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This paper deals with density and regression estimation problems for functional data. Using wavelet bases for Hilbert spaces of functions, we develop a new adaptive procedure based on wavelet thresholding. We provide theoretical results on its asymptotic performances.

Introduction

Due to technological progress, in particular the enlarged capacity of computer memory and the increasing efficiency of data collection devices, there is a growing number of applied sciences (biometrics, chemometrics, meteorology, medical sciences. . . ) where collected data are curves which require appropriate statistical tools. Because of this, functional data analysis has known a quite important development in the last fifteen years (see e.g. [START_REF] Ramsay | Functional Data Analysis[END_REF], [START_REF] Ramsay | Applied Functional Data Analysis: Methods and Case Studies[END_REF], [START_REF] Ferraty | Nonparametric functional data analysis[END_REF], Dabo-Niang and Ferraty (2008), [START_REF] Ferraty | Special Issue : Statistical Methods and Problems in Infinite-dimensional Spaces. 1st International Workshop on Functional and Operatorial Statistics (IWFOS'2008)[END_REF], [START_REF] Ferraty | The oxford handbook of functional data analysis[END_REF] and [START_REF] Ferraty | Recent Advances in Functional Data Analysis and Related Topics[END_REF] for monographs and collective books on this specific subject). However, whereas there has been substantial work 1 on the nonparametric estimation of the probability density function for univariate and multivariate random variables since the papers of [START_REF] Parzen | On estimation of a probability density function and mode[END_REF] and [START_REF] Rosenblatt | Remarks on some nonparametric estimates of a density function[END_REF], much less attention has been paid to the infinitedimensional case. The extension of the results from the multivariate framework to the infinite dimensional one is not direct since there is no equivalent of the Lebesgue measure on an infinite dimensional Hilbert space. In fact, the only locally finite and translation invariant measure on an infinite dimensional Hilbert space is the null measure and any locally finite measure µ is even very irregular: denoting by B(x, r) the ball of center x and radius r, we have that, for any point x, any arbitrary large M and any arbitrary small r such that µ(B(x, r)) < ∞, there exist (x 1 , x 2 ) ∈ B(x, r) 2 such that µ(B(x 1 , r/4)) < M × µ(B(x 2 , r/4)). For a coverage of the theme of measures on infinite dimension spaces, we refer to [START_REF] Xia | Measure and integration theory on infinite-dimensional spaces[END_REF], [START_REF] Yamasaki | Measures on infinite-dimensional spaces[END_REF], [START_REF] Dalecky | Measures and differential equations in infinite-dimensional space[END_REF] and [START_REF] Uglanov | Integration on infinite-dimensional surfaces and its applications[END_REF].

The first consistency result for a kernel estimator of the density function for infinite dimensional random variables has been obtained in [START_REF] Dabo-Niang | Estimation de la densité dans un espace de dimension infinie: application aux diffusions[END_REF] where a rate is given in the special case when the kernel is an indicator function and the density is defined with respect to the Wiener measure.

Later, different estimators of the density, based on orthogonal series (see [START_REF] Dabo-Niang | Density estimation by orthogonal series in an infinite dimensional space: application to processes of diffusion type I[END_REF]), delta sequences (see Prakasa Rao (2010b)) or wavelets (see Prakasa Rao (2010a)), have been proposed but none of them is adaptive.

Note that the estimation of the density probability function is nonetheless itself of intrinsic interest but it also has a key role in mode estimation and curve clustering (see [START_REF] Dabo-Niang | Mode estimation for functional random variable and its application for curves classification[END_REF]).

Contrary to the chronology of studies in the multivariate case, in the functional framework, estimators of the regression function have been proposed before those of the density. Ferraty and Vieu introduced the first fully nonparametric estimator of the regression function, at first under the hypothesis that the underlying measure has a fractal dimension in [START_REF] Ferraty | Dimension fractale et estimation de la rgression dans des espaces vectoriels semi-norms[END_REF] and then using only probabilities of small balls in [START_REF] Ferraty | Nonparametric models for functional data, with application in regression, time-series prediction and curve discrimination[END_REF]. However, since these pioneering works, no adaptive estimator has been proposed.

Considering the density estimation problem from functional data, Prakasa Rao (2010a) has recently developed a new procedure based on the multiresolution approach on a separable Hilbert space introduced by [START_REF] Goh | Wavelet bases for Hilbert spaces of functions[END_REF].

This procedure belongs to the family of the linear wavelet estimators. As proved in (Prakasa Rao, 2010a, Theorem 3.1), it enjoys powerful asymptotic properties. However, such a linear wavelet estimator has two drawbacks: it is not adaptive (i.e. its performances are deeply associated to the smoothness of the unknown function) and it is not efficient to estimate functions with complex singularities (the sparsity nature of the wavelet decomposition of the unknown function is not captured). For these reasons, (Prakasa Rao, 2010a, Page 2 lines 14-16) states "it would be interesting to investigate the advantage of these wavelet estimators for functional data by using wavelet thresholding suggested by [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF]". This perspective motivates our study.

Adopting the multiresolution approach on a separable Hilbert space H of [START_REF] Goh | Wavelet bases for Hilbert spaces of functions[END_REF], we construct a new adaptive wavelet procedure using the hard thresholding rule of [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF]. Since H remains an abstract space, we propose to evaluate its asymptotic properties over the intersection of two different kinds of Besov spaces (defined in Section 2). The considered spaces are related to the maxiset approach introduced by [START_REF] Cohen | Maximal spaces with given rate of convergence for thresholding algorithms[END_REF].

They are of interest as they contain a wide variety of unknown functions, complex or not. Finally, we adapt the construction of our wavelet hard thresholding estimator to the problem of regression modeling with functional data. Its asymptotic properties are explored.

The paper is structured as follows. In Section 2, we briefly describe the wavelet bases on H and we define some decomposition spaces. The density estimation problem for functional data via wavelet thresholding is considered in Section 3. The regression one is developed in Section 4. The proofs are gathered in Section 5.

Wavelet Bases on H and Decomposition Spaces

Wavelet Bases on H

Let us briefly describe the construction of wavelet bases on H introduced by [START_REF] Goh | Wavelet bases for Hilbert spaces of functions[END_REF]. Let H be a separable Hilbert space of real-or complex-valued functions defined on a complete separable metric space or a normed vector space S. Since H is separable, it has an orthonormal basis E = {e j ; j ∈ Λ} for some countable index set Λ. As usual, we denote by ., . and ||.|| the inner product and corresponding norm that H is equipped with.

Let {I k ; k ≥ 0} be an increasing sequence of finite subsets of Λ such that k≥0 I k = Λ and, for any k ≥ 0, J k = I k+1 /I k . For any k ≥ 0, we suppose that there exist ζ k,ℓ ∈ S, ℓ ∈ I k and η k,ℓ ∈ S, ℓ ∈ J k , such that the two matrices

A k = (e j (ζ k,ℓ )) (j,ℓ)∈I 2 k , B k = (e j (η k,ℓ )) (j,ℓ)∈J 2 k ,
satisfy one of the two following conditions:

(A1) A * k A k = diag(c k,ℓ ) ℓ∈I k and B * k B k = diag(s k,ℓ ) ℓ∈J k , where c k,ℓ , s k,ℓ ′ , for ℓ ∈ I k and ℓ ′ ∈ J k , are positive constants, (A2) A k A * k = diag(d k,j ) j∈I k and B k B * k = diag(t k,j ) j∈J k , where d k,j , t k,j ′ for j ∈ I k and j ′ ∈ J k , are positive constants.
For any x ∈ S, we set

           φ k (x; ζ k,ℓ ) = j∈I k 1 √ g j,k,ℓ e j (ζ k,ℓ )e j (x), ψ k (x; η k,ℓ ) = j∈J k 1 h j,k,ℓ e j (η k,ℓ )e j (x),
where

g j,k,ℓ =    c k,ℓ if (A1), d k,j if (A2), h j,k,ℓ =    s k,ℓ if (A1), t k,j if (A2).
Then the collection

B = {φ 0 (x; ζ 0,ℓ ), ℓ ∈ I 0 ; ψ k (x; η k,ℓ ), k ≥ 0, ℓ ∈ J k }
is an orthonormal basis for H (see [START_REF] Goh | Wavelet bases for Hilbert spaces of functions[END_REF], Theorem 2 (a))).

Consequently, any f ∈ H can be expressed on B as

f (x) = ℓ∈I 0 α 0,ℓ φ 0 (x; ζ 0,ℓ ) + k≥0 ℓ∈J k β k,ℓ ψ k (x; η k,ℓ ), x ∈ S,
where

α 0,ℓ = f, φ 0 (.; ζ 0,ℓ ) , β k,ℓ = f, ψ k (.; η k,ℓ ) . (2.1)
We formulate the two following assumptions on E:

• there exists a constant C 1 > 0 such that, for any integer k ≥ 0,

j∈I k 1 g j,k,ℓ |e j (ζ k,ℓ )| 2 ≤ C 1 , j∈J k 1 h j,k,ℓ |e j (η k,ℓ )| 2 ≤ C 1 . (2.2)
This assumption is obviously satisfied under (A1) with C 1 = 1. Remark also that the second example in [START_REF] Goh | Wavelet bases for Hilbert spaces of functions[END_REF], Section 4) satisfies both (A2) and (2.2).

• there exists a constant C 2 > 0 such that, for any integer k ≥ 0, sup

x∈S j∈J k |e j (x)| 2 ≤ C 2 |J k |. (2.3)
This assumption is satisfied by the three examples in Goh (2007) (we Rao, 2010a, (3.16)).

have sup x∈S sup j∈J k |e j (x)| ≤ 1). Remark that it contains (Prakasa

Decomposition Spaces

Let s > 0 and r > 0. From the wavelet coefficients (2.1) of a function f ∈ H,

we define the Besov spaces B s ∞ (H) by B s ∞ (H) =    f ∈ H; sup m≥0 |J m | 2s k≥m ℓ∈J k |β k,ℓ | 2 < ∞    (2.4)
and the "weak Besov spaces" W r (H) by

W r (H) =    f ∈ H; sup λ>0 λ r k≥0 ℓ∈J k 1I {|βk,ℓ|≥λ} < ∞    , (2.5)
where 1I A is the indicator function on A.

Such kinds of function spaces are extensively used in approximation theory for the study of non linear procedures such as thresholding and greedy algorithms. See e.g. DeVore (1998) and [START_REF] Temlyakov | The best m-term approximation and greedy algorithms[END_REF]. From a statistical point of view, they are connected to the maxiset approach. See e.g. [START_REF] Cohen | Maximal spaces with given rate of convergence for thresholding algorithms[END_REF], [START_REF] Kerkyacharian | Thresholding algorithms, maxisets and well concentrated bases (with discussion and a rejoinder by the authors)[END_REF] and [START_REF] Autin | Point de vue Maxiset en estimation non paramétrique[END_REF].

3 Density Estimation for Functional Data

Problem statement

Let {Ω, F, P } be a probability space and {X i ; i ≥ 1} be i.i.d. random variables defined on {Ω, F, P } and taking values in a complete separable metric space or a Hilbert space S associated with the corresponding Borel σ-algebra B. Let P X be the probability measure induced by X 1 on (S, B).

Suppose that there exists a σ-finite measure ν on the measurable space (S, B)

such that P X is dominated by ν. The Radon-Nikodym theorem ensures the existence of a nonnegative measurable function f such that

P X (B) = B f (x)ν(dx), B ∈ B.
In this context, we aim to estimate f based on n observed functional data

X 1 , . . . , X n .
We suppose that f ∈ H, where H is a separable Hilbert space of realvalued functions defined on S and square integrable with respect to the σ-finite measure ν.

Moreover, we suppose that there exists a known constant

C f > 0 such that sup x∈S f (x) ≤ C f . (3.1)

Estimator

Adopting the notation of Section 2, we define the wavelet hard thresholding estimator f by

f (x) = ℓ∈I 0 α0,ℓ φ 0 (x; ζ 0,ℓ ) + mn k=0 ℓ∈J k βk,ℓ 1I | βk,ℓ |≥κ ln n n ψ k (x; η k,ℓ ), (3.2)
x ∈ S, where

αk,ℓ = 1 n n i=1 φ k (X i ; ζ k,ℓ ), βk,ℓ = 1 n n i=1 ψ k (X i ; η k,ℓ ), (3.3)
κ is a large enough constant and m n is the integer satisfying

1 2 n ln n < |J mn | ≤ n ln n .
The construction of f consists in three steps: firstly, we estimate the unknown wavelet coefficients (2.1) of f by (3.3), secondly, we select only the "greatest" βk,ℓ via a hard thresholding (the "universal threshold" κ(ln n/n) 1/2 is considered) and thirdly we reconstruct the selected elements of the initial wavelet basis. Details on the wavelet hard thresholding estimator for

H = L p ([a, b]
) and the standard nonparametric models can be found in [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF], [START_REF] Delyon | On minimax wavelet estimators[END_REF], [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF] and [START_REF] Vidakovic | Statistical Modeling by Wavelets[END_REF].

Note that our wavelet hard thresholding procedure is adaptive i.e. it does not depend on the knowledge of the smoothness of f .

Results

Theorem 3.1 below evaluates the performance of f assuming that f belongs to the decomposition spaces described in Subsection 2.2.

Theorem 3.1 Consider the density estimation problem described in Subsection 3.1. Suppose that E satisfies (2.2) and (2.3). Let f be given by (3.2). Suppose that f satisfies (3.1) and, for any θ ∈ (0, 1),

f ∈ B θ/2 ∞ (H) ∩ W 2(1-θ) (H), where B θ/2 ∞ (H) is (2.4) with s = θ/2 and W 2(1-θ) (H) (2.5) with r = 2(1 -θ).
Then there exists a constant C > 0 such that

E(|| f -f || 2 ) ≤ C ln n n θ for n large enough.
An immediate consequence is the following upper bound result:

if f ∈ B s/(2s+1) ∞ (H) ∩ W 2/(2s+1) (H) for s > 0, then there exists a constant C > 0 such that E(|| f -f || 2 ) ≤ C ln n n 2s/(2s+1)
.

This rate of convergence corresponds to the near optimal one in the "standard" minimax setting (see e.g. [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF]).

Moreover, applying (Kerkyacharian and Picard, 2000, Theorem 3.2), one

can prove that B θ/2 ∞ (H) ∩ W 2(1-θ) (H) is the "maxiset" associated to f at the rate of convergence (ln n/n) θ i.e. lim n→∞ n ln n θ E(|| f -f || 2 ) < ∞ ⇔ f ∈ B θ/2 ∞ (H) ∩ W 2(1-θ) (H).

A Note on Regression Estimation for Functional Data

Let {Ω, F, P } be a probability space and {(X i , Y i ); i ≥ 1} be i.i.d. replica of a couple of random variables (X, Y ) defined on {Ω, F, P }, where Y is real valued and X takes values in a complete separable metric space or a Hilbert space S associated with the corresponding Borel σ-algebra B such that

Y = f (X) + ǫ,
f denotes an unknown regresion function and ǫ is a random variable independent of X with ǫ ∼ N (0, 1). We suppose that f ∈ H where H is a separable Hilbert space of real-valued functions defined on S. Let P X be the probability measure induced by X 1 on (S, B). Suppose that there exists a σ-finite measure ν on the measurable space (S, B) such that P X is dominated by ν. As a consequence of the Radon-Nikodym theorem, there exists a nonnegative measurable function g such that

P X (B) = B g(x)ν(dx), B ∈ B.
We suppose that g is known.

In this context, we want to estimate f from (X 1 , Y 1 ), . . . , (X n , Y n ).

Note that the kernel estimator of the regression function for functional data has been proposed by [START_REF] Ferraty | Nonparametric models for functional data, with application in regression, time-series prediction and curve discrimination[END_REF].

Here, we suppose that there exist two known constants C f > 0 and c g > 0 such that

sup x∈S f (x) ≤ C f , inf x∈S g(x) ≥ c g . (4.1)
Theorem 4.1 Consider the regression estimation problem described above.

Suppose that E satisfies (2.2) and (2.3). Let f be as in (3.2) with

αk,ℓ = 1 n n i=1 Y i g(X i ) φ k (X i ; ζ k,ℓ ), βk,ℓ = 1 n n i=1 Y i g(X i ) ψ k (X i ; η k,ℓ ),
κ is a large enough constant and m n is the integer satisfying 1 2

n (ln n) 2 < |J mn | ≤ n (ln n) 2 .
Suppose that f and g satisfy (4.1) and, for any θ ∈ (0, 1),

f ∈ B θ/2 ∞ (H) ∩ W 2(1-θ) (H), where B θ/2 ∞ (H) is (2.4) with s = θ/2 and W 2(1-θ) (H) (2.5) with r = 2(1 -θ). Then there exists a constant C > 0 such that E(|| f -f || 2 ) ≤ C ln n n θ for n large enough. Again, note that, if f ∈ B s/(2s+1) ∞ (H) ∩ W 2/(2s+1) (H) for s > 0, then there exists a constant C > 0 such that E(|| f -f || 2 ) ≤ C ln n n 2s/(2s+1)
.

This rate of convergence corresponds to the near optimal one in the "standard" minimax setting (see e.g. [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF]).

Proofs

In this section, C denotes any constant that does not depend on j, k and n.

Its value may change from one term to another and may depends on φ or ψ.

Proof of Theorem 3.1. The proof of Theorem 3.1 is a consequence of (Kerkyacharian and Picard, 2000, Theorem 3.1) with c(n) = (ln n/n) 1/2 , σ i = 1, r = 2 and the following proposition.

Proposition 5.1 For any k ∈ {0, . . . , m n } and any ℓ ∈ I k or ℓ ∈ J k , let α k,ℓ and β k,ℓ be given by (2.1), and αk,ℓ and βk,ℓ be given by (3.3). Then (i) there exists a constant C > 0 such that

E(| αk,ℓ -α k,ℓ | 2 ) ≤ C ln n n .
(ii) there exists a constant C > 0 such that

E(| βk,ℓ -β k,ℓ | 4 ) ≤ C ln n n 2 .
(iii) for κ > 0 large enough, there exists a constant C > 0 such that

P | βk,ℓ -β k,ℓ | ≥ κ 2 ln n n ≤ 2 ln n n 2 .
Let us now prove (i), (ii) and (iii) of Proposition 5.1 (which corresponds to (Kerkyacharian and Picard, 2000, (3.1) and (3.2) of Theorem 3.1)).

(i) We have

E(α k,ℓ ) = E(φ k (X 1 ; ζ k,ℓ )) = S f (x)φ k (x; ζ k,ℓ )ν(dx) = α k,ℓ . (5.1) So E(| αk,ℓ -α k,ℓ | 2 ) = V (α k,ℓ ) = 1 n V (φ k (X 1 ; ζ k,ℓ )) ≤ 1 n E |φ k (X 1 ; ζ k,ℓ )| 2 .
It follows from (3.1), the fact that E is an orthonormal basis of H and (2.2) that

E |φ k (X 1 ; ζ k,ℓ )| 2 = S |φ k (x; ζ k,ℓ )| 2 f (x)ν(dx) ≤ C f S |φ k (x; ζ k,ℓ )| 2 ν(dx) = C f S j∈I k 1 √ g j,k,ℓ e j (ζ k,ℓ )e j (x) 2 ν(dx) = C f j∈I k 1 g j,k,ℓ |e j (ζ k,ℓ )| 2 ≤ C f C 1 . (5.2)
Therefore there exists a constant C > 0 such that

E(| αk,ℓ -α k,ℓ | 2 ) ≤ C 1 n ≤ C ln n n .
(ii) Proceeding as in (5.1), we show that E

(ψ k (X i ; η k,ℓ )) = β k,ℓ . Hence E(| βk,ℓ -β k,ℓ | 4 ) = 1 n 4 E   n i=1 U i,k,ℓ 4   , (5.3) 
where

U i,k,ℓ = ψ k (X i ; η k,ℓ ) -E(ψ k (X i ; η k,ℓ )).
We will bound this last term via the Rosenthal inequality (recalled in the Appendix).

We have E(U 1,k,ℓ ) = 0.

By the Hölder inequality and (5.2) with

ψ k (X 1 ; η k,ℓ ) instead of φ k (X 1 ; ζ k,ℓ ),
we have

E(|U 1,k,ℓ | 2 ) ≤ CE |ψ k (X 1 ; η k,ℓ )| 2 ≤ C.
(5.4)

Let us now investigate the bound of E(|U 1,k,ℓ | 4 ). Observe that, thanks to the Cauchy-Schwarz inequality, (2.2) and (2.3), we have

sup x∈S |ψ k (x; η k,ℓ )| ≤ sup x∈S j∈J k 1 h j,k,ℓ |e j (η k,ℓ )||e j (x)| ≤   j∈J k 1 h j,k,ℓ |e j (η k,ℓ )| 2   1/2   sup x∈S j∈J k |e j (x)| 2   1/2 ≤ C 1/2 1 C 1/2 2 |J k | ≤ C |J mn | ≤ C n ln n .
(5.5)

The Hölder inequality, (5.5) and (5.4) yield

E(|U 1,k,ℓ | 4 ) ≤ CE |ψ k (X 1 ; η k,ℓ )| 4 ≤ CnE |ψ k (X 1 ; η k,ℓ )| 2 ≤ Cn. (5.6)
It follows from the Rosenthal inequality, (5.4) and (5.6) that

1 n 4 E   n i=1 U i,k,ℓ 4   ≤ C 1 n 4 max nE |U 1,k,ℓ | 4 , nE |U 1,k,ℓ | 2 2 ≤ C 1 n 2 ≤ C ln n n 2 .
(5.7) By (5.3) and (5.7), we prove the existence of a constant C > 0 such that

E(| βk,ℓ -β k,ℓ | 4 ) ≤ C ln n n 2 .
(iii) We adopt the same notation as in (ii). Observe that

P | βk,ℓ -β k,ℓ | ≥ κ 2 ln n n = P n i=1 U i,k,ℓ ≥ n κ 2 ln n n .
(5.8)

We will bound this probability via the Bernstein inequality (recalled in the Appendix).

We have E(U 1,k,ℓ ) = 0.

By (5.5),

|U 1,k,ℓ | ≤ C sup x∈S |ψ k (x; η k,ℓ )| ≤ C n ln n . Applying (5.2) with ψ k (X 1 ; η k,ℓ ) instead of φ k (X 1 ; ζ k,ℓ ), we obtain E(|U 1,k,ℓ | 2 ) ≤ C.
It follows from the Bernstein inequality that κ) , (5.9) where w(κ) =

P n i=1 U i,k,ℓ ≥ n κ 2 ln n n ≤ 2 exp   - Cn 2 κ 2 ln n n n + nκ ln n n n ln n   ≤ 2n -w(
Cκ 2 1 + κ .

Since lim κ→∞ w(κ) = ∞, combining (5.17) and (5.19), and taking κ such that w(κ) = 2, we have

P | βk,ℓ -β k,ℓ | ≥ κ 2 ln n n ≤ C 1 n 2 ≤ C ln n n 2 .
The points (i), (ii) and (iii) of Proposition 5.1 are proved. The proof of Theorem 3.1 is complete.

Proof of Theorem 4.1. As in the proof of Theorem 3.1, we only need to prove (i), (ii) and (iii) of Proposition 5.1.

(i) Since X 1 and ǫ 1 are independent and E(ǫ 1 ) = 0, we have

E(α k,ℓ ) = E Y 1 g(X 1 ) φ k (X 1 ; ζ k,ℓ ) = E f (X 1 ) g(X 1 ) φ k (X 1 ; ζ k,ℓ ) = S f (x) g(x) φ k (x; ζ k,ℓ )g(x)ν(dx) = α k,ℓ . (5.10) So E(| αk,ℓ -α k,ℓ | 2 ) = V (α k,ℓ ) = 1 n V Y 1 g(X 1 ) φ k (X 1 ; ζ k,ℓ ) ≤ 1 n E Y 1 g(X 1 ) φ k (X 1 ; ζ k,ℓ ) 2 . It follows from (4.1), |Y 1 | ≤ C f + |ǫ 1 |, g(X 1 ) ≥ c g , the independence between X 1 and ǫ 1 , E(ǫ 2 1 ) = 1, the fact that E is an orthonormal basis of H and (2.2) that E Y 1 g(X 1 ) φ k (X 1 ; ζ k,ℓ ) 2 ≤ (C 2 f + 1) 1 c g E |φ k (X 1 ; ζ k,ℓ )| 2 1 g(X 1 ) = (C 2 f + 1) 1 c g S |φ k (x; ζ k,ℓ )| 2 1 g(x) g(x)ν(dx) = C S |φ k (x; ζ k,ℓ )| 2 ν(dx) = C S j∈I k 1 √ g j,k,ℓ e j (ζ k,ℓ )e j (x) 2 ν(dx) = C j∈I k 1 g j,k,ℓ |e j (ζ k,ℓ )| 2 ≤ C.
(5.11)

Therefore there exists a constant C > 0 such that

E(| αk,ℓ -α k,ℓ | 2 ) ≤ C 1 n ≤ C ln n n .
(ii) Proceeding as in (5.10), we show that

E (Y i ψ k (X i ; η k,ℓ )/g(X i )) = β k,ℓ . Set U i,k,ℓ = Y i g(X i ) ψ k (X i ; η k,ℓ ) -E Y i g(X i ) ψ k (X i ; η k,ℓ ) .
and observe that

E(| βk,ℓ -β k,ℓ | 4 ) = 1 n 4 E   n i=1 U i,k,ℓ 4   .
(5.12)

We will bound this last term via the Rosenthal inequality (recalled in the Appendix).

We have E(U 1,k,ℓ ) = 0.

By the Hölder inequality and (5.11) with

ψ k (X 1 ; η k,ℓ ) instead of φ k (X 1 ; ζ k,ℓ ),
we obtain 

E(|U 1,k,ℓ | 2 ) ≤ CE Y 1 g(X 1 ) ψ k (X 1 ; η k,ℓ ) 2 ≤ C. ( 5 
(x; η k,ℓ )| ≤ sup x∈S j∈J k 1 h j,k,ℓ |e j (η k,ℓ )||e j (x)| ≤   j∈J k 1 h j,k,ℓ |e j (η k,ℓ )| 2   1/2   sup x∈S j∈J k |e j (x)| 2   1/2 ≤ C 1/2 1 C 1/2 2 |J k | ≤ C |J mn | ≤ C n (ln n) 2 . (5.14)
The Hölder inequality, (5.14) and (5.13) yield

E(|U 1,k,ℓ | 4 ) ≤ CE |ψ k (X 1 ; η k,ℓ )| 4 ≤ CnE |ψ k (X 1 ; η k,ℓ )| 2 ≤ Cn.
(5.15)

It follows from the Rosenthal inequality, (5.13) and (5.15) that

1 n 4 E   n i=1 U i,k,ℓ 4   ≤ C 1 n 4 max nE |U 1,k,ℓ | 4 , nE |U 1,k,ℓ | 2 2 ≤ C 1 n 2 ≤ C ln n n 2 .
(5.16) By (5.12) and (5.16), we prove the existence of a constant C > 0 such that

E(| βk,ℓ -β k,ℓ | 4 ) ≤ C ln n n 2 . (iii) We adopt the same notation as in (ii). Since E (Y i ψ k (X i ; η k,ℓ )/g(X i )) = β k,ℓ , we can write U i,k,ℓ = V i,k,ℓ + W i,k,ℓ ,
where

V i,k,ℓ = Y i g(X i ) ψ k (X i ; η k,ℓ )1I A i -E Y i g(X i ) ψ k (X i ; η k,ℓ )1I A i , W i,k,ℓ = Y i g(X i ) ψ k (X i ; η k,ℓ )1I A c i -E Y i g(X i ) ψ k (X i ; η k,ℓ )1I A c i , A i = |ǫ i | ≥ c * √ ln n
and c * denotes a constant which will be chosen later.

We have

P | βk,ℓ -β k,ℓ | ≥ κ 2 ln n n = P n i=1 U i,k,ℓ ≥ n κ 2 ln n n ≤ I 1 + I 2 ,
(5.17)

where

I 1 = P n i=1 V i,k,ℓ ≥ κ 4 √ n ln n
and

I 2 = P n i=1 W i,k,ℓ ≥ κ 4 √ n ln n .
Let us now bound I 1 and I 2 .

Upper bound for I 1 . The Markov inequality and the Cauchy-Schwarz inequality yield

I 1 ≤ 4 κ √ n ln n E n i=1 V i,k,ℓ ≤ C n ln n E(|V 1,k,ℓ |) ≤ C n ln n E(|V 1,k,ℓ | 2 ) ≤ C n ln n E Y 1 g(X 1 ) ψ k (X 1 ; η k,ℓ )1I A 1 2 ≤ C n ln n E Y 1 g(X 1 )
ψ k (X 1 ; η k,ℓ ) 4 1/4

(P (A 1 )) 1/2 .

Using (5.15), an elementary Gaussian inequality and taking c * large enough, we obtain

I 1 ≤ C n ln n n 1/4 e -c 2 * ln n/4 ≤ C 1 n 2 .
(5.18)

Upper bound for I 2 . We will bound this probability via the Bernstein inequality (recalled in the Appendix).

We have E(W 1,k,ℓ ) = 0. Lemma 5.2 [START_REF] Petrov | Limit Theorems of Probability Theory: Sequences of Independent Random Variables[END_REF]) Let n be a positive integer and V 1 , . . . , V n be n i.i.d. zero mean independent random variables such that there exists a constant M > 0 satisfying |V 1 | ≤ M < ∞. Then, for any υ > 0,

P n i=1 V i ≥ υ ≤ 2 exp - υ 2 2 nE(V 2
1 ) + υM /3 .

Using ( 4 .

 4 .1) which implies |Y 1 1I A c 1 | ≤ C f +c * √ ln n ≤ C √ ln n and g(X 1 ) ≥ c g ,and (5.14), we obtain|W i,k,ℓ | ≤ C √ ln n sup x∈S |ψ k (x; η k,ℓ )| ≤ C 11) with ψ k (X 1 ; η k,ℓ ) instead of φ k (X 1 ; ζ k,ℓ ), we obtain E(|W 1,k,ℓ | 2 )Since lim κ→∞ w(κ) = ∞, taking κ such that w(κ) = 2, we haveI 2 ≤ 2 1 n 2 . It follows from (5.17), (5.18) and (5.19) that P | βk,ℓβ k,ℓ | Hence the points (i), (ii) and (iii) of Proposition 5.1 are satisfied by our estimators. The proof of Theorem 4.1 is complete.

Appendix

Here we state the two inequalities that have been used for proving the results in earlier section.

Lemma 5.1 [START_REF] Rosenthal | On the subspaces of L p (p ≥ 2) spanned by sequences of independent random variables[END_REF]) Let n be a positive integer, p ≥ 2 and V 1 , . . . , V n be n zero mean i.i.d. random variables such that E(|V 1 | p ) < ∞.

Then there exists a constant C > 0 such that