple computation shows that

(20) d R d B m 1 dx = - R d x • ∇B m 1 dx = 2 m 1 -m R d |x| 2 B 1 dx = 2 m 1 -m K M
and, as a consequence, if

λ = σ = 1 K M R d |x| 2 u dx, then 2 m λ -d 2 (m-mc) 1 -m R d |x| 2 u dx = d R d B m λ dx ,
and finally ( 21)

d dλ I λ [u] = d 2 λ (m -m c ) I λ [u] -4 d (1 -m) F λ [u] .
Altogether, we have found that

d dt I σ(t) [u(•, t)] + 4 I σ(t) [u(•, t)] ≤ d 2 (m -m c ) σ ′ (t) σ(t) I σ(t) [u] -4 d (1 -m) F σ(t) [u] .
The last term of the right hand side is non-positive because by [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF] we know that σ ′ (t) ≤ 0 and

I σ(t) [u] -4 d (1 -m) F σ(t) [u] = d (1 -m) I σ(t) [u] -4 F σ(t) [u] + d (m -m 1 ) I σ(t) [u] ≥ d (m -m 1 ) I σ(t) [u] ≥ 0 .
This implies [START_REF] Dolbeault | Fast diffusion equations: Matching large time asymptotics by relative entropy methods[END_REF].

To avoid carrying heavy notations, let us write

f (t) := F σ(t) [u(•, t)] and j(t) := J σ(t) [u(•, t)]
and denote f (0), j(0) and σ(0) respectively by f 0 , j 0 and σ 0 . Estimates ( 17), ( 18) and ( 19) can be rewritten as ( 22)

       f ′ = -j ≤ 0 σ ′ = -κ 1 σ d 2 (m-mc) f ≤ 0 j ′ + 4 j ≤ κ 2 j σ ′ σ
where the constants κ i , i = 1, 2, are given by

κ 1 := 2 d (1 -m) 2 m K M and κ 2 := 1 2 (m -m c ) (m -m 1 ) d 2 .
Using the fact that lim t→∞ f (t) = lim t→∞ f (t) = 0, as in the proof of Proposition 3, we find that j(t) -4 f (t) ≥ 0 and f (t) ≤ f 0 e -4 t for any t ≥ 0.

Remark 3. The decay of σ can be estimated by

- d dt σ d 2 (1-m) = d 2 (1 -m) κ 1 f ≤ d 2 (1 -m) κ 1 f 0 e -4 t , thus showing that σ d 2 (1-m) ∞ ≥ σ d 2 (1-m) 0 -d 2 (1-m) 3 4 m K M f 0 .
Since u 0 and B σ 0 have the same mass and second moment, we know that

f 0 = 1 1 -m R d Ä B m σ 0 -u m 0 ä dx = 2 m K M d (1 -m) 2 σ d 2 (1-m) 0 - 1 (1 -m) R d u m 0 dx .
Hence we end up with the positive lower bound

σ d 2 (1-m) ∞ ≥ d 2 (m -m c ) σ d 2 (1-m) 0 + d 2 (1 -m) 2 4 m K M R d u m 0 dx .
From [START_REF] Ralston | A Lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity. II[END_REF] we get the estimates σ(t) ≤ σ 0 for any t ≥ 0 and

j ′ -4 f ′ = j ′ + 4 j ≤ κ 2 j σ ′ σ = κ 1 κ 2 σ -d 2 (1-m) f f ′ ≤ κ 1 κ 2 σ -d 2 (1-m) 0 f f ′
Integrating from 0 to ∞ with respect to t and taking into account the fact that lim t→∞ f (t) = lim t→∞ f (t) = 0, we get

-j 0 + 4 f 0 ≤ - 1 2 κ 1 κ 2 σ -d 2 (1-m) 0 f 2 0 .
By rewriting this estimate in terms of F σ 0 [u 0 ] = f 0 , I σ 0 [u 0 ] = j 0 and after omitting the index 0, we have achieved our key estimate, which can be written using

C m,d := d 3 2 m K M (m -m c ) (m -m 1 ) (1 -m) 2
as follows.

Theorem 8. Let d ≥ 1, m ∈ (m 1 , 1) and assume that u is a non-negative function in L 1 (R d ) such that u m and x → |x| 2 u are both integrable on R d . Let σ = 1 K M R d |x| 2 u(x) dx where M = R d u(x) dx.
Then the following inequality holds

(23) 4 F σ [u] + C m,d (F σ [u]) 2 σ d 2 (1-m) ≤ I σ [u] .
Recall that

K M = K 1 M γ , with γ = (d+2) m-d d (m-mc)
. See Appendix A for details. Notice that this definition of γ is compatible with the one of Theorem 1 if p = 1/(2 m -1).

Remark 4. If we do not drop any term in the proof of Proposition 3 and Lemma 7, an ODE can be obtained for j, based on (10) and (21) and we can replace (22) by a system of coupled ODEs that reads

       f ′ = -j ≤ 0 σ ′ = -κ 1 σ d 2 (m-mc) f ≤ 0 j ′ + 4 j = d (1 -m) (j -4 f ) σ ′ σ + κ 2 j σ ′ σ -r where r := 2 σ d (m-mc) R d u m Ä |∇z| 2 -(1 -m) (∇ • z) 2 ä dx ≥ 0 and z := σ d 2 (m-mc) ∇u m-1 -2 x.
It is then clear that the estimates σ ≤ σ 0 and j ′ + 4 j ≤ κ 2 j σ ′ σ , which have been used for the proof of Theorem 8, are not optimal.

Proofs of Theorem 1 and Corollary 2

Let us start by rephrasing Theorem 8 in terms of f = u m-1/2 . Assume that

M = R d u dx R d |f | 2 p dx and σ = 1 K M R d |x| 2 u dx = R d |x| 2 |f | 2 p dx
where p = 1/(2 m -1) and using the notation f

(p) M,0,σ ∈ M (p)
d defined in Section 1, consider the functional

R (p) [f ] := -2 p p+1 R d (|f | p+1 - Ä f (p) M,0,σ ä p+1 dx .
In preparation for the proof of Theorem 1, we can state the following result.

Corollary 9. Let d ≥ 2, p > 1 and assume that p < d/(d -2) if d ≥ 3. For any f ∈ L p+1 ∩ D 1,2 (R d ) such that Condition (5) holds, we have R d |∇f | 2 dx + R d |f | p+1 dx -K p,d Å R d |f | 2 p dx ã γ ≥ C p,d Ä R (p) [f ] ä 2 R d |f | 2 p dx γ
where γ is given by (4). This results is slightly more precise than the one given in Theorem 1, as we simply measure the distance to a special function in M (p) d , the one with same mass and second moment, centered at 0. The constant C p,d is the same as in Theorem 1: see Appendix A for its expression.

Proof. By expanding the square in I σ [u] and collecting the terms with the ones of F σ [u], we find that

1 4 I σ [u] -F σ [u] = m (1-m) (2 m-1) 2 σ d 2 (m-mc) R d |∇u m-1 2 | 2 dx + d m-m 1 1-m R d u m dx + 1 1-m Å m K M σ d 2 (1-m) - R d B m σ dx ã .
The last term of the right hand side can be rewritten as

1 1-m Å m K M σ d 2 (1-m) - R d B m σ dx ã = -m 1-m d (m-mc) (d+2) m-d σ d 2 (1-m) C 1 M γ
with γ = (d+2) m-d d (m-mc) (as in the previous Section) and

C 1 = M 1-γ *
(see Appendix A for details). Consequently Inequality ( 23) can be equivalently rewritten as

(24) m (1-m) (2 m-1) 2 σ d 2 (m-mc) R d |∇u m-1 2 | 2 dx + d m-m 1 1-m R d u m dx ≥ m 1-m d (m-mc) (d+2) m-d σ d 2 (1-m) C 1 M γ + d 3 (m-mc) (m-m 1 ) (1-m) 2 8 m K 1 (F σ [u]) 2 M γ σ d 2 (1-m)
.

This inequality is invariant under scaling and homogeneous. As already noticed in [START_REF] Carrillo | Asymptotic L 1 -decay of solutions of the porous medium equation to self-similarity[END_REF], Condition [START_REF] Bianchi | A note on the Sobolev inequality[END_REF] 

means σ = σ * , that is m (1-m) (2 m-1) 2 σ d 2 (m-mc) = d m-m 1 1-m .
Using the explicit expressions that can be found in Appendix A and reexpressing all quantities in terms of p = 1 2 m-1 completes the proof of Corollary 9. See Appendix A for an expression of C p,d .

Proof of Theorem 1. It is itself a simple consequences of Corollary 9. Let us consider the relative entropy with respect to a general Barenblatt function, not even necessarilynormalized with respect to its mass. For a given function

u ∈ L 1 + (R d ) with u m ∈ L 1 (R d ) and |x| 2 u ∈ L 1 (R d ), we can consider on (0, ∞) × R d × (0, ∞) the function h defined by h(C, y, σ) = 1 m -1 R d î u m -B m C,y,σ -m B m-1 C,y,σ (u -B C,y,σ ) ó dx
where B C,y,σ is a general Barenblatt function

B C,y,σ (x) := σ -d 2 Ä C + 1 σ |x -y| 2 ä 1 m-1 ∀ x ∈ R d .
An elementary computation shows that

∂h ∂C = m σ d 2 (1-m) 1 -m R d (u -B C,y,σ ) dx , ∇ y h = 2 m σ -d 2 (m-mc) 1 -m R d (x -y) (u -B C,y,σ ) dx , ∂h ∂σ = m d 2 σ -d 2 (m-mc) C R d (u -B C,y,σ ) dx - m -m c 1 -m 1 σ R d |x -y| 2 (u -B C,y,σ ) dx .
Optimizing with respect to Section 1). Notice that optimizing on y amounts to fix the center of mass of the Barenblatt function to be the same as the one of u. This is however required neither in the proof of Corollary 9 nor in the one of Theorem 1.

C fixes C = C M , with M = R d u dx. Once C = C M is
(p) [f ] ≥ R (p) [f ] by def- inition of R (p) (see
Proof of Corollary 2. It is a straightforward consequence of Theorem 1 and of the Csiszár-Kullback inequality (6) when f ∈ D 1,2 (R d ) is such that f 2,2 p is finite. However, f 2,2 p does not enter in the inequality. Since smooth functions with compact support (for which f 2,2 p is obviously finite) are dense D 1,2 (R d ), the inequality therefore holds without restriction, by density.

Concluding remarks

Let us conclude this paper with a few remarks. First of all, notice that Theorem 4 gives a stronger information than Theorem 1, as not only the L 1 (R d , dx) norm is controlled, but also a stronger norm involving the second moment, properly scaled.

No condition is imposed on the location of the center of mass, which simply has to satisfy R d x u dx 2 ≤ R d u dx R d |x| 2 u dx = σ M K M according to the Cauchy-Schwarz inequality. Hence in the definition of R[f ] and R (p) [f ] (in Theorem 1) as well as in Corollary 2, the result holds without optimizing on y ∈ R d . In [START_REF] Bonforte | Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities[END_REF][START_REF] Dolbeault | Fast diffusion equations: Matching large time asymptotics by relative entropy methods[END_REF], improved asymptotic rates were obtained by fixing the center of mass in order to kill the linear mode associated to the translation invariance of the Barenblatt functions. Here this is not required since, as t → ∞, the squared relative entropy is simply of higher order. Our improvement is better when the relative entropy is large, and is clearly not optimal for large values of t.

Our approach differs from the one of G. Bianchi and H. Egnell in [START_REF] Bianchi | A note on the Sobolev inequality[END_REF] and the one of A. Cianchi, N. Fusco, F. Maggi and A. Pratelli, [START_REF] Cianchi | The sharp Sobolev inequality in quantitative form[END_REF]. It gives fully explicit constants in the subcritical regime. The norms involved in the corrective term are not of the same nature.

Let us list a series of remarks which help for the understanding of our results.

(i) Scaling properties of the Barenblatt profiles. Consider the scaling λ → u λ with u λ (x) := λ d u(λ x) for any x ∈ R d . Then we have

σ λ := 1 K M R d |x| 2 u λ dx = 1 λ 2 1 K M R d |x| 2 u dx = σ λ 2
and may observe that

B σ λ (x) = λ d B σ (λ x) .
As a consequence, we find that As a consequence, we find that

F σ [u λ ] = λ d (m-1) F σ [u]. ( 
F σ [u λ ] = λ m F σ [u].
(iii) The m = 1 limit. As m → 1, which also corresponds to p → 1, we observe that the constant C p,d in Theorem 1 has a finite limit. Hence we get no improvement by dividing the improved Gagliardo-Nirenberg inequality by (p -1) and passing to the limit p → 1 + , since R (p) [f ] = O(p -1). By doing so, we simply recover the logarithmic Sobolev inequality as in [START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF]. This is consistent with the fact that, as m → 1 -, we have C 

  and let us define the manifold of the optimal functions asM ,σ : (M, y, σ) ∈ M d .We shall measure the distance to M (p) d with the functionalR (p) [f ] := inf g∈M (p) d R d î g 1-p Ä |f | 2 p -g 2 p ä -2 p p+1 Ä |f | p+1 -g p+1 äó dx .

( 5 )

 5 R d |x| 2 |f | 2 p dx R d |f | 2 p dx γ = d (p-1) σ * M γ-1 * d+2-p (d-2) , σ * (p) := 4 d+2-p (d

[ 9 ,

 9 Question (c), p. 75], H. Brezis and E. Lieb asked the question of what kind of distance to M (p)

d 1 K 1 =

 11 ii) Homogeneity properties of the Barenblatt profiles. Similarly notice that for any m ∈ (m 1 , 1), we haveC M = C 1 M -2 (1-m) d (m-mc ) and K M = K 1 M (m-mc ) .Let u λ := λ u and denote by B σ λ the corresponding best matching Barenblatt function. Using the fact that u λ 1 = λ M if u 1 = M and observing thatK λM = K M λ λM R d |x| 2 u λ dx = λ 2 (1-m) d (m-mc ) σ . Since C λM = λ -2 (1-m) d (m-mc ) C M , we find that B σ λ (x) = λ B σ (x) .

2 exp Ç - d 2 MR d |x| 2 u dx |x| 2 å,by ( 2 )..Ä 2 2 M γ σ d 2 ( 1 2 M γ- 1 *

 2222222121 m,d ∼ (1-m) 2 , σ = O(K -1 M ) = O(1 -m) and, since B σ (x) ∼ B 0 (x) := M Ç d M 2 π R d |x| 2 u dx å d , up to multiplications by a constant, translations and scalings. This allows to compute C GN p,d . All computations done, we findC GN p,d = (p-1) p+1 (p+1) d+1-p(d-1) η = p (d + 2 -p (d -2)).It is easy to relate C GN p,d and K p,d . As in[START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF], apply[START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF] tof λ such that f λ (x) = λ d 2 p f (λ x) for any x ∈ R d . With a := R d |∇f | 2 dx, b := R d |f | p+1 dx, α := d p + 2 -d and β := d p-1 2 p , Inequality (3) amounts to a λ α + b λ -β ≥ K p,d Å R d |f | 2 p dx ã γOptimizing the left hand side with respect to λ > 0 shows thatK p,dLet us consider[START_REF] Unterreiter | On generalized Csiszár-Kullback inequalities[END_REF]. With p = 1 2 m-1 , that is, m = p+1 2 p , andF[u] = m 1-m R (p) [f ] with u = f 2 p , it is straightforward to check that K p,d =since u = B σ always provides the equality case. Hence, using Identity[START_REF] Carrillo | Asymptotic L 1 -decay of solutions of the porous medium equation to self-similarity[END_REF], Inequality[START_REF] Unterreiter | On generalized Csiszár-Kullback inequalities[END_REF] amounts toR d |∇f | 2 dx + R d |f | p+1 dx -K p,d Å R d |f | 2 p dx ã γ ≥ (2 m-1) 2 m (1-m) σ -d 2 (m-mc) * d 3 (m-mc) (m-m 1 ) (1-m) 2 8 m K 1 Ä m 1-m R (p) [f ] ä -m) * . Using K 1 = d (1-m) (d+2) m-d M 1-γ *and expressing everything in terms of p, we finally getC p,d = (2 m-1) 2 8 (1-m) 2 ((d + 2) m -d) d 2 (m -m c ) (m -m 1 )M γ-1 * σ * = (d-p (d-4)) (d-p (d-2)) (d+2-p (d-2))16 p 3 (p-1) σ * (p) .

  assumed, optimizing with respect to σ amounts to choose it such that R d |x| 2 B C,y,σ dx = R d |x -y| 2 u dx as it has been shown inLemma 5. This completes the proof of Theorem 1, since R
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we also get that

Hence, in Theorem 8, the additional term in [START_REF] Talenti | Best constant in Sobolev inequality[END_REF] is of the order of 1 -m and disappears when passing to the limit m → 1 -.

Appendix A. Computation of the constants

Let us recall first some useful formulae. The surface of the d -1 dimensional unit sphere S d-1 is given by 

With this formula in hand, various quantities associated with Barenblatt functions can be computed. Applied to the function B(x

Notice that when M = M * , B = B 1 with the notation (11) of Section 3. As a consequence, for

m-1 , a simple change of variables shows that

which determines the value of C M , namely

.

A useful equivalent formula is

.

By recalling [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF] and observing that

, we find that (25)

Consider the sub-family of Gagliardo-Nirenberg-Sobolev inequalities (1). It has been established in [16, Theorem 1] that optimal functions are all given for his careful reading of an earlier version of the manuscript, which has resulted in a significant improvement of our results. c 2012 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.