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Numerical radius and distance to unitaries

Catalin Badea and Michel Crouzeix

Abstract

Denote by w(A) the numerical radius of a bounded linear operator A acting on Hilbert space.
Suppose that A is invertible and that w(A) ≤ 1+ε and w(A−1) ≤ 1+ε for some ε ≥ 0. It is shown
that inf{‖A−U‖ : U unitary} ≤ cε1/4 for some constant c > 0. This generalizes a result due to
J.G. Stampfli, which is obtained for ε = 0. An example is given showing that the exponent 1/4 is
optimal. The more general case of the operator ρ-radius wρ(·) is discussed for 1 ≤ ρ ≤ 2.

1 Introduction and statement of the results

Let H be a complex Hilbert space endowed with the inner product 〈·, ·〉 and the associated norm ‖ · ‖.
We denote by B(H) the C∗-algebra of all bounded linear operators on H equipped with the operator
norm

‖A‖ = sup{‖Ah‖ : h ∈ H, ‖h‖ = 1}.

It is easy to see that unitary operators can be characterized as invertible contractions with contractive
inverses, i.e. as operators A with ‖A‖ ≤ 1 and ‖A−1‖ ≤ 1. More generally, if A ∈ B(H) is invertible
then

inf {‖A−U‖ : U unitary } = max
(
‖A‖ − 1, 1 − 1

‖A−1‖

)
.

We refer to [6, Theorem 1.3] and [9, Theorem 1] for a proof of this equality using the polar decompo-
sition of bounded operators. It also follows from this proof that if A ∈ B(H) is an invertible operator
satisfying ‖A‖ ≤ R and ‖A−1‖ ≤ R for some R ≥ 1, then there exists a unitary operator U ∈ B(H)
such that ‖A−U‖ ≤ R−1.

The numerical radius of the operator A is defined by

w(A) = sup{|〈Ah, h〉| : h ∈ H, ‖h‖ = 1}.

Stampfli has proved in [8] that numerical radius contractivity of A and of its inverse A−1, that is
w(A) ≤ 1 and w(A−1) ≤ 1, imply that A is unitary. We define a function ψ(R) for R ≥ 1 by

ψ(R) = sup{‖A‖ : A ∈ B(H), w(A) ≤ R, w(A−1) ≤ R},

the supremum being also considered over all Hilbert spaces H. Then the conditions w(A) ≤ R and
w(A−1) ≤ R imply the existence of a unitary operator U such that ‖A−U‖ ≤ ψ(R)−1. From the
well-known estimate w(A) ≤ ‖A‖ ≤ 2w(A), we get that ψ(R) ≤ 2R.

Our first aim is to prove the following estimate.

Theorem 1.1. Let R ≥ 1. Then

ψ(R) ≤ X(R) +
√
X(R)2−1, with X(R) = R+

√
R2 − 1. (1)

1



The estimate given in Theorem 1.1 is more accurate than ψ(R) ≤ 2R for R close to 1, more
precisely for 1 ≤ R ≤ 1.0290855 . . . . It also gives ψ(1) ≤ 1 (leading to Stampfli’s result) and the
following asymptotic estimate.

Corollary 1.2. We have
ψ(1+ε) ≤ 1 + 4

√
8ε+O(ε1/2), ε→ 0.

Our second aim is to prove that the exponent 1/4 in Corollary 1.2 is optimal. This is a consequence
of the following result.

Theorem 1.3. Let n be a positive integer of the form n = 8k + 4. There exists a n × n invertible
matrix An with complex entries such that

w(An) ≤ 1/ cos(π/n), w(A−1
n ) ≤ 1/ cos(π/n), ‖An‖ = 1 +

1
8
√
n
.

Indeed, Theorem 1.3 implies that

ψ(1/ cos(π/n)) ≥ ‖An‖ = 1+
1

8
√
n
.

Taking 1+ε = 1/ cos(π/n), we see that the exponent 1/4 cannot be improved.

More generally, we can consider for ρ ≥ 1 the ρ-radius wρ(A) introduced by Sz.-Nagy and Foiaş
(see [5, Chapter 1] and the references therein). Consider the class Cρ of operators T ∈ B(H) which
admit unitary ρ-dilations, i.e. there exist a super-space H ⊃ H and a unitary operator U ∈ B(H)
such that

Tn = ρPUnP ∗, for n = 1, 2, . . . .

Here P denotes the orthogonal projection from H onto H. Then the operator ρ-radius is defined by

wρ(A) = inf{λ > 0 ;λ−1A ∈ Cρ}.

From this definition it is easily seen that r(A) ≤ wρ(A) ≤ ρ‖A‖, where r(A) denotes the spectral
radius of A. Also, wρ(A) is a non-increasing function of ρ. Another equivalent definition follows from
[5, Theorem 11.1]:

wρ(A) = sup
h∈Eρ

(1− 1
ρ) |〈Ah, h〉| +

√
(1− 1

ρ)2|〈Ah, h〉|2 + (2
ρ−1) ‖Ah‖2, with

Eρ = {h ∈ H ; ‖h‖ = 1 and(1− 1
ρ)2|〈Ah, h〉|2 − (1− 2

ρ) ‖Ah‖2 ≥ 0}.

Notice that Eρ = {h ∈ H ; ‖h‖ = 1} whenever 1 ≤ ρ ≤ 2. This shows that w1(A) = ‖A‖, w2(A) = w(A)
and wρ(A) is a convex function of A if 1 ≤ ρ ≤ 2.

We now define a function ψρ(R) for R ≥ 1 by

ψρ(R) = sup{‖A‖ ;A ∈ B(H), wρ(A) ≤ R, wρ(A−1) ≤ R}.

As before, the conditions wρ(A) ≤ R and wρ(A−1) ≤ R imply the existence of a unitary operator U
such that ‖A−U‖ ≤ ψρ(R)−1, and we have ψρ(R) ≤ ρR. We will generalize the estimate (1) from
Theorem 1.1 by proving, for 1 ≤ ρ ≤ 2, the following result.

Theorem 1.4. For 1 ≤ ρ ≤ 2 we have

ψρ(R) ≤ Xρ(R) +
√
Xρ(R)2 − 1, (2)

with Xρ(R) =
2 + ρR2 − ρ+

√
(2 + ρR2 − ρ)2 − 4R2

2R
.
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Corollary 1.5. For 1 ≤ ρ ≤ 2 we have

ψρ(1+ε) ≤ 1 + 4
√

8(ρ− 1)ε+O(ε1/2), ε→ 0.

We recover in this way for 1 ≤ ρ ≤ 2 the recent result of Ando and Li [2, Theorem 2.3], namely
that wρ(A) ≤ 1 and wρ(A−1) ≤ 1 imply A is unitary. The range 1 ≤ ρ ≤ 2 coincides with the range
of those ρ ≥ 1 for which wρ(·) is a norm. Contrarily to [2], we have not been able to treat the case
ρ > 2.

The organization of the paper is as follows. In Section 2 we prove Theorem 1.4, which reduces to
Theorem 1.1 in the case ρ = 2. The proof of Theorem 1.3 which shows the optimality of the exponent
1/4 in Corollary 1.2 is given in Section 3.

As a concluding remark, we would like to mention that the present developments have been in-
fluenced by the recent work of Sano/Uchiyama [7] and Ando/Li [2]. In [3], inspired by the paper of
Stampfli [8], we have developed another (more complicated) approach in the case ρ = 2.

2 Proof of Theorem 1.4 about ψρ

Let us consider M = 1
2(A+ (A∗)−1); then

M∗M − 1 = 1
4(A∗A+ (A∗A)−1 − 2) ≥ 0.

This implies ‖M−1‖ ≤ 1. In what follows C1/2 will denote the positive square root of the self-adjoint
positive operator C. The relation (A∗A− 2M∗M + 1)2 = 4M∗M(M∗M − 1) yields

A∗A− 2M∗M + 1 ≤ 2(M∗M)1/2(M∗M − 1)1/2,

whence A∗A ≤ (M∗M)1/2 + (M∗M − 1)1/2)2.

Therefore ‖A‖ ≤ ‖M‖ +
√

‖M‖2 − 1.

We now assume 1 ≤ ρ ≤ 2. Then wρ(.) is a norm and the two conditions wρ(A) ≤ R and
wρ(A−1) ≤ R imply wρ(M) ≤ R. The desired estimate of ψρ(R) will follow from the following lemma.

Lemma 2.1. Assume ρ ≥ 1. Then the assumptions wρ(M) ≤ R et ‖M−1‖ ≤ 1 imply ‖M‖ ≤ Xρ(R).

Proof. The contractivity of M−1 implies

‖u‖ ≤ ‖Mu‖, (∀u ∈ H). (3)

From a generalization by Durszt [4] of a decomposition due to Ando [1], we can write

M = ρRB1/2UC1/2,

with U unitary, C selfadjoint satisfying 0 < C < 1, and B = f(C) with f(x) = (1−x)/(1−ρ(2−ρ)x)−1.
Notice that f is a decreasing function on the segment [0, 1] and an involution : f(f(x)) = x. Let
[α, β] be the smallest segment containing the spectrum of C. Then [

√
α,

√
β] is the smallest segment

containing the spectrum of C1/2 and [
√
f(β),

√
f(α)] is the smallest segment containing the spectrum

of B1/2. We have

‖u‖ ≤ ‖Mu‖ ≤ ρR
√
f(α)‖C1/2u‖, (∀u ∈ H).

Choosing a sequence un of norm-one vectors (‖un‖ = 1) such that ‖C1/2un‖ tends to
√
α, we first get

1 ≤ ρR
√
αf(α), i.e. 1 − (2+ρR2−ρ)ρα+ ρ2R2α2 ≤ 0. Consequently we have

2+ρR2−ρ−
√

(2+ρR2−ρ)2−4R2

2 ρR2
≤ α ≤

2+ρR2−ρ+
√

(2+ρR2−ρ)2−4R2

2 ρR2
,
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and

2+ρR2−ρ−
√

(2+ρR2−ρ)2−4R2

2 ρR2
≤ f(α) ≤

2+ρR2−ρ+
√

(2+ρR2−ρ)2−4R2

2 ρR2
.

Similarly, noticing that ‖(M∗)−1‖ ≤ 1, M∗ = ρRC1/2U∗B1/2 and C = f(B), we obtain

2+ρR2−ρ−
√

(2+ρR2−ρ)2−4R2

2 ρR2
≤ β ≤

2+ρR2−ρ+
√

(2+ρR2−ρ)2−4R2

2 ρR2
.

Therefore

‖M‖ ≤ ρR ‖B1/2‖ ‖C1/2‖ = ρR
√
f(α)β ≤

2+ρR2−ρ+
√

(2+ρR2−ρ)2−4R2

2R
.

This shows that ‖M‖ ≤ Xρ(R).

3 The exponent 1/4 is optimal (Proof of Theorem 1.3)

Consider the family of n× n matrices A = DBD, defined for n = 8k + 4, by

B = I + 1
2 n3/2E, with

eij = 1 if 3k + 2 ≤ |i− j| ≤ 5k + 2,
eij = 0 otherwise,

D = diag(eiπ/2n, . . . , e(2`−1)iπ/2n, . . . , e(2n−1)iπ/2n).

We first remark that ‖A‖ = ‖B‖ = 1+ 1
8
√

n
. Indeed, B is a symmetric matrix with non negative

entries, Be = (1+ 1
8
√

n
)e with eT = (1, 1, 1 . . . , 1). Thus ‖B‖ = r(B) = 1+ 1

8
√

n
.

Consider now the permutation matrix P defined by pij = 1 if i = j+1 modulo n and pij = 0
otherwise. Then P−1DP = eiπ/nD and P−1EP = E, whence P−1AP = e2iπ/nA. Since P is a unitary
matrix, the numerical range W (A) = {〈Au, u〉, ; ‖u‖ = 1} of A satisfies W (A) = W (P−1AP ) =
e2iπ/nW (A). Furthermore, from A∗ = A, it follows that W (A) is symmetric with respect to the real
axis. Putting all these things together we obtain that the numerical range of A is invariant by the
group of symmetries of a regular n-sided polygon, and the same property also holds for the numerical
range of A−1.

We postpone the proof of the estimates
∥∥1

2(A+A∗)
∥∥ ≤ 1 and

∥∥1
2(A−1 +(A−1)∗)

∥∥ ≤ 1 to later
sections. Using these estimates, we obtain that the numerical range W (A) is contained in the half-
plane {z ; Re z ≤ 1}, whence in the regular n-sided polygon given by the intersection of the half-planes
{z ; Re(e2iπk/nz) ≤ 1}, k = 1, . . . , n. Consequently w(A) ≤ 1/ cos(π/n). The proof of w(A−1) ≤
1/ cos(π/n) is similar.

3.1 Proof of
∥∥1

2
(A+A∗)

∥∥ ≤ 1.

It suffices to show that, for every u = (u1, · · · , un) ∈ Rn, we have ‖u‖2 − Re〈Au, u〉 ≥ 0. Let
E = {(i, j) ; 1 ≤ i, j ≤ n, 3k+2 ≤ |i−j| ≤ 5k+2}. The inequality which has to be proved is equivalent
to

n∑
i=1

2 sin2((i− 1
2)π

n)u2
i − 1

2 n3/2

∑
i,j∈E

cos((i+j−1)π
n)ui uj ≥ 0.

Setting vj = uj sin((j− 1
2)π

n), this may be also written as follows

2‖v‖2 − 〈Mv, v〉 − 1
2n3/2 〈Ev, v〉 ≥ 0, (v ∈ Rn). (4)
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Here M is the matrix whose entries are defined by

mij = 1
2n3/2 cot((i− 1

2)π
n) cot((j− 1

2)π
n), if (i, j) ∈ E , mij = 0 otherwise.

We will see that the Frobenius (or Hilbert-Schmidt) norm of M satisfies ‖M‖F ≤ 9
32 . A fortiori, the

operator norm of M satisfies ‖M‖ ≤ 9
32 . Together with ‖E‖ = n/4, this shows that ‖M‖+ 1

2n3/2 ‖E‖ ≤
13
32 . Property (4) is now verified.

It remains to show that ‖M‖F ≤ 9
32 . First we notice that mij = mji = mn+1−i,n+1−j , and mii = 0.

Hence, with E ′ = {(i, j) ∈ E ; i < j, et i+ j ≤ n+ 1},

‖M‖2
F

= 2
∑
i<j

|mij |2 ≤ 4
∑

(i,j)∈E ′

|mij |2.

We have, for (i, j) ∈ E ′,

2j ≤ i+ j + 5k + 2 ≤ n+ 5k + 3 = 13k + 7, thus 3k + 3 ≤ j ≤ 13k+7
2 ,

2i ≤ i+ j − 3k − 1 ≤ n− 3k − 1 = 5k + 3, thus 1 ≤ i ≤ 5k+3
2 .

This shows that

3π
16 ≤ 3k+2

16k+8π ≤ (j− 1
2)π

n ≤ 13k+6
16k+8π ≤ π − 3π

16 , hence | cot((j− 1
2

π
n)| ≤ cot 3π

16 ≤ 3
2 .

We also use the estimate cot((i− 1
2)π

n) ≤ n/(π(i− 1
2)) to obtain

‖M‖2
F
≤ 4

∑
(i,j)∈E ′

|mij |2 ≤ 4
4n3

n2

π2

∑
i≥1

1
(i− 1/2)2

(2k+1)
9
4

=
9
32
.

3.2 Proof of
∥∥1

2
(A−1+(A−1)∗)

∥∥ ≤ 1.

We start from

(A−1)∗ = D(1 + 1
2n3/2E)−1D

= D2 − 1
2n3/2DED + 1

4n3DE
2(1 + 1

2n3/2E)−1D,

and we want to show that ‖u‖2 − Re〈A−1u, u〉 ≥ 0. As previously, we set vj = uj sin((j− 1
2)π

n). The
inequality

∥∥1
2(A−1+(A−1)∗)

∥∥ ≤ 1 is equivalent to

2‖v‖2 − 〈(M1 +M2 +M3 +M4)v, v〉 ≥ 0, (v ∈ Rn).

Here the entries of the matrices Mp, 1 ≤ p ≤ 4, are given by

(m1)ij = − 1
2n3/2 cot((i− 1

2)π
n) cot((j− 1

2)π
n)eij ,

(m2)ij = − 1
2n3/2 eij ,

(m3)ij = 1
4n3 cot((i− 1

2)π
n) cot((j− 1

2)π
n)fij ,

(m4)ij = 1
4n3 fij ,

eij and fij respectively denoting the entries of the matrices E and F = E2(1 + 1
2n3/2E)−1. Noticing

that M1 = −M , we have ‖M1‖ ≤ 9
32 , ‖M2‖ = 1

8
√

n
, ‖F‖ = n2/16

1+1/8
√

n
≤ n2

16 and ‖M4‖ = 1
4n3 ‖F‖. Now

we use

‖M3‖2 ≤ ‖M3‖2
F
≤ 1

16n6 max
ij

|fij |2
∑
i,j

| cot((i− 1
2)π

n)|2 | cot((j− 1
2)π

n)|2,
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together with

∑
i,j

| cot((i− 1
2)π

n)|2 | cot((j− 1
2)π

n)|2 =
( n∑

i

| cot((i− 1
2)π

n)|2
)2

≤ n4,

to obtain

‖M3‖F ≤ 1
4n max

ij
|fij |.

Denoting e2ij the entries of the matrix E2, we easily verify that maxi,j |e2ij | = n/4. Therefore

maxij |fij | ≤ n/4
1−1/8

√
n
, whence ‖M3‖F ≤ 1

16(1−1/8
√

n)
. Finally, we obtain ‖M1 +M2 +M3 +M4‖ ≤ 1.
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