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WATER WAVES OVER A ROUGH BOTTOM IN THE SHALLOW WATER REGIME

WALTER CRAIG, DAVID LANNES AND CATHERINE SULEM

Abstract. This is a study of the Euler equations for free surface water waves in the case of varying
bathymetry, considering the problem in the shallow water scaling regime. In the case of rapidly varying
periodic bottom boundaries this is a problem of homogenization theory. In this setting we derive a new
model system of equations, consisting of the classical shallow water equations coupled with nonlocal evolution
equations for a periodic corrector term. We also exhibit a new resonance phenomenon between surface waves
and a periodic bottom. This resonance, which gives rise to secular growth of surface wave patterns, can be
viewed as a nonlinear generalization of the classical Bragg resonance. We justify the derivation of our model

with a rigorous mathematical analysis of the scaling limit and the resulting error terms. The principal
issue is that the shallow water limit and the homogenization process must be performed simultaneously.
Our model equations and the error analysis are valid for both the two- and the three-dimensional physical
problems.

1. Introduction

Studies of the Euler equations for free surface water waves are important to understanding the dynamics
of ocean waves. The case of an idealized flat bottom and the resulting model equations has been widely
studied for many years. The more realistic situation of varying bathymetry is less well known, despite its
fundamental importance to studies of ocean wave dynamics in coastal regions, and there is not a complete
consensus as to the appropriate model equations. In the case of topography there are many asymptotic
scaling regimes of interest, including long-wave of modulational hypotheses for the evolution of the free
surface, and short scale and/or long scale variations in the variable bottom fluid boundary.

In this paper we address the evolution of waves in the shallow water regime, for which we investigate
the effect of the roughness of the bottom topography. The simplest situation is where the bottom varies
periodically and rapidly with respect to the typical surface wavelength, a regime which can be described in
the context of homogenization theory. Ideally, wave motion in this regime of rapid periodic bottom variations
is described in terms of a long wave effective component, which is then adjusted by a smaller multi-scale
corrector at the next order of approximation. In terms of the initial value problem for this regime, initial
configurations consisting of large scale data with a multi-scale corrector term are expected to give rise to
solutions with the same character, up to a smaller error term. In this paper we derive a system of model
equations for such multi-scale approximate solutions. While other authors have looked at similar situations,
as far as we know this system is new, consisting of a version of the shallow water equations for a mean field or
effective components of the surface elevation and the fluid velocity, which then drive a nonlocal system of two
additional equations for the evolution of a more rapidly oscillating corrector term. Because of the number
of other models that have been proposed to describe this setting, we justify the derivation of our system
with a rigorous analysis, giving error estimates for our approximate solutions. In cases in which there is a
resonance between the effective velocity and the periodic bottom, the solution of the corrector equation can
exhibit secular growth at a linear rate.This phenomenon can be viewed as a nonlinear generalization of the
classical Bragg resonance between the bottom topography and the free surface. This is a local phenomenon,
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which may occur when the local Froude number is subcritical. In the absence of resonances, our analysis is
valid over time intervals of existence of the effective component.

The literature on models of free surface water waves over a variable depth is extensive, including the
paper of Miles [21] on its Hamiltonian formulation, and that of Wu [29] on models which are valid in long
wave scaling regimes. The paper of Rosales & Papanicolaou [27] studies the long wave regime in which the
bottom is rapidly varying, in the sense that the typical wavelength of surface waves is taken to be much
longer than typical lengthscale of the variations of the bottom depth. When the latter are periodic, or more
generally when they are given by a stationary ergodic process, the techniques of homogenization theory
are used to obtain effective long wave model equations. The two most important examples are of periodic
bottom topography, and of topography given by a stationary random process. Recently there has been a
renewal of interest in this problem, both from the point of view of modeling of water waves in asymptotic
scaling regimes, and of mathematical analysis. A central question is the validity of the homogenization
approximation, and the character of the resulting model equations. Following [27], the paper of Nachbin
& Sølna [22] studies the deformation of surface waves by the effects of propagation over a rough bottom,
taken in the shallow water scaling regime. In this work the bottom is given by a random process, and
the authors treat both the two- and three-dimensional cases. The paper of Craig et al [10] considers large
periodic bottom variations, again for dimensions n = 1 + d (d = 1, 2), deriving model equations to quite
high order of accuracy for the profiles which describe weak limits of surface waves in the homogenization
limit of the nonlinear long wave regime. Similarly, the paper of Garnier, Kraenkel & Nachbin [12] studies
the long wave scaling limits of water waves over a periodic bottom (for d = 1), deriving an effective KdV
equation, for which they describe the dependence of the coefficients of nonlinearity and dispersion on the
topography of the bottom. This study continues in Garnier, Grajales & Nachbin [13] in the case of random
bathymetry. There are other studies of surface wave propagation over periodic bathymetry, that focus on
regimes which are not homogenization theoretic. Namely, there is the case in which the typical wavelength
of surface waves is comparable or smaller than the typical bottom variations. Among these, Choi & Milewski
[6] consider periodic solutions of systems of KdV equations which are coupled through resonant interactions
with a periodic bottom. The paper by Nahoulima et al [23] considers shallow water theory with and without
dispersive corrections, for a periodic and piecewise constant bottom of very long wavelength.

The paper of Grataloup & Mei [14] considers the propagation of modulational solutions over a random
seabed in dimension d = 1, which is extended to the case d = 2 in Pihl, Mei & Hancock [26]. In this work,
the typical wavelengths represented in the surface and the topography are comparable, and the effort is to
derive envelope equations for the free surface and to understand its statistical properties, given the ensemble
of realizations of the random bathymetry.

There is also a long history of study of resonant interaction between water surface waves with periodic
bottom. The paper of Mei [20] gives the theory of linear Bragg resonances between surface waves and
bottom variations of the same spatial scale. This is extended to nonlinear resonances in Liu & Yue [19]. The
difference between these references and our work is that, in the latter, short scales perturbations of the free
surface are generated by interaction of the bottom with long waves on the free surface, a feature typical of
homogenization theory.

None of the references above, however, give a mathematical theorem which justifies on a rigorous basis
the model equations that are derived. After the derivation of the shallow water model in the present paper,
the second main point of our work is to provide a rigorous justification of this derivation. There is a history
of results on the mathematical verification of the model equations for free surface water waves, starting in
fact with the papers of Ovsjannikov [24, 25] and Kano & Nishida [17] which give existence theorems for the
full water wave equations and as well a proof of convergence of solutions in the shallow water scaling limit.
In both cases the bottom is assumed to be flat, and the authors work with initial data given in spaces of
analytic functions. Results on long wave scaling limits of the water waves problem in dispersive regimes
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include Craig [8] and Schneider & Wayne [28] and their treatment of the two-dimensional problem, a long-
time existence theory, and the Boussinesq and KdV limits in Sobolev spaces. More recently, the paper of
Lannes [18] gives an existence theory for solutions of the water wave problem for fluid domains with smooth
variable bathymetry, and the further paper of Alvarez–Samaniego & Lannes [2] gives rigorous results on a
number of long wave scaling limits of the same problem (see also Iguchi [15] and earlier papers of Bona et al [4]
and Chazel[5]), all papers working with Sobolev space initial data. In the context of this body of work, what
distinguishes the present paper is the oscillatory nature of the bottom boundary of the fluid domain, which
has the implications that the solutions themselves are oscillatory, and principally, that the homogenization
theory Ansatz giving the form of solutions must be justified. Our analysis has several features in common
with the results of [11] on the justification of the nonlinear Schrödinger equation and the Davey – Stewartson
system as envelope equations for modulation theory, the most important of which being that the principal
theorem is a consistency result rather than a full fledged limit theorem for solutions. Nonetheless, as far as
we know this is the first rigorous result which justifies with a rigorous analytic argument the application of
homogenization theory to the water wave problem with rapidly varying periodic bathymetry. In the present
framework, precise error estimates are needed because the shallow water limit and the homogenization limit
do not commute. More precisely, shallow water expansions are derived for slowly varying bottoms, neglecting
some terms that are relevant for rough bottoms. Conversely, homogenization limits are usually performed
with low regularity estimates on solutions, that place them outside of the regime of high order shallow
water asymptotics (see for instance [7] for a recent homogenization result at leading order for the Dirichlet-
Neumann operator). The point of our work and the source of many of its technical difficulties is that we
perform the homogenization and shallow water limit simultaneously, thereby retaining the full complement of
relevant terms from the original water waves equations. The (local) effects of this infinity of terms neglected
in previous studies add up to create the nonlocal effects present in our approximation.

1.1. General setting. The time-dependent fluid domain consists of the fluid domain Ω(b, ζ) = {(x, z) ∈
Rd+1,−H0 + b(x) < z < ζ(x, t)} in which the fluid velocity is represented by the gradient of a velocity
potential Φ. The dependent variable ζ(x, t) denotes the surface elevation and b(x) denotes the variation of
the bottom of the fluid domain from its mean value. We use the Hamiltonian formulation due to Zakharov [30]
and Craig & Sulem [9] in the form of a coupled system for the surface elevation ζ and the trace of the velocity
potential at the surface ψ = Φ|z=ζ

, namely

(1.1)





∂tζ −G[ζ, b]ψ = 0 ,

∂tψ + gζ +
1

2
|∇ψ|2 − (G[ζ, b]ψ +∇ζ · ∇ψ)2

2(1 + |∇ζ|2) = 0 .

The quantity G[ζ, b]· is the Dirichlet-Neumann operator, defined by

(1.2) G[ζ, b]ψ =
√
1 + |∇ζ|2∂nΦ|z=ζ

,

where Φ is the solution of the elliptic boundary value problem

(1.3)

{
∆Φ+ ∂2zΦ = 0 in Ω(b, ζ) ,
Φ|z=ζ

= ψ, ∂nΦ|z=−H0+b
= 0 .

Writing the equations of evolution in terms of nondimensional variables, different asymptotic regimes of
this problem are identified by scaling regimes of the associated dimensionless parameters. Denote by A
the typical amplitude of surface waves, with λ their typical wavelength. Similarly let B denote the typical
amplitude of the variations of the bottom from its mean value H0, with ℓ their typical wavelength. From
these quantities we define the dimensionless variables as follows:

(1.4)
x = λX ′ , z = H0z

′ , t = λ√
gH0

t′ ,

ζ = Aζ′ , Φ = A
H0
λ
√
gH0Φ

′ , b = Bb′(xℓ ) .
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Stemming from this change of variables there are four dimensionless parameters,

(1.5) µ =
H2

0

λ2
, ε =

A

H0
, β =

B

H0
, γ =

ℓ

λ
.

Our analysis is concerned with the shallow water regime µ ≪ 1. The relative amplitude of solutions is
governed by ε. In addition to this, the relative amplitude of the bathymetry is given by β, the parameter
γ determines the relative length of bottom perturbations with respect to the typical wavelength of surface
waves, and the bottom variations b′(·) are assumed to be 2π-periodic in all variables. We consider relatively
large amplitude surface waves, meaning that no smallness assumption is made on ε. As usual for this regime,
we therefore set ε = 1 for the sake of simplicity. With regard to the bottom variations, we set

(1.6) β =
√
µ = γ ≪ 1 .

The fact that β = γ corresponds to small bathymetry slope in this regime, while the roughness strength is
ρ :=

√
µ/γ = 1. For clarity of notation we drop this ‘prime’ notation for the remainder of the paper.

1.2. Presentation of results. The first result of this paper is the construction of an approximate solution
(ζa, ψa) of the water waves problem in the form of the Ansatz

ζa = ζ0(X, t) + γζ1(X,X/γ, t/γ)(1.7)

ψa = ψ0(X, t) + γ2ψ1(X,X/γ, t/γ) .(1.8)

Remark 1.1. The factor of γ2 in front of the corrector ψ1is natural; indeed, this yields a O(γ) corrector
for the velocity, which is the physical relevant quantity.

Setting V0 = ∇ψ0 and h0 = 1+ ζ0, we show that (ζ0, V0) satisfies the classical shallow water system with
flat bottom,

(1.9)

{
∂tζ0 +∇ · (h0V0) = 0 ,
∂tV0 +∇ζ0 + (V0 · ∇)V0 = 0 ,

while the corrector terms (ζ1, ψ1) satisfy a linear nonlocal coupled system of equations in the fast variables
(τ = t/γ, Y = X/γ)

(1.10)





∂τ ζ1 + V0 · ∇Y ζ1 − |DY | tanh(h0 |DY |)ψ1

= V0 · ∇Y sech(h0 |DY |)b ,
∂τψ1 + V0 · ∇Y ψ1 + ζ1 = 0 .

In system (1.10), the functions ζ1, ψ1 are periodic in the variables Y , while the variables (t,X) are to be
treated as parameters. The above system represents the linearized water wave equations in a fluid region of
depth h0, with a background flow given by the velocity field V0. The source term of the RHS is due to the
effect of scattering of the background flow from the variable bottom.

The second result of this paper is a mathematical justification of the derivation of the above system of
model equations (1.9)(1.10). Our proof is in the form of a consistency analysis of the Euler equations of free
surface water waves, for which we show that the functions (ζa, ψa) whose constituents satisfy (1.9)(1.10) are
approximate solutions of the Euler equations. They are not in general an exact solution, but they satisfy
the equations (1.1) up to an error term Ea, and we show that this error is small. Namely, we prove that

|Ea|H∗ < Cγ3/8 ,

where the appropriate norm | · |H∗ is defined as |Ea|H∗ = |Ea1|L2 + γ−3/8|Ea2|H1/2 , and Ea = (Ea1, Ea2).
In particular, the error is small for the usual Hamiltonian norm of the water waves equations. The most
striking point of our analysis is that this result is valid for the natural time scale t = O(1) associated to (1.9)
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only if the free surface does not resonate with the rapidly varying bottom. Such a resonance is obtained if
there exist (t,X) such that

(k · V0(X, t))2 = |k| tanh(h0(X, t)|k|)
for some k ∈ Z corresponding to a nonzero mode of the Fourier decomposition of the bottom parametrization
b. This condition can be viewed as a nonlinear generalization of the classical Bragg resonance which is
obtained when the wavelengths of the free surface and of the bottom are of the same order, while here, the
latter is much smaller. In absence of such resonances, it is possible to find locally stationary solutions for
the corrector terms, that is, solutions to (1.10) that do not depend on the fast time variable τ . When such
resonances occur, the dependence of the correctors on τ cannot be removed, and this induces secular growth
effects that destroy the accuracy of the approximation (it is only valid on a much smaller time scale, t = o(1),
than the relevant one). It is likely that in this case, the dynamics of the leading term (ζ0, V0) is affected, but
this point is left for a future study.

The Ansatz (1.7)(1.8) and the error estimates for the quantity Ea represent a problem in homogenization
theory. The principal terms (ζ0, ψ0) are solutions of an effective equation, and the multiscale terms (ζ1, ψ1)
are the first corrector terms. The dynamics of the Euler equations require solving an elliptic equation at
each instant of time, on an unknown domain Ω(bγ , ζ) whose boundaries are defined by oscillatory functions.
The approach we take in this paper to the analysis of this elliptic problem and its asymptotic behavior is
to transform this domain to a reference domain Ω0, resulting in an elliptic problem with rapidly varying
periodic coefficients. The principal (effective) term and the correctors are derived from this problem, with
the principal term solving an effective equation, and the corrector solving an appropriate cell problem. These
are then used to express the Dirichlet – Neumann operator on the free surface of the fluid domain, which in
turn is used to express the evolution equations (1.1). The dynamics of the short spatial scales are separated
from the evolution of the long scales using the concept of convergence on two scales [1]. The principal part of
our mathematical analysis is to control the error estimates of the homogenization approximation (1.7)(1.8)
in describing the solutions of this elliptic boundary value problem and the associated expression for the
Dirichlet – Neumann problem.

2. Euler Equations

Zakharov showed that the water wave problem can be written in the Hamiltonian form [30]

(2.1) ∂t

(
ζ
ψ

)
=

(
0 I
−I 0

)(
δζH
δψH

)
,

where the canonical variables are the surface elevation ζ and the trace of the velocity potential on the free
surface ψ = Φ|z=ζ

, and the Hamiltonian H is given by

(2.2) H(ζ, ψ) =
1

2

∫

Rd

ψG[ζ, b]ψ + gζ2 dX .

The system for (ζ, ψ) is written as (1.1), which in dimensionless form becomes

(2.3)





∂tζ −
1

µ
Gµ[ζ, βbγ ]ψ = 0 ,

∂tψ + ζ +
1

2
|∇ψ|2 − µ

( 1µGµ[ζ, βbγ ]ψ +∇ζ · ∇ψ)2

2(1 + µ|∇ζ|2) = 0 ,

where bγ(·) = b(·/γ) and where Gµ[ζ, βbγ ] is the nondimensionlized Dirichlet – Neumann operator defined
by

(2.4) Gµ[ζ, βbγ ]ψ =
√
1 + |∇ζ|2∂nΦ|z=ζ



6 WALTER CRAIG, DAVID LANNES AND CATHERINE SULEM

and where Φ is the potential function, satisfying

(2.5)

{
µ∆Φ+ ∂2zΦ = 0 in Ω,
Φ|z=ζ

= ψ, ∂nΦ|z=−1+βbγ
= 0,

in the fluid domain Ω(bγ , ζ),

Ω(bγ , ζ) = {(X, z) ∈ R
d+1,−1 + βb(X/γ) < z < ζ(X)} .

The operator ∂n is the outwards conormal derivative associated with the operator µ∆+∂2z . One can rewrite
(2.3) in Hamiltonian form (2.1), replacing the Hamiltonian H given by (2.2) by its nondimensional form

(2.6) H(ζ, ψ) =
1

2

∫

Rd

(
ψ
1

µ
Gµ[ζ, βbγ ]ψ + ζ2

)
dX .

2.1. Notation. We denote by d = 1 or 2 the horizontal dimension of the fluid domain, and by X ∈ Rd the
horizontal variables, while z is the vertical variable. We denote by ez the unit upward vertical vector.

The domain and the potential function will depend upon both regular and rapidly oscillating variables,
which we denote X ∈ Rd and Y ∈ Td = Rd/(2πZ)d, respectively. That is, we will give data for the water
wave problem which is of a multiscale nature, with the fixed multiscale bottom variations as well, and we will
seek solutions which have a well defined asymptotic expansion in terms of multiscale quantities. To express
this, we use the classical notation of a multiscale function that is, a function f(X,Y ) defined on Rd × Td,
for which the realization is the trace f |Y=X

γ
= f(X,X/γ), [3]. In the problem we consider, there are other

variables as well, such as the vertical variable z ∈ [−1, 0], for which f = f(X,Y, z) is a multiscale function
whose realization is f(X,X/γ, z).

The differential operators ∇ and ∆ act on functions of the horizontal variable X . The operator Λ is
defined by Λ := (1 − ∆)1/2. We use the standard notation for Fourier multipliers, namely D = 1

i∇ and

f̂(D)u(k) = f(k)û(k). When applied to multiscale functions, we distinguish this fact using the notation ∇Y ,
∆Y , DY , when differential operators act specifically on the fast variables Y , and ∇X , ∆X , DX when they
act on the long scale X variables. Finally, the notation ∇µ stands for ∇µ = (

√
µ∇T , ∂z)

T .

We encounter functions defined on the fluid domain Ω(bγ , ζ) or the reference domain Ω0 = Rd × (0, 1),
as well as functions defined on the free surface, parametrized by X ∈ Rd. The notation used for function
space norms is that ‖ · ‖L2, ‖ · ‖Hr is used for the classical Sobolev space norms over Ω0, while for norms
defined over the boundary X ∈ Rd we use the notation | · |L2 , | · |Hr . Norms of multiscale functions are given
similarly, for example | · |L2(C1

Y ).

For all r1, r2 ≥ 0, we also define the space Hr1,r2 = Hr1,r2(Rd × Td) by

(2.7) Hr1,r2(Rd × T
d) = {f ∈ L2(Rd × T

d), |f |Hr1,r2 <∞},
with |f |2Hr1,r2 = |(1−∆X)r1/2(1−∆Y )

r2/2f |2L2(Rd×Td).

2.2. Change of variables and domain. The first component of the Hamiltonian (2.6) corresponds to the
nondimensionalized kinetic energy. It follows from the definition of Gµ[ζ, βbγ ] and Green’s identity that

(2.8)

∫

Rd

ψ
1

µ
Gµ[ζ, βbγ ]ψ dX =

1

µ

∫

Ω

|∇µΦ|2 dzdX ,

where Φ is the velocity potential (2.5). Since this expression depends on β and γ through the domain of
integration Ω(bγ , ζ), it is convenient to transform it into an integral over a fixed domain independent of the
parameters and of the perturbations ζ and b. Under the assumption that the fluid height h = 1+ ζ − βbγ is
always non-negative, namely

(2.9) ∃α > 0, 1 + ζ − βbγ ≥ α on R
d ,
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an explicit diffeomorphism S mapping the flat strip Ω0 onto the fluid domain Ω is given by

(2.10) S :
Ω0 → Ω

(X, z) 7→
(
X, z + σ(X, z)

)
,

where σ(X, z) = (z + 1)ζ(X)− zβbγ(X). We have in particular h = 1 + ∂zσ.
Defining φ on Ω0 by φ = Φ◦S, one can check (see Prop. 2.7 of [18] and §2.2 of [2]) that the new potential

function φ solves

(2.11)

{
∇µ · P [σ]∇µφ = 0,
φ|z=0

= ψ, ∂nφ|z=−1
= 0,

where ∂nφ|z=−1
is the outward conormal derivative in the new variables

∂nφ|z=−1
= −ez · P [σ]∇µφ|z=−1

and where the matrix P [σ] is given by

(2.12) P [σ] =




hI −√
µ∇σ

−√
µ∇σT 1 + µ|∇σ|2

h


 , with h = 1 + ζ − βbγ .

3. Multiple scale asymptotic expansions

3.1. Ansatz and decomposition of the solutions. This section is devoted to the study of the elliptic
problem (2.11) where (ζ, ψ) are given; the time is fixed and appears as a parameter. We pose the multiple-
scale Ansatz on (ζ, ψ) :

(3.1)
ζ = ζ0(X) + γζ1(X,X/γ)
ψ = ψ0(X) + γ2ψ1(X,X/γ).

Recalling that β = γ =
√
µ, this leads to the decomposition of the height function of the fluid domain

h = h0 + βh1 , where h0 = 1 + ζ0 and h1 = ζ1 − bγ .

Similarly, the new vertical deformations are posed in terms of this Ansatz

σ = σ0 + βσ1 , where σ0 = (z + 1)ζ0 and σ1 = (z + 1)ζ1 − zbγ .

The coefficients P [σ] are then written as

P [σ] = P0 + βP1,

with

(3.2) P0 = P [σ0] and βP1 = P [σ]− P0 .

Explicitly

P1 =

(
(ζ1 − b)I −√

µ∇σ1
−√

µ∇σT1 1
β

(
1+µ|∇σ|2

h − 1+µ|∇σ0|2
h0

)
)
.

We accordingly decompose the potential function φ as

(3.3) φ = φ0(X, z) + βγχ(X, z; γ) = φ0(X, z) + µχ(X, z; γ)

where all the contributions coming from the roughness are contained in χ. This section is devoted to deriving
asymptotic expansions, with accompanying error estimates on the two components φ0 and χ, in the limit
µ→ 0. In order to do so, we must augment (2.9) with the assumption that

(3.4) ∃α0 > 0, 1 + ζ0 ≥ α0 on R
d .

This ensures that the water depth does not vanish for the averaged fluid domain that arises when all the
fluctuations due to the roughness are neglected. Assumption (3.4) ensures the coercivity of P0.
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Proposition 3.1. Let ζ, b ∈ W 1,∞(Rd) and assume that (2.9) and (3.4) are satisfied. Then for all ψ such
that ∇ψ ∈ H1/2(Rd)d, there exists a unique solution φ to (2.11) such that ∇µφ ∈ H1(Ω0)

d+1. Moreover, φ0
and χ solve

(3.5)

{
∇µ · P0∇µφ0 = 0,
φ0 |z=0

= ψ0, −ez · P0∇µφ0 |z=−1
= 0,

and

(3.6)

{ ∇µ · P [σ]∇µχ = − 1
γ∇µ · P1∇µφ0,

χ |z=0
= ψ1, −ez · P [σ]∇µχ |z=−1

= 1
γ ez · P1∇µφ0 |z=−1

.

Proof. The existence of a unique solution φ such that ∇µφ ∈ H1(Ω0)
d+1 to (2.11) is a classical result, and

we thus omit the proof. Similarly, there exists a unique solution φ0 such that ∇µφ0 ∈ H1(Ω0)
d+1 to (3.5)

since the boundary condition on the lower boundary is the conormal derivative associated to the elliptic
operator ∇µ · P0∇µ. It remains to prove that χ solves (3.6). A calculation gives that

∂nφ|z=−1
:= −ez · P [σ]∇µφ|z=−1

= −βγez · P [σ]∇µχ |z=−1
− ez · P0∇µφ0 |z=−1

− βez · P1∇µφ0 |z=−1
.

Since by assumption one also has ∂nφ|z=−1
= 0 and −ez · P0∇µφ0 |z=−1

= 0, one has

−ez · P [σ]∇µχ |z=−1
=

1

γ
ez · P1∇µφ0 |z=−1

.

It is straightforward to check that χ |z=0
= ψ1 and that

∇µ · P [σ]∇µχ =
1

γβ
(∇µ · P [σ]∇µφ−∇µ · P [σ]∇µφ0)

= − 1

γ
∇µ · P1∇µφ0,

and the result follows. �

3.2. Asymptotic analysis with estimates of ∇µφ0. In this section we prove an estimate on ∇µφ0, and
we give the first terms of its asymptotic expansion in the limit as µ→ 0. For purposes of understanding the
H−1/2-norm of the trace of ∇µφ0 on the free surface {z = 0},we use L2 estimates on Ω0 of both ∇µφ0 and
its generalized Riesz transform, given by Λ−1∂z∇µφ0. This is generalized to higher order norms.

Proposition 3.2. Let r ∈ N and ζ0 ∈ W 1+r,∞ ∩W 2,∞(Rd) and assume that (3.4) is satisfied for some
α0 > 0. Then
(i.) For all µ ∈ (0, 1) and all ψ0 such that ∇ψ0 ∈ Hr(Rd)d, the solution φ0 to (3.5) satisfies

‖Λr∇µφ0‖L2 ≤ √
µC(

1

α0
, |ζ0|W 1+r,∞)|∇ψ0|Hr ,

‖Λr−1∂z∇µφ0‖L2 ≤ µC(
1

α0
, |ζ0|W 1+r,∞ , |ζ0|W 2,∞)|∇ψ0|Hr .

(ii.) If ∇ψ0 ∈ Hr+1(Rd)d, one also has

‖Λr(∇µφ0 −∇µψ0)‖L2 ≤ µC(
1

α0
, |ζ0|W 1+r,∞)|∇ψ0|Hr+1 ;

‖Λr−1∂z(∇µφ0 −∇µψ0)‖L2 ≤ µC(
1

α0
, |ζ0|W 1+r,∞ , |ζ0|W 2,∞)|∇ψ0|Hr+1 .

(iii.) Suppose that ζ0 ∈W 2+r,∞(Rd) and ∆ψ0 ∈ H2+r(Rd), and set

φ
(1)
0 = −h20(

z2

2
+ z)∆ψ0 , (h0 := 1 + ζ0) .
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as the next term of the asymptotic expansion. Then there are estimates of the remainder, in the form

‖Λr
(
∇µφ0 −∇µ(ψ0 − µφ

(1)
0 )
)
‖L2 ≤ µ2C(

1

α0
, |ζ0|W 2+r,∞)|∆ψ0|H2+r ;

‖Λr−1∂z∇µ(φ0 − ψ0 − µφ
(1)
0 )‖L2 ≤ µ2C(

1

α0
, |ζ0|W 2+r,∞)|∆ψ0|H2+r .

Proof. The first inequality of the proposition is obtained by standard elliptic estimates for ‖∇µφ0‖L2 (see
Corollary 2.2 of [2]). The Riesz transform of∇µφ0 has components Λ−1∂z∇µφ0 = (

√
µΛ−1∇∂zφ0,Λ−1∂2zφ0);

estimates of the first component come from the first inequality of (i), since Λ−1∇ is L2 bounded. Estimates
of the second component are obtained through the equation (3.5) itself. Namely one has an expression for
∂2zφ0 in the form

∂2zφ0 = µ
h0

1 + µ|∇σ0|2
[
− ∂z|∇σ0|2

h0
∂zφ0 + ∂z(∇σ0 · ∇φ0) +∇ · (∇σ0∂zφ0)−∇ · (h0∇φ0)

]
.(3.7)

In order to get an estimate on ‖Λr−1∂2zφ0‖2, we need the following lemma.

Lemma 3.3. Let r ∈ N and F and G ≥ 0 be such that Λr−1F ∈ L2(Ω0) and G ∈ L∞((−1, 0);W |r−1|,∞(Rd)).
Then

‖Λr−1(
F

1 +G
)‖L2 ≤ C(‖G‖

L∞
z W

|r−1|,∞
X

)‖Λr−1F‖L2.

Proof. Just write F
1+G = F − F G

1+G . Recalling that one has |fg|Hr−1 . |f |Hr−1 |g|W |r−1|,∞ , we get

‖Λr−1(
F

1 +G
)‖L2 . ‖Λr−1F‖L2

(
1 + ‖ G

1 +G
‖
L∞

z W
|r−1|,∞
X

)

. C(‖G‖
L∞

z W
|r−1|,∞
X

)‖Λr−1F‖L2 .

�

Applying this lemma to (3.7) with G = µ|∇σ0|2, one easily gets

‖Λr−1∂2zφ0‖L2 ≤ µC(
1

α0
, |ζ0|W r+1,∞)

1√
µ
‖Λr∇µφ0‖L2 ,

and the estimate follows from the control on ‖Λr∇µφ0‖L2 established above.

For the second point of the proposition, we write φ0 = ψ0 + µχ
(1)
0 . The resulting system for χ

(1)
0 is

(3.8)

{
∇µ · P0∇µχ

(1)
0 = − 1

µ∇µ · P0∇µψ0

χ
(1)
0 |z=0

= 0, −ez · P0∇µχ
(1)
0 |z=−1

= 1
µez · P0∇µψ0 |z=−1

.

A calculation shows that

− 1

µ
∇µ · P0∇µψ0 = −∇ · (h0∇ψ0) + ∂z(∇σ0 · ∇ψ0) = −h0∆ψ0

and that ez · P0∇µψ0 |z=−1
= 0, we obtain

(3.9)

{
∇µ · P0∇µχ

(1)
0 = −h0∆ψ0,

χ
(1)
0 |z=0

= 0, −ez · P0∇µχ
(1)
0 |z=−1

= 0.

Multiplying the equation by χ
(1)
0 and integrating by parts, we get

∫

Ω0

∇µχ
(1)
0 · P0∇µχ

(1)
0 dzdX =

∫

Ω0

χ
(1)
0 h0∆ψ0 dzdX .
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Using the coercivity of the matrix P0 (Prop. 2.3.iii of [2]), the Cauchy-Schwarz inequality and Poincaré

inequality (in order to control ‖χ(1)
0 ‖L2 by ‖∇µχ

(1)
0 ‖L2), one gets

‖∇µχ
(1)
0 ‖L2 ≤ C(

1

α0
, |ζ0|W 1,∞)|∆ψ0|L2

and the result follows. Higher order estimates are handled similarly and only require the control of additional
commutator estimates. We omit these classical details. The estimate of the generalized Riesz transform
Λ−1∂z∇µ(φ0 − ψ0) is similar to the analog estimate in (i) of this proposition.

For the third point of the proposition, we solve (3.9) at lowest order in µ. We write χ
(1)
0 = φ

(1)
0 + µχ

(2)
0 ,

or equivalently

φ0 = ψ0 + µφ
(1)
0 + µ2χ

(2)
0

with φ
(1)
0 = −h20( z

2

2 + z)∆ψ0. The correction χ
(2)
0 satisfies the system

(3.10)





∇µ · P0∇µχ
(2)
0 = −∇ · (h0∇φ(1)0 −∇σ0∂zφ(1)0 )

+∂z(∇σ0 · ∇φ(1)0 − |∇σ0|2
h0

∂zφ
(1)
0 ).

χ
(2)
0 |z=0

= 0, −ez · P0∇µχ
(2)
0 |z=−1

= 0,

where we used the fact that ez · P0∇µφ
(1)
0 |z=−1

= 0 to obtain the bottom boundary conditions. Proceeding
as above, we get the result. �

3.3. Asymptotic analysis with estimates of χ. To find an asymptotic expansion of χ, our starting point
is the equation (3.6) for χ. Decompose the solution as the sum of a multiscale function and a correction
term,

(3.11) χ = φ
(0)
1 (X,Y, z)|Y=X

γ
+
√
µχ

(1)
1 (X, z; γ) .

When acting on a multiscale function of the variables (X,X/γ), the operator ∇µ becomes ∇Y,z+∇µ
X , where

∇µ
X =

(√
µ∇X

0

)
:

∇µ(f(X,Y )|Y=X
γ
) =

[
(∇Y,z +∇µ

X)f(X,Y )
]
|Y=X

γ
.

We can therefore write

∇µ · P [σ]∇µχ = (∇Y,z +∇µ
X) · P0(∇Y,z +∇µ

X)φ
(0)
1 |Y=X

γ

+β∇µ · P1∇µφ
(0)
1 +

√
µ∇µ · P [σ]∇µχ

(1)
1 ,

so that (3.6) becomes (recall that β =
√
µ)

(3.12)





∇Y,z · P0∇Y,zφ
(0)
1 |Y=X

γ
+
√
µ∇µ · P [σ]∇µχ

(1)
1

= − 1

γ
∇µ · P1∇µφ0 +

√
µ∇µ · Ã+

√
µg̃ ,

(φ
(0)
1 |

Y =X
γ

+
√
µχ

(1)
1 ) |z=0

= ψ1|
Y =X

γ

,
(
− ez · P0∇Y,zφ

(0)
1 |Y=X

γ

)
|z=−1

−√
µez · P [σ]∇µχ

(1)
1 |z=−1

=
1

γ
ez · P1∇µφ0 |z=−1

−√
µez · Ã |z=−1
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with1

Ã = −P1∇µφ
(0)
1 − P0

(
∇Xφ

(0)
1

0

)

|
Y =X

γ

and

g̃ = −
(
∇X

0

)
· (P0∇Y,zφ

(0)
1 )|

Y =X
γ

.

In order to make the leading order terms in (3.12) explicit, we further decompose P0 as P0 = P
(0)
0 +

√
µP

(1)
0

and P1 = P
(0)
1 +

√
µP

(1)
1 , with

P
(0)
0 =

(
h0I 0
0 1

h0
I

)
, P

(1)
0 =

(
0 −∇σ0

−∇σT0
√
µ|∇σ0|2
h0

)

and

P
(0)
1 =

(
(ζ1 − b)I −∇Y σ1
−∇Y σ

T
1

b−ζ1
h2
0
I

)
, P

(1)
1 =

(
0 −∇Xσ1

−∇Xσ
T
1 p

(1)
22

)

where the (2, 2)-coefficient of P
(1)
1 is

p
(1)
22 = µ−1/2

(
β−1(

1 + µ|∇σ|2
h

− 1 + µ|∇σ0|2
h0

)− b− ζ1
h20

)
.

Lemma 3.4. The coefficient matrix P1 = P1(σ) has multiscale functions as coefficients. Considered as
P1 = P1(X,X/

√
µ), the following estimates hold for all r ∈ N:

‖P (0)
1 ‖L∞

z W
r,∞ + ‖∂zP (0)

1 ‖L∞
z W

r,∞ ≤ µ−r/2C(
1

α0
, |ζ0|Cr+1)(|ζ1|Cr + |∇Y ζ1|Cr + |b|Cr+1),

‖P (1)
1 ‖L∞

z W
r,∞ + ‖∂zP (1)

1 ‖L∞
z W

r,∞ ≤ µ−r/2C(
1

α0
,
1

α
, |ζ0|Cr+1 , |ζ1|Cr , |∇Xζ1|Cr , |∇Y ζ1|Cr , |b|Cr+1) .

Proof. The proof follows by inspecting the elements of P1, P
(0)
1 and P

(1)
1 . �

Given the above decompositions of P0 and P1, the first term of the LHS of (3.12) is

∇Y,z · P0∇Y,zφ
(0)
1 = ∇Y,z · P (0)

0 ∇Y,zφ
(0)
1 +

√
µ∇Y,z · P (1)

0 ∇Y,zφ
(0)
1

and, using that γ =
√
µ, the first term of the RHS of (3.12) is

1

γ
∇µ · P1∇µφ0 =

1

γ
∇µ · P (0)

1 ∇µψ0 +
1

γ
∇µ · P (0)

1 ∇µ(φ0 − ψ0) +∇µ · P (1)
1 ∇µφ0

= ∇Y,z · P (0)
1

(
∇ψ0

0

)
|Y=X

γ
+∇µ

X · P (0)
1

(
∇ψ0

0

)
|Y=X

γ

+
1

γ
∇µ · P (0)

1 ∇µ(φ0 − ψ0) +∇µ · P (1)
1 ∇µφ0 .

Extracting the principal term from these two expressions, we deduce that

1The operator ∇µ always acts on multiscale functions on the two variables X and z (and not on Y ). The notation ∇µφ
(0)
1

is therefore a shortcut for ∇µ(φ
(0)
1 |

Y =X
γ
).
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(3.13)





∇Y,z · P (0)
0 ∇Y,zφ

(0)
1 |Y=X

γ
+
√
µ∇µ · P [σ]∇µχ

(1)
1

= −∇Y,z · P (0)
1

(
∇ψ0

0

)
|Y=X

γ
+
√
µ∇µ ·A+

√
µg|Y=X

γ
,

(φ
(0)
1 |

Y =X
γ

+
√
µχ

(1)
1 ) |z=0

= ψ1|
Y =X

γ

,

−ez ·
(
P

(0)
0 ∇Y,zφ

(0)
1 |Y=X

γ

)
|z=−1

−√
µez · P [σ]∇µ(χ

(1)
1 |

Y =X
γ

)|z=−1

= ez · P (0)
1

(
∇ψ0

0

)
−√

µez ·A}|z=−1
,

with

A = Ã− 1

γ
√
µ
P

(0)
1 ∇µ(φ0 − ψ0)−

1√
µ
P

(1)
1 ∇µφ0 + (2∇σ0 · ∇Y φ

(0)
1 −√

µ
|∇σ0|2
h0

∂zφ
(0)
1 )ez

and with

g|
Y =X

γ

= g̃ −∇∂zσ0 · ∇Y φ
(0)
1 − (∇Xζ1) · ∇ψ0 − (ζ1 − b)∆ψ0 .(3.14)

In order to solve (3.13), we construct φ
(0)
1 as a solution of a cell problem in the variables Y and z (the

variable X being considered a parameter). The resulting solution cancels the higher order terms in (3.13),

and we are left with an equation for the corrector χ
(1)
1 .

3.3.1. The cell problem. We assume that b, ζ1 are periodic with respect to the variable Y and we seek a

periodic function φ
(0)
1 (·, Y, z) that solves




∇Y,z · P (0)
0 ∇Y,zφ

(0)
1 = −∇Y,z · P (0)

1

(
∇ψ0

0

)

φ
(0)
1 |z=0

= ψ1; −ez · P (0)
0 ∇Y,zφ

(0)
1 |z=−1

= ez · P (0)
1

(
∇ψ0

0

)
.

(3.15)

This choice of φ
(0)
1 cancels the highest order terms in (3.13). Taking into account the definition of P

(0)
0 and

P
(0)
1 , we can further simplify (3.15) into





(h20∆Y + ∂2z )φ
(0)
1 = 0

φ
(0)
1 |z=0

= ψ1,
1

h0
∂zφ

(0)
1 |z=−1

= ∇Y b · ∇ψ0.
(3.16)

We recall that the spaces Hr1,r2 that appear in the statement below are defined in (2.7).

Proposition 3.5. The solution φ
(0)
1 of the cell problem (3.16) is given in operator notation by the expression

(3.17) φ
(0)
1 (X,Y, z) =

cosh(h0(z + 1)|DY |)
cosh(h0|DY |)

ψ1(X,Y ) +
sinh(h0z|DY |)
cosh(h0|DY |)

∇Y

|DY |
b(Y ) · ∇ψ0(X) .

Assume that h0 = h0(X) = 1 + ζ0 satisfies the hypotheses (3.4), and let r0 > d/2 and r ∈ N. Then, for all
multiindex α = (α1, α2) ∈ Nd × Nd such that |α1|+ |α2| = r, one has
(3.18)

‖∂α1

X ∂α
2

Y ∇Xφ
(0)
1 ‖L2

XL
∞
Y,z

≤ C(|h0|Cr+1)
(
|∇Xψ1|H|α1 |,r0+|α2| + |∇Xψ1|H0,r0+r + |b|Cr+2 |∇ψ0|Hr+1

)
,

‖∂α1

X ∂α
2

Y ∇Y,zφ
(0)
1 ‖L2

XL
∞
Y,z

≤ C(|h0|Cr+1)
(
|∇Y ψ1|H|α1|,r0+|α2| + |∇Y ψ1|H0,r0+r + |b|Cr+2 |∇ψ0|Hr+1

)
.

Moreover, derivatives of the multiscale function φ
(0)
1 |

Y =X
γ

are controlled as follows

(3.19) ‖Λr∇µφ
(0)
1 ‖L2 ≤ µ−r/2C(|h0|Cr+1)×

(
µ

r+1
2 |∇Xψ1|Hr,r0 + |∇Y ψ1|H0,r0+r + |b|Cr+2 |∇ψ0|Hr+1

)
,
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and if r ≥ 1, the same upper bound holds for 1√
µ‖Λr−1∂z∇µφ

(0)
1 ‖L2 .

It is of note that the solution of the cell problem is a multiscale expression that can be differentiated
arbitrarily many times with respect to the variables (X,Y, z) without developing singular behavior in the
limit as µ→ 0.

Proof. Decomposing the function φ
(0)
1 in Fourier modes φ̂

(0)
1k with respect to the Y variable, we find

φ̂
(0)
1k = Ake

h0z|k| +Bke
−h0z|k|

with coefficients

Ak =
1

eh0|k| + e−h0|k|
(
i
k

|k| · ∇ψ0b̂k + eh0|k|ψ̂1k

)

Bk =
1

eh0|k| + e−h0|k|
(
− i

k

|k| · ∇ψ0b̂k + e−h0|k|ψ̂1k

)
.

After substitution, the solution φ
(0)
1 is written using operator notation as in the statement (3.17) of the

proposition.

For the proof of the estimates of the derivatives of φ
(0)
1 (X,Y, z), the expression (3.17) is conveniently written

in operator notation as

C1(h0, z,DY )ψ1(X,Y ) + C2(h0, z,DY )b(Y ) · ∇ψ0(X) ,

where the components are

C1(h0, z,DY ) =
cosh(h0(z + 1)|DY |)

cosh(h0|DY |)
, C2(h0, z,DY ) =

sinh(h0z|DY |)
cosh(h0|DY |)

∇Y

|∇Y |
.

For the first term, we remark that the Sobolev embedding Hr0
Y ⊂ L∞

Y yields

‖∂α1

X ∂α
2

Y ∇kC1(h0, z,DY )ψ1‖2L2
XL

∞
Y,z

.

∫

Rd

[
sup
z
(|(∂α1

X ∂α
2

Y ∇kC1ψ1)(X, ·, z)|Hr0
Y
)
]2
dX, (k = 0, 1)

where ∇0 stands for ∇X and ∇1 for ∇Y,z.
Now, by Plancherel formula (with respect to Y ), one easily checks that

sup
z

|(∂α1

X ∂α
2

Y ∇XC1ψ1)(X, ·, z)|Hr0
Y

≤ C(|h0|Hr+1)
( ∑

β≤α1

|∂βX∇Xψ1(X, ·)|Hr0+r−|β|

Y

+ |∇Y ψ1(X, ·)|Hr0+r

Y

)
,

sup
z

|(∂α1

X ∂α
2

Y ∇Y,zC1ψ1)(X, ·, z)|Hr0
Y

≤ C(|h0|Hr+1)
∑

β≤α1

|∂βX∇Y ψ1(X, ·)|Hr0+r−|β|

Y

Plugging these inequalities into the integral above then yields the desired result,

‖∂α1

X ∂α
2

Y ∇XC1(h0, z,DY )ψ1‖L2
XL

∞
Y,z

≤ C(|h0|Cr+1)
(
|∇X,Y ψ1|H|α1|,r0+|α2| + |∇X,Y ψ1|H0,r0+r

)
,

‖∂α1

X ∂α
2

Y ∇Y,zC1(h0, z,DY )ψ1‖L2
XL

∞
Y,z

≤ C(|h0|Cr+1)
(
|∇Y ψ1|H|α1|,r0+|α2| + |∇Y ψ1|H0,r0+r

)
.

For the control of the derivatives of C2(h0, z,DY )b(Y ) · ∇ψ0, we easily get that

‖∂α1

X ∂α
2

Y ∇X,Y,zC2(h0, z,DY )b(Y ) · ∇ψ0‖2L2
XL

∞
Y,z

≤ C(|h0|Cr+1)|b|Cr+2 |∇ψ0|Hr+1 ,

where we have (somewhat non-optimally) estimated the action of singular integral operators on L∞
Y at the

cost of one derivative. This ends the proof of (3.18).
For the proof of (3.19), we remark that the l.h.s. can be controlled as

‖Λr∇µ(φ
(0)
1 |

Y =X
γ

)‖L2 ≤
∑

α1,α2

µ− |α2|
2 ‖∂α1

X ∂α
2

Y (∇Y,z +∇µ
X)φ

(0)
1 ‖L2

XL
∞
Y,z
,
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where the summation is over (α1, α2) ∈ Nd ×Nd such that |α1|+ |α2| ≤ r. The result follows therefore from
(3.18) and a straightforward interpolation between the lowest and highest terms in terms of µ. In order to

prove that the same bound holds for 1√
µ‖Λr−1∂z∇µφ

(0)
1 ‖L2 when r ≥ 1, we just have to remark that

‖Λr−1∂z∇µ(φ
(0)
1 |

Y =X
γ

)‖L2 ≤
∑

α1,α2

µ− |α2|
2 ‖∂α1

X ∂α
2

Y (∇Y,z +∇µ
X)∂zφ

(0)
1 ‖L2

XL
∞
Y,z
,

where the summation is over (α1, α2) ∈ Nd × Nd such that |α1|+ |α2| ≤ r − 1. From the explicit expression

of φ
(0)
1 , we can check it is possible to replace ∂zφ

(0)
1 by |DY |φ(0)1 in the above summation, so that the result

follows as for (3.19). �

3.3.2. Estimate on the corrector χ
(1)
1 . With φ

(0)
1 as in the previous section, the system (3.13) reduces to the

following boundary value problem for χ
(1)
1 ,

(3.20)

{
∇µ · P [σ]∇µχ

(1)
1 = ∇µ ·A+ g ,

χ
(1)
1 |z=0

= 0, −ez · P [σ]∇µχ
(1)
1 |z=−1

= −ez · A |z=−1
.

Proposition 3.6. Let r ∈ N and denote (r − 1)+ = max{r − 1, 0} and r̃ = (r − 1)+ + 1. The solution χ
(1)
1

of (3.20) satisfies the estimates

‖Λr∇µχ
(1)
1 ‖L2 ≤ µ− r

2Mr

(
|∇ψ0|Hr+1 + µr/2|∇X,Y ψ1|Hr+1,r0 + |∇X,Y ψ1|H1,r0+r

)
,

‖Λr−1∂z∇µχ
(1)
1 ‖L2 ≤ µ− (r−1)+

2 Mr

(
|∇ψ0|Hr+1 + µ

(r−1)+
2 |∇X,Y ψ1|Hr̃+1,r0 + |∇X,Y ψ1|H1,r0+r̃

)
,

with Mr = C( 1
α ,

1
α0
, |ζ0|Cr+1∩C2 , |ζ1|Cr+1∩C2 , |b|Cr+1∩C2).

Proof. The method follows the recipe of classical energy estimates, paying attention to the rapidly oscillat-

ing coefficients and their commutators with differential operators. Indeed multiplying (3.20) by χ
(1)
1 and

integrating by parts yields
∫

Ω0

P [σ]∇µχ
(1)
1 · ∇µχ

(1)
1 dzdX =

∫

Ω0

A · ∇µχ
(1)
1 dzdX −

∫

Ω0

gχ
(1)
1 dzdX .

The matrix of coefficients P [σ] is coercive under condition (2.9) (Proposition 2.3(iii) of [2]), and is uniformly
so with regard to the small parameters, as the scaling regime we are studying imposes that β = γ.
Using the Cauchy-Schwarz inequality and Poincaré inequality, one finds, as in the proof of Proposition 3.2,
that

(3.21) ‖∇µχ
(1)
1 ‖L2 ≤M0

(
‖A‖L2 + ‖g‖L2

)

with M0 as in the statement of the proposition.
For the general case r ∈ N, the procedure is exactly the same replacing g by Λrg and A by A(r), with

A(r) = ΛrA− [Λr, P [σ]]∇µχ
(1)
1 ;

in particular, it follows from classical commutator estimates and Lemma 3.4 that

‖A(r)‖L2 ≤ ‖ΛrA‖L2 + C(
1

α0
,
1

α
, |ζ0|Cr+1 , |ζ1|Cr+1 , |b|Cr+1)

r∑

k=1

µ−k/2‖Λr−k∇µχ
(1)
1 ‖L2

so that (3.21) yields in this configuration

(3.22) ‖Λr∇µχ
(1)
1 ‖L2 ≤M0

(
‖ΛrA‖L2 + ‖Λrg‖L2

)
+Mr

r∑

k=1

µ−k/2‖Λr−k∇µχ
(1)
1 ‖L2 .

We therefore need the following lemma.
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Lemma 3.7. The following estimate holds,

‖ΛrA‖L2+‖Λrg‖2 ≤ µ−r/2Mr

(
|∇ψ0|Hr+1+µ

r
2 (|∇Xψ1|Hr,r0+|∇Y ψ1|Hr+1,r0 )+|∇Xψ1|H0,r0+r+|∇Y ψ1|H1,r0+r

)

Proof. - Control of ‖ΛrA‖L2 . Recall that

A = −P1∇µφ
(0)
1 − 1

µ
P

(0)
1 ∇µ(φ0 − ψ0)−

1√
µ
P

(1)
1 ∇µφ0

−P0

(
∇Xφ

(0)
1

0

)

|
Y =X

γ

+
(
2∇σ0 · ∇Y φ

(0)
1 −√

µ
|∇σ0|2
h0

∂zφ
(0)
1

)
|
Y =X

γ

ez .(3.23)

A direct application of the chain rule gives

‖ΛrA‖L2 ≤
r∑

k=0

[
‖P1‖L∞

z W
k,∞‖Λr−k∇µφ

(0)
1 ‖L2 + ‖P (0)

1 ‖L∞
z W

k,∞‖ 1
µ
Λr−k∇µ(φ0 − ψ0)‖L2

+‖P (1)
1 ‖L∞

z W
k,∞‖ 1√

µ
Λr−k∇µφ0‖L2

]

+‖P0‖L∞
z W

r,∞‖Λr∇Xφ
(0)
1 ‖L2 + C(|ζ0|Cr+1 ,

1

α0
)‖Λr∇Y,zφ

(0)
1 ‖L2.(3.24)

Using (2.12) and Lemma 3.4 to control the norms of P0 and P1, and Proposition 3.2 to control the second
and third terms in the above expression, we find

‖ΛrA‖L2 ≤Mr

(
µ−r/2|∇ψ0|Hr+1 +

r∑

k=0

µ−k/2‖Λr−k∇µφ
(0)
1 ‖2+‖Λr(∇Xφ

(0)
1 |

Y =X
γ

)‖2+‖Λr(∇Y,zφ
(0)
1 |

Y =X
γ

)‖2
)
.

We now control ‖Λr−k∇µφ
(0)
1 ‖2 through (3.19), while ‖Λr(∇Xφ

(0)
1 |

Y =X
γ

)‖2 and ‖Λr(∇Y,zφ
(0)
1 |

Y =X
γ

)‖2 can

be controled using (3.18) and proceeding as in the proof of (3.19). This yields

‖ΛrA‖L2 ≤ µ−r/2Mr

(
|∇ψ0|Hr+1 + µ

r
2 |∇Xψ1|Hr,r0 + |∇X,Y ψ1|H0,r0+r

)
.

- Control of ‖Λrg‖L2. We first recall that

g = −
(

∇X

0

)
· P0(∇Y,zφ

(0)
1 )|

Y =X
γ

+
(
−∇∂zσ0 · ∇Y φ

(0)
1 −∇Xζ1 · ∇ψ0 − (ζ1 − b)∆ψ0

)
|
Y =X

γ

.

We get therefore

‖Λrg‖2 ≤ µ−r/2Mr

(
|∇ψ0|Hr+1 + µr/2‖Λr(∇Y,zφ

(0)
1 |

Y =X
γ

)‖H1

)

≤ µ−r/2Mr

(
|∇ψ0|Hr+1 + µr/2|∇Y ψ1|Hr+1,r0 + |∇Y ψ1|H1,r0+r

)
.

�

Using (3.22) and the lemma, we get directly

µr/2‖Λr∇µχ
(1)
1 ‖L2 ≤ Mr

(
|∇ψ0|Hr+1 + µr/2|∇X,Y ψ1|Hr+1,r0 + |∇X,Y ψ1|H1,r0+r

)

+Mr

r∑

k=1

µ(r−k)/2‖Λr−k∇µχ
(1)
1 ‖L2 ,

and the estimate on ‖Λr∇µχ
(1)
1 ‖ follows from a straightforward induction. We now turn to prove the estimate

on ‖Λr−1∂z∇µχ
(1)
1 ‖. As for the control of Λr−1∂z∇µφ0 in Proposition 3.2, it is enough to get an upper bound
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on ‖Λr−1∂2zχ
(1)
1 ‖. The idea is to proceed as in Proposition 3.2, using the equation to get ∂2zχ

(1)
1 in terms of

quantities under control,

∂2zχ
(1)
1 =

h

1 + µ|∇σ|2
[
µ
(
−∂z|∇σ|

2

h
∂zχ

(1)
1 + ∂z(∇σ · ∇χ(1)

1 ) +∇ · (∇σ∂zχ(1)
1 )−∇ · (h∇χ(1)

1 )
)
+RHS(3.20)

]
;

the presence of the fast scale X/
√
µ makes things a little more complicated than in the proof of Proposition

3.2, and we need product estimates and a refinement of Lemma 3.3 for multiscale functions.

Lemma 3.8. Let r ∈ N, and denote (r − 1)+ = max{r − 1, 0}. Let also G = G(X,Y, z) ∈ L∞
z W

(r−1)+,∞
X,Y ,

and F ∈ L2(Ω0) be such that Λ(r−1)+F ∈ L2(Ω0). Then

‖Λr−1(G|
Y =X

γ

F )‖L2 . ‖G‖
L∞

z W
(r−1)+ ,∞

X,Y

(r−1)+∑

k=0

µ−k/2‖Λ(r−1)+−kF‖L2 .

If moreover G ≥ 0, then

‖Λr−1 F

1 +G|
Y =X

γ

‖L2 ≤ C(‖G‖
L∞

z W
(r−1)+ ,∞

X,Y

)

(r−1)+∑

k=0

µ−k/2‖Λ(r−1)+−kF‖L2.

Proof. The product estimates are a straightforward consequence of the chain rule; the second pair of estimates
is derived as in Lemma 3.3 using these product estimates. �

Using Lemma 3.8 and the above expression for ∂2zχ
(1)
1 , we get, with r̃ = (r − 1)+ + 1,

‖Λr−1∂2zχ
(1)
1 ‖L2 ≤ Mr

(r−1)+∑

k=0

µ−k/2(√µ‖Λr̃−k∇µχ
(1)
1 ‖2 + ‖Λ(r−1)+−kRHS(3.20)‖2

)
.(3.25)

We can now use Lemma 3.7 to get

‖Λ(r−1)+−kRHS(3.20)‖L2 ≤ √
µ‖Λr̃−kA‖L2 + ‖Λ(r−1)+−kg‖L2 + ‖Λ(r−1)+−k∂zA‖L2

≤ µ− r̃−k−1
2 Mr

(
|∇ψ0|Hr+1 + µ

r̃
2 |∇X,Y ψ1|Hr̃,r0 + |∇X,Y ψ1|H0,r̃+r0

)
+ ‖Λ(r−1)+−k∂zA‖L2 ,(3.26)

so that the only thing we still need to prove is a control on ‖Λ(r−1)+−k∂zA‖L2 .

Lemma 3.9. For all m ∈ N, 0 ≤ m ≤ r − 1, one has

‖Λm∂zA‖L2 ≤ µ−m
2 Mr

(
|∇ψ0|Hr+1 + µm/2|∇X,Y ψ1|Hm+1,r0 + |∇X,Y ψ1|H0,r0+m+1

)
.

Proof. From the explicit expression of A provided by (3.23), and proceeding as in the proof of Lemma 3.7,
we get

‖Λm∂zA‖L2 ≤Mr

(
µ−m

2 |∇ψ0|Hr+1 + ‖Λm(∇X,Y,zφ
(0)
1 |

Y =X
γ

)‖H1
zL

2 +

m∑

k=0

µ−k/2‖Λm−k∂z∇µφ
(0)
1 ‖H1

zL
2

)
,

and the result follows from Proposition 3.5. �

The desired control on ‖Λr−1∂2zχ
(1)
1 ‖L2 is then a direct consequence of (3.25), (3.26) and the lemma. �
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3.4. Asymptotic expansion of the Dirichlet-Neumann operator with estimates. We study here
the asymptotic behavior of the Dirichlet-Neumann operator,

(3.27) G[ζ, βbγ ]ψ = ez · P [σ]∇µφ |z=0
,

where φ solves (2.11). In the previous section, we have shown that when the surface parametrization ζ and
the trace of the potential at the surface ψ are of the form (3.1), one can decompose φ into

φ = φ0 + µχ,

where φ0 is deduced from (2.11) by neglecting all the contributions due to the roughness. We have further
decomposed φ0 and the residual χ (which contains all the roughness effects) as

φ0 = ψ0 + µφ
(1)
0 + µ2χ

(2)
0 and χ = φ

(0)
1 +

√
µχ

(1)
1 ,

with controls on the residuals χ
(2)
0 and χ

(1)
1 given in Propositions 3.2 and 3.6 respectively. We can therefore

rewrite φ as the sum of an effective part and a residual part,

φ = φeff + µ3/2φres

with

φeff = ψ0 + µ(φ
(1)
0 + φ

(0)
1 ) and φres = χ

(1)
1 +

√
µχ

(2)
0 .

Similarly, we decompose the Dirichlet-Neumann operator into an effective and residual part as follows:

Proposition 3.10. We separate the expression for the Dirichlet-Neumann operator as

G[ζ, βbγ ]ψ = (Gψ)eff + µ3/2(Gψ)res

where
1

µ
(Gψ)eff = −∇ · (h0∇ψ0)−∇Y ζ1 |

Y =X
γ

· ∇ψ0

+|DY | tanh(h0|DY |)ψ1(X,Y )|
Y =X

γ

−∇ψ0 · ∇Y (sech(h0|DY )b)|
Y =X

γ

.

The remainder (Gψ)res satisfies the estimate (r integer),

(3.28) |(Gψ)res|Hr ≤Mrµ
−r/2−1/8

(
|∇ψ0|Hr+3 + µr/2|∇X,Y ψ1|Hr+1,r0 + |∇X,Y ψ1|H1,r0+r

)

Remark 3.11. The nonlocal operators in the expression for (Gψ)eff arise from the simultaneous homoge-
nization process and shallow water limit. Homogenization analysis on a shallow water expansion would give
a different result. The reason for this difference is that certain terms neglected in standard shallow water
expansions are not negligible in the presence of rapidly varying bathymery; their effects are described in the
nonlocal terms of (Gψ)eff .

Proof. Recalling that P [σ] = P
(0)
0 +

√
µ(P

(1)
0 + P1), with P1 = P

(0)
1 +

√
µP

(1)
1 , one has

G[ζ, βbγ ]ψ = ez · P (0)
0 ∇µφeff |z=0

+
√
µez · (P (1)

0 + P1)∇µφeff |z=0

+µ3/2ez · P [σ]∇µφres |z=0

= ez · P (0)
0 ∇µφeff |z=0

+
√
µez · (P (1)

0 + P
(0)
1 )∇µψ0 |z=0

+ µez · P (1)
1 ∇µψ0 |z=0

+µ3/2ez · (P (1)
0 + P1)∇µ(φ

(1)
0 + φ

(0)
1 ) |z=0

+ µ3/2ez · P [σ]∇µφres |z=0
.

We now decompose

G[ζ, βbγ ]ψ = (Gψ)eff + µ3/2(Gψ)res ,
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with

(Gψ)eff = ez · P (0)
0 ∇µφeff |z=0

+
√
µez · (P (1)

0 + P
(0)
1 )∇µψ0 |z=0

,

(Gψ)res =
1√
µ
ez · P (1)

1 ∇µψ0 |z=0
+ ez · (P (1)

0 + P1)∇µ(φ
(1)
0 + φ

(0)
1 ) |z=0

(3.29)

+ez · P [σ]∇µφres |z=0
.

The two tasks of this proposition are to give an expression for (Gψ)eff and to prove an estimate for (Gψ)r .

- Explicit computation of (Gψ)eff. From the definition of φeff, we have

1

µ
(Gψ)eff =

1

µ
ez · (P0 +

√
µP

(0)
1 )∇µψ0 |z=0

+ ez · P (0)
0 ∇µφ

(1)
0 |z=0

+ ez · P (0)
0 ∇µφ

(0)
1 |z=0

= −∇ · (h0∇ψ0)−∇Y ζ1|Y=X
γ
· ∇ψ0 +

1

h0
∂zφ

(0)
1 |z=0 .(3.30)

Computing the last term in the RHS with the help of Proposition 3.5, we get

1

h0
∂zφ

(0)
1 |z=0 = |DY | tanh(h0|DY |)ψ1(X,Y )|

Y =X
γ

+∇ψ0 · ∇Y (sech(h0|DY |)b)|
Y =X

γ

,

so that Geff is indeed given by the expression stated in the proposition.

- Control of the residual (Gψ)res. From the explicit expression (3.29) of (Gψ)res and Proposition 3.2 and
3.5 and Lemma 3.4, we get

|(Gψ)res|Hr ≤ µ−r/2Mr

(
|∇ψ0|Hr+1 + µr/2|∇X,Y ψ1|Hr+1,r0 + |∇X,Y ψ1|H1,r0+r

)

+Mr

r∑

k=0

µ−k/2|Λr−k∇µφres |z=0
|L2 ,

which motivates the following lemma.

Lemma 3.12.

|∇µφres |z=0
|L2 ≤ µ−1/8M1

(
|∇ψ0|H2 + µ1/2|∇X,Y ψ1|H2,r0 + |∇X,Y ψ1|H1,1+r0

)

Proof. We write

|∇µφres |z=0
|L2 . µ1/8|∇µφres |z=0

|H1/2 + µ−1/8|∇µφres |z=0
|H−1/2

. µ1/8
(
µ1/4‖Λ∇µφres‖L2 + µ−1/4‖∂z∇µφres‖L2

)
+ µ−1/8

(
‖∇µφres‖L2 + ‖Λ−1∂z∇µφres‖L2

)
,

where, for the second inequality, we have used two different version of the trace lemma, namely, |F|z=0
|L2 .

µ1/4‖Λ1/2F‖L2 + µ−1/4‖Λ−1/2∂zF‖L2 and |F|z=0
|L2 . ‖Λ1/2F‖L2 + ‖Λ−1/2∂zF‖L2 . The estimate follows

therefore from the definition of φres and Proposition 3.6. �

Bound for |Λr−k∇µφres |z=0
|L2 are obtained in the same manner, giving rise to a power of µ in the form

µ−1/8−(r−k)/2. �

Later in the consistency analysis, we will need an estimate of |(Gψ)res|H1/2 . For this purpose, interpolating
between Hr−1 and Hr, we have (r ≥ 1):

|(Gψ)res|
Hr− 1

2
≤ µ1/4|(Gψ)res|Hr + µ−1/4|(Gψ)res|Hr−1

≤ Mrµ
−(r− 1

2 )/2−1/8
(
|∇ψ0|Hr+3 + µr/2|∇X,Y ψ1|Hr+1,r0 + |∇X,Y ψ1|H1,r0+r

)
(3.31)
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4. Homogenization with estimates of the equations for water waves

Up to this point the canonical variables of the water wave problem (ζ, ψ) have been treated as data for
an elliptic partial differential equation in a fixed domain. We now return to study the dynamics of the water
waves system (2.3) as a time dependent problem. We first derive the effective PDEs satisfied by (ζ0, ψ0)
and (ζ1, ψ1), after which we investigate the precision of our approximate solution (3.1) in satisfying the full
water wave equation.

4.1. Effective equations. Consider the decomposition (1.7)(1.8) to be an Ansatz for the full Euler equa-
tions (2.3), for which the slow and fast scale variables are identified through Y = X/

√
µ and τ = t/

√
µ.

Substituting these expressions into the full equations and using the rigorous expansion (3.30), for the first
component of equations of (2.3) we obtain an equation for the quantity (ζa, ψa) = (ζ0 +

√
µζ1, ψ0 + µψ1);

∂tζ0 + ∂τ ζ1 + h0∆ψ0 +∇ζ0 · ∇ψ0 +∇Y ζ1 · ∇ψ0

−|DY | tanh(h0|DY |)ψ1(X,Y )|
Y =X

γ

−∇ψ0 · ∇Y (sech(h0|DY |))b|
Y =X

γ

= −√
µ∂tζ1 +

√
µ(Gψa)res .(4.1)

At this point the fast and slow time scales are identified, Y = X/
√
µ and τ = t/

√
µ, and we have made no

approximation. Similarly, for the second equation of (2.3) we obtain

∂tψ0 +
√
µ∂τψ1 + µ∂tψ1 + ζ0 +

√
µζ1 +

1

2
|∇ψ0 +

√
µ(∇Y +

√
µ ∇X)ψ1|2 =

µ

(
1
µ

(
(Gψa)eff + µ3/2(Gψa)res

)
+ (∇ζ0 +∇Y ζ1 +

√
µ∇Xζ1) · (∇ψ0 +

√
µ∇Y ψ1 + µ∇Xψ1)

)2

2
(
1 + µ|∇ζ0 + (∇Y +

√
µ ∇X)ζ1|2

) .(4.2)

Isolating the error terms in (4.2) onto the RHS, one obtains

∂tψ0 +
√
µ∂τψ1 + ζ0 +

√
µζ1 +

1

2
|∇ψ0|2 +

√
µ∇ψ0 · ∇Y ψ1

= −µ∂tψ1 − µ∇ψ0 · ∇Xψ1 −
1

2
µ|∇Y ψ1 +

√
µ ∇Xψ1|2(4.3)

+µ

(
1
µ

(
(Gψa)eff + µ3/2(Gψa)res

)
+ (∇ζ0 +∇Y ζ1 +

√
µ∇Xζ1) · (∇ψ0 +

√
µ∇Y ψ1 + µ∇Xψ1)

)2

2
(
1 + µ|∇ζ0 + (∇Y +

√
µ ∇X)ζ1|2

) .

The bottom profile b is function of the fast variables Y = X/
√
µ.

Now adopt the point of view that we seek multi-scale approximations to the system of equations (4.1)(4.3).
To impose this scaling regime, make the assumption that the variables t,X and τ, Y are independent, so
that (ζ0 +

√
µζ1, ψ0 + µψ1) are multiscale functions of the variables (t,X, τ, Y ). In these equations, ζ0 and

ψ0 are functions of X, t only, while ζ1 and ψ1 are multi-scale functions of both time and space. The original
variables will be re-imposed when we return to the identification Y = X/

√
µ and τ = t/

√
µ. In order to

justify this otherwise formal separation of slow and fast scales, we will use results on scale separation that
appear in [3][10].

Equations (4.1)(4.2) are two equations for the four unknown quantities (ζ0, ζ1, ψ0, ψ1). In order to obtain
well defined evolution equations for them, one must identify dynamics that take place on the slow and fast
space and time scales. This is performed using the following scale separation lemmas, in which the underlying
periodic nature of the cell problem plays a rôle.

Proposition 4.1. Let g be a continuous function on Rd which is periodic over Td, and denote ḡ =
1

(2π)d

∫
Td g(Y )dY its average value on Td. For any function f(X) in the Schwarz space S(Rd), we have

(4.4)

∫
g(X/γ)f(X)dX = ḡ

∫
f(X)dX +O(γN ) ,
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for any N .

Proposition 4.2. Let g(X,Y ) be a continuous function on Rd×Rd which is periodic in Y ∈ Td, and denote
ḡ(X) = 1

(2π)d

∫
Td g(X,Y )dY its average value over Td. For any function f(X) in the Schwarz space S(Rd),

we have

(4.5)

∫
g(X,X/γ)f(X)dX =

∫
ḡ(X)f(X)dX +O(γN ) ,

for any N .

The formal derivation of the effective equations satisfied by (ζ0, ψ0) is to write (4.1)(4.2) in the sense
of distributions, using test functions f that depend only on the large scale variable X , averaging over the
variables Y , and neglecting all the terms that are understood to be of lower order (a rigorous justification
of this process will be the object of the next section). Denote the mean value over the Y variables by
(ζ̄a, ψ̄a) = ( 1

|Γ|
∫
Γ
ζa(X,Y )dY, 1

|Γ|
∫
Γ
ψa(X,Y )dY ). Then

(4.6) ∂tζa = ∂tζ0 + ∂τζ1 +
√
µ∂tζ1 ,

and similarly

(4.7) ∂tψa = ∂tψ0 +
√
µ∂τψ1 + µ∂tψ1 .

We assume that ζ̄1 = 0 and ψ̄1 = 0, an assumption that will be shown to be consistent with equations (4.11)
and (4.12) derived below. We obtain therefore ζa ≃ ζ0 and ψa ≃ ψ0 at lowest order. For equation (4.1),
using that the Y -derivative of a periodic function of Y has mean value zero, we find that

(4.8) ∂tζ0 = −h0∆ψ0 −∇ζ0 · ∇ψ0 .

¿From equation (4.2), we find

(4.9) ∂tψ0 + (ζ0 +
√
µζ̄1) +

1

2
|∇ψ0|2 = 0 .

The lowest order approximation to the system (4.8)(4.9) takes the form of the classical shallow water system
(with V0 = ∇ψ0 and h0 = 1 + ζ0), namely

(4.10)

{
∂tζ0 = −h0∇ · V0 −∇ζ0 · V0
∂tV0 +∇ζ0 + V0 · ∇V0 = 0

.

Returning to (4.1)(4.2) and using the equations (4.10) satisfied by (ζ0, ψ0), we obtain at the next order of
approximation the equation

(4.11) ∂τ ζ1 + V0 · ∇Y ζ1 = |DY | tanh(h0|DY |)ψ1 + V0 · ∇Y sech(h0|DY |)b .

If ζ̄1 = 0 at time τ = 0, it remains so for all times. For the evolution equation for ψ1, we find

(4.12) ∂τψ1 + V0 · ∇Y ψ1 + ζ1 = 0 .

Again, if ψ̄1 = 0 at time τ = 0, it remains so for all times.
The result is that (4.10) is the shallow water system (1.9) for (ζ0, V0), with V0 = ∇ψ0, and the dispersive

corrections are given by (4.11)(4.12). This derivation, and a rigorous justification of it, are the principal
subject of this paper.
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4.2. Regularity of the approximate solution. The approximate solution is constructed from the solution
of a system of simpler model equations (4.10) and (4.11)(4.12) where the first is a version of the classical
shallow water equations. The second is the system for linear water waves in the rapid variables (Y, τ), with
a forcing term due to the presence of bottom variations, whose coefficients depend upon (ζ0(t,X), ψ0(t,X)),
for which the slow variables are considered as being fixed.

Theorem 4.3. For r > d/2+ 1, given initial data (ζ0(·, 0), V0(·, 0)) in Hr(Rd)×Hr(Rd)d such that (3.4) is
satisfied. Then there exists T > 0 and a smooth solution (ζ0, V0) in C([−T, T ];Hr(Rd)×Hr(Rd)d) to (4.10)
with this initial data.

Proof. The shallow water system can be written as a symmetric hyperbolic system for the vector func-
tion (ζ0, V0 = ∇ψ0). For Sobolev index r > d/2 + 1, these equations are locally well posed in time for
(ζ0(·, 0), V0(·, 0)) ∈ Hr ×Hr satisfying the condition (3.4) (see for example [16]). �

The components of the corrector (ζ1, ψ1) = (ζ1(τ, Y ; t,X), ψ1(τ, Y ; t,X)) are multiple scale functions,
satisfying a system of the form

(4.13) ∂τ

(
ζ1
ψ1

)
+ V0(t,X) · ∇Y

(
ζ1
ψ1

)
+

(
0 −|DY | tanh(h0(t,X)|DY |)
I 0

)(
ζ1
ψ1

)
=

(
f
g

)
,

for which the large scale variables (t,X) enter as parameters. In the case of equations (4.11)(4.12) the
inhomogeneous forcing functions are given by

(4.14) f(Y ; t,X) = V0(t,X) · ∇Y sech(h0(t,X)|DY |)b(Y ), g = 0,

(in particular, it is autonomous, namely independent of τ , and its zero Fourier mode f vanishes).

Initial data for this system is given in the form (ζ1(0, · ; t,X), ψ1(0, · ; t,X)) in Hr
Y (T

d) × H
r+1/2
Y (Td) with

zero mean on Td. The dependence of these solutions on the variables (t,X) will be quantified in a paragraph
below.

For the sake of clarity, we omit the dependence on the variables (t,X) in the statement below, since they
only act as parameters in (4.13). It is also convenient to introduce the energy or order r (r ∈ R) defined for
all couple of function (u, v) on Td with zero mean by

(4.15) ‖(u, v)‖2Er =
∑

k 6=0

(1 + k2)r(|ûk|2 + |k| tanh(h0(t,X)|k|)|v̂k|2) ,

where ûk and v̂k stand for the Fourier components of u and v.

Theorem 4.4. Let r ∈ R. For all (f, g) ∈ C(R : Hr
Y×H

r+1/2
Y (Td)) with zero mean and all (ζ1(0, ·), ψ1(0, ·)) ∈

Hr
Y (T

d)×H
r+1/2
Y (Td) with zero mean, there exists a unique solution (ζ1, ψ1) of (4.13) in C(R : Hr

Y (T
d)×

H
r+1/2
Y (Td)) with initial values given by (ζ1(0, ·), ψ1(0, ·)). Moreover, this solution has zero mean and one

has

∀τ ∈ R, ‖(ζ1(τ), ψ1(τ))‖2Er ≤ ‖(ζ1(0), ψ1(0))‖2Er + τ sup
0≤τ ′≤τ

‖(f(τ ′), g(τ ′)‖2Er .

This theorem implies that (ζ1, ψ1) is bounded in Hr × Hr+1/2 over any time interval τ ∈ [−T1, T1].
However, this bound may grow as T1 → ∞ due to the possible presence of secular terms. Furthermore,
when considering the dependence of this solution on the parameters (t,X), secular growth of the quantities
∂X(ζ1, ψ1), ∂t(ζ1, ψ1) is quite possible, and would affect the validity of the solution decomposition (1.7)(1.8)
over long time intervals τ ∈ [−T/γ, T/γ]. In Theorem 4.5, we show that such effects do not occur, at least
in the absence of Bragg resonances, and for initial data (ζ1(0, ·), ψ1(0, ·)) chosen to be stationary in the local
environment defined by (ζ0, ψ0).
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Proof. For the sake of simplicity, we take g = 0 in the proof below; the adaptation to the general case is
straightforward. Considered independently of the large scale variables (t,X), the system of equations (4.13)
over Y ∈ Td has constant coefficients, and the solution operator can be conveniently expressed in Fourier
transform. The evolution of the individual Fourier modes is described by the system

(4.16) ∂τ

(
ζ̂1k
ψ̂1k

)
+

(
ik · V0 0

0 ik · V0

)(
ζ̂1k
ψ̂1k

)
+

(
0 −ω2

k

I 0

)(
ζ̂1k
ψ̂1k

)
=

(
f̂k
0

)
,

where the local velocity is V0(t,X), and the frequency is given by ωk =
(
|k| tanh(h0(t,X)|k|)

)1/2
, both of

which depend parametrically upon the long scale spatial variable (t,X).

Defining new coordinates uk := ω
−1/2
k ζ̂1,k and vk := ω

+1/2
k ψ̂1,k, the propagator for (4.13)(4.16) is given by

exp

[
τ

(
−ik · V0 0

0 −ik · V0

)
+ τ

(
0 ωk

−ωk 0

)]
= e−ik·V0τ

(
cos(ωkτ) sin(ωkτ)
− sin(ωkτ) cos(ωkτ)

)
.

Using complex notation for this system, define

Zk := uk + ivk , Wk := uk − ivk ,

with which we express the general solution to (4.16);

Zk(τ) = e−iτ [ωk+k·V0]Zk(0) +

∫ τ

0

e−i(τ−s)[ωk+k·V0]ω
−1/2
k f̂k(s) ds(4.17)

Wk(τ) = e+iτ [ωk−k·V0]Wk(0) +

∫ τ

0

e+i(τ−s)[ωk−k·V0]ω
−1/2
k f̂k(s) ds .

Standard use of the Plancherel identity implies that

‖Z(τ, ·)‖2
H

r+1/4
y

≤ ‖Z(0, ·)‖2
H

r+1/4
y

+ C0|τ |‖f(s, ·)‖2L∞
s ([−τ,τ ]:Hr

y)

‖W (τ, ·)‖2
H

r+1/4
y

≤ ‖W (0, ·)‖2
H

r+1/4
y

+ C0|τ |‖f(s, ·)‖2L∞
s ([−τ,τ ]:Hr

y)
,

where we have used that ωk ≃ 〈k〉1/2. Recovering our original variables

1

2
(Zk +Wk) = uk = ω

−1/2
k ζ̂1k ,

1

2i
(Zk −Wk) = vk = ω

+1/2
k ψ̂1k ,

the result is as stated in Theorem 4.4, with in addition a quantitative estimate on the growth in the fast
time variable τ . �

4.3. The Bragg resonance condition. Solutions to the linear equation (4.13) exist for all τ ∈ R, however
(ζ1(·, τ), ψ1(·, τ)) may exhibit secular growth in time; more precisely, it may grow linearly with respect to
τ . This is a concern for our model system because τ = t/γ is the rapid timescale, therefore over physically
relevant time intervals of O(1) in the slow time variable t, solutions of (4.13) may grow from O(1) quantities
to O(1/γ) quantities, thus leaving the range of validity of our assumption regarding the asymptotic scaling

regime. This secular growth for Fourier modes (ζ̂1,k, ψ̂1,k)(τ) is due to the presence of Bragg resonances of
the kth Fourier mode of the corrector solution with the periodic variations of the bottom topography defined

by b(Y ) for which b̂k 6= 0. Note that these resonances differ from the classical Bragg resonances which are
obtained with surface waves and bottoms of comparable wavelength [19]; to our knowledge they had not

been exhibited before. Such a resonance occurs at time t and in X if for some k 6= 0 such that b̂k 6= 0,

(4.18) ωk(X, t)
2 =

(
k · V0(X, t)

)2
,

where V0 = ∇ψ0, ωk =
(
|k| tanh(h0|k|)

)2
.

In absence of such resonances, it is quite easy to check that there is no secular growth of the first corrector:
(ζ1(τ, ·; t,X), ψ1(τ, ·; t,X)) remains bounded with respect to τ in the energy norm (4.15). This easily follows
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from the fact that (ζ1, ψ1) solves (4.13) with a forcing function f given by (4.14) which is independent of τ .
The time integral in (4.17), which is at the origin of the secular growth, can then be explicitly computed,
and it is obviously bounded in absence of Bragg resonance.
Controlling the error corresponding to our approximation requires however some bound on the parametric
derivatives of ζ1 and ψ1 (i.e. their derivatives with respect to t and X). These parametric derivatives also
solve a problem of the form (4.13), albeit with a different forcing term (f, g). Theorem 4.4 can therefore
be used to give some control on the energy norm of these parametric derivatives; however the forcing term
now depends on τ and the linear secular growth in τ that appears in the estimate of Theorem 4.4 cannot be
removed as above.
As previously explained, this secular growth is destructive for our approximation. While it cannot be avoided
in general for the parametric derivatives of (ζ1, ψ1), we still have some freedom to eliminate it. Indeed, the
choice for the initial condition associated to (4.13) is so far completely arbitrary. It turns out that, in
absence of Bragg resonance, there is one choice of initial data that removes the secular growth. This removal
is quite spectacular since the corresponding solutions are independent of τ (and therefore bounded together
with all their parametric derivatives). These constant solutions are found by removing the τ -derivative in
(4.13)-(4.14) which leads to solving the following problem,

(
V0 · ∇Y −|DY | tanh(h0|DY |)

I V0 · ∇Y

)(
ζ1
ψ1

)
=

(
V0 · ∇Y sech(h0|DY |)b

0

)
.

In absence of Bragg resonance, this yields, for all k ∈ Z,

(4.19) ζ̂1,k = − (V0 · k)2sech(h0|k|)
−(V0 · k)2 + |k| tanh(h0|k|)

b̂k, ψ̂1,k = −i (V0 · k)sech(h0|k|)
−(V0 · k)2 + |k| tanh(h0|k|)

b̂k.

A quantitative measure of nonresonance with respect to a sequence {0 < Bk < +∞ : k ∈ Zd} is necessary

for the analysis that follows; the kth Fourier modes (ζ̂1,k, ψ̂1,k) are nonresonant at (X, t) with respect to the

homogenized solution (ζ0(·, t), ψ0(·, t)) and the bottom topography b(Y ) if b̂k 6= 0 and one has

(4.20) |ωk(X, t)2 −
(
k · V0(X, t)

)2| > 1

Bk
.

The sequence {Bk} is effectively a bound on the small divisor condition governing Bragg resonances, locally

in (X, t). Given a sequence {Bk : k ∈ Zd} such that Bk < eh̄|k|/2/δ, if (4.20) holds for all k 6= 0, a local
stationary solution exists, and furthermore the secular growth of local solutions can be controlled locally in

(X, t). When (4.20) holds uniformly in (X, t) for all b̂k 6= 0, it is a nonresonant situation (relative to the
small divisor conditions {Bk}) and solutions can be controlled globally.

Theorem 4.5. Let r ∈ N, r′ > d/2 + r + 1, T > 0 and (ζ0, V0) ∈ Cr([−T, T ];Hr′−r(Rd)1+d) be a solution
of the shallow water equations (4.10), such that

∃α0 > 0, ∀(X, t) ∈ R
d × [−T, T ], 1 + ζ0(X, t) ≥ α0.

Assume also that the nonresonance condition (4.20) holds with Bk < eh̄|k|/δ (for some δ > 0 and 0 < h̄ < α0).
Then there exists a unique locally stationary solution of (4.13), which is given by (4.19). In particular, one
has, for all 0 ≤ s ≤ r′ − r and all s′ > 0,

|ζ1|Cr([−T,T ];Hs
X×Hs′

Y ) + |ψ1(·)|Cr([−T,T ];Hs
X×Hs′

Y )(4.21)

≤ Crss′(|ζ0|C([−T,T ];Cr
X), |ψ0|C([−T,T ];Cr

X))(|ζ0|Cr([−T,T ];Hs
X) + |ψ0|Cr([−T,T ];Hs

X))|b|L2
Y
.

Proof. Let Fk := R× Rd 7→ R defined as

Fk(V, ζ) = − (V · k)2sech((1 + ζ)|k|)
−(V · k)2 + |k| tanh((1 + ζ)|k|) ,
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so that ζ̂a,k = F (V0, ζ0)b̂k. The mapping Fk is smooth, vanishes at the origin, and is rapidly decaying
together with all its derivatives as a consequence of the nonresonance assumption (4.20). It follows therefore
from Moser’s estimate that

|k|s′ |ζ̂1,k|C([−T,T ];Hs
X ) ≤ C(s, s′, |ζ0|C([−T,T ];L∞

X ), |V0|C([−T,T ];L∞
X ))
(
|ζ0|C([−T,T ];Hs

X) + |V0|C([−T,T ];Hs
X )

)
|b̂k|,

so that the bound given in the lemma stems from Plancherel’s inequality in the case r = 0. Bounds for r > 0
and on ψ1 are obtained in the same way. �

The question as to how often Bragg resonances occur merits a discussion. For k 6= 0 fixed, (4.20) is an
open condition on the state parameters (ζ0, V0) ∈ C0. In two dimensions (that is, when d = 1), it is related
to the local Froude number of the flow, defined by

Fr2(X, t) :=
V 2
0 (X, t)

h0(X, t)
;

indeed, the nonresonance condition (4.20) can be stated equivalently as

Fr2(X, t) =
tanh(h0(X, t)|k|)

h0(X, t)|k|
and in particular for supercritical flows Fr2(X, t) ≥ 1, Bragg resonances are absent. However, the Froude
number is an indication of criticality which is local in X , and because V0 ∈ Hr, solutions can be supercritical
only on compact sets. For subcritical flows, and for (X, t) fixed, at most one Fourier mode can be in
resonance2. If b(Y ) is a trigonometric polynomial, then there are a finite number of resonances. Any 2-
resonances are separated by a region of non-resonance, and for V0 → 0 as X → ±∞ further resonances are
avoided. In particular, if kmax denotes the highest nonzero Fourier mode of b and kmin the lowest one, then
Bragg resonances are possible only if

Fr2min ≤ Fr2 ≤ Fr2max, with Fr2min =
tanh(h0(X, t)|kmin|)

h0(X, t)|kmin|
, F r2max =

tanh(h0(X, t)|kmax|)
h0(X, t)|kmax|

.

For general b(Y ) with infinitely many nonzero Fourier coefficients, any zero of velocity V0 is a point
of accumulation of resonances and in particular, small resonant patches will appear because V0 → 0 as

X → ±∞. Their asymptotic strength is related to the large k- behavior of |b̂k|.
The character of resonance for d ≥ 2 is different. For b(Y ) given by a trigonometric polynomial, resonances

are isolated for the same reason as for d = 1. In the case of a general b(Y ), there is the potential for a dense
set of resonances in the state space (ζ0, V0) and not just at V0 = 0. This can be seen through the parametric
dependence on (ζ0, V0) of the resonant condition (4.18) in wavenumber space. Given (ζ0, V0), this condition

defines a hypersurface Ek in k ∈ Zd, which, if it passes through a lattice point k ∈ Zd with b̂k 6= 0, gives
rises to a resonance. Even if it does not intersect a lattice point, under arbitrarily small perturbations at
(ζ0, V0), it will. Hence the set of resonant states (ζ0, V0) is dense.

Nonetheless, in the measure theoretic sense, Bragg resonances are relatively rare. That is, there is a set
of states (ζ0, V0) for which (4.20) is satisfied for all k 6= 0, such that its complement has measure less than
Cδ. Indeed, fix k 6= 0. The gradient of the resonance condition with respect to (ζ0, V0) on the curve Ek is
non-vanishing, and is of amplitude of order O(|k|). Thus state variables (ζ0, V0) of distance (Bk|k|)−1 from
Ek will satisfy the nonresonance condition (4.20). The union over k 6= 0 of (Bk|k|)−1-tubular neighborhoods
of the sets Ek consists of the ‘bad’ states, for which there exists at least one near resonance as in (4.20).
This union has relative measure bounded above by

∑

k 6=0

1

|k|Bk
< Cδ .

2This follows from the fact that tanh(x)/x is strictly decaying on R+.
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Therefore the resonant set is dense, but has relatively small measure in the space of states (ζ0, V0). Moreover,
we see that the set for which (4.20) is satisfied has the character of a Cantor set.

4.4. Consistency analysis. The purpose of this section is to evaluate the error that is made when approx-
imating the solution (ζ, ψ) of the full water wave problem by the functions (3.1), where the components
(ζ0, ψ0) and (ζ1, ψ1) satisfy the effective system of equations (4.9) and (4.11) respectively.

Write the full water wave problem (2.3) as

(4.22)
E1(ζ, ψ) = 0 ,
E2(ζ, ψ) = 0 .

where E1 and E2 identify with the LHS of equations (2.3). We denote our construction of an approximate
solution by Ea := (E1(ζa, ψa), E2(ζa, ψa)), where (ζa, ψa) is defined in (1.7)(1.8). For this approximate
solution, the error is given by the expression

E1(ζa, ψa) = −√
µ(Gψa)res −

√
µ∂tζ1(4.23)

E2(ζa, ψa) = µ∇ψ0 · ∇Xψ1 +
µ

2
|∇Y ψ1 +

√
µ ∇Xψ1|2 − µ∂tψ1(4.24)

−µ

(
1
µ

(
(Gψa)eff + µ3/2(Gψa)res

)
+ (∇ζ0 +∇Y ζ1 +

√
µ∇Xζ1) · (∇ψ0 +

√
µ∇Y ψ1 + µ∇Xψ1)

)2

2
(
1 + µ|∇ζ0 + (∇Y +

√
µ ∇X)ζ1|2

) .

The statement that the expression (ζa, ψa) is a good approximation for the equations (2.3) is that the
error is small, in an appropriate norm, for small µ. The Theorem 4.6 is a result of this form, implying the
consistency of the approximate solution. We recall that the leading term (ζ0, ψ0) of the approximation solves
the nonlinear shallow water equations (1.9) while, in absence of Bragg resonances, the correctors (ζ1, ψ1) are
explicitly given by (4.19).

Theorem 4.6. Under the assumptions of Theorem 4.5, the approximate solution (ζa, ψa) given by expression
(1.7)(1.8) satisfies the following consistency estimates

(4.25)
|E1(ζa, ψa)|L2 ≤ Caµ

3/8 ,

|E2(ζa, ψa)|H1/2 ≤ Caµ
3/4 ,

for the error term for the water wave system (2.3). The constant Ca is of the form

Ca = C(
1

α0
, |ζ0|C4 , |V0|H4 , |b|L2).

Remark 4.7. The quantities (ζ0, ψ0, ζ1, ψ1) are solutions of the model equations and following Theorems
4.3, 4.4 and 4.5, are bounded along with their derivatives in terms of the initial data. The norm in which the
error is measured is relatively weak, the reason being that we are dealing with a problem with fast oscillating
functions. It is however a natural norm for this problem since it coincides with the norm of the energy
functional associated to the water waves equations.

Proof. The first component E1 satisfies

|E1(ζa, ψa)|L2 ≤ √
µ|(Gψ)res|L2

√
µ|∂tζ1|L2 .

By Proposition 3.10, the norm |(Gψ)res|L2 is bounded by µ−1/8. This estimate involves norms of ζ1, ψ1 and
their derivatives that can becontroled using Theorem 4.5 in terms of norms of the leading term ζ0 and ψ0.
Thus the estimate of the first component of Ea is shown to be as stated in the theorem.

The second component of the error E2 is given in (4.24). It is made up of a complicated nonlinear
expression. This nonlinear quantity consists of several types of terms, distinguished by whether they depend
upon surface variables alone, or whether they depend upon the Dirichlet – Neumann operator and thus on
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the solution of an elliptic boundary value problem with oscillatory coefficients. Further terms of the RHS
depend only upon surface variables, as products of functions of X and/or multiscale functions. We will use
the interpolation estimates in the form (for the sake of clarity, we omit the dependence on time here)

(4.26) |f |H1/2 ≤ µ−1/4|f |L2 + µ1/4|f |H1

Products such as |∇ψ0(X) · ∇Y ψ1(X,X/
√
µ)|H1/2 are controlled by

(4.27) µ|∇ψ0 · ∇Y ψ1|H1/2 ≤ µ3/4|∇ψ0|C1 |∇Y ψ1|H1,r0+1

Products of multiscale functions are bounded by

(4.28) µ
∣∣|∇Y ψ1|2

∣∣
H1/2 ≤ µ3/4|∇Y ψ1|C0

XY
|∇Y ψ1|H0,r0+1

Other terms in the first line of the RHS of (4.24) are bounded similarly. We now turn to the second line of
the RHS of (4.24). It has the form µAB that we need to bound in H1/2 norm. The denominator B satisfies

B = 2(1 + |∇ζ0 + µ(∇Y +
√
µ∇X)ζ1|2) ≥ 2 and we can therefore write

(4.29) µ|A
B
|H1/2 ≤ µ(µ−1/4|A

B
|L2 + µ1/4|A

B
|H1 ) ≤ µ3/4|A|L2 + µ5/4|∇A|L2 + µ5/4|A∇B|L2 .

The numerator A contains many terms. To bound its L2 norm, we have for example terms of the form

(4.30) |( 1
µ
Gψ)eff )

2|L2 ≤ C

where C depends on |∇ζ0|C2 , |∇ψ0|C2 , |∇X,Y ζ1|H3,r0+1 , |∇X,Y ψ1|H3,r0+1 . Here again, Theorem 4.5 is used
to control the last two quantities in terms of norms of ζ0 and ψ0. Estimates of terms of the numerator A
which depend upon the quantity (Gψ)res from the Dirichlet – Neumann operator use the results of Section 3
on the boundary value problem with periodic oscillatory coefficients. For example,

(4.31) |(µ1/2(Gψ)res)
2|L2 ≤ Cµ3/4

Examination of all terms leads to |A|L2 ≤ C. Noting that the computation of ∇B gives one factor µ and
that each derivation costs a factor µ1/2, we find

(4.32) |∇B|L4 ≤ Cµ1/4

Considering all terms similarly, we arrive to the conclusion of Theorem 4.6. �
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