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Introduction and statement of the results

Let H be a complex Hilbert space endowed with the inner product •, • and the associated norm • . We denote by B(H) the C * -algebra of all bounded linear operators on H equipped with the operator norm

A = sup{ Ah : h ∈ H, h = 1}.
It is easy to see that unitary operators can be characterized as invertible contractions with contractive inverses, i.e. as operators A with A ≤ 1 and

A -1 ≤ 1. More generally, if A ∈ B(H) is invertible then inf { A-U : U unitary } = max ( A -1, 1 - 1 A -1
) .

We refer to [START_REF] Rogers | Approximation by unitary and essentially unitary operators[END_REF]Theorem 1.3] and [9, Theorem 1] for a proof of this equality using the polar decomposition of bounded operators. It also follows from this proof that if A ∈ B(H) is an invertible operator satisfying A ≤ r and A -1 ≤ r for some r ≥ 1, then there exists a unitary operator U ∈ B(H) such that A-U ≤ r-1.

The numerical radius of the operator A is defined by

w(A) = sup{| Ah, h | : h ∈ H, h = 1}.
Stampfli has proved in [START_REF] Stampfli | Minimal range theorems for operators with thin spectra[END_REF] that numerical radius contractivity of A and of its inverse A -1 , that is w(A) ≤ 1 and w(A -1 ) ≤ 1, imply that A is unitary. We define a function ψ(r) for r ≥ 1 by

ψ(r) = sup{ A : A ∈ B(H), w(A) ≤ r, w(A -1 ) ≤ r},
the supremum being also considered over all Hilbert spaces H. Then the conditions w(A) ≤ r and

w(A -1 ) ≤ r imply max( A -1, 1-A -1 -1 ) ≤ max( A -1, A -1 -1) ≤ ψ(r)-1, hence the existence of a unitary operator U such that A-U ≤ ψ(r)-1.
We have the two-sided estimate

r+ √ r 2 -1 ≤ ψ(r) ≤ 2r.
The upper bound follows from the well-known inequalities w(A) ≤ A ≤ 2w(A), while the lower bound is obtained by choosing H = C 2 and

A = ( 1 2y 0 -1 ) with y = √ r 2 -1,
in the definition of ψ. Indeed, we have

A = A -1 , w(A) = √ 1 + y 2 = r, and A = y + √ 1+y 2 = r + √ r 2 -1.
Our first aim is to improve the upper estimate.

Theorem 1.1. Let r ≥ 1. Then ψ(r) ≤ X(r) + √ X(r) 2 -1, with X(r) = r + √ r 2 -1. (1) 
The estimate given in Theorem 1.1 is more accurate than ψ(r) ≤ 2r for r close to 1, more precisely for 1 ≤ r ≤ 1.0290855 . . . . It also gives ψ(1) = 1 (leading to Stampfli's result) and the following asymptotic estimate.

Corollary 1.2. We have

ψ(1+ε) ≤ 1 + 4 √ 8ε + O(ε 1/2 ), ε → 0.
Our second aim is to prove that the exponent 1/4 in Corollary 1.2 is optimal. This is a consequence of the following result.

Theorem 1.3. Let n be a positive integer of the form n = 8k + 4. There exists a n × n invertible matrix A n with complex entries such that

w(A n ) ≤ 1 cos π n , w(A -1 n ) ≤ 1 cos π n , A n = 1 + 1 8 √ n .
Indeed, Theorem 1.3 implies that

ψ ( 1 cos π n ) ≥ A n = 1+ 1 8 √ n . Taking 1+ε = 1/ cos π n = 1 + π 2 2n 2 + O( 1 n 4
), we see that the exponent 1 4 cannot be improved. More generally, we can consider for ρ ≥ 1 the ρ-radius w ρ (A) introduced by Sz.-Nagy and Foiaş (see [5, Chapter 1] and the references therein). Consider the class C ρ of operators T ∈ B(H) which admit unitary ρ-dilations, i.e. there exist a super-space H ⊃ H and a unitary operator U ∈ B(H) such that

T n = ρP U n P * ,
for n = 1, 2, . . . .

Here P denotes the orthogonal projection from H onto H. Then the operator ρ-radius is defined by

w ρ (A) = inf{λ > 0 ; λ -1 A ∈ C ρ }.
From this definition it is easily seen that r(A) ≤ w ρ (A) ≤ ρ A , where r(A) denotes the spectral radius of A. Also, w ρ (A) is a non-increasing function of ρ. Another equivalent definition follows from [5, Theorem 11.1]:

w ρ (A) = sup h∈Eρ { (1-1 ρ ) | Ah, h | + √ (1-1 ρ ) 2 | Ah, h | 2 + ( 2 ρ -1) Ah 2 }
, with

E ρ = {h ∈ H ; h = 1 and(1-1 ρ ) 2 | Ah, h | 2 -(1-2 ρ ) Ah 2 ≥ 0}. Notice that E ρ = {h ∈ H ; h = 1} whenever 1 ≤ ρ ≤ 2. This shows that w 1 (A) = A , w 2 (A) = w(A) and w ρ (A) is a convex function of A if 1 ≤ ρ ≤ 2.
We now define a function ψ ρ (r) for r ≥ 1 by

ψ ρ (r) = sup{ A ; A ∈ B(H), w ρ (A) ≤ r, w ρ (A -1 ) ≤ r}.
As before, the conditions w ρ (A) ≤ r and w ρ (A -1 ) ≤ r imply the existence of a unitary operator U such that A-U ≤ ψ ρ (r)-1, and we have ψ ρ (r) ≤ ρr. We will generalize the estimate (1) from Theorem 1.1 by proving, for 1 ≤ ρ ≤ 2, the following result.

Theorem 1.4. For 1 ≤ ρ ≤ 2 we have

ψ ρ (r) ≤ X ρ (r) + √ X ρ (r) 2 -1, (2) with X ρ (r) = 2 + ρr 2 -ρ + √ (2 + ρr 2 -ρ) 2 -4r 2 2r . Corollary 1.5. For 1 ≤ ρ ≤ 2 we have ψ ρ (1+ε) ≤ 1 + 4 √ 8(ρ -1)ε + O(ε 1/2 ), ε → 0.
We recover in this way for 1 ≤ ρ ≤ 2 the recent result of Ando and Li [2, Theorem 2.3], namely that w ρ (A) ≤ 1 and w ρ (A -1 ) ≤ 1 imply A is unitary. The range 1 ≤ ρ ≤ 2 coincides with the range of those ρ ≥ 1 for which w ρ (•) is a norm. Contrarily to [START_REF] Ando | Operator radii and unitary operators[END_REF], we have not been able to treat the case ρ > 2.

The organization of the paper is as follows. In Section 2 we prove Theorem 1.4, which reduces to Theorem 1.1 in the case ρ = 2. The proof of Theorem 1.3 which shows the optimality of the exponent 1/4 in Corollary 1.2 is given in Section 3.

As a concluding remark, we would like to mention that the present developments have been influenced by the recent work of Sano/Uchiyama [START_REF] Sano | Numerical radius and unitarity[END_REF] and Ando/Li [START_REF] Ando | Operator radii and unitary operators[END_REF]. In [START_REF] Crouzeix | The annulus as a K-spectral set, to appear in[END_REF], inspired by the paper of Stampfli [START_REF] Stampfli | Minimal range theorems for operators with thin spectra[END_REF], we have developed another (more complicated) approach in the case ρ = 2.

Proof of Theorem 1.4 about ψ ρ

Let us consider M = 1 2 (A + (A * ) -1 ); then

M * M -1 = 1 4 (A * A + (A * A) -1 -2) ≥ 0. This implies M -1 ≤ 1.
In what follows C 1/2 will denote the positive square root of the self-adjoint positive operator C. The relation (A * A -2M * M + 1) 2 = 4M * M (M * M -1) yields

A * A -2M * M + 1 ≤ 2(M * M ) 1/2 (M * M -1) 1/2 , whence A * A ≤ ((M * M ) 1/2 + (M * M -1) 1/2 ) 2 . Therefore A ≤ M + √ M 2 -1.
We now assume 1 ≤ ρ ≤ 2. Then w ρ (.) is a norm and the two conditions w ρ (A) ≤ r and w ρ (A -1 ) ≤ r imply w ρ (M ) ≤ r. The desired estimate of ψ ρ (r) will follow from the following auxiliary result.

Lemma 2.1. Assume ρ ≥ 1. Then the assumptions w ρ (M ) ≤ r and M -1 ≤ 1 imply M ≤ X ρ (r).
Proof. The contractivity of M -1 implies u ≤ M u , (∀u ∈ H).

(

) 3 
As w ρ (M ) ≤ r, it follows from a generalization by Durszt [START_REF] Durszt | Factorization of operators in C ρ class[END_REF] of a decomposition due to Ando [START_REF] Ando | Structure of operators with numerical radius one[END_REF], that the operator M can be decomposed as

M = ρr B 1/2 U C 1/2 ,
with U unitary, C selfadjoint satisfying 0 < C < 1, and

B = f (C) with f (x) = (1-x)/(1-ρ(2-ρ)x) -1 .
Notice that f is a decreasing function on the segment [0, 1] and an involution :

f (f (x)) = x. Let [α, β] be the smallest segment containing the spectrum of C. Then [ √ α, √ β] is the smallest segment containing the spectrum of C 1/2 and [ √ f (β), √ f (α)]
is the smallest segment containing the spectrum of B 1/2 . We have

u ≤ M u ≤ ρr √ f (α) C 1/2 u , (∀u ∈ H).
Choosing a sequence u n of norm-one vectors ( u n = 1) such that C 1/2 u n tends to √ α, we first get 1 ≤ ρr √ αf (α), i.e. 1 -(2+ρr 2 -ρ)ρα + ρ 2 r 2 α 2 ≤ 0. Consequently we have

2+ρr 2 -ρ - √ (2+ρr 2 -ρ) 2 -4r 2 2 ρ r 2 ≤ α ≤ 2+ρr 2 -ρ + √ (2+ρr 2 -ρ) 2 -4r 2 2 ρ r 2 ,
and by α = f (f (α))

2+ρr 2 -ρ - √ (2+ρr 2 -ρ) 2 -4r 2 2 ρ r 2 ≤ f (α) ≤ 2+ρr 2 -ρ + √ (2+ρr 2 -ρ) 2 -4r 2 2 ρ r 2 .
Similarly, noticing that (

M * ) -1 ≤ 1, M * = ρr C 1/2 U * B 1/2 and C = f (B), we obtain 2+ρr 2 -ρ - √ (2+ρr 2 -ρ) 2 -4r 2 2 ρ r 2 ≤ β ≤ 2+ρr 2 -ρ + √ (2+ρr 2 -ρ) 2 -4r 2 2 ρ r 2 .
Therefore

M ≤ ρr B 1/2 C 1/2 = ρr √ f (α)β ≤ 2+ρr 2 -ρ + √ (2+ρr 2 -ρ) 2 -4r 2 2 r .
This shows that M ≤ X ρ (r).

3 The exponent 1/4 is optimal (Proof of Theorem 1.3)

Consider the family of n × n matrices A = DBD, defined for n = 8k + 4, by D = diag(e iπ/2n , . . . , e (2 -1)iπ/2n , . . . , e (2n-1)iπ/2n ),

B = I + 1 2 n 3/2 E
, where E is a matrix whose entries are defined as

e ij = 1 if 3k + 2 ≤ |i -j| ≤ 5k + 2,
e ij = 0 otherwise.

We first remark that

A = B = 1 + 1 8 √ n .
Indeed, B is a symmetric matrix with non negative entries, Be = (1+ 1 Consider now the permutation matrix P defined by p ij = 1 if i = j + 1 modulo n and p ij = 0 otherwise and the diagonal matrix ∆ =diag(1, . . . , 1, -1). Then P -1 DP = e iπ/n ∆D and P -1 EP = E, whence (P ∆) -1 AP ∆ = e 2iπ/n A. Since P ∆ is a unitary matrix, the numerical range

W (A) = { Au, u , ; u = 1} of A satisfies W (A) = W ((P ∆) -1 AP ∆) = e 2iπ/n W (A)
. This shows that the numerical range of A is invariant by the rotation of angle 2π/n centered in 0, and the same property also holds for the numerical range of A -1 .

We postpone the proof of the estimates 1 2 (A + A * ) ≤ 1 and 1 2 (A -1 + (A -1 ) * ) ≤ 1 to later sections. Using these estimates, we obtain that the numerical range W (A) is contained in the halfplane {z ; Re z ≤ 1}, whence in the regular n-sided polygon given by the intersection of the half-planes {z ; Re(e 2iπk/n z) ≤ 1}, k = 1, . . . , n. Consequently w(A) ≤ 1/ cos(π/n). The proof of w(A -1 ) ≤ 1/ cos(π/n) is similar. 1 2 (A+A * ) ≤ 1.

Proof of

Since the ( , j)-entry of A is e ( +j-1)i π n ( δ ,j + e ,j 2n 3/2

) , the matrix 1 2 (A + A * ) is a real symmetric matrix whose (i, j)-entry is cos

( (i+j-1) π n ) ( δ i,j + e i,j 2n 3/2 
) . It suffices to show that, for every u =

(u 1 , • • • , u n ) T ∈ R n , we have u 2 -Re Au, u ≥ 0. Let E = {(i, j) ; 1 ≤ i, j ≤ n, 3k + 2 ≤ |i -j| ≤ 5k + 2}.
The inequality which has to be proved is equivalent to

n ∑ i=1 2 sin 2 ((i-1 2 ) π n ) u 2 i -1 2 n 3/2 ∑ i,j∈E cos((i+j -1) π n )u i u j ≥ 0.
Setting v j = u j sin((j -1 2 ) π n ), this may be also written as follows

2 v 2 -M v, v + 1 2n 3/2 Ev, v ≥ 0, (v ∈ R n ). ( 4 
)
Here M is the matrix whose entries are defined by . First we notice that m ij = m ji = m n+1-i,n+1-j , and m ii = 0. Hence, with E = {(i, j) ∈ E ; i < j and i + j ≤ n + 1},

m ij = 1 2n 3/2 cot((i-1 2 ) π n ) cot((j -1 2 ) π n ), if (i, j) ∈ E, m ij = 0
M 2 F = 2 ∑ i<j |m ij | 2 ≤ 4 ∑ (i,j)∈E |m ij | 2 .
We have, for (i, j) ∈ E ,

2j ≤ i + j + 5k + 2 ≤ n + 5k + 3 = 13k + 7, thus 3k + 3 ≤ j ≤ 13k+7 2 , 2i ≤ i + j -3k -2 ≤ n -3k -1 = 5k + 3, thus 1 ≤ i ≤ 5k+3 2 .
This shows that

3π 16 ≤ 3k+2 16k+8 π ≤ (j -1 2 ) π n ≤ 13k+6 16k+8 π ≤ π -3π 16 , hence | cot((j -1 2 ) π n )| ≤ cot 3π 16 ≤ 3 2 .
We also use the estimate cot((i-

2 ) π n ) ≤ n/(π(i-1 1 
)) and the classical relation

∑ i≥1 (i -1/2) -2 = π 2 /2 to obtain M 2 F ≤ 4 ∑ (i,j)∈E |m ij | 2 ≤ 4 4n 3 n 2 π 2 ∑ i≥1 1 (i -1/2) 2 (2k+1) 9 4 = 9 32 . 3.2 Proof of 1 2 (A -1 +(A -1 ) * ) ≤ 1.
We start from

(A -1 ) * = D(1 + 1 2n 3/2 E) -1 D = D 2 -1 2n 3/2 DED + 1 4n 3 DE 2 (1 + 1 2n 3/2 E) -1 D,
and we want to show that u 2 -Re A -1 u, u ≥ 0. As previously, we set v j = u j sin((j

-1 2 ) π n ). The inequality 1 2 (A -1 +(A -1 ) * ) ≤ 1 is equivalent to 2 v 2 -(M 1 + M 2 + M 3 + M 4 )v, v ≥ 0, (v ∈ R n ).
Here the entries of the matrices M p , 1 ≤ p ≤ 4, are given by

(m 1 ) ij = -1 2n 3/2 cot((i-1 2 ) π n ) cot((j -1 2 ) π n )e ij , (m 2 ) ij = 1 2n 3/2 e ij , (m 3 ) ij = 1 4n 3 cot((i-1 2 ) π n ) cot((j -1 2 ) π n )f ij , (m 4 ) ij = -1 4n 3 f ij ,
e ij and f ij respectively denoting the entries of the matrices E and F = E 2 (1 + 1 2n 3/2 E) -1 . Noticing that M 1 = -M , we have

M 1 ≤ 3 4 , M 2 = 1 8 √ n , F ≤ n 2 /16
1-1/(8 √ n) ≤ n 2 14 and M 4 = 1 4n 3 F . Now we use

M 3 2 ≤ M 3 2 F ≤ 1 16n 6 max ij |f ij | 2 ∑ i,j | cot((i-1 2 ) π n )| 2 | cot((j -1 2 ) π n )| 2 ,
together with

∑ i,j | cot((i-1 2 ) π n )| 2 | cot((j -1 2 ) π n )| 2 = ( n ∑ i=1 | cot((i-1 2 ) π n )| 2 ) 2 ≤ 4 ( n/2 ∑ i=1 | cot((i-1 2 ) π n )| 2 ) 2 ≤ n 4 ,
to obtain

M 3 ≤ 1 4n max ij |f ij |.
Using 

8 √n

 8 )e with e T = (1, 1, 1 . . . , 1). Thus B = r(B) = 1+ 1 8 √ n by the Perron-Frobenius theorem.

  otherwise.

	√ 4 . Together with E = n/4, this shows that 9/32 < 3/4. We will see that the Frobenius (or Hilbert-Schmidt) norm of M satisfies M F ≤ A fortiori, the operator norm of M satisfies M ≤ 3 M + 1 2n 3/2 E ≤ 7 8 . Property (4) is now verified.
	It remains to show that M 2 F ≤ 9 32

  the notation E ∞ := max{ Eu ∞ ; u ∈ C n , u ∞ ≤ 1} for the operator norm induced by the maximum norm in C d , it holds E ∞ = n/4, whence ij the entries of the matrix E 2 and noticing that max i,j |e 2 ij | = n/4. Finally, we obtain M 3 ≤ 1 14 and M 1 + M 2 + M 3 + M 4 ≤ 3 4 + 1 8 + 1 14 + 1 56 < 1.

	1 1-1/8 = 8 7 . This shows that				1 2n 3/2 E ∞ ≤ 1/8 and thus (1 + 1 2n 3/2 E) -1	∞ ≤
	max ij	|f ij | ≤ (1 + 1 2n 3/2 E) -1	∞ max ij	|e 2 ij | ≤	2n 7	,
	by denoting e 2				
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