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Nonparametric Estimation for Functional Data

by Wavelet Thresholding

Christophe Chesneau, Maher Kachour and Bertrand Maillot

Abstract: This paper deals with density and regression esti-

mation problems for functional data. Using wavelet bases for

Hilbert spaces of functions, we develop a new adaptive procedure

based on wavelet thresholding. We provide theoretical results on

its asymptotic performances.
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1 Introduction

Due to technological progress, in particular the enlarged capacity of com-

puter memory and the increasing efficiency of data collection devices, there

is a growing number of applied sciences (biometrics, chemometrics, meteo-

rology, medical sciences. . . ) where collected data are curves which require

appropriate statistical tools. Because of this, functional data analysis has

known a quite important development in the last fifteen years (see e.g. Ram-

say and Silverman (1997), Ramsay and Silverman (2002), Ferraty and Vieu

(2006), Dabo-Niang and Ferraty (2008), Ferraty (2010), Ferraty and Ro-

main (2010) and Ferraty (2011) for monographs and collective books on

this specific subject). However, whereas there has been substantial work
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on the nonparametric estimation of the probability density function for uni-

variate and multivariate random variables since the papers of Parzen (1962)

and Rosenblatt (1956), much less attention has been paid to the infinite-

dimensional case. The extension of the results from the multivariate frame-

work to the infinite dimensional one is not direct since there is no equivalent

of the Lebesgue measure on an infinite dimensional Hilbert space. In fact,

the only locally finite and translation invariant measure on an infinite di-

mensional Hilbert space is the null measure and any locally finite measure

µ is even very irregular: denoting by B(x, r) the ball of center x and radius

r, we have that, for any point x, any arbitrary large M and any arbitrary

small r such that µ(B(x, r)) < ∞, there exist (x1, x2) ∈ B(x, r)2 such that

µ(B(x1, r/4)) < M × µ(B(x2, r/4)). For a coverage of the theme of mea-

sures on infinite dimension spaces, we refer to Xia (1972), Yamasaki (1985),

Dalecky and Fomin (1991) and Uglanov (2000).

The first consistency result for a kernel estimator of the density function

for infinite dimensional random variables has been obtained in Dabo-Niang

(2002) where a rate is given in the special case when the kernel is an indicator

function and the density is defined with respect to the Wiener measure.

Later, different estimators of the density, based on orthogonal series (see

Dabo-Niang (2004)), delta sequences (see Prakasa Rao (2010b)) or wavelets

(see Prakasa Rao (2010a)), have been proposed but none of them is adaptive.

Note that the estimation of the density probability function is nonetheless

itself of intrinsic interest but it also has a key role in mode estimation and

curve clustering (see Dabo-Niang (2006)).

Contrary to the chronology of studies in the multivariate case, in the

functional framework, estimators of the regression function have been pro-

posed before those of the density. Ferraty and Vieu introduced the first fully

nonparametric estimator of the regression function, at first under the hy-

pothesis that the underlying measure has a fractal dimension in Ferraty and

Vieu (2000) and then using only probabilities of small balls in Ferraty and

Vieu (2004). However, since these pioneering works, no adaptive estimator

has been proposed.
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Considering the density estimation problem from functional data, Prakasa

Rao (2010a) has recently developed a new procedure based on the multires-

olution approach on a separable Hilbert space introduced by Goh (2007).

This procedure belongs to the family of the linear wavelet estimators. As

proved in (Prakasa Rao, 2010a, Theorem 3.1), it enjoys powerful asymptotic

properties. However, such a linear wavelet estimator has two drawbacks: it

is not adaptive (i.e. its performances are deeply associated to the smooth-

ness of the unknown function) and it is not efficient to estimate functions

with complex singularities (the sparsity nature of the wavelet decomposition

of the unknown function is not captured). For these reasons, (Prakasa Rao,

2010a, Page 2 lines 14-16) states “it would be interesting to investigate the

advantage of these wavelet estimators for functional data by using wavelet

thresholding suggested by Donoho et al. (1996)”. This perspective motivates

our study.

Adopting the multiresolution approach on a separable Hilbert space H of

Goh (2007), we construct a new adaptive wavelet procedure using the hard

thresholding rule of Donoho et al. (1996). Since H remains an abstract

space, we propose to evaluate its asymptotic properties over the intersection

of two different kinds of Besov spaces (defined in Section 2). The considered

spaces are related to the maxiset approach introduced by Cohen et al. (2001).

They are of interest as they contain a wide variety of unknown functions,

complex or not. Finally, we adapt the construction of our wavelet hard

thresholding estimator to the problem of regression modeling with functional

data. Its asymptotic properties are explored.

The paper is structured as follows. In Section 2, we briefly describe the

wavelet bases on H and we define some decomposition spaces. The density

estimation problem for functional data via wavelet thresholding is considered

in Section 3. The regression one is developed in Section 4. The proofs are

gathered in Section 5.
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2 Wavelet Bases on H and Decomposition Spaces

2.1 Wavelet Bases on H

Let us briefly describe the construction of wavelet bases on H introduced by

Goh (2007). Let H be a separable Hilbert space of real- or complex-valued

functions defined on a complete separable metric space or a normed vector

space S. Since H is separable, it has an orthonormal basis E = {ej ; j ∈ Λ}
for some countable index set Λ. As usual, we denote by 〈., .〉 and ||.|| the
inner product and corresponding norm that H is equipped with.

Let {Ik; k ≥ 0} be an increasing sequence of finite subsets of Λ such

that
⋃

k≥0 Ik = Λ and, for any k ≥ 0, Jk = Ik+1/Ik. For any k ≥ 0, we

suppose that there exist ζk,ℓ ∈ S, ℓ ∈ Ik and ηk,ℓ ∈ S, ℓ ∈ Jk, such that the

two matrices

Ak = (ej(ζk,ℓ))(j,ℓ)∈I2

k
, Bk = (ej(ηk,ℓ))(j,ℓ)∈J 2

k
,

satisfy one of the two following conditions:

(A1) A∗
kAk = diag(ck,ℓ)ℓ∈Ik and B∗

kBk = diag(sk,ℓ)ℓ∈Jk
, where ck,ℓ, sk,ℓ′ ,

for ℓ ∈ Ik and ℓ′ ∈ Jk, are positive constants,

(A2) AkA
∗
k = diag(dk,j)j∈Ik and BkB

∗
k = diag(tk,j)j∈Jk

, where dk,j , tk,j′

for j ∈ Ik and j′ ∈ Jk, are positive constants.

For any x ∈ S, we set






















φk(x; ζk,ℓ) =
∑

j∈Ik

1
√
gj,k,ℓ

ej(ζk,ℓ)ej(x),

ψk(x; ηk,ℓ) =
∑

j∈Jk

1
√

hj,k,ℓ
ej(ηk,ℓ)ej(x),

where

gj,k,ℓ =







ck,ℓ if (A1),

dk,j if (A2),
hj,k,ℓ =







sk,ℓ if (A1),

tk,j if (A2).

Then the collection

B = {φ0(x; ζ0,ℓ), ℓ ∈ I0; ψk(x; ηk,ℓ), k ≥ 0, ℓ ∈ Jk}
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is an orthonormal basis for H (see (Goh, 2007, Theorem 2 (a))).

Consequently, any f ∈ H can be expressed on B as

f(x) =
∑

ℓ∈I0

α0,ℓφ0(x; ζ0,ℓ) +
∑

k≥0

∑

ℓ∈Jk

βk,ℓψk(x; ηk,ℓ), x ∈ S,

where

α0,ℓ = 〈f, φ0(.; ζ0,ℓ)〉, βk,ℓ = 〈f, ψk(.; ηk,ℓ)〉. (2.1)

We formulate the two following assumptions on E :

• there exists a constant C1 > 0 such that, for any integer k ≥ 0,

∑

j∈Ik

1

gj,k,ℓ
|ej(ζk,ℓ)|2 ≤ C1,

∑

j∈Jk

1

hj,k,ℓ
|ej(ηk,ℓ)|2 ≤ C1. (2.2)

This assumption is obviously satisfied under (A1) with C1 = 1. Re-

mark also that the second example in (Goh, 2007, Section 4) satisfies

both (A2) and (2.2).

• there exists a constant C2 > 0 such that, for any integer k ≥ 0,

sup
x∈S

∑

j∈Jk

|ej(x)|2 ≤ C2|Jk|. (2.3)

This assumption is satisfied by the three examples in Goh (2007) (we

have supx∈S supj∈Jk
|ej(x)| ≤ 1). Remark that it contains (Prakasa

Rao, 2010a, (3.16)).

2.2 Decomposition Spaces

Let s > 0 and r > 0. From the wavelet coefficients (2.1) of a function f ∈ H,

we define the Besov spaces Bs
∞(H) by

Bs
∞(H) =







f ∈ H; sup
m≥0

|Jm|2s
∑

k≥m

∑

ℓ∈Jk

|βk,ℓ|2 <∞







(2.4)
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and the “weak Besov spaces” Wr(H) by

Wr(H) =







f ∈ H; sup
λ>0

λr
∑

k≥0

∑

ℓ∈Jk

1I{|βk,ℓ|≥λ} <∞







, (2.5)

where 1IA is the indicator function on A.

Such kinds of function spaces are extensively used in approximation the-

ory for the study of non linear procedures such as thresholding and greedy

algorithms. See e.g. DeVore (1998) and Temlyakov (1998). From a statis-

tical point of view, they are connected to the maxiset approach. See e.g.

Cohen et al. (2001), Kerkyacharian and Picard (2000) and Autin (2004).

3 Density Estimation for Functional Data

3.1 Problem statement

Let {Ω,F , P} be a probability space and {Xi; i ≥ 1} be i.i.d. random

variables defined on {Ω,F , P} and taking values in a complete separable

metric space or a Hilbert space S associated with the corresponding Borel

σ-algebra B. Let PX be the probability measure induced by X1 on (S,B).
Suppose that there exists a σ-finite measure ν on the measurable space (S,B)
such that PX is dominated by ν. The Radon-Nikodym theorem ensures the

existence of a nonnegative measurable function f such that

PX(B) =

∫

B
f(x)ν(dx), B ∈ B.

In this context, we aim to estimate f based on n observed functional data

X1, . . . , Xn.

We suppose that f ∈ H, where H is a separable Hilbert space of real-

valued functions defined on S and square integrable with respect to the

σ-finite measure ν.

Moreover, we suppose that there exists a known constant Cf > 0 such

that

sup
x∈S

f(x) ≤ Cf . (3.1)
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3.2 Estimator

Adopting the notation of Section 2, we define the wavelet hard thresholding

estimator f̂ by

f̂(x) =
∑

ℓ∈I0

α̂0,ℓφ0(x; ζ0,ℓ) +

mn
∑

k=0

∑

ℓ∈Jk

β̂k,ℓ1I{
|β̂k,ℓ|≥κ

√

lnn
n

}ψk(x; ηk,ℓ), (3.2)

x ∈ S, where

α̂k,ℓ =
1

n

n
∑

i=1

φk(Xi; ζk,ℓ), β̂k,ℓ =
1

n

n
∑

i=1

ψk(Xi; ηk,ℓ), (3.3)

κ is a large enough constant and mn is the integer satisfying

1

2

n

lnn
< |Jmn | ≤

n

lnn
.

The construction of f̂ consists in three steps: firstly, we estimate the

unknown wavelet coefficients (2.1) of f by (3.3), secondly, we select only the

“greatest” β̂k,ℓ via a hard thresholding (the “universal threshold” κ(lnn/n)1/2

is considered) and thirdly we reconstruct the selected elements of the ini-

tial wavelet basis. Details on the wavelet hard thresholding estimator for

H = Lp([a, b]) and the standard nonparametric models can be found in

Donoho et al. (1996), Delyon and Juditsky (1996), Härdle et al. (1998) and

Vidakovic (1999).

Note that our wavelet hard thresholding procedure is adaptive i.e. it

does not depend on the knowledge of the smoothness of f .

3.3 Results

Theorem 3.1 below evaluates the performance of f̂ assuming that f belongs

to the decomposition spaces described in Subsection 2.2.

Theorem 3.1 Consider the density estimation problem described in Sub-

section 3.1. Suppose that E satisfies (2.2) and (2.3). Let f̂ be given by

(3.2). Suppose that f satisfies (3.1) and, for any θ ∈ (0, 1), f ∈ Bθ/2
∞ (H) ∩
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W2(1−θ)(H), where Bθ/2
∞ (H) is (2.4) with s = θ/2 and W2(1−θ)(H) (2.5)

with r = 2(1− θ). Then there exists a constant C > 0 such that

E(||f̂ − f ||2) ≤ C

(

lnn

n

)θ

for n large enough.

An immediate consequence is the following upper bound result: if f ∈
Bs/(2s+1)
∞ (H) ∩W2/(2s+1)(H) for s > 0, then there exists a constant C > 0

such that

E(||f̂ − f ||2) ≤ C

(

lnn

n

)2s/(2s+1)

.

This rate of convergence corresponds to the near optimal one in the “stan-

dard” minimax setting (see e.g. Härdle et al. (1998)).

Moreover, applying (Kerkyacharian and Picard, 2000, Theorem 3.2), one

can prove that Bθ/2
∞ (H) ∩ W2(1−θ)(H) is the “maxiset” associated to f̂ at

the rate of convergence (lnn/n)θ i.e.

lim
n→∞

( n

lnn

)θ
E(||f̂ − f ||2) <∞ ⇔ f ∈ Bθ/2

∞ (H) ∩W2(1−θ)(H).

4 A Note on Regression Estimation for Functional

Data

Let {Ω,F , P} be a probability space and {(Xi, Yi); i ≥ 1} be i.i.d. replica

of a couple of random variables (X,Y ) defined on {Ω,F , P}, where Y is real

valued and X takes values in a complete separable metric space or a Hilbert

space S associated with the corresponding Borel σ-algebra B such that

Y = f(X) + ǫ,

f denotes an unknown regresion function and ǫ is a random variable inde-

pendent of X with ǫ ∼ N (0, 1). We suppose that f ∈ H where H is a

separable Hilbert space of real-valued functions defined on S. Let PX be

the probability measure induced by X1 on (S,B). Suppose that there exists
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a σ-finite measure ν on the measurable space (S,B) such that PX is domi-

nated by ν. As a consequence of the Radon-Nikodym theorem, there exists

a nonnegative measurable function g such that

PX(B) =

∫

B
g(x)ν(dx), B ∈ B.

We suppose that g is known.

In this context, we want to estimate f from (X1, Y1), . . . , (Xn, Yn).

Note that the kernel estimator of the regression function for functional

data has been proposed by Ferraty and Vieu (2004).

Here, we suppose that there exist two known constants Cf > 0 and cg > 0

such that

sup
x∈S

f(x) ≤ Cf , inf
x∈S

g(x) ≥ cg. (4.1)

Theorem 4.1 Consider the regression estimation problem described above.

Suppose that E satisfies (2.2) and (2.3). Let f̂ be as in (3.2) with

α̂k,ℓ =
1

n

n
∑

i=1

Yi
g(Xi)

φk(Xi; ζk,ℓ), β̂k,ℓ =
1

n

n
∑

i=1

Yi
g(Xi)

ψk(Xi; ηk,ℓ),

κ is a large enough constant and mn is the integer satisfying

1

2

n

(lnn)2
< |Jmn | ≤

n

(lnn)2
.

Suppose that f and g satisfy (4.1) and, for any θ ∈ (0, 1), f ∈ Bθ/2
∞ (H) ∩

W2(1−θ)(H), where Bθ/2
∞ (H) is (2.4) with s = θ/2 and W2(1−θ)(H) (2.5)

with r = 2(1− θ). Then there exists a constant C > 0 such that

E(||f̂ − f ||2) ≤ C

(

lnn

n

)θ

for n large enough.

Again, note that, if f ∈ Bs/(2s+1)
∞ (H) ∩W2/(2s+1)(H) for s > 0, then there

exists a constant C > 0 such that

E(||f̂ − f ||2) ≤ C

(

lnn

n

)2s/(2s+1)

.

This rate of convergence corresponds to the near optimal one in the “stan-

dard” minimax setting (see e.g. Härdle et al. (1998)).
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5 Proofs

In this section, C denotes any constant that does not depend on j, k and n.

Its value may change from one term to another and may depends on φ or ψ.

Proof of Theorem 3.1. The proof of Theorem 3.1 is a consequence of

(Kerkyacharian and Picard, 2000, Theorem 3.1) with c(n) = (lnn/n)1/2,

σi = 1, r = 2 and the following proposition.

Proposition 5.1 For any k ∈ {0, . . . ,mn} and any ℓ ∈ Ik or ℓ ∈ Jk, let

αk,ℓ and βk,ℓ be given by (2.1), and α̂k,ℓ and β̂k,ℓ be given by (3.3). Then

(i) there exists a constant C > 0 such that

E(|α̂k,ℓ − αk,ℓ|2) ≤ C
lnn

n
.

(ii) there exists a constant C > 0 such that

E(|β̂k,ℓ − βk,ℓ|4) ≤ C

(

lnn

n

)2

.

(iii) for κ > 0 large enough, there exists a constant C > 0 such that

P

(

|β̂k,ℓ − βk,ℓ| ≥
κ

2

√

lnn

n

)

≤ 2

(

lnn

n

)2

.

Let us now prove (i), (ii) and (iii) of Proposition 5.1 (which corresponds

to (Kerkyacharian and Picard, 2000, (3.1) and (3.2) of Theorem 3.1)).

(i) We have

E(α̂k,ℓ) = E(φk(X1; ζk,ℓ)) =

∫

S
f(x)φk(x; ζk,ℓ)ν(dx) = αk,ℓ. (5.1)

So

E(|α̂k,ℓ − αk,ℓ|2) = V (α̂k,ℓ) =
1

n
V (φk(X1; ζk,ℓ)) ≤

1

n
E
(

|φk(X1; ζk,ℓ)|2
)

.
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It follows from (3.1), the fact that E is an orthonormal basis of H and (2.2)

that

E
(

|φk(X1; ζk,ℓ)|2
)

=

∫

S
|φk(x; ζk,ℓ)|2f(x)ν(dx)

≤ Cf

∫

S
|φk(x; ζk,ℓ)|2ν(dx)

= Cf

∫

S

∣

∣

∣

∣

∣

∣

∑

j∈Ik

1
√
gj,k,ℓ

ej(ζk,ℓ)ej(x)

∣

∣

∣

∣

∣

∣

2

ν(dx)

= Cf

∑

j∈Ik

1

gj,k,ℓ
|ej(ζk,ℓ)|2 ≤ CfC1. (5.2)

Therefore there exists a constant C > 0 such that

E(|α̂k,ℓ − αk,ℓ|2) ≤ C
1

n
≤ C

lnn

n
.

(ii) Proceeding as in (5.1), we show that E (ψk(Xi; ηk,ℓ)) = βk,ℓ. Hence

E(|β̂k,ℓ − βk,ℓ|4) =
1

n4
E





∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

4


 , (5.3)

where

Ui,k,ℓ = ψk(Xi; ηk,ℓ)− E(ψk(Xi; ηk,ℓ)).

We will bound this last term via the Rosenthal inequality (recalled in

the Appendix).

We have E(U1,k,ℓ) = 0.

By the Hölder inequality and (5.2) with ψk(X1; ηk,ℓ) instead of φk(X1; ζk,ℓ),

we have

E(|U1,k,ℓ|2) ≤ CE
(

|ψk(X1; ηk,ℓ)|2
)

≤ C. (5.4)

Let us now investigate the bound of E(|U1,k,ℓ|4). Observe that, thanks to
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the Cauchy-Schwarz inequality, (2.2) and (2.3), we have

sup
x∈S

|ψk(x; ηk,ℓ)| ≤ sup
x∈S

∑

j∈Jk

1
√

hj,k,ℓ
|ej(ηk,ℓ)||ej(x)|

≤





∑

j∈Jk

1

hj,k,ℓ
|ej(ηk,ℓ)|2





1/2

sup
x∈S

∑

j∈Jk

|ej(x)|2




1/2

≤ C
1/2
1 C

1/2
2

√

|Jk| ≤ C
√

|Jmn | ≤ C

√

n

lnn
. (5.5)

The Hölder inequality, (5.5) and (5.4) yield

E(|U1,k,ℓ|4) ≤ CE
(

|ψk(X1; ηk,ℓ)|4
)

≤ CnE
(

|ψk(X1; ηk,ℓ)|2
)

≤ Cn. (5.6)

It follows from the Rosenthal inequality, (5.4) and (5.6) that

1

n4
E





∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

4


 ≤ C
1

n4
max

(

nE
(

|U1,k,ℓ|4
)

,
(

nE
(

|U1,k,ℓ|2
))2
)

≤ C
1

n2
≤ C

(

lnn

n

)2

. (5.7)

By (5.3) and (5.7), we prove the existence of a constant C > 0 such that

E(|β̂k,ℓ − βk,ℓ|4) ≤ C

(

lnn

n

)2

.

(iii) We adopt the same notation as in (ii). Observe that

P

(

|β̂k,ℓ − βk,ℓ| ≥
κ

2

√

lnn

n

)

= P

(∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

≥ n
κ

2

√

lnn

n

)

. (5.8)

We will bound this probability via the Bernstein inequality (recalled in

the Appendix).

We have E(U1,k,ℓ) = 0.

By (5.5),

|U1,k,ℓ| ≤ C sup
x∈S

|ψk(x; ηk,ℓ)| ≤ C

√

n

lnn
.

Applying (5.2) with ψk(X1; ηk,ℓ) instead of φk(X1; ζk,ℓ), we obtain E(|U1,k,ℓ|2) ≤
C.
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It follows from the Bernstein inequality that

P

(∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

≥ n
κ

2

√

lnn

n

)

≤ 2 exp



− Cn2κ2 lnn
n

n+ nκ
√

lnn
n

√

n
lnn



 ≤ 2n−w(κ),(5.9)

where

w(κ) =
Cκ2

1 + κ
.

Since limκ→∞w(κ) = ∞, combining (5.17) and (5.19), and taking κ such

that w(κ) = 2, we have

P

(

|β̂k,ℓ − βk,ℓ| ≥
κ

2

√

lnn

n

)

≤ C
1

n2
≤ C

(

lnn

n

)2

.

The points (i), (ii) and (iii) of Proposition 5.1 are proved. The proof of

Theorem 3.1 is complete.

�

Proof of Theorem 4.1. As in the proof of Theorem 3.1, we only need to

prove (i), (ii) and (iii) of Proposition 5.1.

(i) Since X1 and ǫ1 are independent and E(ǫ1) = 0, we have

E(α̂k,ℓ) = E

(

Y1
g(X1)

φk(X1; ζk,ℓ)

)

= E

(

f(X1)

g(X1)
φk(X1; ζk,ℓ)

)

=

∫

S

f(x)

g(x)
φk(x; ζk,ℓ)g(x)ν(dx) = αk,ℓ. (5.10)

So

E(|α̂k,ℓ − αk,ℓ|2) = V (α̂k,ℓ) =
1

n
V

(

Y1
g(X1)

φk(X1; ζk,ℓ)

)

≤ 1

n
E

(

∣

∣

∣

∣

Y1
g(X1)

φk(X1; ζk,ℓ)

∣

∣

∣

∣

2
)

.

It follows from (4.1), |Y1| ≤ Cf + |ǫ1|, g(X1) ≥ cg, the independence between

X1 and ǫ1, E(ǫ21) = 1, the fact that E is an orthonormal basis of H and (2.2)

that
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E

(

∣

∣

∣

∣

Y1
g(X1)

φk(X1; ζk,ℓ)

∣

∣

∣

∣

2
)

≤ (C2
f + 1)

1

cg
E

(

|φk(X1; ζk,ℓ)|2
1

g(X1)

)

= (C2
f + 1)

1

cg

∫

S
|φk(x; ζk,ℓ)|2

1

g(x)
g(x)ν(dx)

= C

∫

S
|φk(x; ζk,ℓ)|2ν(dx)

= C

∫

S

∣

∣

∣

∣

∣

∣

∑

j∈Ik

1
√
gj,k,ℓ

ej(ζk,ℓ)ej(x)

∣

∣

∣

∣

∣

∣

2

ν(dx)

= C
∑

j∈Ik

1

gj,k,ℓ
|ej(ζk,ℓ)|2 ≤ C. (5.11)

Therefore there exists a constant C > 0 such that

E(|α̂k,ℓ − αk,ℓ|2) ≤ C
1

n
≤ C

lnn

n
.

(ii) Proceeding as in (5.10), we show that E (Yiψk(Xi; ηk,ℓ)/g(Xi)) =

βk,ℓ. Set

Ui,k,ℓ =
Yi

g(Xi)
ψk(Xi; ηk,ℓ)− E

(

Yi
g(Xi)

ψk(Xi; ηk,ℓ)

)

.

and observe that

E(|β̂k,ℓ − βk,ℓ|4) =
1

n4
E





∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

4


 . (5.12)

We will bound this last term via the Rosenthal inequality (recalled in the

Appendix).

We have E(U1,k,ℓ) = 0.

By the Hölder inequality and (5.11) with ψk(X1; ηk,ℓ) instead of φk(X1; ζk,ℓ),

we obtain

E(|U1,k,ℓ|2) ≤ CE

(

∣

∣

∣

∣

Y1
g(X1)

ψk(X1; ηk,ℓ)

∣

∣

∣

∣

2
)

≤ C. (5.13)
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Let us now investigate the bound of E(|U1,k,ℓ|4). Observe that, thanks to

the Cauchy-Schwarz inequality, (2.2) and (2.3), we have

sup
x∈S

|ψk(x; ηk,ℓ)| ≤ sup
x∈S

∑

j∈Jk

1
√

hj,k,ℓ
|ej(ηk,ℓ)||ej(x)|

≤





∑

j∈Jk

1

hj,k,ℓ
|ej(ηk,ℓ)|2





1/2

sup
x∈S

∑

j∈Jk

|ej(x)|2




1/2

≤ C
1/2
1 C

1/2
2

√

|Jk| ≤ C
√

|Jmn | ≤ C

√

n

(lnn)2
. (5.14)

The Hölder inequality, (5.14) and (5.13) yield

E(|U1,k,ℓ|4) ≤ CE
(

|ψk(X1; ηk,ℓ)|4
)

≤ CnE
(

|ψk(X1; ηk,ℓ)|2
)

≤ Cn. (5.15)

It follows from the Rosenthal inequality, (5.13) and (5.15) that

1

n4
E





∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

4


 ≤ C
1

n4
max

(

nE
(

|U1,k,ℓ|4
)

,
(

nE
(

|U1,k,ℓ|2
))2
)

≤ C
1

n2
≤ C

(

lnn

n

)2

. (5.16)

By (5.12) and (5.16), we prove the existence of a constant C > 0 such that

E(|β̂k,ℓ − βk,ℓ|4) ≤ C

(

lnn

n

)2

.

(iii)We adopt the same notation as in (ii). Since E (Yiψk(Xi; ηk,ℓ)/g(Xi)) =

βk,ℓ, we can write

Ui,k,ℓ = Vi,k,ℓ +Wi,k,ℓ,

where

Vi,k,ℓ =
Yi

g(Xi)
ψk(Xi; ηk,ℓ)1IAi

− E

(

Yi
g(Xi)

ψk(Xi; ηk,ℓ)1IAi

)

,

Wi,k,ℓ =
Yi

g(Xi)
ψk(Xi; ηk,ℓ)1IAc

i
− E

(

Yi
g(Xi)

ψk(Xi; ηk,ℓ)1IAc
i

)

,
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Ai =
{

|ǫi| ≥ c∗
√
lnn

}

and c∗ denotes a constant which will be chosen later.

We have

P

(

|β̂k,ℓ − βk,ℓ| ≥
κ

2

√

lnn

n

)

= P

(∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

≥ n
κ

2

√

lnn

n

)

≤ I1 + I2, (5.17)

where

I1 = P

(∣

∣

∣

∣

∣

n
∑

i=1

Vi,k,ℓ

∣

∣

∣

∣

∣

≥ κ

4

√
n lnn

)

and

I2 = P

(∣

∣

∣

∣

∣

n
∑

i=1

Wi,k,ℓ

∣

∣

∣

∣

∣

≥ κ

4

√
n lnn

)

.

Let us now bound I1 and I2.

Upper bound for I1. The Markov inequality and the Cauchy-Schwarz

inequality yield

I1 ≤ 4

κ
√
n lnn

E

(∣

∣

∣

∣

∣

n
∑

i=1

Vi,k,ℓ

∣

∣

∣

∣

∣

)

≤ C

√

n

lnn
E(|V1,k,ℓ|) ≤ C

√

n

lnn

√

E(|V1,k,ℓ|2)

≤ C

√

n

lnn

√

√

√

√E

(

∣

∣

∣

∣

Y1
g(X1)

ψk(X1; ηk,ℓ)1IA1

∣

∣

∣

∣

2
)

≤ C

√

n

lnn

(

E

(

∣

∣

∣

∣

Y1
g(X1)

ψk(X1; ηk,ℓ)

∣

∣

∣

∣

4
))1/4

(P (A1))
1/2.

Using (5.15), an elementary Gaussian inequality and taking c∗ large enough,

we obtain

I1 ≤ C

√

n

lnn
n1/4e−c2

∗
lnn/4 ≤ C

1

n2
. (5.18)

Upper bound for I2. We will bound this probability via the Bernstein

inequality (recalled in the Appendix).

We have E(W1,k,ℓ) = 0.
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Using (4.1) which implies |Y11IAc
1
| ≤ Cf+c∗

√
lnn ≤ C

√
lnn and g(X1) ≥

cg, and (5.14), we obtain

|Wi,k,ℓ| ≤ C
√
lnn sup

x∈S
|ψk(x; ηk,ℓ)| ≤ C

√
lnn

√

n

(lnn)2
= C

√

n

lnn
.

Applying (5.11) with ψk(X1; ηk,ℓ) instead of φk(X1; ζk,ℓ), we obtain E(|W1,k,ℓ|2) ≤
C.

It follows from the Bernstein inequality that

I2 ≤ 2 exp



− Cn2κ2 lnn
n

n+ nκ
√

lnn
n

√

n
lnn



 ≤ 2n−w(κ), (5.19)

where

w(κ) =
Cκ2

1 + κ
.

Since limκ→∞w(κ) = ∞, taking κ such that w(κ) = 2, we have

I2 ≤ 2
1

n2
.

It follows from (5.17), (5.18) and (5.19) that

P

(

|β̂k,ℓ − βk,ℓ| ≥
κ

2

√

lnn

n

)

≤ C
1

n2
≤ C

(

lnn

n

)2

.

Hence the points (i), (ii) and (iii) of Proposition 5.1 are satisfied by our

estimators. The proof of Theorem 4.1 is complete.

�

Appendix

Here we state the two inequalities that have been used for proving the results

in earlier section.

Lemma 5.1 (Rosenthal (1970)) Let n be a positive integer, p ≥ 2 and

V1, . . . , Vn be n zero mean i.i.d. random variables such that E(|V1|p) < ∞.

Then there exists a constant C > 0 such that

E

(∣

∣

∣

∣

∣

n
∑

i=1

Vi

∣

∣

∣

∣

∣

p)

≤ Cmax
(

nE(|V1|p), np/2
(

E(V 2
1 )
)p/2

)

.
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Lemma 5.2 (Petrov (1995)) Let n be a positive integer and V1, . . . , Vn

be n i.i.d. zero mean independent random variables such that there exists a

constant M > 0 satisfying |V1| ≤M <∞. Then, for any υ > 0,

P

(∣

∣

∣

∣

∣

n
∑

i=1

Vi

∣

∣

∣

∣

∣

≥ υ

)

≤ 2 exp

(

− υ2

2
(

nE(V 2
1 ) + υM/3

)

)

.
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