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Underwater robot navigation around a sphere using electradcation
sense and Kalman filter

Vincent Lebastard, Christine Chevallereau, Ali AmroucBeahim Jawad,
Alexis Girin, Frederic Boyer, and Pol Bernard Gossiaux.

Abstract— The aim of this paper is to perform the navigation fact Lannoo and Al [2] have reported the existence of specific
of an underwater robot equipped with a sensor using the eledt  movements for the electric fish in assessing a prey. Here we
sense. The robot navigates in an unbounded environment in qemonstrate the feasibility of the sphere recognition k& th
presence of spheres. This sensor is inspired of some speais S h .
electric fish. A model of this sensor composed of n spherical _naw_gr_:\tlon_ and the electric sense. OL_" m0d6| of perceptl_on
electrodes is established. The variations of the current deito IS bioinspired from the weakly electric fish. The sensor is
the presence of the sphere is related to the model of Rasnow composed of n spherical electrodes of fixed potential values

[3]. Unscented Kalman Filter is us_ed to Iocaliz_e the robot wh Each object when it is polarized by the sensor creates a
respect to the sphere and to estimate the size of the sphere. hotrhation that is added to the initial potential valués o

We show that bio-inspired motions improve the detection of )
the spheres. We illustrate the efficiency of the method in two the electrodes. We define the model of the sensor as the

cases: a two electrodes sensor and a four electrodes sensor.  Poly-spherical model. In the first part of this paper we
present the poly-spherical model in a presence of a sphere.

. INTRODUCTION In the second part we present a method for the estimation
of the parameters of the sphere. This method is based on
the unscented Kalman filter. In the third part we illustrate

electric fishes use their electric organ discharges (EOD e qualitv of the estimation with two examples: for a two
to detect object with electric properties different frome th 9 y ples.
electrodes sensor and for a four electrodes sensor. In each

surrounding medium. Near the fish an object with a higher o
- : . ase we test the specific movements and we demonstrate the
conductivity than the medium brings locally more curren N ;
. : . - Improvement of the estimation with these movements.
on the skin whereas an object with less conductivity than

the medium brings locally less current on the skin. The II. ANALYTICAL MODEL

dependence is not only on the conductivity value but also on As in the work of Rasnow [3], the model of electric
shape, dimension and distance from the skin. For a simpiense is restricted to the resistive effects offered by the
object like the sphere, B. Rasnow [3] gave the relatioenvironments to the currents generated by the polarizstion
between the signal perturbation, i.e. the variation of thef the fish body. In these conditions, the principle of the
measured current, and the three parameters: the condyctivélectrolocation can be reproduced and modeled by consider-
the radius and the distance from the skin. The first problermg the fish on the sensor copying it as a set of conducting

in active electrolocation is to solve the ambiguity betweeannular electrodes aligned on a rigid slender body.
these parameters. For instance, given a conductivity )/aluE Th \v-spherical model i ¢ h
the same signal perturbation can come from both a bigger € poly-spherical model in a presence ot a sphere
sphere that is situated far from the skin and from a smaller The geometry of the sensor allows one to approximate it
sphere that is close to the skin. Solberg and Al [4] hav#ith @ good accuracy by a set of spherical electrodes aligned
demonstrated the feasability of the detection of the sphef® the rigid body axis according to what we call a poly-
by the electric sense. Nevertheless they assume a vafherical model. We illustrate in the Fig. 1 such a model in
of conductivity and a value of the radius to perform thdhe presence of a spherical object. The sensor is composed
detection. Here we suppose we don't know the radius and tRé N Spherical electrodes with an emitter ane 1 receivers
position of the sphere. Assuming a perfect conductive gphedt given potential values.
or a perfect insulating sphere we perform the estimation of

not only the position but also the radius of the sphere. This

informations can be used to navigate with the electric sense Tai g Head
To realize this estimation we were inspired on some specific N\ 3 /
movements of the electric fish. Not only the electric senge bu OO ----"- 00—
also the movement is important to perform the estimation. In /

Lissmann and Machiil] have demonstrated that weakly

Sphere

Emitter
Receivers

This work was supported by the European project ANGELS (ANiGu

form robot with ELectric Sense ) Fig. 1. The poly-spherical model in a presence of a sphere.
A. Amrouche is IRCCYN, Ecole des Mines de Nantes, Nantesndea
al i . anrouche@m. fr . . . Lo
C. Chevallereau is IRCCYN, CNRS, Nantes, France.ﬁvl? d(aarlve our forr_r.1>alllsm from t_he equation of Cont”?u'ty'
Chri stine. Cheval | ereau@rccyn. ec-nantes. fr 0. ] +0—‘t’ = Owhere j is the density current vector apdis



the volume charge density. The condition of stationariéglle considerations one can link the potential of the electrades
to:0.j =0. The Ohm's law j = yE leads toyd.E + the current entering the electrodes:

=

Dy.? =0 whereE is the applied field. Considering that the 1

conductivity of the domain in which the sensor is immersed Ve= HVRIG )

is piece-wise constant (i.e. the fluid and the object are
modeled as two Ohmic condggting homogeneous material

v_v)e_h)ave in the fluid domainty = 6, and consequently:
U.E =0. Where we recognize the local form of the Gausge ctor of receivers an¥, the potential of the emitter. We

law in the case where all the electric charges are situated ﬂﬂpose potential difference between emitter and recepors
the boundaries of the two Ohmic media (the electrodes ar@_ — Vi — Vi) and we exprestl in function of Ve :

the sphere). Suppose now that on each electrode i we have
the chargey; the potential of an electrode is simply deduced U=PV. (5)
from the relation:

hereR is the matrix of resistivity (of dimensions x n),
e=[1,1n]7 * with | is the current vector of receivert,
the current of the emittel/e = [V, V47, V is the potential

with P = [l(n_1), —1(n-1,1)], Where—1(,_4 1 is a column of
Vi — 1 i qj L n—1 terms equal to-1. To respect the current neutrality
' Ame =) Li; l14...1n =0, we expresse in function of| : l¢=PTI. We

. . ) expressJ in function of | :
with the distance between the electrodesd the electrodes 1

j is given asLij = & jR+ =1L, & the Kronecker delta U= —PRP"| (6)
which value is 1 fori = j and 0 fori # j, R the radius of Amny

an electrode, L the length of the sensor anthe electric The matrixR is composed by the contribution of each object
permittivity of the surrounding medium. We suppose implicR = A + S whereA is the sensor self influence ads the
itly that the electrodes are separated with the same distanephere influence.

Now suppose that a sphere is appearing in the environmentThe elements\ j of the matrixA are calculated as:

The potential perturbatiodV due to this sphere is according 1
to the Rasnow model [3] : A= T @)
. Il +aR
E.T
oV = xa® 3 (2) and the element§ ; of the matrixS are calculated as:
Il )
wherea is the radius of the spherg is the conductivity of S,j= —a’y Eig]j n (8)
the spherey is the conductivity of the mediunmy = Z,SJZ);/ ’ 2 2 2 2\
the contrast factor which value is 1 for a perfect conductive \/E' +h (\/EJ +h )
sphere and -0.5 f(_)r a _per_f)et_:t insulating sphere. We assume,parei — 1.n, andj = 1..n and
here that the applied fiel@& is constant across the sphere. L o
T is the position vector that comes from the center of the { & = (—_dcos{@)—i— 53— n1b), 1=ior]j (9)
sphere to a point M where the perturbation is created. In the n =dsin(6)
presence of the sphere one can write : whered the distance between the center of the sensor and
n the center of the spherd, the angle between the axis of
1 gj
Vi=o = > T, + 0V, (3)  the sensor and the direction joining the center of the sensor
j=1"h

and the center of the sphere (see Fig.1). Note that, these
where éV, is the perturbation due to the sphe@) created dp.arameter_s are related to the body mobile frame and do not
the surface of the electrode i. The applied fidid comes require to introduce any absolute extraneous frame. From (6
from the n electrodes : the current intensity vectdr in the presence of the sphere

can be expressed as:
Ezi qiT ] P
&y Ael|rj3

where T'j is the position vector that comes from the center [N the next sections, The measured curtentll be used
of the electrode j to the center of the sphere. Using now tHe locate and recognize the sphere.

. — "
integral form of the Gauss lawfyg E.ds= % B. The sensor's range
wheres§ is the surface of the electrode i and combining with In this section. the aoal is to determine the distance at
the Ohm'’s law the integral form of the Gauss law becomes:, . ’ 9 ) .

which the sensor detects the sphere in an unbounded envi-

T a . v : inboune
Jos y-ds= 3. Assuming now that the electrodes are perq,nment. The Fig. 2 shows the two characteristics distances

fectly spherical and not 100 close to polarize themselveg,q ayia| and the lateral range. We compare the range of two

the density current vectorj i becomes constant over theinqs of sensors, a dipola & 2 electrodes) and a quadripole
surface of an electrode i. Thus we can write= % where

li is the total current entering an electrode i. With all these Notation™ means transposition

| = 4my(PRPT) U (10)



Lateral range

Axis range .

In the Fig. 3 and Fig. 4, the curves display the curidgnt
for aconductive sphere whit a radias= 0.01m. In the Fig. 3,
we observe clearly a "blind area” in the middle of the sensor.
This characteristic exist it; ; >> a i.e. bigger sphere can
be “seen” by the dipole. We do not find this characteristic
for the four electrodes sensor (see Fig. 4).

Fig. 2. Definition of axial and lateral range.

(n= 4 electrodes). We evaluated the current measure noise
in the test benctf at I, = 10°® A. We assume that the
maximum range is obtained when the curréht is in the
same order tham,. The length of the sensors is= 0.2m

and the distance between two successive electrodﬁbiis
Radius of the electrodes B = 0.01m. The potential at the
emitter is 2V and at the receivers is\0.

We place a sphere at different locations around the sensor
in an Q4mx 0.4m area. For each position, we calculate the
norm of the currents expressed Us= ||| — |||, wherel,
(respectivelyl) is the current vector in an unbounded envi-

— quadripole awial range
B quadripole lateral range
== dipole axial ranga
& dipole Isteral range
02 /e’é
€ /{ -
5015 /4‘

;
o
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Fig. 3. The iso-current Is for the dipole.

Fig. 4. The iso-current Is for the quadripole.

2Test bench can not be presented, we are waiting for patent.

ronment without the sphere (respectively with the sphere).Fig- 5. The range of the sensor for several values of the epfaefius .

Fig. 5 shows the lateral and the axial range of the dipole
and the quadripole for several values of a conductive sphere
radiusa = [0.01,0.03,0.05,0.10 m. The two sensors have
similar axial range. The lateral and the axial ranges of the
guadripole are also similar. A sphere of radais 0.05mis
better detected laterally by the quadripole than by theldipo
A sphere of radiug < 0.01m can not be detect laterally by
the dipole.

Fig. 6. The indistinguishable sphere positions.

The sensor is designed with symmetrical right-left shape.
With this design it is impossible to distinguish the side véhe
the object is[10] as shown in Fig. 6. Moreover, the dipole
can not make the difference between all the positions of the
sphere for the same iso-current (see Fig.3). To raise these
problems, more informations is needed, we can obtain it
by motions. We propose to use some specific bio-inspired
motions.

I1l. ELECTROLOCATION AND RECOGNITION OF THE
SPHERE

The calculation of the sphere parameters using the current
mesure is an inverse problem. Inverse problems may be
difficult or impossible to solve. For example, using the d&o
we have only one measure witch is not enough to identify
the sphere parameters, a solution is to use the observers. We
propose to use the Unscented Kalman Filter to estimate the
sphere parameters. The sphere parameters are:

« The sphere position: the distandeand the anglé.



« The sphere radiua. . step k: the observed statex§
« The sphere class: conductive or insulating, is given by « 2N+1 sigma points are definda ¢ OV).
contrast factory.
. k _ gk

A. The motion model of the sensor X(& = )fk -

In case of a real fish, the motion is ruled by its swimming Xik N )f + \/(N + K>(Pk+Qm) (13)
dynamics. In our simplified case, the rigid sensor mimicking Xign = X— V/(N+K)(P*+Qm)
the fish is modeled as a single non-holonomic axle whictvherei = 1,...,N and«k is the scale factor which can be
motions parallel to the axis are forced to zero (see Fig.1).chosen (in our casg=1).

While being very simple, these kinematics reproduce the , The sigma points are weightetp = 2k, W = 1 for
fact that a fish cannot swim along the lateral dimensions of j—=1 . N

its body. In these conditions, the sensor motion is simply , State prediction: using the evolution model (12):
parameterized by the linear velocity and the angular

_ K Ky i —
velocity w (see Fig. 1). The sphere is assumed to be fixed Xikt1k = F(X; ,LZJN), i=0,..,2N
and_ Iocated with respect to the sensor furthermore sphere R 1k = K%rN) Z (WX 1)
radiusa is constantV andw define the input control vector ) (14)
u=[V,w. Qi x 3= Xi, k+1\k_xk+1\ka i=0,..,2N
Based on Fig. 1, the motion model can be written: Py 1k = K+N) Z (Wu [Ai,x,ﬂ [Ai,x,ﬂ )
d = —Vcog6) s :
P w+Vsm(6) (1) « Measure prediction: usmg the mesure model (10):
a = 0 Yikeak = 9(Xiks1k)s 1=0,....2N
2N
This model can also be written under a discrete first order yk+l\k (K1+N Z (Wy, k+1\k)
form: D yvo = — i=0,..,2N
g — dkkacos(ekk)mk i,y Y|1,k+l\I2<N Yk+l\k7 ,T (15)
(AR LLAY: (12) Ry = 201 2 (W. [Bi 9] [Biyg] )+Qs
el = gk Y

.
_ , _ Py =2t 2 (W [ x 4] [Biyy] )
Where k denote the time step anflt is the sampling i=0
period. The state vector i = (d*, 8%, a)T and the control  , Gain of the correctionKk+1 — PoPyt
input vector isuk = (V¥ w)T. The evolution model 12 can Rl K (Y=
be written asx**! = f(xk,uk) and the measure model (10) « Correction: 5y F';:rll‘kkf Kk+F’ (KT 21
as:yk = 1% = g(xX x) +1 Wk

B. The observer

IV. ELECTROLOCATION OF A SPHERICAL OBJECT

We assume that there is only one conducting sphere in
One class of observer is based on the Kalman filter [Sthe navigation environment of the sensor. The sphere radius
[9], [6]. In case of nonlinear systems the Extended Kalmag 5cm If there are several spheres, we assume that every
Filter (EKF) can be used. It requires to linearize the modejphere is sufficiently far from the others so that the sensor
of measures as well as that of motion. To avoid such a costlyill not detect two spheres at the same time.
analytical linearization of the two models, the Unscented
Kalman Filter (UKF) will be used [7]. In this case theA- The observer initialization
linearization of the model is implicit and numerically defth Before the sphere detection, the sensor moves in an
via several "sigma points” i.e. based on Gaussian randoombounded environment. If the sensor detects a spherd] it wi
variable. The correction and the definition of the sigmabe at the limit of detection area at front of the sensor Fig. 7.
points are based on covariance mafix In the following, The detection area is defined based on the range study Fig 4.
the discrete model of evolution (12) is used. The covariandt this instant, the observer starts and the contgasiill be
matrix P¥ attached to the state variab{€ defines the preci- evaluated. If the current decreases, the sphere is dediared
sion associated to the state. A small covariance impliets thiae insulating;y = —0.5. Conversely, if the current increases
the variable is precisely known, a large covariance impliethe sphere is conductivg: = 1. We give an arbitrary initial
that the state is not precisely known. The evolution of thealue of the sphere radiug' & [0.01,0.1](m). The initial
covariance matrix is defined by the UKF algorithm. Twodistanced? is given based on the range study Fig.5. The
main elements affect the behavior of the Kalman filter: theystem (11) is not observab[é] if the angle 8 is in the
covariance matrix associated to the model of evolut@n neighborhood of (rad). To avoid this singularity, the initial
which defines if this model is well known or not and thevalue of the angl@! = T
covariance matrix of measure noi§x. The principle of The initial covariance matri? is given according to sen-
the UKF is summarized in the following algorithm usingsor range study a$®! = diag[0.1%,0.5%,0.05?] The initial
recursive equations [9]: value of standard variation of the radlus i©8. According to



Fig. 5, we chose Q as the initial value of standard variation The bio- | number | error error error
f the dist ispired of elec- | mean of | mean of | mean of

0 e dis _ance- ) ) ) motion | trodes n| d (%) 6(%) a (%)

In the simulations of this study, the matr@, is chosen A n=2 5.90 35.61 6.34

as following: Qn = diag[0.012,0.012,0] n=4 3.30 1256 | 6.07

h ) . ¢ i@ _ |2 B n=2 2.55 10.11 5.21

The covariance matr|>_< of measure nm@s =lg* n=4 170 875 347

In_1xn-1, Wherel,_14n_1 is the identity matrix,n is the C n=2 2.18 12.01 467

number of electrodes. n=4 1.24 3.29 2.08

D n=2 2.12 6.83 3.41

. ; n=4 1.02 0.82 2.01

S P
%/’ TABLE |
SIMULATION RESULTS FOR THE MOTIONS

in the sphere recognition, we realize four tests described i
Fig. 7. Possible sphere positions at the detection instant. Fig.9 using the two sensors: the dipole and the quadripole.

« Motion A: back and forth at front of the sphere.
B. Simulations results and discussion « Motion B: back and forth at front of the sphere with
yawing.
Motion C: back and forth at side of the sphere.
« Motion D: back and forth at side of the sphere with
yawing.

The observer estimates the sphere parameters: the dlstance
d, the angled and the sphere radiws The control law uses
the estimated state. In the following example, the sphere is
conductive and its real radius &= 0.05m.

To recognize the sphere parameters, the sensor realize the
following bio-inspired motions [2]:

« back and forth: The input control vector gk = 3“(’“’
[\/k Q)k] [\/0COS(Qth) ] EE' o _._ @
« back and forth with yawing: The input control vector is — v

uk = VK, KT = [Vocog Qu kKAL), ancog QKAL) T,
WhereQ is the pulsationy) is the amplitude of the linear
velocity anday is the is the amplitude of the angular velocity.

e ‘ ! ‘ 1 !

§| == without yawing Back and froth at side of the sphere
V| = with yawmg

Fig. 9. Tested motions.

Table | lists the obtained results using the bio-inspired
movements. The error mean is the mean error for all the
duration of the simulation (her& = 1..1000). With the
motion (A), the observer can estimate the radius, the distan
but the error mean of the angle is relatively important
(35.61%). With the motion (B), we observe a remarkable
improvement of the observer estimation performances for
the angle (the estimation error). The yawing moves away the
angle 6 from the singular value (®ad). When the sensor
Fig. 8. Angle estimation errors using the bioinspired mogem(B and MoVes at side of the sphere (motions (C) and (D)), we obtain
B) with quadripole. better results with yawing for quadripole. If we compare

the results obtained for the motions (B) and (C) with the

Fig.8 shows the estimation error of the angle using thdipole, we observe that the estimation errors are closeid. Th
guadripole. For the two bio-inspired motions, the angléwo motions have the same effect on the anflanoves
estimation error converge toward zero. The convergence asvay the angle from the singular value. The best estimations
faster for the back and forth with yawing than without. Inperformance are obtained with the bio-inspired motion (D)
order to show the contribution of this bio-inspired motionusing the quadrupole.




V. ELECTROLOCATION AND ORBITING AROUND THE
SPHERE

An example of navigation with the electric sens in pres-
ence of a sphere is given in Fig.10. We realize the following
scenario:

« The quadripole moves in its environment until the
detection of the sphere.

« Contrast evaluatiory and observer initialization (sec-
tion 1V-A).

« Specific motion back and forth with yawing and esti-
mation of the sphere parametetsd and&

« When the observer converge, the quadripole orbiting
around the sphere with a constance distaRg&ig.10.

In this simulation, the sphere is conductive and its realusad
is a=0.05(m).
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. 12. Estimation errors.

VI. CONCLUSIONS

Fig. 10. Trajectory of electrolocation and orbiting arouhe sphere.

Back Forth Around the sphere
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Time (s)

Fig. 11.
(B).

Orbiting around the sphere using the quadripolé tie motion

In this paper, we propose bio-inspired motions to improve
the localization and the recognition of sphere by the alectr
sense using the Unscented Kalman filter. Two sensors model
are used: the dipole and the quadripole. Based on the range
study, the quadripole is preferred than the dipole. Aceaydi
to the simulations results, the using of the bio-inspired
motions improves the estimation of the sphere parameters.
With the quadripole, the observer gives better resultss Thi
results give us the possibility to improve the underwater
navigation with the electric sense by using the optimal
combination between the sensor specifications and the bio-
inspired motions.
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