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Improved Sobolev’s inequalities, relative

entropy and fast diffusion equations

By Jean Dolbeault and Giuseppe Toscani

Abstract

The difference of the two terms in Sobolev’s inequality (with optimal

constant) measures a distance to the manifold of the optimal functions. We

give an explicit estimate of the remainder term and establish an improved

inequality, with explicit norms and fully detailed constants. Our approach

is based on nonlinear evolution equations and improved entropy - entropy

production estimates along the associated flow. Optimizing a relative en-

tropy functional with respect to a scaling parameter, or handling properly

second moment estimates, turns out to be the central technical issue. This

is a new method in the theory of nonlinear evolution equations, which also

applies to other interpolation inequalities of Gagliardo-Nirenberg-Sobolev

type.

Keywords. Sobolev’s inequality; Gagliardo-Nirenberg-Sobolev inequalities; im-

proved inequalities; manifold of optimal functions; entropy - entropy produc-

tion method; fast diffusion equation; Barenblatt solutions; second moment;

intermediate asymptotics; sharp rates; optimal constants
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1. Introduction and main results

Sobolev’s inequality on the euclidean space of dimension d ≥ 3 can be

written as

(1)

∫

Rd
|∇f |2 dx− Sd

Å∫
Rd

|f |
2d
d−2 dx

ã d−2
d ≥ 0 ∀ f ∈ D1,2(Rd)

where D1,2(Rd) is the completion with respect to the norm ‖ · ‖ defined by

‖f‖2 = ‖∇f‖22 + ‖f‖22d/(d−2) of the set of smooth functions with compact

support. Here ‖f‖q = (
∫

Rd |f |q dx)1/q denotes the usual Lebesgue norm. When

Sd is the optimal constant, it is known since T. Aubin and G. Talenti’s papers

[3, 27] that equality is achieved if and only if f(x) = (1 + |x|2)−(d−2)/2 for any
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2 J. DOLBEAULT AND G. TOSCANI

x ∈ R
d, up to multiplications by constants, translations and scalings. More

precisely, the set of non-negative optimal functions is parametrized by three

parameters, M > 0, y ∈ R
d and σ > 0 and these functions take the form

fM,y,σ(x) =
1

σ
d
2

Ä
CM + 1

σ |x− y|2
ä d−2

2

∀ x ∈ R
d

where CM is uniquely determined in terms of M by the condition that
∫

Rd
f

2d
d−2

M,y,σ dx =M .

Such a condition can be solved explicitly and it can be shown that

CM :=

Å
M

M∗

ã− 2
d

with M∗ :=

∫

Rd

Ä
1 + |x|2

ä−d
dx = π

d
2

Γ
Ä
d
2

ä

Γ(d)
.

With these observations in hand, it is straightforward to recover that

Sd = π d (d− 2)

Ç
Γ(d/2)

Γ(d)

å 2
d

.

We shall write that (M,y, σ) ∈ Md := (0,∞) × R
d × (0,∞) and define the

manifold of the optimal functions as

Md :=
¶
fM,y,σ : (M,y, σ) ∈ Md

©
.

Our goal is to understand how the left hand side in (1) determines a

measure of the distance of f to Md, with explicit estimates. Consider the

relative entropy functional

R[f ] := inf
g∈Md

∫

Rd

[

g−
2

d−2

(

|f |
2d
d−2 − g

2d
d−2

)

− d
d−1

Ä
|f |2

d−1
d−2 − g2

d−1
d−2

ä]
dx .

Our first result goes as follows.

Theorem 1. Let d ≥ 3. For any f ∈ D1,2(Rd) such that
∫

Rd |x|2|f |
2d
d−2 dx

is finite, we have
∫

Rd
|∇f |2 dx− Sd

Å∫
Rd

|f |
2d
d−2 dx

ã d−2
d ≥ 1

8
(d− 2)2

(R[f ])2

∫

Rd |x|2|f |
2d
d−2 dx

.

Next, define the weighted norm ‖·‖2,q by

‖f‖2,q :=
Å∫

Rd
|x|2 |f |q dx

ã 1
q

and denote by 2∗ the exponent 2 d
d−2 . The functional R[f ] is a measure of the

distance of f to Md and we shall see in Theorem 6 that

(2) R[f ] ≥ CCK

‖f‖
d

d−2

2,2∗

‖f‖
3 d+2
d−2

2∗

inf
g∈Md

∥

∥

∥

∥

|f |
2d
d−2 − g

2d
d−2

∥

∥

∥

∥

2

1



IMPROVED SOBOLEV’S INEQUALITIES 3

with CCK =
Ä
d−2
d

ä3/2 M
1/d
∗

16 (d−1) . Putting this estimate together with the result

of Theorem 1, with

Cd :=
1

8
(d− 2)2 CCK

2 ,

we obtain the following estimate.

Corollary 2. Let d ≥ 3. For any f ∈ D1,2(Rd), we have

‖f‖22 − Sd ‖f‖22∗ ≥ Cd

‖f‖2
3 d+2
d−2

2∗

inf
g∈Md

∥

∥

∥

∥

|f |
2d
d−2 − g

2d
d−2

∥

∥

∥

∥

4

1
.

Actually, our method applies not only to Sobolev’s inequality but also to

the following sub-family of the Gagliardo-Nirenberg-Sobolev inequalities

(3) ‖f‖2 p ≤ CGN
p,d ‖∇f‖θ2 ‖f‖1−θ

p+1

with θ = θ(p) := p−1
p

d
d+2−p (d−2) , 1 < p ≤ d

d−2 if d ≥ 3 and 1 < p < ∞
if d = 2. Such an inequality holds for any smooth function f with sufficient

decay at infinity and, by density, for any function f ∈ Lp+1(Rd) such that ∇f
is square integrable. We shall assume that CGN

p,d is the best possible constant

in (3). In [18], it has been established that equality holds in (3) if f = Fp with

(4) Fp(x) = (1 + |x|2)−
1

p−1 ∀ x ∈ R
d

and that all extremal functions are equal to Fp up to a multiplication by a

constant, a translation and a scaling. See Appendix A for an expression of CGN
p,d .

If d ≥ 3, the limit case p = d/(d − 2) corresponds to Sobolev’s inequality and

one recovers that CGN
d/(d−2),d = 1/

√
Sd. When p→ 1, the inequality becomes an

equality, so that we may differentiate both sides with respect to p and recover

the euclidean logarithmic Sobolev inequality in optimal scale invariant form

(see [22, 29, 18] for details).

Define now

CM :=

Å
M∗

M

ã− 2 (p−1)
d−p (d−4)

, M∗ :=

∫

Rd

Ä
1 + |x|2

ä− 2 p
p−1 dx = π

d
2

Γ
Ä
d−p (d−4)
2 (p−1)

ä

Γ
Ä

2 p
p−1

ä

and observe that we recover the previous definitions of CM and M∗ when

p = d/(d − 2). Consider next a generic, non-negative optimal function,

f
(p)
M,y,σ(x) := σ−

d
4 p

Å
CM +

1

σ
|x− y|2

ã− 1
p−1 ∀ x ∈ R

d .

As in the case of Sobolev’s inequality, let us define the manifold of the optimal

functions as

M
(p)
d :=

{

f
(p)
M,y,σ : (M,y, σ) ∈ Md

}
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and consider the functional

R(p)[f ] := inf
g∈M

(p)
d

∫

Rd

î
g1−p

Ä
|f |2 p − g2 p

ä
− 2 p

p+1

Ä
|f |p+1 − gp+1

äó
dx .

Our second result extends the one of Theorem 1.

Theorem 3. Let d ≥ 2, p > 1 and assume that p ≤ d/(d − 2) if d ≥ 3.

For any f ∈ Lp+1 ∩ D1,2(Rd) such that ‖f‖2,2 p is finite, we have

(

CGN
p,d ‖∇f‖θ2 ‖f‖1−θ

p+1

)2 γ p
− ‖f‖2 γ p

2 p ≥ Cp,d

Ä
R(p)[f ]

ä2

‖f‖α2,2 p ‖f‖β γ
2 p

with θ = p−1
p

d
d+2−p (d−2) , α = d (p− 1), β = d− p (d− 2) and γ = d+2−p (d−2)

d−p (d−4) .

The constant Cp,d is positive and explicit. See Appendix A for its expression.

The space Lp+1 ∩ D1,2(Rd) is the natural space for Gagliardo-Nirenberg in-

equalities as it can be characterized as the completion of the space of smooth

functions with compact support with respect to the norm ‖ · ‖ such that

‖f‖2 = ‖∇f‖22 + ‖f‖2p+1.

As in the case p = d
d−2 , the functional R(p)[f ] is a measure of the distance

of f to the manifold M
(p)
d and we shall see in Theorem 6 that

(5) R(p)[f ] ≥ CCK ‖f‖α/22,2 p ‖f‖δ/22 p inf
g∈M

(p)
d

∥

∥

∥|f |2 p − g2 p
∥

∥

∥

2

1

with δ = d+ 2− p (d+ 6) for some constant CCK whose expression is given in

Section 3. Putting this estimate together with the result of Corollary 3, with

Cp,d = Cd,p CCK
2 ,

we obtain the following estimate.

Corollary 4. Let d ≥ 2, p > 1 and assume that p ≤ d/(d − 2) if d ≥ 3.

With γ = d+2−p (d−2)
d−p (d−4) , for any f ∈ Lp+1 ∩ D1,2(Rd), we have

(

CGN
p,d ‖∇f‖θ2 ‖f‖1−θ

p+1

)2 γ p
− ‖f‖2 γ p

2 p ≥ Cp,d ‖f‖2 p (γ−4)
2 p inf

g∈Md(p)

∥

∥

∥|f |2 p − g2 p
∥

∥

∥

4

1
.

We may notice that Theorem 1 and Corollary 2 are special cases of Theo-

rem 3 and Corollary 4 respectively, corresponding to p = d/(d−2), γ = (d−2)/d

and Cp,d = (d− 2)2/(8Sd).

In [11, Question (c), p. 75], H. Brezis and E. Lieb asked the question of

what is controlled by the difference of the two terms in the critical Sobolev

inequality written with an optimal constant, that is, the left hand side in (1).

Some partial answers have been provided over the years, of which we can list

the following ones. First G. Bianchi and H. Egnell gave in [6] a result based on
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the concentration-compactness method, which determines a non-constructive

estimate for a distance to the set of optimal functions. In [17], A. Cianchi,

N. Fusco, F. Maggi and A. Pratelli established an improved inequality us-

ing symmetrization methods. Also see [16] for an overview of various results

based on such methods. Recently another type of improvement, which relates

Sobolev’s inequality to the Hardy-Littlewood-Sobolev inequalities, has been

established in [19], based on the flow of a nonlinear diffusion equation, in the

regime of extinction in finite time. Theorems 1 and 3 provide an answer with

fully explicit constants to the question asked by H. Brezis and E. Lieb twenty-

five years ago. Our method of proof enlightens a new aspect of the problem.

Indeed, Theorem 1 shows that the difference of the two terms in the critical

Sobolev inequality provides a better control under the additional information

that ‖f‖2,2∗ is finite. Such a condition disappears in the setting of Corollary 2.

In this paper, our goal is to establish an improvement of Sobolev’s in-

equality based on the flow of the fast diffusion equation in the regime of con-

vergence towards Barenblatt self-similar profiles, with an explicit measure of

the distance to the set of optimal functions for the critical Sobolev inequality.

Our approach is based on a relative entropy functional. The method relies on

a recent paper, [21], which is itself based on a long series of studies on interme-

diate asymptotics of the fast diffusion equation, and on the entropy - entropy

production method introduced in [4, 2] in the linear case and later extended

to nonlinear diffusions: see [24, 25, 18, 14, 13]. In this setting, having a finite

second moment is crucial. Let us give some explanations.

Consider the fast diffusion equation with exponent m given in terms of

the exponent p of Theorem 3 by

(6) p =
1

2m− 1
⇐⇒ m =

p+ 1

2 p
.

More specifically, for m ∈ (0, 1), we shall consider the solutions of

(7)
∂u

∂t
+∇ ·

î
u
Ä
η∇um−1 − 2x

äó
= 0 t > 0 , x ∈ R

d

with initial datum u(t = 0, ·) = u0. Here η is a positive parameter which

does not depend on t. Let u∞ be the unique stationary solution such that

M =
∫

Rd u dx =
∫

Rd u∞ dx. It is given by

u∞(x) =

Å
K +

1

η
|x|2
ã 1

m−1 ∀ x ∈ R
d

for some positive constant K which is uniquely determined by M . The follow-

ing exponents are associated with the fast diffusion equation (7) and will be
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used all over this paper:

mc :=
d− 2

d
, m1 :=

d− 1

d
and ‹m1 :=

d

d+ 2
.

To the critical exponent 2 p = 2 d/(d − 2) for Sobolev’s inequality, which ap-

pears in Theorem 1, corresponds the critical exponent m1 for the fast diffusion

equation. For d ≥ 3, the condition p ∈ (1, d/(d−2)] in Theorem 3 is equivalent

to m ∈ [m1, 1) while for d = 2, p ∈ (1,∞) means m ∈ (1/2, 1).

It has been established in [24, 25] that the relative entropy (or free energy)

F [u|u∞] :=
1

m− 1

∫

Rd

î
um − um∞ −mum−1

∞ (u− u∞)
ó
dx

decays according to

d

dt
F [u(·, t)|u∞] = −I[u(·, t)|u∞]

if u is a solution of (7), where

I[u(·, t)|u∞] := η
m

1−m

∫

Rd
u
∣

∣

∣∇um−1 −∇um−1
∞

∣

∣

∣

2
dx

is the entropy production term or relative Fisher information. If m ∈ [m1, 1),

according to [18], these two functionals are related by a Gagliardo-Nirenberg

interpolation inequality, namely

(8) F [u|u∞] ≤ 1

4
I[u|u∞] .

We shall give a concise proof of this inequality in the next section (see Re-

mark 1) based on the entropy - entropy production method, which amounts to

relate d
dtI[u(·, t)|u∞] and I[u(·, t)|u∞]. We shall later replace the diffusion pa-

rameter η in (7) by a time-dependent coefficient σ(t), which is itself computed

using the second moment of u,
∫

Rd |x|2 u(x, t) dx. By doing so, we are able to

capture the best matching Barenblatt solution and get improved decay rates

in the entropy - entropy production inequality. Elementary estimates allow to

rephrase these improved rates into improved functional inequalities for f such

that |f |2 p = u, with p = d/(d − 2) (Theorem 1) and any p ∈ (1, d/(d − 2)]

(Theorem 3).

This paper is organized as follows. In Section 2, we apply the entropy -

entropy production method to the fast diffusion equation as in [13]. The key

computation, without justifications for the integrations by parts, is reproduced

here since we need it later in Section 6, in the case of a time-dependent diffusion

coefficient. Next, in Section 3, we establish a new estimate of Csiszár-Kullback

type. By requiring a condition on the second moment, we are able to produce

a new estimate which was not known before, namely to directly control the

difference of the solution with a Barenblatt solution in L1(Rd).
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Second moment estimates are the key of a recent paper and we shall

primarily refer to [21] in which the asymptotic behaviour of the solutions of

the fast diffusion equation was studied. In Section 4 we recall the main results

that were proved in [21], and that are also needed in the present paper.

With these preliminaries in hand, an improved entropy - entropy produc-

tion inequality is established in Section 5, which is at the core of our paper.

It is known since [18] that entropy - entropy production inequalities amount

to optimal Gagliardo-Nirenberg-Sobolev inequalities. Such a rephrasing of our

result in a more standard form of functional inequalities is done in Section 6,

which contains the proof of Theorems 1 and 3. Further observations have been

collected in Section 7. One of the striking results of our approach is that all

constants can be explicitly computed. This is somewhat technical although

not really difficult. To make the reading easier, explicit computations have

been collected in Appendix A.

2. The entropy - entropy production method

Consider a solution u = u(x, t) of Eq. (7) and define

z(x, t) := η∇um−1 − 2x

so that Eq. (7) can be rewritten as

∂u

∂t
+∇ · (u z) = 0 .

To keep notations compact, we shall use the following conventions. If

A = (Aij)
d
i,j=1 and B = (Bij)

d
i,j=1 are two matrices, let A : B =

∑d
i,j=1Aij Bij

and |A|2 = A : A. If a and b take values in R
d, we adopt the definitions:

a·b =
d
∑

i=1

ai bi , ∇·a =
d
∑

i=1

∂ai
∂xi

, a⊗b = (ai bj)
d
i,j=1 , ∇⊗a =

Å
∂aj
∂xi

ãd
i,j=1

.

Later we will need a version of the entropy - entropy production method

in case of a time-dependent diffusion coefficient. Before doing so, let us recall

the key computation of the standard method. With the above notations, it is

straightforward to check that

∂z

∂t
= η (1−m)∇

Ä
um−2 ∇ · (u z)

ä
and ∇⊗ z = η∇⊗∇um−1 − 2 Id .

With these definitions, the time-derivative of 1−m
m η I[u|u∞] =

∫

Rd u |z|2 dx

can be computed as

d

dt

∫

Rd
u |z|2 dx =

∫

Rd

∂u

∂t
|z|2 dx+ 2

∫

Rd
u z · ∂z

∂t
dx .



8 J. DOLBEAULT AND G. TOSCANI

The first term can be evaluated by
∫

Rd

∂u

∂t
|z|2dx

=−
∫

Rd
∇ · (u z) |z|2dx

=2

∫

Rd
u z ⊗ z : ∇⊗ z dx

=2 η

∫

Rd
u z ⊗ z : ∇⊗∇um−1 dx− 4

∫

Rd
u |z|2dx

=2 η (1−m)

∫

Rd
um−2 ∇u⊗∇ : (u z ⊗ z) dx− 4

∫

Rd
u |z|2dx

=2 η (1−m)

∫

Rd
um−2 (∇u · z)2dx+ 2 η (1−m)

∫

Rd
um−1 (∇u · z) (∇ · z) dx

+2 η (1−m)

∫

Rd
um−1 (z ⊗∇u) : (∇⊗ z) dx− 4

∫

Rd
u |z|2dx .

The second term can be evaluated by

2

∫

Rd
u z · ∂z

∂t
dx

=2 η (1−m)

∫

Rd
(u z · ∇)

Ä
um−2 ∇ · (u z)

ä
dx

=−2 η (1−m)

∫

Rd
um−2

Ä
∇ · (u z)

ä2
dx

=−2 η (1−m)

∫

Rd

î
um(∇ · z)2 + 2um−1(∇u · z) (∇ · z) + um−2(∇u · z)2

ó
dx .

Summarizing, we have found that

∫

Rd

∂u

∂t
|z|2dx+ 4

∫

Rd
u |z|2dx

= −2 η (1−m)

∫

Rd
um−2

î
u2(∇ · z)2 + u (∇u · z) (∇ · z)

− u (z ⊗∇u) :(∇⊗ z)
ó
dx .

Using the fact that

∂2zj

∂xi ∂xj
=
∂2zi

∂x2j
,

we obtain that
∫

Rd
um−1 (∇u · z) (∇ · z) dx

= − 1

m

∫

Rd
um (∇ · z)2 dx− 1

m

∫

Rd
um

d
∑

i,j=1

zi
∂2zj

∂xi ∂xj
dx
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and

−
∫

Rd
um−1 (z ⊗∇u) :(∇⊗ z) dx

=
1

m

∫

Rd
um |∇z|2 dx+

1

m

∫

Rd
um

d
∑

i,j=1

zi
∂2zi

∂x2j
dx

can be combined to give

∫

Rd
um−2

î
u (∇u · z) (∇ · z)− u∇u⊗ z : ∇⊗ z

ó
dx

= − 1

m

∫

Rd
um (∇ · z)2 dx+

1

m

∫

Rd
um |∇z|2 dx .

This shows that

d

dt

∫

Rd
u |z|2 dx+ 4

∫

Rd
u |z|2 dx

= −2 η
1−m

m

∫

Rd
um
Ä
|∇z|2 − (1−m) (∇ · z)2

ä
dx .

By the arithmetic geometric inequality, we know that

|∇z|2 − (1−m) (∇ · z)2 ≥ 0

if 1 −m ≤ 1/d, that is, if m ≥ m1. Altogether, we have formally established

the following result.

Proposition 5. Let d ≥ 1, m ∈ (m1, 1) and assume that u is a non-

negative solution of (7) with initial datum u0 in L1(Rd) such that um0 and

x 7→ |x|2 u0 are both integrable on R
d. With the above defined notations, we

get that

d

dt
I[u(·, t)|u∞] ≤ − 4I[u(·, t)|u∞] ∀ t > 0 .

The proof of such a result requires to justify that all integrations by parts

make sense. We refer to [14, 15] for a proof in the porous medium case (m > 1)

and to [13] for m1 ≤ m < 1.

Remark 1. Proposition 5 provides a proof of (8). Indeed, with a Gronwall

estimate, we first get that

I[u(·, t)|u∞] ≤ I[u0|u∞] e− 4 t ∀ t ≥ 0

if I[u0|u∞] is finite. Since I[u(·, t)|u∞] is non-negative, we know that

lim
t→∞

I[u(·, t)|u∞] = 0 ,
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which proves the convergence of u(·, t) to u∞ as t→ ∞. As a consequence, we

also have limt→∞F [u(·, t)|u∞] = 0 and since

d

dt

Ä
I[u(·, t)|u∞]− 4F [u(·, t)|u∞]

ä
=

d

dt
I[u(·, t)|u∞] + 4I[u(·, t)|u∞] ≤ 0 ,

an integration with respect to t on (0,∞) shows that

I[u0|u∞]− 4F [u0|u∞] ≥ 0 ,

which is precisely (8) written for u = u0.

3. A Csiszár-Kullback inequality

Let m ∈ (‹m1, 1) with ‹m1 =
d

d+2 and consider the relative entropy

Fσ[u] :=
1

m− 1

∫

Rd

î
um −Bm

σ −mBm−1
σ (u−Bσ)

ó
dx

for some Barenblatt function

(9) Bσ(x) := σ−
d
2

Ä
CM + 1

σ |x|2
ä 1

m−1 ∀ x ∈ R
d

where σ is a positive constant and CM is chosen such that ‖Bσ‖1 = M > 0.

With p and m related by (6), the definition of CM coincides with the one of

Section 1. See details in Appendix A.

Theorem 6. Let d ≥ 1, m ∈ (‹m1, 1) and assume that u is a non-negative

function in L1(Rd) such that um and x 7→ |x|2 u are both integrable on R
d. If

‖u‖1 =M and
∫

Rd |x|2 u dx =
∫

Rd |x|2Bσ dx, then

Fσ[u]

σ
d
2
(1−m)

≥ m

8
∫

Rd Bm
1 dx

Å
CM ‖u−Bσ‖1 +

1

σ

∫

Rd
|x|2 |u−Bσ| dx

ã2
.

Notice that the condition
∫

Rd |x|2 u dx =
∫

Rd |x|2Bσ dx is explicit and

determines σ uniquely:

σ =
1

KM

∫

Rd
|x|2 u dx with KM :=

∫

Rd
|x|2B1 dx .

For further details, see Lemma 7 and (17) below, and Appendix A for detailed

expressions of KM and
∫

Rd Bm
1 dx. With this choice of σ, since Bm−1

σ =

σ
d
2
(1−m) CM + σ

d
2
(mc−m) |x|2, we remark that

∫

Rd Bm−1
σ (u−Bσ) dx = 0 so

that the relative entropy reduces to

Fσ[u] :=
1

m− 1

∫

Rd
[um −Bm

σ ] dx
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Proof of Theorem 6. Let v := u/Bσ and dµσ := Bm
σ dx. With these nota-

tions, we observe that

∫

Rd
(v − 1) dµσ =

∫

Rd
Bm−1

σ (u−Bσ) dx

= σ
d
2
(1−m) CM

∫

Rd
(u−Bσ) dx+ σ

d
2
(mc−m)

∫

Rd
|x|2 (u−Bσ) dx = 0 .

Thus
∫

Rd
(v − 1) dµσ =

∫

v>1
(v − 1) dµσ −

∫

v<1
(1− v) dµσ = 0 ,

which, coupled with
∫

v>1
(v − 1) dµσ +

∫

v<1
(1− v) dµσ =

∫

Rd
|v − 1| dµσ ,

implies

∫

Rd
|u−Bσ|Bm−1

σ dx =

∫

Rd
|v − 1| dµσ = 2

∫

v<1
|v − 1| dµσ .

On the other hand, a Taylor expansion shows that

Fσ [u] =
1

m− 1

∫

Rd

î
vm − 1−m (v − 1)

ó
dµσ =

m

2

∫

Rd
ξm−2 |v − 1|2 dµσ

for some function ξ taking values in the interval (min{1, v},max{1, v}), thus
giving the lower bound

Fσ[u] ≥
m

2

∫

v<1
ξm−2 |v − 1|2 dµσ ≥ m

2

∫

v<1
|v − 1|2 dµσ .

Using the Cauchy-Schwarz inequality, we get

Å∫
v<1

|v − 1| dµσ
ã2

=

Å∫
v<1

|v − 1|B
m
2
σ B

m
2
σ dx

ã2
≤
∫

v<1
|v−1|2 dµσ

∫

Rd
Bm

σ dx

and finally obtain that

Fσ [u] ≥
m

2

Ä
∫

v<1 |v − 1| dµσ
ä2

∫

Rd Bm
σ dx

=
m

8

(∫

Rd |u−Bσ|Bm−1
σ dx

)2

∫

Rd Bm
σ dx

,

which concludes the proof. �

Notice that the inequality of Theorem 6 can be rewritten in terms of

|f |2 p = u and g2 p = Bσ with p = 1/(2m−1). See Appendix A for the compu-

tation of
∫

Rd Bm
σ dx, σ and CM in terms of

∫

Rd |x|2 u dx and M∗. Altogether
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we find

p+1
p−1 R

(p)[f ] = 2 p
p−1

∫

Rd

Ä
gp+1 − |f |p+1

ä
dx

≥ d+2−p (d−2)
32 p

(

d+2−p (d−2)
d (p−1) ‖f‖2 p2,2 p

)d p−1
4 p

·M
p−1
2 p

∗ ‖f‖
1
2
(d+2−p (d+6))

2 p

∥

∥

∥ |f |2 p − g2 p
∥

∥

∥

2

1
.

This proves (5) with

CCK = p−1
p+1

d+2−p (d−2)
32 p

(

d+2−p (d−2)
d (p−1)

)d p−1
4 p

M
p−1
2 p

∗

and (2) in the special case p = d/(d − 2).

Remark 2. Various other estimates can be derived, based on second order

Taylor expansions. For instance, as in [18], we can write that

Fσ [u] =

∫

Rd

î
ψ(vm)− ψ(1) − ψ′(1) (vm − 1)

ó
dµσ

with v := u/Bσ and ψ(s) := m
1−m s1/m, and get

Fσ[u] ≥
1

m
2−2m

‖vm − 1‖2
L1/m(Rd,dµσ)

max
¶
‖vm‖L1/m(Rd,dµσ)

, ‖1‖L1/m(Rd,dµσ)

©2− 1
m

.

Using ‖vm‖L1/m(Rd,dµσ)
= ‖1‖L1/m(Rd,dµσ)

= ‖Bm
σ ‖m1 and

∫

Rd
|um −Bm

σ | dx =

∫

Rd
|um −Bm

σ |Bm (m−1)
σ Bm (1−m)

σ dx

≤ ‖vm − 1‖L1/m(Rd,dµσ)
‖Bm

σ ‖1−m
1

by the Cauchy-Schwarz inequality, we find

Fσ[u] ≥
‖um −Bm

σ ‖21
m 2 2m ‖Bm

σ ‖1
.

With f = um− 1
2 , this also gives another estimate of Csiszár-Kullback type,

namely

R(p)[f ] ≥ κp,d

‖f‖
d
2
(p−1)

2,2 p ‖f‖
1
2
(d+2−p (d−2))

2 p

inf
g∈M

(p)
d

∥

∥

∥|f |p+1 − gp+1
∥

∥

∥

2

1
,

for some positive constant κp,d, which is valid for any p ∈ (1,∞) if d = 2

and any p ∈ (1, d
d−2 ] if d ≥ 3. Also see [28, 14, 12, 20] for further results on

Csiszár-Kullback type inequalities corresponding to entropies associated with

porous media and fast diffusion equations.
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4. Recent results on the optimal matching by Barenblatt solutions

Consider on R
d the fast diffusion equation with harmonic confining po-

tential given by

(10)
∂u

∂t
+∇ ·

[

u
(

σ
d
2
(m−mc)∇um−1 − 2x

)]

= 0 t > 0 , x ∈ R
d ,

with initial datum u0. Here σ is a function of t. Let us summarize some results

obtained in [21] and the strategy of their proofs.

Result 1. At any time t > 0, we can choose the best matching Barenblatt as

follows. Consider a given function u and optimize λ 7→ Fλ[u].

Lemma 7. For any given u ∈ L1
+(R

d) such that um and |x|2 u are both

integrable, if m ∈ (‹m1, 1), there is a unique λ = λ∗ > 0 which minimizes

λ 7→ Fλ[u], and it is explicitly given by

λ∗ =
1

KM

∫

Rd
|x|2 u dx

where KM =
∫

Rd |x|2B1 dx. For λ = λ∗, the Barenblatt profile Bλ satisfies
∫

Rd
|x|2Bλ dx =

∫

Rd
|x|2 u dx .

As a consequence, we know that

d

dλ

Ä
Fλ[u]

ä
λ=λ∗

= 0 .

Of course, if u is a solution of (10), the value of λ in Lemma 7 may depend

on t. Now we choose σ(t) = λ(t), i.e.,

(11) σ(t) =
1

KM

∫

Rd
|x|2 u(x, t) dx ∀ t ≥ 0 .

This makes (10) a non-local equation.

Result 2. With the above choice, if we consider a solution of (10) and compute

the time derivative of the relative entropy, we find that

d

dt
Fσ(t)[u(·, t)] = σ′(t)

Å
d

dσ
Fσ[u]

ã
|σ=σ(t)

+
m

m− 1

∫

Rd

(

um−1 −Bm−1
σ(t)

) ∂u

∂t
dx .

However, as a consequence of Lemma 7, we know that
Å
d

dσ
Fσ[u]

ã
|σ=σ(t)

= 0 ,

and we finally obtain

(12)
d

dt
Fσ(t)[u(·, t)] = −mσ(t)

d
2
(m−mc)

1−m

∫

Rd
u
∣

∣

∣∇
[

um−1 −Bm−1
σ(t)

]∣

∣

∣

2
dx .
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From there on, the computation goes essentially as in [8, 10] (also see [24, 25, 18]

for details). With our choice of σ, we gain an additional orthogonality condition

which is useful for improving the rates of convergence (see [21, Theorem 1]) in

the asymptotic regime t→ ∞, compared to the results of [10] (also see below).

Result 3. Now let us state one more result of [21] which is of interest for the

present paper.

Lemma 8. With the above notations, if u and σ are defined respectively

by (10) and (11), then the function t 7→ σ(t) is positive, decreasing, with

limt→∞ σ(t) =: σ∞ > 0 and

(13) σ′(t) = −2 d
(1−m)2

mKM
σ

d
2
(m−mc)Fσ(t)[u(·, t)] ≤ 0 .

The main difficulty is to establish that σ∞ is positive. This can be done

with an appropriate change of variables which reduces (10) to the case where σ

does not depend on t. The proof relies on the asymptotics which have been

obtained in [18, 8, 7, 10].

Let us give some details. In [21], it has been established that the function

v such that

v(τ, y) = R−d u(x, t) , R = R(τ) , t = 1
2 logR , x =

y

R

is a solution of

(14)
∂v

∂τ
+∇ ·

Ä
v∇vm−1

ä
= 0

with initial datum v0 = u0 ∈ L1
+(R

d) if R and σ are related by

2σ−
d
2
(m−mc) = R 1−d (1−m) dR

dτ
, R(0) = 1 .

Using this identity on the one hand, and the time-dependent change of variables

which transforms v into u on the other hand, we obtain an ordinary differential

equation for R in terms of the second moment of v, namely

d logR

dτ
= 2

Ç
KM

∫

Rd |y − x0|2 v(τ, y) dy

åd
2
(m−mc)

, R(0) = 1 .

Notice that Eq. (14) has no explicit dependence in τ , which is the key ingredient

to establish that σ∞ is positive. See [21] for details.

5. The scaled entropy - entropy production inequality

Consider the relative Fisher information

Iλ[u] :=
m

1−m

∫

Rd
u
∣

∣

∣∇um−1 −∇Bm−1
λ

∣

∣

∣

2
dx .
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By applying (8) with u∞ = B1 and η = 1 to x 7→ σd/2 u(
√
σ x) and using the

fact that B1(x) = σd/2Bσ(
√
σ x), we get the inequality

Fσ[u] ≤
1

4
Jσ[u] with Jσ[u] := σ

d
2
(m−mc) Iσ[u] .

Now, if σ is time-dependent as in Section 4, we have the following relations.

Lemma 9. If u is a solution of (10) with σ(t) = 1
KM

∫

Rd |x|2 u(x, t) dx,
then σ satisfies (13). Moreover, for any t ≥ 0, we have

(15)
d

dt
Fσ(t)[u(·, t)] = −Jσ(t)[u(·, t)]

and

(16)
d

dt
Jσ(t)[u(·, t)] ≤ −

ñ
4 +

d

2
(m−mc)

|σ′(t)|
σ(t)

ô
Jσ(t)[u(·, t)] .

Proof. Eq. (13) and (15) have already been stated respectively in Lemma 8

and in (12). They are recalled here only for the convenience of the reader. It

remains to prove (16).

For any given σ = σ(t), Proposition 5 gives

d

dt
Jσ(t)[u(·, t)] =

Å
d

dt
Jλ[u(·, t)]

ã
|λ=σ(t)

+ σ′(t)

Å
d

dλ
Jλ[u]

ã
|λ=σ(t)

≤ − 4Jσ(t)[u(·, t)] + σ′(t)

Å
d

dλ
Jλ[u]

ã
|λ=σ(t)

.

Owing to the definition of Jλ, we obtain

d

dλ
Jλ[u] =

d

2
(m−mc)

1

λ
Jλ[u]

+
m

1−m
λ

d
2
(m−mc)

∫

Rd
2u
Ä
∇um−1 −∇Bm−1

λ

ä
· d
dλ

Ä
∇Bm−1

λ

ä
dx .

By definition (9), ∇Bm−1
λ (x) = 2xλ−

d
2
(m−mc), which implies

λ
d
2
(m−mc) d

dλ

Ä
∇Bm−1

λ

ä
= −d

λ
(m−mc)x .

Substituting this expression into the above computation and integrating by

parts, we conclude with the equality

d

dλ
Jλ[u] =

d

2
(m−mc)

1

λ
Jλ[u]

+
2 d

λ
(m−mc)

[

2mλ−
d
2
(m−mc)

1−m

∫

Rd
|x|2 u dx− d

∫

Rd
um dx

]

.

A simple computation shows that

(17) d

∫

Rd
Bm

1 dx = −
∫

Rd
x · ∇Bm

1 dx =
2m

1−m

∫

Rd
|x|2B1 dx =

2m

1−m
KM
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and, as a consequence, if λ = σ = 1
KM

∫

Rd |x|2 u dx, then

2mλ−
d
2
(m−mc)

1−m

∫

Rd
|x|2 u dx = d

∫

Rd
Bm

λ dx ,

and finally

d

dλ
Jλ[u] =

d

2
(m−mc)

1

λ
Jλ[u] +

2 d2

λ
(m−mc) (1−m)Fλ[u] .

Altogether, we have found that

(18)
d

dt
Jσ(t)[u(·, t)] ≤ − 4Jσ(t)[u(·, t)] +

d

2
(m−mc)

σ′(t)

σ(t)
Jσ(t)[u(·, t)]

+ 2 d2 (1−m) (m−mc)
σ′(t)

σ(t)
Fσ(t)[u(·, t)] .

The last term of the right hand side is non-positive because by (13) we know

that σ′(t) ≤ 0. This implies (16). �

Multiplying both sides of (15) by 4 + d
2 (m −mc) |σ′(t)|/σ(t), which is a

positive quantity, and using Inequality (16), we obtain

(19)

ñ
4 +

d

2
(m−mc)

|σ′(t)|
σ(t)

ô
d

dt

Ä
Fσ(t)[u(·, t)]

ä
≥ d

dt

Ä
Jσ(t)[u(·, t)]

ä
.

Using (13) and the fact that σ(t) is non-increasing in t, we get that

|σ′(t)|
σ(t)

= 2 d
(1−m)2

mKM
σ(t)−

d
2
(1−m)Fσ(t)[u(·, t)]

≥ 2 d
(1−m)2

mKM
σ
− d

2
(1−m)

0 Fσ(t)[u(·, t)]

where we set σ0 := σ(t = 0) = 1
KM

∫

Rd |x|2 u0(x) dx.
Recalling that the derivatives on both sides of (19) are non-positive, we

can use the above inequality into (19) to obtain

4



1 + 2Cm,d

Fσ(t)[u(·, t)]

KM σ
d
2
(1−m)

0





d

dt

Ä
Fσ(t)[u(·, t)]

ä
≥ d

dt

Ä
Jσ(t)[u(·, t)]

ä

where

(20) Cm,d := d2
(1−m)2 (m−mc)

8m
.

Integrating from 0 to∞ with respect to t, we finally get the improved inequality

Cm,d
(Fσ0 [u0])

2

KM σ
d
2
(1−m)

0

≤ 1

4
Jσ0 [u0]−Fσ0 [u0] ,
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which holds for any admissible function u0. Observing that

KM σ
d
2
(1−m)

0 = σ
− d

2
(m−mc)

0

∫

Rd
|x|2 u0 dx

and omitting the index 0, we have achieved our key estimate, which can be

written as follows.

Theorem 10. Let d ≥ 1, m ∈ [m1, 1) and assume that u is a non-negative

function in L1(Rd) such that um and x 7→ |x|2 u are both integrable on R
d. Let

σ = 1
KM

∫

Rd |x|2 u(x) dx where M =
∫

Rd u(x) dx. Then the following inequality

holds

(21) Cm,d σ
d
2
(m−mc) (Fσ[u])

2

∫

Rd |x|2 u dx
≤ 1

4
Jσ[u]−Fσ[u]

where Cm,d is defined by (20).

Notice that (17) gives a straightforward proof of (13) using the definition of σ.

Since σ depends on u, the left hand side of (21) can be rewritten to give

d2
(1−m)2 (m−mc)

8mK1

(Fσ[u])
2

Mγ σ
d
2
(1−m)

≤ 1

4
Jσ[u]−Fσ[u]

with

γ :=
(d+ 2)m− d

d (m−mc)
.

See Appendix A for details. Notice that this definition of γ is compatible with

the one of Corollary 3 if p = 1/(2m − 1).

Remark 3. Our estimates are actually better. With

f(t) := Fσ(t)[u(·, t)] , j(t) := Jσ(t)[u(·, t)] and σ(t) =
1

KM

∫

Rd
|x|2 u(x, t) dx ,

we can rewrite (13), (15) and (18) as the coupled system

f ′ = −j ≤ 0 ,

σ′ = −2 d
(1−m)2

mKM
σ

d
2
(m−mc) f ≤ 0 ,

j′ + 4 j ≤ d

2
(m−mc)

î
j + 4 d (1 −m) f

ó σ′
σ
.

It is then clear that the estimates σ ≤ σ0 and

j′ + 4 j ≤ d

2
(m−mc) j

σ′

σ
,

which have been used for the proof of Theorem 10, are not optimal.
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6. Proofs

Let us start by rephrasing Theorem 10 in terms of f = um−1/2. Assume

that

M =

∫

Rd
u dx =

∫

Rd
|f |2 p dx and σ =

1

KM

∫

Rd
|x|2 u dx =

∫

Rd
|x|2 |f |2 p dx

where p = 1/(2m − 1) and consider the functional

R
(p)[f ] := − 2 p

p+1

∫

Rd

[

(|f |p+1 −
Ä
f
(p)
M,0,σ

äp+1
]

dx .

Corollary 11. Let d ≥ 2, p > 1 and assume that p ≤ d/(d−2) if d ≥ 3.

For any f ∈ Lp+1 ∩ D1,2(Rd) such that ‖f‖2,2 p is finite, we have

(22)
(

CGN
p,d ‖∇f‖θ2 ‖f‖1−θ

p+1

)2 γ p
− ‖f‖2 γ p

2 p ≥ Cp,d

Ä
R(p)[f ]

ä2

‖f‖α2,2 p ‖f‖β γ
2 p

with θ = p−1
p

d
d+2−p (d−2) , α = d (p− 1), β = d− p (d− 2) and γ = d+2−p (d−2)

d−p (d−4) .

The constant Cp,d is the same as in Theorem 3: see Appendix A for

its expression. In preparation for the statements of Theorems 1 and 3, we

distinguish the case m = m1 and the case m ∈ [m1, 1) in the proof.

Proof. By expanding the square in Jσ[u] and collecting the terms with

the ones of Fσ[u], we find that

1

4
Jσ[u]−Fσ[u] =

m (1−m)
(2m−1)2 σ

d
2
(m−mc)

∫

Rd
|∇um− 1

2 |2 dx

+ d m−m1
1−m

∫

Rd
um dx+ 1

1−m

Å
mKM σ

d
2
(1−m) −

∫

Rd
Bm

σ dx

ã
.

The last term of the right hand side can be rewritten as

1
1−m

Å
mKM σ−

d
2
(1−m) −

∫

Rd
Bm

σ dx

ã
= − m

1−m
d (m−mc)
(d+2)m−d σ

d
2
(1−m) C1M

γ

with γ = (d+2)m−d
d (m−mc)

(as in the previous Section) and C1 = M
2 (1−m)

d (m−mc)
∗ (see

Appendix A for details). Consequently Inequality (21) can be equivalently

rewritten as

(23) m (1−m)
(2m−1)2 σ

d
2
(m−mc)

∫

Rd
|∇um− 1

2 |2 dx

+ d m−m1
1−m

∫

Rd
um dx− m

1−m
d (m−mc)
(d+2)m−d σ

d
2
(1−m) C1M

γ

≥ Cm,d σ
d
2
(m−mc) (Fσ[u])

2

∫

Rd |x|2 u dx
.
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If m = m1, we observe that
d
2 (m−mc) =

d
2 (1−m) = 1

2 so that the result

of the inequality amounts to

‖∇f‖22 − d (d− 2)C1 ‖f‖22∗ ≥ 1

8

Å
d− 2

d− 1

ã2 (Fσ[u])
2

∫

Rd |x|2 u dx

with f = um− 1
2 . Since F [u] = (d−1)R[f ] and Sd = d (d−2)C1, this concludes

the proof of Corollary 11 when m = m1.

If m ∈ [m1, 1), we can rewrite Inequality (23) in terms of a function uλ
such that

∫

Rd uλ dx =M and
∫

Rd |x|2 uλ dx = σλ as

m (1−m)
(2m−1)2 σ

d (m−m1)
λ

∫

Rd
|∇um− 1

2
λ |2 dx

+ d m−m1
1−m σ

− d
2
(1−m)

λ

∫

Rd
umλ dx− m

1−m
d (m−mc)
(d+2)m−d C1M

γ

≥ Cm,d σ
d (m−m1)
λ

(Fσλ
[uλ])

2

∫

Rd |x|2 uλ dx
.

If we choose uλ(x) = λd u(λx), then

σλ =
σ

λ2
,

∫

Rd
|x|2 uλ dx =

1

λ2

∫

Rd
|x|2 u dx , Fσλ

[uλ] = λd (m−1) Fσ[u]

and the above inequality becomes

m (1−m)
(2m−1)2

(λ−2 σ)d (m−m1)
∫

Rd
|∇um− 1

2 |2 dx

+ d m−m1
1−m (λ−2 σ)−

d
2
(1−m)

∫

Rd
um dx− m

1−m
d (m−mc)
(d+2)m−d C1M

γ

≥ Cm,d
σd (m−m1) (Fσ [u])

2

∫

Rd |x|2 u dx
.

Notice that the right hand side is independent of λ. By optimizing the left

hand side with respect to λ > 0 and replacing u by f2 p with p = 1
2m−1 , we

find
(

CGN
p,d ‖∇f‖θ2 ‖f‖1−θ

p+1

)2 γ p
− ‖f‖2 γ p

2 p ≥ 1−m
m

(d+2)m−d
d (m−mc)

Cm,d

C1

σd (m−m1) (Fσ [u])
2

∫

Rd |x|2 u dx
with the notations of Inequality (3). It is indeed clear that the left hand side

has to vanish if u = Bσ, which guarantees that, after optimization, the constant

is precisely equal to CGN
p,d . Using

σ =
1

KM
‖f‖2 p2,2 p , KM =

d (1 −m)

(d+ 2)m− d
C1 ‖f‖2 p γ2 p

(see (27) in Appendix A) and Fσ [u] = m
1−m R(p)[f ] completes the proof of

Corollary 11 when m ∈ [m1, 1). See Appendix A for an expression of Cp,d. �
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Proof of Theorems 1 and 3. Theorem 1 is a special case of Theorem 3,

which is itself a simple consequences of Corollary 11.

Let us consider the relative entropy with respect to a general Barenblatt

function, not even normalized with respect to its mass. For a given function

u ∈ L1
+(R

d) with um ∈ L1(Rd) and |x|2 u ∈ L1(Rd), we can consider on (0,∞)×
R
d × (0,∞) the function h defined by

h(C, y, σ) =
1

m− 1

∫

Rd

î
um −Bm

C,y,σ −mBm−1
C,y,σ (u−BC,y,σ)

ó
dx

where BC,y,σ is a general Barenblatt function

BC,y,σ(x) := σ−
d
2

Ä
C + 1

σ |x− y|2
ä 1

m−1 ∀ x ∈ R
d .

An elementary computation shows that

∂h

∂C
=
mσ

d
2
(1−m)

1−m

∫

Rd
(u−BC,y,σ) dx ,

∇yh =
2mσ−

d
2
(m−mc)

1−m

∫

Rd
(x− y) (u−BC,y,σ) dx ,

∂h

∂σ
= m

d

2
σ−

d
2
(m−mc)

[

C

∫

Rd
(u−BC,y,σ) dx

−m−mc

1−m

1

σ

∫

Rd
|x− y|2 (u−BC,y,σ) dx

]

.

Optimizing with respect to C fixes C = CM , with M =
∫

Rd u dx. Once

C = CM is assumed, optimizing with respect to σ amounts to choose it such

that
∫

Rd |x|2BC,y,σ dx =
∫

Rd |x− y|2 u dx as it has been shown in Lemma 7.

This completes the proof of Theorem 3, since R(p)[f ] ≥ R(p)[f ] by defini-

tion of R(p) (see Section 1). Notice that optimizing on y amounts to fix the

center of mass of the Barenblatt function to be the same as the one of u. This

is however not required neither in the proof of Corollary 11 nor in the one of

Theorem 3. �

Proof of Corollary 4. It is a straightforward consequence of Theorem 3

and of the Csiszár-Kullback inequality (5) when f ∈ D1,2(Rd) is such that

‖f‖2,2 p is finite. However, ‖f‖2,2 p does not enter in the inequality. Since

smooth functions with compact support (for which ‖f‖2,2 p is obviously finite)

are dense D1,2(Rd), the inequality therefore holds without restriction, by den-

sity. Recall that Corollary 2 is a special case of Corollary 4. �

7. Concluding remarks

Let us conclude this paper with a few remarks. First of all, notice that

Theorem 6 gives a stronger information than Theorem 3, as not only the
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L1(Rd, dx) norm is controlled, but also a stronger norm involving the second

moment, properly scaled.

No condition is imposed on the location of the center of mass, which simply

has to satisfy
(∫

Rd xu dx
)2 ≤

∫

Rd u dx
∫

Rd |x|2 u dx = σM KM according to the

Cauchy-Schwarz inequality.

Hence in the definition of R[f ] and R(p)[f ] (Theorems 1 and 3) as well

as in Corollaries 2 and 4, the result holds without optimizing on y ∈ R
d.

In [10, 21], improved asymptotic rates were obtained by fixing the center of

mass in order to kill the linear mode associated to the translation invariance of

the Barenblatt functions. Here this is not required since, as t→ ∞, the squared

relative entropy is simply higher order. Our improvement is better when the

relative entropy is large, and is clearly not optimal for large values of t.

Our approach differs from the one of G. Bianchi and H. Egnell in [6]

and the one of A. Cianchi, N. Fusco, F. Maggi and A. Pratelli, [17]. It gives

fully explicit constants. The norms involved in the corrective term are not the

same either. However, our estimates are not optimal, as it has been noticed in

Remark 3, in the sense that the only functions for which we have equality are

the Aubin-Talenti functions in case of Theorem 1 and the functions in M
(p)
d in

case of Theorem 3.

Non scale invariant forms of the improved Gagliardo-Nirenberg inequality

of Theorem 3 are by themselves of interest. Starting from (23), it is for instance

possible to scale out some numerical coefficients as follows without putting the

inequality in scale invariant form. Let

f(x) := um− 1
2 (x/λ) ∀ x ∈ R

d .

We have M = λ−d
∫

Rd |f |2 p dx, and all other quantities are also changed:
∫

Rd
|∇um− 1

2 |2 dx = λ2−d
∫

Rd
|∇f |2 dx ,

KM σ =

∫

Rd
|x|2 u dx = λ−(d+2)

∫

Rd
|x|2 |f |2 p dx ,

∫

Rd
|u|m dx = λ−d

∫

Rd
|f |p+1 dx .

With the choice λd =
Ä
1
4 (p− 1)2 (p+ 1)

ä 4 p
d+2−p (d−2) ‖f‖

2 p
d−p (d−4)

d+2−p (d−2)

2,p , we find

that (23) can be rewritten as

(24)

∫

Rd
|∇f |2 dx+ [d− p (d− 2)]

∫

Rd
|f |p+1 dx− Kp,d

Å∫
Rd
|f |2 p dx

ãγ(p,d)

≥ Kp,d Cp,d

Ä
R(p)[f ]

ä2

‖f‖α2,2 p ‖f‖β γ
2 p
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where Cp,d and R(p)[f ] are defined as in Corollary 11. See Appendix A for an

explicit expression of Kp,d and Cp,d.

If we optimize the left hand side of (24) under scaling, that is, if we rewrite

it for fλ(x) := λd/(2 p) f(λx) for any x ∈ R
d and optimize with respect to λ > 0,

we find that it can be rewritten as

[d− p (d− 4)] 2
−2

d−p (d−2)
d−p (d−4) [d (p − 1)]

−
d (p−1)

d−p (d−4)

(

‖∇f‖θ2 ‖f‖1−θ
p+1

)2 γ p
,

which is of course consistent with the fact that

(25) Kp,d

(

CGN
p,d

)2 γ p
= [d− p (d− 4)] 2

−2
d−p (d−2)
d−p (d−4) [d (p − 1)]

−
d (p−1)

d−p (d−4) .

Altogether, we have recovered (22) with R(p)[f ] = − 2 p
p+1

∫

Rd

[

(|f |p+1 − gp+1
]

dx

and g(x) := B
m− 1

2
σ (x/λ) = f

(p)
M,0,σ(x/λ).

Consider the scaling λ 7→ uλ with uλ(x) := λd u(λx) for any x ∈ R
d.

Then we have

σλ :=
1

KM

∫

Rd
|x|2 uλ dx =

1

λ2
1

KM

∫

Rd
|x|2 u dx =

σ

λ2

and may observe that

Bσλ
(x) = λdBσ(λx) .

Similarly notice that for any m ∈ [d−1
d , 1), we have CM = C1M

−
2 (1−m)

d (m−mc) and

KM = K1M
1−

2 (1−m)
d (m−mc) . Let uλ := λu and denote by Bσλ

the correspond-

ing best matching Barenblatt function. Using the fact that ‖uλ‖1 = λM if

‖u‖1 =M and observing that

KλM = KM λ
1−

2 (1−m)
d (m−mc) and

∫

Rd
|x|2 uλ dx = λ

∫

Rd
|x|2 u dx ,

we find

σλ =
1

KλM

∫

Rd
|x|2 uλ dx = λ

2 (1−m)
d (m−mc) σ .

Since CλM = λ
−

2 (1−m)
d (m−mc) CM , we find that

Bσλ
(x) =

Å
λ

2 (1−m)
d (m−mc) σ

ã− d
2

Ç
λ
−

2 (1−m)
d (m−mc) CM + |x|2

λ
2 (1−m)

d (m−mc) σ

å 1
m−1

= λBσ(x) .

Coming back to (22), the function g which appears in (22) has therefore the

same homogeneity and scaling properties as the function f to which it corre-

sponds. In terms of homogeneity, this means that g has to be replaced by λ g

if f is replaced by λ f . It is then straightforward to check that homogeneity

in terms of f is the same on both sides of Inequality (22) since

2 γ p = 2 (p + 1)− α− β γ .
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Scalings are also consistent with Inequality (22): to fλ(x) = λ
d
2 p f(λx) corre-

sponds gλ(x) = λ
d
2 p g(λx). A simple computation indeed shows that

î
∫

Rd

Ä
|fλ|p+1 − gp+1

λ

ä
dx
ó2

‖fλ‖α2,2 p ‖fλ‖β γ
2 p

=

î
∫

Rd

Ä
|f |p+1 − gp+1

ä
dx
ó2

‖f‖α2,2 p ‖f‖β γ
2 p

∀ λ > 0 .

As m→ 1, which also corresponds to p→ 1, we observe that the constant

Cp,d in Theorem 3 has a finite limit. Hence we get no improvement by dividing

the improved Gagliardo-Nirenberg inequality by (p− 1) and passing to the

limit p → 1+, since R(p)[f ] = O(p − 1). By doing so, we simply recover the

logarithmic Sobolev inequality as in [18].

This is consistent with the fact that, as m→ 1−, we have Cm,d ∼ (1−m)2,

σ = O(K−1
M ) = O(1−m) and, since

Bσ(x) ∼ B0(x) :=M

Ç
dM

2π
∫

Rd |x|2 u dx

å d
2

exp

Ç
−d
2

M
∫

Rd |x|2 u dx
|x|2
å
,

we also get that Fσ[u] ∼
∫

Rd u log
Ä

u
B0

ä
dx. Hence, in Theorem 10, the addi-

tional term in (21) is of the order of 1−m and disappears when passing to the

limit m→ 1−.

Appendix A. Computation of the constants

Let us recall first some useful formulae. The surface of the d − 1 dimen-

sional unit sphere S
d−1 is given by |Sd−1| = 2πd/2/Γ(d/2). Using the integral

representation of Euler’s Beta function (see [1, 6.2.1 p. 258]), we have

∫

Rd

Ä
1 + |x|2

ä−a
dx = π

d
2

Γ
Ä
a− d

2

ä

Γ(a)
.

With this formula in hand, various quantities associated with Barenblatt func-

tions can be computed. Applied to the function B(x) :=
(

1 + |x|2)
1

m−1 , x ∈ R
d,

we find that

(26) M∗ :=

∫

Rd
B dx = π

d
2

Γ
Ä
d (m−mc)
2 (1−m)

ä

Γ
Ä

1
1−m

ä .

Notice that when M = M∗, B = B1 with the notation (9) of Section 3. As a

consequence, for B1(x) =
(

CM + |x|2)
1

m−1 , a simple change of variables shows

that

M :=

∫

Rd
B1 dx =

∫

Rd

Ä
CM + |x|2

ä 1
m−1 dx =M∗ C

−
d (m−mc)
2 (1−m)

M ,
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which determines the value of CM , namely

CM =

Å
M∗

M

ã 2 (1−m)
d (m−mc)

.

A useful equivalent formula is CM = C1M
−

2 (1−m)
d (m−mc) where C1 =M

2 (1−m)
d (m−mc)
∗ .

By recalling (17) and observing that
∫

Rd
Bm

1 dx =

∫

Rd
Bm−1

1 B1 dx =

∫

Rd
(CM + |x|2)B1 dx =M CM +KM

where KM :=
∫

Rd |x|2B1 dx, using M CM = C1M
γ with γ = (d+2)m−d

d (m−mc)
, we

find that

(27)

KM =
d (1 −m)

(d+ 2)m− d
C1M

γ and

∫

Rd
Bm

1 dx =
2m

(d+ 2)m− d
C1M

γ .

Concerning best constants in Sobolev’s inequality (1) in R
d, d ≥ 3, equal-

ity is achieved by f(x) = (1 + |x|2)−(d−2)/2, x ∈ R
d, which provides the ex-

pression of Sd given in Section 1. According to the duplication formula of

Legendre (see for instance [1, 6.1.18 p. 256]) for the Γ function, we know

that Γ(x) Γ
Ä
x+ 1

2

ä
= 21−2x√π Γ(2x) for any x > 0. As a consequence,

the best constant in Sobolev’s inequality (1) can also be written as Sd =
1
4 d (d − 2) |Sd|2/d (see for instance [5]; also see [26, 9, 23] for earlier related

results).

Consider the sub-family of Gagliardo-Nirenberg-Sobolev inequalities (3).

It has been established in [18, Theorem 1] that optimal functions are all given

by (4), up to multiplications by a constant, translations and scalings. This

allows to compute CGN
p,d . All computations done, we find

CGN
p,d =

(

(p−1)p+1

(p+1)d+1−p(d−1)

)η (d+2−p (d−2)
2 (p−1)

)
1
2 p

(

Γ
(

p+1
p−1

)

(2 π d)
d
2 Γ
(

p+1
p−1

− d
2

)

)(p−1) η

with 1/η = p (d+2−p (d−2)). This expression of CGN
p,d will be recovered below

by a different method.

Next, the computation of Cp,d in Theorem 3 goes as follows. With p =
1

2m−1 , that is, m = p+1
2 p , and F [u] = m

1−m R(p)[f ] with u = f2 p, we first get

Cp,d =
1−m
m

(d+2)m−d
d (m−mc)

Cm,d

C1
K

−d (m−m1)
1

Ä
m

1−m

ä2
.

We can also rewrite (26) as

M∗ = π
d
2

Γ
Ä
d−p (d−4)
2 (p−1)

ä

Γ
Ä

2 p
p−1

ä .
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With C1 =M
2 (p−1)

d−p (d−4)
∗ and K1 =

d (p−1)
d+2−d (p−2) C1, we finally obtain

Cp,d = d p−1
32 p2

(

C1
d+2−p (d−2)

)

d−p (d−4)
2 p

(d (p − 1))−
d−p (d−2)

2 p .

Finally, we turn our attention to (24) and compute an explicit expression

of Kp,d, which is the best constant in the following non-homogeneous Gagliardo-

Nirenberg-Sobolev inequalities: for any f ∈ Lp+1 ∩ D1,2(Rd),

(28)

∫

Rd
|∇f |2 dx+ [d− p (d− 2)]

∫

Rd
|f |p+1 dx ≥ Kp,d

Å∫
Rd
|f |2 p dx

ãγ(p,d)

with γ = γ(p, d) = d+2−p (d−2)
d−p (d−4) . As observed in Section 7, By optimizing the

left hand side of (28) written for fλ(x) := λd/(2 p) f(λx) for any x ∈ R
d, with

respect to λ > 0, one recovers that (28) and (3) are equivalent, with optimal

constants related by (25).

Consider the radial function g defined by g(x) = Fp(x) =
(

1 + |x|2)−
1

p−1

for any x ∈ R
d (c.f. Eq. (4)), which solves the equation

−∆g + 2
d− p (d− 2)

(p− 1)2
gp − 4 p

(p− 1)2
g2 p−1 = 0 .

With a rescaling, namely by considering f(x) := σ
− d

4 p g(x/
√
σ), we find that

f solves

−∆f + 2
d− p (d− 2)

(p− 1)2
σ−

d−p (d−4)
4 p fp − 4 p

(p − 1)2
σ−

d−p (d−2)
2 p f2 p−1 = 0 .

Owing to the uniqueness of the radial solution as in [18], we identify f with

the optimal function for (28). This can be done by identifying the coefficients

of the Euler-Lagrange equation. Requiring that f solves

−2∆f + (p+ 1) [d − p (d− 2)] fp − 2 γ pKp,d

Å∫
Rd

|f |2 p dx
ãγ−1

f2 p−1 = 0

means that σ is such that

p+ 1

2
=

2

(p − 1)2
σ−

d−p (d−4)
4 p ,

that is

σ =
[

(p+ 1)
Ä
p−1
2

ä2]− 4 p
d−p (d−4)

and allows to compute Kp,d by solving

γ pKp,d

Å∫
Rd

|f |2 p dx
ãγ−1

=
4 p

(p− 1)2
σ
−

d−p (d−2)
2 p

= p (p+ 1)
2

d−p (d−2)
d−p (d−4)

Ä
p−1
2

ä− 2 d (p−1)
d−p (d−4) .
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All computations done, we find that

Kp,d =
d−p (d−4)

d+2−p (d−2) (p + 1)
2

d−p (d−2)
d−p (d−4)

Ä
p−1
2

ä− 2 d (p−1)
d−p (d−4)





Γ
Ä
d−p (d−4)
2 (p−1)

ä

π−
d
2 Γ
Ä

2 p
p−1

ä




2 (p−1)
d−p (d−4)

.

Using (25), this also justifies the expression of CGN
p,d which was stated earlier in

this Appendix.
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Comptes Rendus Mathématique, 344 (2007), pp. 431–436.

[8] , Asymptotics of the fast diffusion equation via entropy estimates, Archive

for Rational Mechanics and Analysis, 191 (2009), pp. 347–385.

[9] G. Bliss, An integral inequality, Journal of the London Mathematical Society, 1

(1930), p. 40.

[10] M. Bonforte, J. Dolbeault, G. Grillo, and J. L. Vázquez, Sharp rates of

decay of solutions to the nonlinear fast diffusion equation via functional inequal-

ities, Proceedings of the National Academy of Sciences, 107 (2010), pp. 16459–

16464.



IMPROVED SOBOLEV’S INEQUALITIES 27

[11] H. Brezis and E. H. Lieb, Sobolev inequalities with remainder terms, J. Funct.

Anal., 62 (1985), pp. 73–86.
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